
PhD Program in Signal Theory and Communications

Contribution to the Development of Wi-Fi
Networks through Machine Learning based
Prediction and Classification Techniques

Author:
Seyedeh Soheila Shaabanzadeh

Thesis Advisor:
Dr. Juan Sánchez-González
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Abstract

The growing number of Wi-Fi users and the emergence of bandwidth-intensive ser-
vices have necessitated an increase in Access Point (AP) density, resulting in more
complex network configuration, optimization, and management tasks. Concurrently,
advancements in data monitoring and analytics technologies in wireless networks offer
opportunities to extract valuable insights into network and user behavior, facilitating
more efficient network management. In this thesis, we propose a general architecture of
how our work enhances Wi-Fi network management using machine learning techniques,
focusing on three aspects: user connectivity prediction, Wi-Fi traffic prediction, and
Wi-Fi traffic classification.

The first aspect of our work involves extracting knowledge related to the next AP
of users. We present a methodology to predict the AP a user will connect to in a Wi-Fi
network based on historical AP connections. Various approaches are proposed to cap-
ture different time-based (i.e. hourly, daily, weekly) user activity behaviors, comparing
two prediction algorithms, Neural Networks and Random Forest. This methodology
is evaluated using real data from a large Wi-Fi network deployed on a university cam-
pus. Predicting the next AP of users in Wi-Fi network enables a proactive approach
to network reconfiguration, enhancing efficiency. For instance, it aids in optimizing
Pairwise Master Key caching and Opportunistic Key Caching techniques, reducing
re-authentication time when users switch between APs. Furthermore, the prediction
of the next AP to which the User Equipment (UE) will connect, allow to identify in
which geographical region the UE will be placed. Additionally, the extracted knowl-
edge from next AP prediction of users can be leveraged for commercial purposes.
Companies can utilize this information for targeted advertising, customizing messages
based on the geographical location of the users, thereby enhancing the effectiveness of
their marketing strategies.

Secondly, we introduce a solution for traffic prediction at the AP by proposing a
methodology to predict the aggregated traffic of all the UEs connected at the AP.
This methodology leverages spatial and temporal correlations of traffic handled by
neighboring APs to improve prediction accuracy. Real measurements are used to eval-
uate the proposed methodology. We assess various Deep Learning methods, including
Convolutional Neural Network (CNN), Simple Recurrent Neural Network (SRNN),
Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), and Transformer,
for both prediction approaches. Furthermore, a hybrid prediction methodology that
combines spatial processing using CNN and temporal prediction using RNN is pre-
sented. This hybrid approach enhances prediction accuracy with minimal increase
in Training Computational Time and negligible impact on Prediction Computational
Time. Forecasting future values of traffic in each AP enables a more accurate charac-
terization of the load space/time distribution among the APs. On the one hand, this
knowledge can be used as input for different resource management techniques such
as admission control, congestion control, load balancing, etc. On the other hand, the
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Abstract

prediction of a very low traffic at specific APs at certain periods of time can be a
useful input for energy saving techniques (e.g. switching off APs with near-zero traffic
at some specific time periods).

Finally, traffic classification stands as another crucial element in enhancing network
performance. By being able to classify different kinds of services, it allows for better
resource allocation and service prioritization, giving higher priority to specific services
with stringent latency requirements. The increase in demand for eXtended Reality
(XR)/Virtual Reality (VR) services in recent years presents a significant challenge
for Wi-Fi networks in meeting strict latency requirements. Latency is particularly
critical in VR over Wi-Fi, as users expect immediate responses to their interactions.
Delays can disrupt the user experience, potentially leading to motion sickness and
service abandonment. To address this, distinguishing interactive VR traffic from Non-
VR traffic in Wi-Fi networks can help reduce latency for VR users, improving Wi-Fi
Quality of Service (QoS). In this study, we propose a machine learning-based method
for identifying interactive VR traffic in a Cloud-Edge VR environment. We analyze
the correlation between downlink and uplink data and extract features from single-
user traffic characteristics. We compare six common classification techniques (i.e.,
Logistic Regression, Support Vector Machines, k-Nearest Neighbors, Decision Trees,
Random Forest, and Naive Bayes) to create an effective model. Using datasets gen-
erated by different VR applications, including both single and multi-user cases, and
Wi-Fi network simulations, we assess the efficacy of our approach in enhancing VR
traffic identification and prioritization. Our results demonstrate a notable reduction in
VR traffic delays compared to scenarios without prioritization, with minimal impact
on background (BG) traffic latency related to Non-VR services.
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Resumen

El creciente número de usuarios Wi-Fi y el aumento en la demanda de servicios de
alta capacidad ha propiciado un aumento de la densidad de puntos de acceso, dando
lugar a procesos de configuración, optimización y gestión de red más complejos. Por
otro lado, el reciente desarrollo en tecnoloǵıas de monitorización y análisis de datos en
redes inalámbricas, ofrece la oportunidad de extraer información relevante acerca del
comportamiento de la red y los usuarios, facilitando una gestión de red más eficiente.
En esta tesis, se propone una descripción general de como este trabajo mejora la
gestión de sistemas Wi-Fi mediante el uso de técnicas de Machine Learning, poniendo
el foco en tres aspectos principales: predicción de conectividad de usuario, predicción
de tráfico y clasificación de tráfico.

El primer aspecto de este trabajo consiste en la extracción de conocimiento rela-
cionado con el próximo punto de acceso asociado a cada usuario. Este trabajo pre-
senta una metodoloǵıa para predecir el punto de acceso al cual un usuario se conectará
basado en su histórico de conexiones. Se proponen varias alternativas para capturar
comportamientos de actividad de los usuarios en diferentes escalas temporales (ho-
raria, diaria, semanal). Por otro lado, se comparan dos algoritmos de predicción, uno
basado en redes neuronales y el otro basado en técnicas de Random Forest. Estas
metodoloǵıas se evalúan mediante el uso de medidas reales de una red Wi-Fi desple-
gada en un campus universitario. La predicción del próximo punto de acceso permite
una reconfiguración de red de manera proactiva, mejorando la eficiencia. Por ejemplo,
la predicción del próximo punto de acceso al cual se conectará el usuario, permite la op-
timización de técnicas de Pairwise Master Key caching y Opportunistic Key Caching,
reduciendo el tiempo de autenticación cuando los usuarios cambian de punto de acceso.
Por otro lado, este tipo de predicciones permiten identificar la región geográfica en la
cual se ubicará el usuario. Esta información puede ser aprovechada con fines comer-
ciales. Empresas pueden utilizar esta información para publicidad dirigida, mensajes
personalizados, etc. permitiendo mejorar sus estrategias de marketing.

En segundo lugar, se presenta una solución de predicción de tráfico en un punto de
acceso mediante la propuesta de una metodoloǵıa de predicción del tráfico agregado
por todos los usuarios conectados al punto de acceso. Esta metodoloǵıa, hace uso
de correlaciones espaciales y temporales de tráfico de puntos de acceso vecinos con el
objetivo de mejorar la predicción. Para evaluar la metodoloǵıa propuesta, se han uti-
lizado medidas reales. Este trabajo evalúa diferentes metodoloǵıas de Deep Learning,
incluyendo técnicas como Convolutional Neural Network (CNN), Simple Recurrent
Neural Network (SRNN), Gate Recurrent Unit (GRU), Long Short Term Memory
(LSTM) y Transformers. Además, se presenta una metodoloǵıa de predicción h́ıbrida
que combina procesado espacial mediante CNN y procesado temporal mediante RNN.
Esta metodoloǵıa h́ıbrida mejora la predicción obtenida a costa de un reducido incre-
mento en el tiempo computacional de entrenamiento y un impacto despreciable en el
tiempo computacional de predicción. La predicción de futuros valores de tráfico en un
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punto de acceso permite una caracterización más precisa de la distribución de la carga
entre puntos de acceso en el espacio y en el tiempo. Por un lado, esta información
puede ser utilizada por diferentes técnicas como el control de admisión, control de
congestión, balance de tráfico, etc. Por otro lado, la predicción de valores reducidos de
tráfico en algunos puntos de acceso en ciertos instantes de tiempo puede ser útil para
aspectos de Energy Saving (por ejemplo, para la desconexión de puntos de acceso con
tráfico cercano a cero en algunos periodos de tiempo).

Finalmente, las técnicas de clasificación de tráfico son otro aspecto crucial para
la mejora del funcionamiento de la red. La capacidad de clasificar diferentes tipos de
tráfico permite una mejor asignación de recursos y priorización de servicios, proporcio-
nando mayor prioridad a servicios con requerimientos estrictos de retardo. El aumento
de la demanda de servicios de realidad virtual/extendida en estos últimos años supone
un reto para las redes Wi-Fi actuales para satisfacer estos requerimientos estrictos de
retardo. El retardo es particularmente cŕıtico en servicios de realidad virtual sobre re-
des Wi-Fi, dado que los usuarios necesitan respuestas inmediatas a sus interacciones.
Un retardo elevado puede degradar la calidad percibida por el usuario puede provocar
mareo y abandono del servicio. Para solucionar esto, la diferenciación de tráfico de
realidad virtual del resto de tráfico puede reducir la latencia del tráfico de realidad
virtual, mejorando la calidad del servicio. En este estudio, se propone una metodoloǵıa
basada en Machine Learning para identificar tráfico de realidad virtual en un entorno
Cloud Edge VR. Esta metodoloǵıa analiza la correlación entre los datos transmitidos
en los dos sentidos de la comunicación para extraer ciertas caracteŕısticas de tráfico.
Se han comparado seis técnicas de clasificación (Logistic Regression, Support Vector
Machines, k-Nearesst Neighbors, Decision Tree, Random Forest y Naive Bayes). Me-
diante el uso de datasets generados por diferentes aplicaciones de VR (tanto para un
único usuario como para casos multi-usuario) y mediante simulaciones de la red Wi-Fi,
se ha evaluado la eficacia de la metodoloǵıa mejorando la clasificación y priorización
de tráfico. Los resultados obtenidos demuestran una reducción notable de los retardos
en el tráfico de realidad virtual, en comparación con escenarios sin priorización, con
un impacto mı́nimo en el retardo del tráfico relacionado con el resto de servicios.
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González, whose invaluable guidance and insightful feedback have significantly en-
hanced the quality of this dissertation. I am privileged to have been mentored by him
during my doctoral studies, and I am sincerely thankful for his unwavering support
and dedication to my academic development.

Special appreciation goes to Prof. Boris Bellalta at Universitat Pompeu Fabra,
whose guidance and support have been instrumental in shaping my doctoral journey
and fostering my growth as a researcher. The nine months of collaboration with him
have been exceptionally rewarding.

I am also indebted to Costas Michaelides for his patience, motivation, and profound
expertise, which have greatly contributed to the progress of this thesis. Additionally,
my gratitude extends to Marc Carrascosa-Zamacois for his willingness to address my
technical inquiries and share his knowledge, enriching this work with valuable insights.

Finally, I express my heartfelt gratitude to my late father, whose unwavering en-
couragement ignited my passion for learning and inspired me to pursue higher educa-
tion. I am deeply grateful to my mother, sister, brother and friends for their enduring
love and steadfast support throughout this transformative journey. Their encourage-
ment has been a constant source of strength and inspiration, sustaining me through
challenges and triumphs alike.

v



Contents

Abstract i

Resumen iii

Acknowledgment v

Abbreviations xii

1 Introduction 1

1.1 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 8

2.1 Wi-Fi System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Evolution towards Wi-Fi networks . . . . . . . . . . . . . . . . . 8

2.1.2 Wi-Fi 7 and Wi-Fi 8 features . . . . . . . . . . . . . . . . . . . 9

2.1.3 Wi-Fi Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 The 802.11 MAC Protocol . . . . . . . . . . . . . . . . . . . . . 13

2.1.5 Mobility Management . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 ML in Wi-Fi Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Essential Wi-Fi Features . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Newer Wi-Fi Features . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Wi-Fi Connectivity and Traffic Management . . . . . . . . . . . 29

2.2.4 Other Types of Wi-Fi Scenarios . . . . . . . . . . . . . . . . . . 35

2.3 ML Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 General Framework of Thesis Goals . . . . . . . . . . . . . . . . . . . . 41

3 UE Connectivity Prediction 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Methodology Description . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1 Example of the AP prediction methodology . . . . . . . . . . . 51

3.5.2 Comparison of the different proposed approaches . . . . . . . . 52

3.5.3 Impact of the size of the sliding window . . . . . . . . . . . . . 54

3.5.4 Impact of the amount of data used for training . . . . . . . . . . 54

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vi



Thesis Title: Development of Wi-Fi Networks through Machine Learning

4 AP Traffic Prediction 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Methodology Description . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 ML Prediction Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6.2 Temporal Prediction . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6.3 Spatio-temporal Prediction . . . . . . . . . . . . . . . . . . . . . 73

4.7 Implementation Aspects in Real Network . . . . . . . . . . . . . . . . . 77
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Wi-Fi Traffic Classification 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.2 Traffic Classification . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.2 Traffic Classification Results . . . . . . . . . . . . . . . . . . . . 93

5.5 Evaluating the Interactive VR Traffic Identification model . . . . . . . 97
5.5.1 Model testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5.2 Enhancing Wi-Fi QoS through the Prioritization of VR traffic . 98

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Conclusion and Future lines of Work 102
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2 Topics for Further Research . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.1 Journals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.2 Conference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A Traces Samples for Traffic Classification 106

References 108

vii



List of Figures

1.1 Structure of the thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Timeline for Wi-Fi 7 (802.11be) and Wi-Fi 8 (802.11bn) [9]. . . . . . . 10

2.2 Wi-Fi Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 AI/ML control loop of three objectives. . . . . . . . . . . . . . . . . . . 41

3.1 General framework of proposed prediction methodology. . . . . . . . . . 47

3.2 The process of Prediction of ad∗,m∗ based on the last N previous time
periods for Time-period Patterns (PBTP) (a), Daily Patterns (PBDP)
(b), and Weekly Patterns (PBWP) (c). . . . . . . . . . . . . . . . . . . 48

3.3 The process of Joint Based Prediction (JBP) approach. . . . . . . . . . 49

3.4 Comparison of real and predicted AP for a specific user on Wednesday
with NN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Cumulative Distribution Function (CDF) of the prediction accuracy
for the different approaches using NN in (a) and a comparison of the
prediction accuracy between NN and RF in (b). . . . . . . . . . . . . . 53

3.6 The impact of the amount of data. . . . . . . . . . . . . . . . . . . . . 55

4.1 General framework of proposed prediction methodology. . . . . . . . . . 60

4.2 Input and output data in the temporal prediction process (based on
PBTP approach). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Input and output data in the spatio-temporal prediction process. . . . . 62

4.4 Hybrid CNN-RNN Architecture. . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Transformer Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Location of APs in study and class area. . . . . . . . . . . . . . . . . . 67

4.7 Comparing the Real and Prediction traffic load of target AP(XSFA4PS205)
using LSTM and Transformer on weekdays of the last week. . . . . . . 72

5.1 The network setup for data collection. . . . . . . . . . . . . . . . . . . 84

5.2 Traffic traces for VR (SteamVR Home) and Non-VR (Youtube-4K) over
50ms. In order to highlight the presence of multiple packets in each
batch, zoomed-in view of one VR downlink batch has been illustrated. . 86

5.3 The division of ω into a specified N number of sub-samples. . . . . . . 87

5.4 General framework of traffic classification. . . . . . . . . . . . . . . . . 91

5.5 Testing the Interactive VR Traffic Identification Model in a Multi-user
Experimental Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6 System operation example: VR traffic classification and prioritization. . 99

5.7 A comparison of traffic packet delay for VR and BG traffic (downlink)
in both medium and worse delay scenarios, with and without VR pri-
oritization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

viii



Thesis Title: Development of Wi-Fi Networks through Machine Learning

A.1 Some samples of traffic traces for VR (SteamVR Home) captured by
Wireshark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.2 Some samples of traffic traces for Non-VR (Youtube-4K) captured by
Wireshark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

ix



List of Tables

2.1 Technical capabilities across legacy and current wireless standards [9]. . 10
2.2 Summary of related works for essential Wi-Fi features. . . . . . . . . . 16
2.3 Summary of related works for newer Wi-Fi features. . . . . . . . . . . . 24
2.4 Summary of related works for Wi-Fi connectivity and traffic Management. 29
2.5 Summary of comparison among different ML techniques used in the thesis. 37

3.1 Percentage of users in which the different approaches provide the best
accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Comparison of the different approaches. . . . . . . . . . . . . . . . . . . 53
3.3 Impact of the size of the sliding window on the JBP approach. . . . . . 54

4.1 Hyperparameters of the CNN-RNN Algorithms (RNN refers to either
SRNN, LSTM or GRU). . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Comparison among different Prediction Techniques for all 100 APs Traf-
fic time series data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Comparison among different Prediction Techniques for all 100 APs Fail-
ures time series data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Spatial Correlation for Traffic data (In order to simplification, the prefix
”XSFA4PS” at the beginning of the AP name has been omitted). . . . 73

4.5 Spatial Correlation for Failures data (In order to simplification, the
prefix ”XSFA4PS” at the beginning of the AP name has been omitted). 73

4.6 Comparison of different Traffic Prediction Methods for AP XSFA4PS205. 74
4.7 Comparison of different Failures Prediction Methods for AP XSFA4PS205. 74
4.8 Comparison between three thresholds, (Ci, j)s for failures data of AP

XSFA4PS205. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.9 Comparison between two thresholds, (Ci, j)s for traffic load data of AP

XSFA4PS205. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.10 Comparison of different Traffic Prediction Methods for the 42 APs with

one or more highly correlated neighbours. . . . . . . . . . . . . . . . . . 76
4.11 Comparison of different Failures Prediction Methods for the 55 APs

with one or more highly correlated neighbours. . . . . . . . . . . . . . . 76
4.12 Comparison of different Proposed Temporal and Spatio-temporal Pre-

diction Methodologies for Traffic Load and Failures based on LSTM. . . 76
4.13 Performance of the Combined Temporal and Spatio-temporal Predic-

tion Methodology for Traffic Load and Failures based on LSTM. . . . . 76

5.1 Equipment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 The Description of Symbols for Features Extracted. Ten similar features

are considered for downlink and uplink separately, distinguished by ‘DL’
or ‘UL’ at the end of their respective symbols. . . . . . . . . . . . . . . 89

5.3 Comparison of Traffic Classification Methods. . . . . . . . . . . . . . . 90

x



Thesis Title: Development of Wi-Fi Networks through Machine Learning

5.4 The count of obtained VR samples, Non-VR samples and total number
of samples for different values of sample duration (ω). Note that shorter
sample duration leads to higher number of samples. . . . . . . . . . . . 93

5.5 Average CC obtained from VR samples and Non-VR samples for differ-
ent values of sample duration (ω) and number of sub-samples (N) (i.e.
different settings). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6 Validation scores of six classifiers for all considered setting (i.e. different
values of ω and N). The highest accuracies are highlighted in bold. . . 95

5.7 Validation report for the setting of ω = 500ms and N = 20. . . . . . . 95
5.8 Confusion matrices of validation data for the setting of ω = 500ms and

N = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.9 Importance of the features in three top-performing classifiers for the

best-performing setting (i.e. ω = 500ms and N = 20). . . . . . . . . . . 97

xi



Abbreviations

ABP Adaptation-Based Programming

Ack Acknowledgement

ADDFS Adaptive Distribution Distance-based Feature Selection

AF Activation Function

AI Artificial Intelligence

AIFS Arbitration Inter-Frame Space

AISVM Authenticator Incremental Support Vector Machine

ALVR Air Light Virtual Reality

A-MPDU aggregate-MAC Protocol Data Unit

A-MSDU aggregate-MAC Service Data Unit

ANN Artificial Neural Network

AP Access Point

AR Augmented Reality

ARF Auto Rate Fallback

ARIMA Autoregressive Integrated Moving Average

ARMA Autoregressive Moving Average

ARQ Automate Repeat Request

BG Background

BS Base Station

BSS Basic Service Set

CAGR Compound Annual Growth Rate

CARA Collision-Aware Rate Adaptation

xii



CDF Cumulative Distribution Function

CG Cloud Gaming

CMSVM Cost Sensitive Support Vector Machine

CNN Convolutional Neural Network

COTS Commercial off-the-shelf

CSI Channel State Information

CSMA/CA Carrier Sense Multiple Access/Collision Avoidance

CT Computational Time

CTS Clear to Send

CW Contention Window

DBCA Dynamic Bandwidth Channel Access

DCB Demand Channel Bonding

DCF Distributed Coordination Function

DDPG Deep Deterministic Policy Gradient

DIFS Distributed Inter-Frame Space

DL Deep Learning

DNN Deep Neural Network

DPI Deep Packet Inspection

DPP Determinantal Point Process

DQL Deep Q-Learning

DQN Deep Q-Network

DRL Deep Reinforcement Learning

DSL Deep Supervised Learning

DT Decision Tree

EDCA Enhanced Distributed Channel Access

EHT Extremely High Throughput

EIED Exponential-Increase Exponential-decrease

xiii



Abbreviations

EM Expectation Method

EMA Expectation Modification Algorithm

EMLSR Enhanced Multi-Link Single-Radio

ETS Exponential Smoothing

FCS Frame Check Sequence

FER Frame Error Rate

FIFO First In First Out

FL Federated Learning

fps frames per second

GBRT Gradient Boosted Regression Tree

GNN Graph Neural Network

GP Gaussian Process

GRU Gated Recurrent Unit

HA-DBCA Hybrid Adaptive-Dynamic Bandwidth Channel Access

HARQ Hybrid Automatic Repeat Request

HMM Hidden Markov Model

HMD Head Mounted Display

IAT Inter-Arrival Time

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

iQRA intelligent Q-learning based Resource Allocation

ISVM Incremental Support Vector Machine

ITE Iterative Trial and Error

JBP Joint Based Prediction

kNN k-Nearest Neighbours

LiBRA Learning-based Beam and Rate Adaptation

LMT Logistic Model Tree

LoS Line of Sight

xiv



LR Logistic Regression

LSTM Long Short-Term Memory

MAB Multi-Armed Bandit

MAC Medium Access Control

MADDPG Multi-Agent Deep Deterministic Policy Gradient

MAE Mean Absolute Error

MDP Markov Decision Process

MFNN Multi-layer Feed-forward Neural Network

MH-GAN Metropolis Hastings Generative Adversarial Network

ML Machine Learning

MLO Multi-Link Operation

MLP Multi Layer Perceptron

mm-Wave millimeter-Wave

MPDU MAC Protocol Data Unit

MR Mixed Reality

MSDU MAC Service Data Unit

MSE Mean Square Error

Nack Negative Acknowledgement

NB Naive Bayes

NBKDE Naive Bayes Algorithm with Kernel Density Estimation

NCA Normalized Channel Access

NDP Neighbour Discovery Protocol

NFV Network Function Virtualization

NLoS Non-Line of Sight

NN Neural Network

OBSS Overlapping Basic Service Set

OFDMA Orthogonal Frequency Division Multiple Access

OKC Opportunistic Key Caching

PBDP Prediction Based on Daily Patterns

xv



Abbreviations

PBTP Prediction Based on Time-period Patterns

PBWP Prediction Based on Weekly Patterns

PCT Prediction Computational Time

PDS Post-Decision State-based

PHY Physical

PMK Pairwise Master Key

PNN Probabilistic Neural Network

QAM Quadrature Amplitude Modulation

QNN Q Neural Network

QoE Quality of Experience

QoS Quality of Service

REPT Reduced Error Pruning Tree

RF Random Forest

RFR Random Forest Regressor

RL Reinforcement Learning

RMSE Root Mean Square Error

RNN Recurrent Neural Network

RSSI Received Signal Strength Indicator

RTS Request to Send

SBCA Static Bandwidth Channel Access

SC Small Cell

SD Software Defined

SDN Software Defined Network

SDR Software Defined Radio

SGI Short Guard Interval

SIFS Short Inter-Frame Spacing

SINR Signal-to-Interference-plus-Noise-Ratio

SL Supervised Learning

SLA Stochastic Learning Automata

xvi



Abbreviations

SLO Single-Link Operation

SNR Signal-to-Noise Ratio

SR Spatial Reuse

SRNN Simple Recurrent Neural Network

SS Spatial Stream

SSID Service Set Identifier

STA Station

SVM Support Vector Machine

SVR Support Vector Regression

TCT Training Computational Time

TS Thomson Sampling

TWT Target Wake Time

TXOP Transmission Opportunity

UCB Upper Confidence Bound

UDN Ultra Dense Network

UE User Equipment

UHR Ultra High Reliability

USL Unsupervised Learning

VANET Vehicular Ad-hoc Network

VNF Virtual Network Function

VR Virtual Reality

WLAN Wireless Local Area Network

WLC Wireless LAN Controller

XGBoost eXtreme Gradient Boosting Tree

XR eXtended Reality

xvii



Chapter 1

Introduction

1.1 Motivation and Objectives

As Wi-Fi networks continue to advance, driven by updates within the 802.11 protocol
family and the introduction of new features, they become more intricate and multi-
faceted. This complexity is particularly pronounced in densely deployed scenarios and
shared frequency bands, where multiple Access Points (APs) operate in close prox-
imity. Traditional optimization methods struggle to effectively manage the myriad
challenges associated with resource allocation, network configuration, and Quality of
Service (QoS) provisioning in such environments.

One of the primary challenges is the efficient management of resources amidst the
growing demands for high-speed, reliable wireless connectivity. With the proliferation
of wireless devices and the increasing reliance on Wi-Fi for various applications, net-
work administrators face mounting pressure to ensure optimal performance and user
satisfaction. However, the dynamic and unpredictable nature of network traffic poses a
significant hurdle, making it challenging to forecast and respond to changing demands
effectively.

Moreover, the need for proactive network management strategies becomes increas-
ingly imperative as network complexity grows. Predictive insights into future network
conditions, such as user mobility patterns and traffic load fluctuations, are essential for
optimizing network performance and resource utilization. Predicting how users will
move within the network and how traffic will vary over time allows for better allocation
of network resources and more effective management of network traffic. For instance,
predicting user mobility patterns helps in predicting areas of high user concentration,
allowing network administrators to allocate resources accordingly and maintain QoS.
Similarly, forecasting traffic load fluctuations enables administrators to predict pe-
riods of high demand and allocate additional resources as needed to ensure smooth
network operation. The recent development of network monitoring tools allows for
the collection of extensive measurements to evaluate the network status and perfor-
mance accurately. Additionally, advancements in Big Data technologies enable the
management of large amounts of historical information and measurements efficiently.
Leveraging these developments, sophisticated Machine Learning (ML) techniques are
employed to process this vast amount of information and extract actionable insights.
These Artificial Intelligence and Machine Learning (AI/ML) techniques play a cru-
cial role in obtaining knowledge that aids in making better proactive decisions in the
network, thereby enhancing overall network efficiency and performance.

Another key challenge lies in ensuring seamless connectivity and QoS for latency-
sensitive applications, such as interactive Virtual Reality (VR) traffic. The integration
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of VR applications into daily activities necessitates prioritizing and efficiently handling
VR traffic to deliver a seamless user experience. However, accurately differentiating
between various types of network traffic, including VR and Non-VR traffic, presents
a formidable challenge. Traditional methods may struggle to discern between differ-
ent traffic types accurately, leading to suboptimal resource allocation and degraded
performance for latency-sensitive applications.

In this context, the motivations of the thesis revolve around leveraging ML-driven
solutions to address the challenges of modern Wi-Fi networks, enhance network per-
formance, optimize network management, and meet the evolving demands of emerg-
ing technologies. By proposing innovative approaches to network optimization and
management, the thesis aims to pave the way for more efficient and reliable wireless
communication systems.

Therefore, the main objective is to propose different ML-driven solutions with the
aim to improve the network performance and network management. These proposed
solutions cover aspects of prediction of User Equipment (UE) connectivity, AP traffic
prediction, and Wi-Fi traffic classification. The three specific objectives are defined to
achieve this main objective:

1. Prediction of the future AP that the UE will connect to: Wi-Fi communication
systems often exhibit specific patterns in user mobility, showcasing a variety of
periodic movements influenced by factors such as daily, weekly, and seasonal
variations. These periodicities and seasonal trends play a crucial role in shaping
user mobility behaviors within Wi-Fi networks. Understanding these patterns,
provides valuable insights into user movement dynamics. Predicting the future
AP that the UE will connect to is indeed useful for various aspects of enhancing
network performance. For instance, by capturing weekly, daily, and hourly user
activity-based behaviors, the predictive approach allows for effective monitor-
ing of user mobility within the network. This enables network administrators
to identify periods with high user density, where significant traffic management
may be required. Additionally, predicting the next AP for each User Equipment
(UE) (prediction at user level) facilitates a proactive network reconfiguration
approach. In Wi-Fi networks, this prediction can enhance techniques such as
Pairwise Master Key (PMK) caching and Opportunistic Key Caching (OKC),
reducing re-authentication time when roaming to a new AP. PMK caching in-
volves storing security credentials between a client device and an AP, while OKC
pre-authenticates a client with nearby APs to expedite roaming. Additionally,
the extracted knowledge related to user location, mobility, habits, and inter-
ests holds commercial value. For example, predicting future user location and
connection duration enables targeted Location Based Advertising, allowing ad-
vertisers to personalize messages based on user location and interests. Moreover,
predictive analytics adjust configurations such as the transmitted power and the
selected channel according to the prediction of the next AP to which the UE will
connect.

In this regard, the contributions in the context of the user connectivity prediction
are in the following:

• The proposal of a prediction methodology that is able to extract user pe-
riodical patterns at different time levels in order to capture hourly, daily
and weekly user activity-based behaviours. In this prediction methodology,
three approaches are defined to create each pattern (i.e. Prediction Based
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on Time-period Patterns, Prediction Based on Daily Patterns, Prediction
Based on Weekly Patterns). Then, an approach with a combination of the
three previous approaches is formulated to be able to provide better predic-
tion accuracy than the rest of the approaches, separately, with a relatively
low computational time (CT) per user.

• Two prediction algorithms based on a supervised learning process are com-
pared, one using a Neural Network (NN) and the other one based on Ran-
dom Forest (RF). This comparison is based on prediction accuracy and CT
among different approaches. Moreover, an extensive evaluation for the best
approach is done to illustrate the impact of the amount of data used for
training.

• The proposed methodology is evaluated for a large Wi-Fi network with 429
APs in a University Campus with 33 buildings with four floors per building.

2. Prediction of future values of traffic load for a given AP in a Wi-Fi network:
The proposed methodology can indeed be highly beneficial for various aspects
of network management and performance optimization. For example, (i) pre-
dicting future network traffic can help in deciding whether to add or relocate
APs in areas where there is expected to be high traffic load. By strategically
placing APs based on predicted traffic, performance can be optimized. While
immediate physical relocation or addition of APs is impractical with a next
medium-term predictions (next few minutes) traffic prediction window, these
predictions enable network administrators to make short-term adjustments to
optimize performance. Furthermore, patterns identified through these short-
term predictions contribute valuable data for long-term traffic characterization,
ultimately guiding strategic decisions on permanent AP placement and infras-
tructure development. (ii) Predicting peaks of traffic at certain APs allows for
proactive channel and band selection to mitigate potential congestion and per-
formance degradation. For example, an AP may work at 2.4 and 5GHz bands.
In case that the traffic/load (or number of UEs) in 2.4GHz band is too high,
then some users that are capable of working in 5GHz band can be moved to this
band to avoid congestion in 2.4GHz. (iii) Predictive insights into future network
conditions may help to improve the performance of some techniques such as ad-
mission control, congestion control or load balancing. APs can distribute traffic
more evenly across available channels and resources, ensuring optimal utilization
and minimizing the risk of overloads or bottlenecks. (iv) the prediction of large
periods with very low traffic at some APs can be useful for the energy-saving as-
pect. In this situation, these APs are switched off to reduce energy consumption.
Users in these areas should connect to neighbouring APs.

The contributions of the network prediction methodology are the following:

• Proposal of an adaptive and context-aware prediction framework that is
able to predict future values of a given parameter in a target AP (e.g.
future traffic values) based on the historical values of this metric for this
target AP and its neighbouring APs. First, the methodology runs spatio-
temporal correlations among the target AP and its neighbours making use of
historical collected measurements. In case that any of the neighbouring APs
does not exhibit a high correlation with the target AP for the specific metric,
then, the prediction is based only on the historical previous measurements of
the target AP. In case that a high correlation is observed between the target
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AP and some of its neighbouring APs, the historical measurements collected
at these highly correlated neighbouring APs are included in the prediction
process with the aim of increasing the prediction accuracy. By intelligently
selecting whether to include information from neighbouring APs based on
identified spatial correlations, our methodology overcomes the challenge of
incorporating spatial dynamics into Wi-Fi metric prediction.

• In order to achieve a more comprehensive and data-driven solution to
Wi-Fi metric prediction, different prediction algorithms are compared in
terms of prediction accuracy and CT. In particular, four Deep Learning
(DL) based algorithms are considered, namely, Long short-term memory
(LSTM), Gated Recurrent Unit (GRU) and Convolutional Neural Network
(CNN) and Transformer. On the other hand, three hybrid DL algorithms
that combine CNN and Recurrent Neural Network (RNN) are also evalu-
ated: CNN-SimpleRNN, CNN-LSTM, and CNN-GRU. To the best authors’
knowledge, this is the first time that different spatio-temporal prediction-
based methodologies are evaluated and compared for traffic prediction in a
Wi-Fi network.

• The proposed methodology is evaluated in a real Wi-Fi network with mea-
surements collected in 100 APs during three months. This addresses the
challenge of scalability in designing prediction systems for Wi-Fi networks,
ensuring that the methodology can effectively handle larger network envi-
ronments without compromising performance.

• The proposed methodology is particularized for the prediction of future
values of traffic at the AP and the prediction of transmission failures, but
the methodology could be easily extended for other metrics.

3. Traffic classification through ML Techniques: Traffic classification is essential
for enhancing Wi-Fi network performance and QoS by accurately distinguish-
ing between different types of network traffic, such as interactive VR traffic and
Non-VR traffic. The increasing use of VR applications necessitates prioritizing
VR traffic to ensure a seamless user experience, as VR demands low-latency
communication to avoid issues like motion sickness and user discomfort. Priori-
tizing traffic with strict latency requirements, like VR, is crucial because delays
can significantly impact the user experience. ML-driven traffic classification
techniques are pivotal in enabling Wi-Fi networks to prioritize critical traffic
types and optimize resource allocation. By ensuring low-latency guarantees for
latency-sensitive applications, networks can deliver consistent performance for
demanding applications like VR. The classification results from ML models pro-
vide valuable insights for network management, enabling proactive measures to
mitigate potential congestion and performance degradation. Prioritizing latency-
sensitive traffic ensures that critical applications receive the necessary resources,
maintaining high QoS standards. Accurate traffic classification allows for dy-
namic traffic shaping and policy enforcement, where Wi-Fi networks can adjust
QoS policies in real-time based on the classification results. This dynamic ad-
justment ensures that mission-critical traffic types, such as interactive VR traffic,
are prioritized over less critical traffic. By focusing on real-time prioritization
of latency-sensitive traffic, Wi-Fi networks can optimize resource utilization, en-
suring that users experience consistent and reliable QoS across various network
conditions and usage scenarios.

In particular, the key contributions of the proposed approach are as follows:
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• Extraction of statistical features computed from single-user traffic charac-
teristics, over a time interval of a certain duration. Among these statistical
features, correlation between downlink and uplink traffic, computed during
certain period of time, emerges as a valuable feature for distinguishing VR
from Non-VR traffic.

• A binary classification ML model is proposed to identify interactive VR
traffic. In this model, a heterogeneous traffic dataset is used with statis-
tical features computed from single-user traffic characteristics over certain
duration of time interval.

• Comparison and evaluation of six ML classification models (i.e., Logistic
Regression (LR), Support Vector Machines (SVM), k-Nearest Neighbors
(kNN), Decision Tree (DT), RF, and Naive Bayes (NB)). For each classifier,
a process involving hyperparameter tuning and feature selection is done.

• The most accurate model is obtained among different considered settings.
This model is evaluated on packet traces from a multi-user experimental
setup involving three users, and using single-user traces from a VR frame-
work not included in the training traces. In addition, Wi-Fi QoS is enhanced
by reducing VR traffic delay through prioritizing VR traffic. The proposed
prioritization methodology has been evaluated by means of a Wi-Fi simu-
lator.

1.2 Thesis Structure

This thesis is organized in 6 chapters, whose structure is graphically summarized in
Fig. 1.1.

Chapter 2 presents some necessary background information on (i) Wi-Fi system
overview, evolution towards Wi-Fi networks, Wi-Fi 7 and Wi-Fi 8 features, Wi-Fi
architecture, the 802.11 MAC protocol, and mobility management, (ii) a state of the
art description related to the applicability of ML techniques in different areas of Wi-Fi
networks that includes essential Wi-Fi features such as QoS improvement by traffic
prioritization, newer Wi-Fi features, Wi-Fi connectivity management such as next user
connectivity prediction, Wi-Fi traffic prediction, and other types of Wi-Fi scenarios,
and (iii) a description of the ML techniques used in the thesis. Moreover, we pro-
vide a comprehensive literature review on the application of ML in addressing these
network problems in this Chapter. Finally, according to this background and our
work, a general AI/ML control loop utilized in our study is presented in a functional
framework.

Chapter 3 treats the next AP prediction by proposing a methodology based on
different approaches. The problem of next AP prediction is first introduced and, ac-
cordingly, the general architecture of Chapter 2 Section 2.4 is particularized for the
ML-based next AP prediction. In this methodology, different approaches are formu-
lated to capture hourly, daily and weekly user activity-based behaviours, while a joint
solution combining the three aforementioned approaches is presented. Furthermore,
the performance of the proposed methodology with the different approaches is evalu-
ated using a scenario of large Wi-Fi network deployed in a University Campus. Some
valuable results are obtained including an example of the next AP prediction method-
ology, comparison of the different approaches based on prediction accuracy, and CT
per user for each ML technique, the impact of the amount of data used for training,
and the impact of the size of the sliding window.
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Fig. 1.1. Structure of the thesis.

In Chapter 4, based on general architecture outlined in Chapter 2, Section 2.4,
we delve into traffic prediction using a proposed methodology. After introducing the
challenge, the chapter presents our prediction methodology, which is based on a specific
architecture designed to predict future values of network traffic load within a target
AP using historical data from the target AP and its neighbouring APs. Initially,
we estimate the correlation between each target AP and its neighbours, determining
our prediction approach as either only temporal or spatio-temporal. To evaluate the
methodology, we consider a scenario involving multiple APs within a real university
network. We analyze various results obtained from temporal and spatio-temporal
predictions using both single and hybrid time series DL methods. Lastly, we discuss
the implementation aspects of our methodology in a real network setting, including
the definition and consideration of Key Performance Indicators (KPIs) relevant to
the specific network environment and operational requirements. These KPIs, such as
Training Computational Time (TCT), Prediction Computational Time (PCT), and
prediction accuracy, are crucial for assessing the performance of prediction methods
in real-world scenarios.

Chapter 5 introduces the proposal of an interactive VR ML traffic classification
model within the edge streaming VR scenario. Initially, the chapter delves into the
challenge of VR traffic identification within Wi-Fi networks. Subsequently, it analyzes
dataset creation, encompassing the network setup for data generation, data collection
procedures including traffic analysis for both VR and Non-VR, and feature engineering
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methods for extracting and selecting features to enhance accuracy. Following this, the
chapter specifies the framework detailed in Chapter 2, Section 2.4, for the ML-driven
traffic classification model. It also provides a comprehensive description of common
hyperparameters for each classifier utilized in the study. After that, the results ob-
tained from both the feature extraction and traffic classification phases are analyzed.
Subsequently, the performance of six common classifiers is compared to assess the
effectiveness of the model in traffic classification. Finally, the classification model un-
dergoes testing using packet traces from three users engaged in VR gaming within a
multi-user experimental setup, and using single-user traces from a VR framework not
included in the training traces. Additionally, a network simulator is utilized to evaluate
the impact of the VR traffic identification model on the existing Wi-Fi network.

Finally, Chapter 6 discusses the conclusions of the presented work and outlines the
potential directions for future investigations.
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Chapter 2

Background

2.1 Wi-Fi System Overview

The IEEE 802.11 standard [1], commonly known as WiFi, defines the architecture
and specifications for wireless LANs (WLANs), enabling devices to connect without
cables using high-frequency radio waves. Wi-Fi plays a crucial role in providing users
with quick and convenient wireless internet access. The widespread adoption of Wi-
Fi-enabled devices, projected to be three times the global population, reflects the
technology’s success [2]. In 2022, 3.8 billion Wi-Fi products were shipped [3], and it
was estimated that by 2023, there will be 628 million public Wi-Fi hotspots, a sig-
nificant increase from 169 million in 2018 [2]. One recent study highlights Wi-Fi’s
substantial contribution to the global economy, projected to reach $3.3 trillion in 2021
and potentially $4.9 trillion in 2025, when considering a wide range of factors includ-
ing business and consumer connectivity needs, technology research and development,
spectrum access, and wider macroeconomic impacts [4]. Over the years, Wi-Fi data
rates have remarkably increased, from 1 Mbps in the first generation to a theoretical
peak of nearly 30 Gbps in the latest products, offering affordable high-speed wireless
services in unlicensed spectrum bands [5]. The development of Wi-Fi technologies is
guided by two primary organizations, (i) the Institute of Electrical and Electronics
Engineers’ (IEEE) 802 Committee, setting standards for essential Wi-Fi technologies
focusing on Medium Access Control (MAC) and Physical Layer (PHY) protocols for
Wireless Local Area Networks (WLAN) [6, 7], and (ii) the Wi-Fi Alliance, responsible
for ensuring interoperability, security, and reliability through Wi-Fi product certifica-
tion and promoting Wi-Fi evolution[8, 9].

2.1.1 Evolution towards Wi-Fi networks

Wi-Fi always strive to get better and provide a great user Quality of Experience (QoE).
Wi-Fi, a highly successful wireless technology, keeps evolving to improve performance,
use the available spectrum more efficiently, reduce costs, and most importantly, make
the user QoE even better. Alongside 5G, Wi-Fi ensures that more people stay con-
nected, including those who are not yet connected. That is why, even when Wi-Fi 6
became available in 2019, experts were already working on the next version, Wi-Fi 7,
as part of the IEEE 802.11be Extremely High Throughput (EHT) working group. The
QoS and QoE were improved with the advent of a new Wi-Fi generation. Moreover,
the the advanced network features aim to decrease latency, particularly in congested
environments, and support real-time applications like gaming, eXtended Reality (XR)
including Virtual Reality (VR), and Industrial Internet of Things (IoT).
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Wi-Fi 5 (802.11ac) [10], introduced in 2013, marked a significant advancement
in wireless technology, succeeding the previous Wi-Fi 4 generation. It responded to
the growing demand for robust wireless connectivity, offering improved data rates,
reduced latency, increased reliability, and enhanced security in both consumer and
enterprise environments. Wi-Fi 5 accommodated the needs of smart homes, IoT, and
Industrial IoT applications. Key features included data speeds of up to 3.5 Gbps, 160
MHz channel bandwidth, operation in the 2.4 GHz and 5 GHz bands, enhanced net-
work efficiency with technologies like Orthogonal Frequency Division Multiple Access
(OFDMA) and Multi-user Multiple-Input Multiple-Output (MU-MIMO), improved
spectrum efficiency, and support for high-density deployments. Wi-Fi 6 (802.11ax)
[11], launched in 2019, represented a substantial leap forward from Wi-Fi 5. Driven
by increased reliance on Wi-Fi and demands for higher data rates, lower latency, reli-
ability, and security, Wi-Fi 6 excelled in supporting applications in smart homes, IoT,
and industrial settings. Key features included data speeds up to 9.6 Gbps, 160 MHz
channel bandwidth, introduction of the 6 GHz band (Wi-Fi 6E), enhanced network
efficiency with OFDMA, MU-MIMO, and transmit beamforming, improved spectrum
efficiency, and the introduction of target wake time (TWT) for enhanced network
efficiency and prolonged device battery life.

2.1.2 Wi-Fi 7 and Wi-Fi 8 features

Wi-Fi 7 (802.11be) [12] is currently in the standardization process, expected to be fi-
nalized by 2024, with deployment planned shortly after in unlicensed spectrum bands
[13]. The commercially recognized Wi-Fi 7 introduces significant technical improve-
ments to achieve Extremely High Throughput (EHT), resulting in higher data rates
and lower latency. These enhancements encompass the utilization of 320 MHz of chan-
nel bandwidth, higher modulation and coding schemes, efficient use of noncontiguous
spectrum through multiple resource unit allocation, and multi-band/multi-channel ag-
gregation and operation. Additionally, there are improvements in QoS management,
including the implementation of a restricted target wake time [14]. With a theoretical
peak data rate exceeding 40 Gbps, Wi-Fi 7 offers a substantial advancement over its
predecessor, Wi-Fi 6, which has a peak speed just under 10 Gbps. For an overview
of Wi-Fi’s evolution, Table 2.1 provides a detailed comparison of current and future
radio technical specifications across recent Wi-Fi standards [9].

In comparison to Wi-Fi 6, which initially introduced the spectrum utilization of
the 6 GHz band, Wi-Fi 7 enhances performance through the introduction of advanced
features such as larger channel bandwidths (up to 320 MHz) and 4K Quadrature Am-
plitude Modulation (QAM) [15], significantly improving throughput. A key addition
in Wi-Fi 7 is the Multi-Link Operation (MLO) framework, allowing Wi-Fi devices to
concurrently operate on multiple channels through a single connection [16, 17]. This
framework includes variations such as Enhanced Multi-link Single-radio (EMLSR) and
Enhanced Multi-link Multi-radio (EMLMR). Studies indicate that in ultra-dense and
crowded scenarios, where both available links are often busy, MLO achieves the highest
throughput gains by capitalizing on multiple intermittent transmission opportunities,
unlike traditional Single-Link Operation (SLO). Furthermore, MLO outperforms SLO
in terms of latency by one order of magnitude, making it crucial for applications with
latency-sensitive use case requirements [18]. Research also suggests that upgrading
to MLO from legacy SLO effectively contains delay while simultaneously increasing
traffic [19]. The current timeline for the final amendment of Wi-Fi 7 is expected by
2024, as shown in Fig. 2.1[9].
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Table 2.1. Technical capabilities across legacy and current wireless standards [9].

Wi-Fi 4 Wi-Fi 5 Wi-Fi 6/6E Wi-Fi 7 Wi-Fi 8
Features

(802.11n) (802.11ac) (802.11ax) (802.11be) (speculative)
Peak data rate 600 Mbps 7 Gbps 9.6 Gbps ≤ 46.4 Gbps > 46.4 Gbps

Carrier Frequency
2.4, 5 5 2.4, 5, 6 2.4, 5, 6

2.4, 5, 6 at a
(GHz) minimum

Channel
20, 40

20, 40, 20, 40,
Up to 320 > 320

Bandwidth (MHz) 80, 160 80,160
Frequency

OFDM OFDM
OFDM and OFDM and OFDM and

multiplexing OFDMA OFDMA OFDMA
OFDM symbol

3.2 3.2 12.8 12.8
12.8 at a

time (µs) minimum
Guard interval

0.4, 0.8 0.4, 0.8
0.8, 1.6, 0.8, 1.6, 0.8, 1.6,

(µs) or 3.2 or 3.2 or 3.2
Total symbol time

3.6, 4.0 3.6, 4.0
13.6, 14.4, 13.6, 14.4, 13.6, 14.4,

(µs) 16.0 16.0 16.0
Modulation ≤64-QAM ≤256-QAM ≤1024-QAM ≤4096-QAM >4096-QAM
MU-MIMO N/A DL DL and UL DL and UL DL and UL
OFDMA N/A N/A DL and UL DL and UL DL and UL
MIMO 4×4 8×8 8×8 8×8 16×16

Fig. 2.1. Timeline for Wi-Fi 7 (802.11be) and Wi-Fi 8 (802.11bn) [9].

When 6G becomes available, the wireless industry will have progressed to the
eighth generation of Wi-Fi technology, known as Wi-Fi 8 or Ultra High Reliability
(UHR). In the context of this forward-looking assessment, the potential features under
consideration for the final standard of Wi-Fi 8 include advanced technologies such as
higher-order MIMO, Hybrid Automatic Repeat Request (HARQ), AP coordination,
and the exploration of higher spectrum bands at 45 GHz and/or 60 GHz [9].

Wi-Fi 8 is designed with UHR as its primary characteristic, in contrast to previous
standards that emphasized increasing peak throughput [5]. The key challenge for next-
generation Wi-Fi technologies, including Wi-Fi 8, is achieving ultra-low deterministic
latency [20]. As illustrated in Fig. 2.1, the standardization cycle for Wi-Fi 8 (see
802.11bn in the figure) is expected to conclude in 2028, with the UHR Study Group
established in July 2022 to define protocol functionalities for future products [21]. The
four main areas of focus for Wi-Fi 8 include improving throughput at lower Signal-
to-Interference-plus-Noise (SINR) ratios, reducing tail latency and jitter, enhancing
spectral reuse, and achieving greater power savings and peer-to-peer operations [5,
22].
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2.1.3 Wi-Fi Architecture

Fig. 2.2 illustrates the main components of the 802.11 wireless LAN architecture.
The core element of this architecture is the basic service set (BSS), which consists of
one or more wireless stations (STAs) or hosts, and an AP serving as a central base
station. The AP plays a crucial role in the wireless network infrastructure, managing
data transmission to and from wireless STAs associated with it. It coordinates the
transmission among multiple connected STAs [23]. STAs, which can be devices like
smartphones, tablets, laptops, or IoT devices such as sensors and appliances, establish
a wireless communication link with a base station or with other wireless STAs. Differ-
ent wireless link technologies offer varying transmission rates and coverage distances.
In the depicted architecture (Fig. 2.2), APs within BSSs connect to a Wireless LAN
Controller (WLC), a crucial backend component that manages and coordinates APs
within the network. The WLC is typically connected to the LAN, often through an
Ethernet connection to the network router or switch. Functioning as a centralized man-
agement entity, the WLC oversees tasks such as AP configuration, firmware updates,
security policies, and client authentication. It serves as the gateway for all wireless
traffic from the APs, handling functions like radio resource management, load balanc-
ing, and seamless roaming between APs. Typically, a home network comprises one
AP and one router, commonly integrated into a single unit, facilitating the connection
of the BSS to the Internet.

Fig. 2.2. Wi-Fi Architecture.

Similar to Ethernet devices, each 802.11 wireless station possesses a 6-byte MAC
address stored in its adapter’s (i.e., 802.11 network interface card) firmware. APs
also have MAC addresses for their wireless interfaces, administered by the IEEE and
intended to be globally unique.

Wireless LANs employing APs are known as infrastructure wireless LANs, where
APs, along with the wired Ethernet infrastructure linking them and a router, form the
infrastructure. Alternatively, IEEE 802.11 stations can form ad hoc networks, lacking
central control and external connections, established dynamically by mobile devices in
proximity for communication purposes. Ad hoc networking has garnered significant
interest due to the proliferation of portable devices, facilitating communication in
scenarios lacking centralized APs.
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As mobile stations move between the coverage areas of different base stations, they
switch their association to maintain network connectivity, a process known as handoff
or handover.

2.1.3.1 Channel and Association

In 802.11, every wireless station must associate with an AP in order to transmit or
receive network-layer data. When setting up an AP, the network administrator assigns
a one or two-word Service Set Identifier (SSID) to it. Additionally, the administrator
assigns a channel number to the AP. In the frequency range of 2.4 GHz to 2.4835 GHz,
802.11 defines 11 partially overlapping channels. Notably, channels 1, 6, and 11 form
the only set of three non-overlapping channels. This allows an administrator to create
a wireless LAN with a maximum aggregate transmission rate of three times the peak
data rate shown in Table 2.1. This can be achieved by installing three 802.11 APs at
the same physical location, assigning channels 1, 6, and 11 to them, and connecting
each AP to a switch. For instance, in many New York City cafés, where multiple
AP signals overlap, known as a Wi-Fi jungle, wireless stations can detect signals
from several nearby APs. These APs may belong to the café or nearby residential
apartments, each likely assigned to different IP subnets and channels. When a new
device enters this Wi-Fi jungle seeking Internet access, it must associate with one
AP. Association involves establishing a virtual connection between the device and the
chosen AP. Only the associated AP sends data frames to the device, and the device
sends data frames to the Internet through this AP.

According to the 802.11 standard, APs periodically broadcast beacon frames con-
taining their SSID and MAC address. Wireless devices scan the 11 channels, looking
for these beacon frames. After detecting available APs, the device selects one for
association. The standard does not specify the selection algorithm, leaving it to the
device’s firmware and software designers. Typically, the device chooses the AP with
the strongest signal. However, signal strength alone does not guarantee optimal per-
formance, as an AP with many connected devices may offer a strong signal but limited
bandwidth. Various alternative AP selection methods have been proposed to address
this issue. For example, some methods consider the load on each AP, selecting the
one with fewer connected devices to balance traffic and reduce congestion. Another
approach involves evaluating the QoS metrics, such as latency and throughput, to
choose an AP that provides a better overall user experience.

The process of scanning channels and listening for beacon frames is called passive
scanning. Alternatively, a wireless device can conduct active scanning by sending out
a probe frame, which is received by all APs within its range. APs respond to this
probe frame with a probe response frame. The wireless device can then choose an AP
to associate with based on these responses.

Once an AP is selected, the wireless device sends an association request frame to
the AP, which responds with an association response frame. This second handshake
is necessary for active scanning because an AP responding to the initial probe request
frame does not know which AP the device will choose to associate with. Similarly, a
DHCP client selects from multiple DHCP servers. After associating with an AP, the
device aims to join the subnet to which the AP belongs. To obtain an IP address on
the subnet, the device sends a DHCP discovery message via the AP. Once it obtains
an address, the device is perceived by the rest of the network as another host or station
with an IP address in that subnet.
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2.1.4 The 802.11 MAC Protocol

The 802.11 MAC Protocol governs how devices communicate over Wi-Fi networks.
Once a Wireless device is associated with an AP, it can send and receive data frames.
However, since multiple devices may want to transmit simultaneously, a multiple access
protocol is needed to coordinate transmissions. The 802.11 protocol uses Carrier Sense
Multiple Access with collision avoidance (CSMA/CA), similar to Ethernet’s Carrier
Sense Multiple Access/ Collision Detection (CSMA/CD) but with some key differences.
Instead of collision detection, 802.11 employs collision-avoidance techniques and a link-
layer acknowledgment/retransmission (ARQ) scheme due to the higher error rates in
wireless channels. The 802.11 MAC protocol does not have collision detection like
Ethernet. This is because detecting collisions requires simultaneous transmission and
reception, which is difficult and costly to implement in wireless devices due to signal
strength differences and technical challenges like the hidden terminal problem and
signal fading. Without collision detection, once a station starts transmitting a frame
in 802.11, it completes the transmission even if collisions occur, which can degrade
performance. To address this, 802.11 uses collision-avoidance techniques.

Additionally, 802.11 employs a link-layer acknowledgment scheme to ensure reliable
transmission. When a station sends a frame, the destination station sends back an
acknowledgment frame after a brief wait time called the Short Inter-frame Spacing
(SIFS). If the transmitting station does not receive acknowledgment within a specified
time, it assumes an error and retransmits the frame using the CSMA/CA protocol.
If acknowledgment is not received after several attempts, the transmitting station
discards the frame. The 802.11 CSMA/CA protocol works like this:

1. If the station senses that the channel is idle, it sends its frame after a brief wait
time called the Distributed Inter-frame Space (DIFS).

2. If the channel is busy, the station picks a random backoff value using binary
exponential backoff and waits for the channel to become idle. It freezes the
countdown while the channel is busy.

3. When the countdown reaches zero and the channel is idle, the station sends the
entire frame and waits for an acknowledgment.

4. If acknowledgment is received, the station knows its frame reached the desti-
nation. If there is more data to send, it repeats the process from step 2. If
acknowledgment is not received, it goes back to step 2 with a longer backoff
interval.

2.1.4.1 Hidden Terminals

The 802.11 MAC protocol also uses the Request to Send (RTS) and Clear to Send
(CTS) mechanism, which helps prevent collisions caused by hidden terminals. Imagine
two wireless stations and one AP in range. Although both stations can communicate
with the AP, they cannot hear each other due to signal limitations. This scenario can
lead to collisions if one station starts transmitting while the other wants to send data.

To avoid this, a station can send an RTS frame to the AP before transmitting its
data frame, requesting permission and indicating how long it needs to transmit. The
AP responds with a CTS frame, granting permission and informing other stations not
to transmit during that time. This reservation mechanism prevents wasted channel
time and reduces collisions. Using the RTS and CTS frames can enhance performance
in two key ways:
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1. It helps alleviate the hidden station problem by ensuring that a long DATA
frame is sent only after reserving the channel.

2. Since RTS and CTS frames are short, any collision involving them lasts only
for the duration of these frames. After successful transmission of RTS and CTS
frames, subsequent DATA and ACK frames should be transmitted without col-
lisions.

However, the RTS/CTS exchange introduces delay and utilizes channel resources.
Thus, it is typically employed only when transmitting long DATA frames. Each wire-
less station can set an RTS threshold, deciding when to use the RTS/CTS sequence
based on frame length. Often, the default RTS threshold value exceeds the maximum
frame length, leading to the omission of the RTS/CTS sequence for all DATA frames
sent.

2.1.5 Mobility Management

To extend the coverage of a wireless LAN, organizations often deploy multiple BSSs
within the same IP subnet. This raises the issue of how wireless stations move seam-
lessly between BSSs while maintaining ongoing TCP sessions. Mobility is straightfor-
ward within the same subnet, but more complex protocols are needed when stations
move between subnets. For instance, consider a scenario where a host (H1) moves
from one BSS to another within the same subnet. If the interconnected BSSs share
the same IP subnet, H1 can retain its IP address and ongoing TCP connections as
it moves between BSSs. However, if the interconnection device is a router, H1 would
need to acquire a new IP address upon moving, disrupting existing TCP connections.
To prevent this disruption, network-layer mobility protocols like mobile IP can be
utilized.

When H1 moves from one BSS to another, it detects a weakening signal from the
first AP1 and starts searching for a stronger signal. Upon receiving beacon frames from
the second AP2, H1 disassociates from AP1 and associates with AP2, all while main-
taining its IP address and ongoing TCP sessions. While this solves the handover issue
from the perspective of the host and AP, the switch must also be informed of the host’s
movement. Switches typically learn and update their forwarding tables automatically.
However, this mechanism is not designed for highly mobile users switching between
BSSs. To address this, AP2 can send a broadcast Ethernet frame with H1’s address to
the switch after the new association. Upon receiving this frame, the switch updates its
forwarding table, allowing data destined for H1 to be directed via AP2. The 802.11f
standards group is working on an inter-AP protocol to address these issues.

2.2 ML in Wi-Fi Networks

In recent years, there has been a significant increase in user traffic within wireless
networks, largely driven by the emergence of new multimedia services such as high-
definition video and augmented/virtual reality experiences. These services come with
stringent demands for reliability, low latency, and minimal bit error rates [2]. To
address these demands and accommodate the growing traffic, a viable solution involves
deploying small cells that utilize cellular technologies (e.g., 4G, 5G) alongside the
implementation of Wi-Fi technologies in specific hotspots using unlicensed frequency
bands [24, 25].
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The advent of (Big) Data monitoring and analytics technologies represents a cor-
nerstone in the evolution of cellular and Wi-Fi networks, aimed at addressing the
aforementioned challenges. The monitoring system provides the ability to collect in-
formation about the users and the network, while the analytics system allows to extract
knowledge of the collected data by means of AI mechanisms [26]. There are differ-
ent ways to extract knowledge (e.g. by using classification, clustering and prediction
mechanisms) [27]. By leveraging monitoring tools to collect extensive user and network
data, coupled with the application of AI/ML techniques, networks can become smarter,
more adaptive, self-aware, and cost-effective, thereby facilitating self-optimization [25].

ML applications are also becoming increasingly vital in addressing challenges and
optimizing performance as Wi-Fi networks undergo continuous evolution. ML tech-
niques are utilized across various aspects of Wi-Fi networks, improving efficiency, se-
curity, and overall functionality. The rising complexity of Wi-Fi networks, coupled
with decentralized management and network densification, poses potential challenges
for future 802.11 networks. To tackle these challenges, ML, a branch of AI capable
of learning from data patterns, emerges as a promising solution [28]. Recognizing the
significance of ML, a new IEEE 802.11 topic interest group has been formed, focusing
on areas such as feedback compression of Channel State Information (CSI) using ML,
enhanced sharing of ML models, and ML-driven distributed channel access [15, 29].
ML techniques are also crucial for implementing multi-AP coordination mechanisms
envisioned for Wi-Fi 8. Researchers have explored ML-based approaches for a range
of networking tasks, from configuring physical layer parameters to traffic prediction
[30–33]. Key areas where ML is commonly applied in Wi-Fi networks are classified
into four categories, including essential Wi-Fi features, newer Wi-Fi features, Wi-Fi
connectivity and traffic management and other types of Wi-Fi scenarios [30, 33, 34].

2.2.1 Essential Wi-Fi Features

The latest IEEE 802.11 amendments bring enhanced functionalities to ensure robust
network operation and an improved user QoE. Notably, amendments such as IEEE
802.11n/ac/ax boost data rates up to 9 Gbit/s by utilizing multiple spatial streams
(SSs) and employing techniques like channel bonding, multi-user transmissions, Short
Guard Interval (SGI), and high modulations (up to 1024QAM for 802.11ax) [35–37].
Characterizing the impact of these parameters on network performance is challeng-
ing due to the variability in Wi-Fi environments and user dynamics. However, the
presence of performance metrics, both at the user and AP levels, along with historical
data, creates an ideal setting for ML methods to model and optimize network perfor-
mance. ML-based approaches excel in gaining knowledge, generalizing information,
and learning from experience, making them suitable for creating intelligent systems
using the advanced functionalities of the IEEE 802.11 standard. In this context, ML
techniques are applied to select Physical (PHY) features, optimize channel access, con-
figure frame aggregation and link parameters, choose data rates, and address admission
control, QoS by traffic prioritization and traffic classification. Table 2.2 illustrates a
summary of related work in the context of essential Wi-Fi features.

2.2.1.1 Channel Access

Channel access mechanisms are a frequently addressed topic concerning the enhance-
ment of Wi-Fi performance using ML. Most proposed optimizations are related to the
fundamental 802.11 MAC protocol, namely the Distributed Coordination Function
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Table 2.2. Summary of related works for essential Wi-Fi features.

Wi-Fi Aspects Ref. ML Application Novelty

Channel

[38] Selecting the value of CW Applying Q-learning in dense network scenario

Access

[39] Selecting the minimum value of CW Applying DQN to configure DCF
[40] Selecting CW update rule Applying ABP framework to configure DCF
[41] Selecting the minimum value of CW Improving fairness and robust to selfish stations
[42] Selecting the value of CW Applying a fixed-share algorithm to configure DCF
[43] Selecting time slot for transmission Applying FL to configure slotted transmissions
[44] Selecting the value of CW Applying two DRL algorithms to configure DCF
[45] Selecting the value of backoff Applying PDS to configure DCF
[46] Setting the value of AIFS and CW Considering QoS requirements by traffic prioritization
[47] Selecting the value of CW Considering QoS requirements by traffic prioritization
[48] Selecting time slot for transmission Stations self-organize into channel access based on slot
[49] Selecting time slot for transmission Taking into account interference from non-ML based devices

Link

[50] Selecting transmission rate Applying the RF method for rate selection

Configuration

[51] Selecting transmission rate Providing extensible framework of rate selection
[52] Selecting transmission rate Applying iterative learning for rate selection

[53]
Selecting Utilizing the input of channel conditions,

transmission rate number of stations, and traffic intensity
[54] Selecting transmission rate Utilizing packet timeouts to train RL model
[55] Classifying channel type Applying SL to classify channel
[56] Selecting guard interval Applying TS for guard interval selection
[57] Prediction the throughput of link-layer Applying SL for link adaptation

Frame

[58] Selecting CW and frame size Applying ML for frame-size optimization

Aggregation

[59] Selecting frame size Applying SL for frame-size optimization
[60] Selecting frame size Applying ML for optimization in SDN architecture
[61] Selecting frame size Taking into account energy-consumption constraint
[62] Selecting frame size and transmission rate Combined frame-size and transmission-rate optimization

PHY Features

[63] Estimating probability of deferral Analyzing interference relations between stations
[64, 65] Decoding frames Alternative 802.11 protocol based on channelization in OFDM
[66] Estimating interference level Applying DPP learning to determine interference distribution
[67] De-noising signals Applying DL to enhance the quality of radio signal
[68] Classifying signal source Applying ML to signal identification based on CSI
[69] Predicting signal strength Applying DL to predict the quality of radio signal

[70]
Predicting link-layer Utilizing SL to model the impact of

throughput PHY/MAC interactions on throughput

(DCF), serving as the baseline mechanism to prevent collisions among devices access-
ing a shared radio channel [71]. The key parameter influencing DCF performance is the
Contention Window (CW), determining the range from which stations randomly se-
lect waiting periods (backoff counters) to avoid collisions during channel access. Larger
CW values decrease collisions but increase idle times, thereby reducing throughput.
On the other hand, smaller CW values enhance the chance of station transmission but
also raise collision probabilities, consequently reducing throughput. Several studies
explore the optimization of contention window (CW) values to enhance throughput
by minimizing collisions and idle periods, often employing both supervised learning
(SL) and reinforcement learning (RL) models. The evaluation criteria include reduced
collisions [38, 39], increased differentiation between successful and collided frames [40],
improved channel utilization [41], higher successful channel access attempts [42, 43],
enhanced throughput [44], elevated network utility [72], and a combination of improved
throughput, reduced energy consumption, and decreased collision instances [45]. We
classify related works here into five categories, presented as follows:

1. Collision Reduction: In high-density 802.11ax WLANs, RL with the intel-
ligent Q-learning based resource allocation (iQRA) is considered in [38]. The
work utilizes RL with Q-learning for resource allocation, dynamically adjusting
CW based on channel observation. By minimizing cumulative reward (consid-
ering collision probabilities), it optimizes CW size. Results from simulations
show improved throughput compared to baseline 802.11ax protocol, with similar
delay. The paper [40] implements a programming paradigm called adaptation-
based programming (ABP), where implements RL with a reward system based
on successful transmissions vs. collisions. It optimizes RL for two actions: halv-
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ing or maintaining CW size after a successful transmission. Simulations reveal
a reduction in dropped packets. The RF algorithm is applied in a supervised
manner to balance the minimum CW size among users for fair channel access
[41]. Using channel variables, it builds a DT to optimize settings. Simulations
in 802.11ac scenarios show significant improvements in throughput, latency, and
fairness compared to the standard. The size of the CW can also be adjusted by
directly increasing the access to the channel through weighted CW range pos-
sibilities [42]. After successful transmissions, weights of users with larger CWs
are reduced, while weights of users with smaller CWs are increased. Simula-
tions in heavily loaded scenarios demonstrate improved throughput and reduced
end-to-end delay compared to DCF.

2. Scalability: The paper [44] Utilizes DRL models, including Deep Q-Network
(DQN) and Deep Deterministic Policy Gradient (DDPG), to maintain stable
throughput as the number of stations increases. A three-phase algorithm eval-
uates collision probabilities, trains DRL models to maximize throughput, and
deploys them in the network. Simulations demonstrate that these algorithms
maintain stable throughput compared to the 802.11ax standard, which experi-
ences decreased throughput with an increasing number of stations. Moreover,
a post-decision state-based (PDS) learning algorithm is applied in [45] to en-
hance scalability by leveraging previous system knowledge, such as CW and
transmission buffer occupancy. Unlike Q-learning (QL), PDS achieves faster
convergence by predefining CW values in specific states, eliminating the need
to learn transition probabilities. This approach results in improved throughput,
especially under moderated network load, compared to Q-learning, the standard
802.11 approach, and other deterministic mechanisms like exponential-increase
exponential-decrease (EIED).

3. User Fairness: The CW can also be adjusted considering user fairness metrics
[43]. To that end, Federated Learning (FL) and Q neural network (QNN) mod-
els are implemented in APs and stations, respectively, as a part of a distributed
method. Initially, stations randomly initialize their QNN parameters, leading
to varied strategies for channel access. To ensure fairness, the AP collects a
global model of QNNs through FL and broadcasts updated CW values to sta-
tions. Simulations with up to 50 stations demonstrate a 20% improvement in
throughput compared to the DCF. Additionally, an enhanced DQN is trained
to select minimum CW sizes and deployed at stations to achieve per-user fair-
ness [39]. Rainbow agents incorporate six improvements, including double DQN,
prioritized reply, dueling networks, multi-step learning, distributional RL, and
noisy nets. Simulation results in ns-3, with 32 stations transmitting at a constant
rate, show that this solution achieves near-optimal results and outperforms an
RF-based method.

4. QoS improvement by traffic prioritization: QoS improvement in wireless
networks is crucial for ensuring a satisfactory user experience, especially in sce-
narios where multiple types of traffic coexist and compete for network resources.
One approach to enhance QoS is through the use of traffic prioritization mecha-
nisms, which allocate network resources based on the priority of different types
of traffic.

Traditionally, the DCF in the IEEE 802.11 standard has been used for MAC in
wireless LANs. However, with the increasing demand for differentiated services,
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the Enhanced Distributed Channel Access (EDCA) was introduced as part of
the 802.11e amendment [73, 74]. EDCA extends DCF by introducing new or
modified MAC parameters for different traffic classes. For example, while the
CW parameter existed in DCF, EDCA introduced a more dynamic adjustment
of CW values based on traffic priorities. Additionally, EDCA introduced new
parameters such as Arbitration Inter-Frame Space (AIFS) and Transmission Op-
portunity (TXOP) limit, which further support traffic differentiation and prior-
itization.

The choice of appropriate values for parameters like AIFS and CW is critical
in balancing the trade-off between delay and throughput. AIFS determines the
time interval a station must wait before it can access the medium, with different
AIFS values assigned to different traffic classes to prioritize certain types of
traffic. CW defines the range of time slots a station must wait before attempting
to access the medium. TXOP limit specifies the maximum duration a station can
hold the medium once it gains access, allowing for efficient transmission of larger
bursts of data for high-priority traffic. To address this challenge, researchers
have explored ML techniques to determine the optimal combination of AIFS
and CW values. For example, a three-phase scheme proposed by [46] utilizes
DT algorithms like J48 for classification and M5 for prediction to select the
best AIFS and CW values. Simulation results have shown high throughput
prediction accuracy across various scenarios, indicating the effectiveness of ML-
based approaches in optimizing network performance.

In addition to ML-based approaches, QL has been employed to achieve priority-
driven channel access under the EDCA scheme. By estimating network density
and dynamically adjusting the CW value based on traffic priorities, the QL
model ensures efficient utilization of network resources [47]. For instance, in
EDCA, smaller CW values are configured for high-priority traffic categories such
as voice and video, thereby reducing contention and improving QoS for critical
applications. Simulations conducted using tools like the ns-3 simulator have
demonstrated the effectiveness of QL-based approaches in enhancing throughput
for different traffic types compared to standard EDCA mechanisms.

5. Time-Slotted Access: In these mechanisms, collisions are prevented by schedul-
ing users to transmit during specific time slots [48]. Each station maintains a
table containing available time slots for transmitting frames. These time slots
are determined using RL techniques to select optimal actions for accessing the
channel. Furthermore, the research described in [49] explores a scenario involv-
ing channel access between two APs: the primary AP equipped with an agent
and a secondary AP referred to as the ‘outsider’. Time is divided into slots, al-
lowing both APs to independently decide when to transmit. The objective of the
agent in the primary AP is to maximize throughput by learning the transmis-
sion probabilities based on the behavior of the outsider AP. A robust adversarial
RL framework, employing game theory, models the interactions between the two
APs and facilitates learning of optimal transmission policies through Q-learning.

2.2.1.2 Link Configuration

The IEEE 802.11n/ac/ax standards have been developed to meet the increasing de-
mands of users by providing high-throughput wireless connections [56]. These stan-
dards introduce various enhancements at both PHY and MAC layers. At the PHY
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layer, features such as channel bonding, multi-SS transmissions, SGI, and high mod-
ulations like 1024-QAM (in 802.11ax) contribute to achieving high data rates. These
functionalities are aimed at improving wireless link performance [35–37]. Meanwhile,
at the MAC layer, frame aggregation and block acknowledgment are implemented as
key features to enhance the maximum link throughput.

Link configuration, involving the selection of appropriate PHY and MAC param-
eters, is crucial for achieving optimal throughput under varying network and channel
conditions. Rate adaptation, a key component of link configuration, determines the
suitable MCS for each transmission, balancing between high data rates and poten-
tial transmission errors. In dynamic Wi-Fi environments, such as those affected by
user mobility or interference, rate adaptation faces challenges like the trade-off be-
tween high data rates leading to increased error rates and lower data rates resulting
in underutilization of the channel. ML models are increasingly utilized to assess this
trade-off and optimize rate adaptation strategies to cope with changing channel con-
ditions effectively. Below, we outline the contributions related to selecting the most
suitable MCS and SGI values, as well as several trade-offs encountered at the PHY
layer.

1. Rate Adaptation: Rate adaptation methods assess the likelihood of successful
transmissions for each potential MCS option, selecting the data rate associated
with the most favorable outcome. These predictions rely on signal-to-noise ra-
tio (SNR) [50, 51] or adopt a cross-layer strategy based on acknowledgment
(ACK) or negative acknowledgment (NACK) feedback [52–54]. SNR is favored
for promptly updating channel conditions, particularly in mobile environments
like vehicular ad hoc networks (VANETs) [50]. However, more precise assess-
ments are achieved when channel status updates are guided by ACK and NACK
feedback [50]. SNR-based predictions benefit from a two-tiered data rate search
method employing an artificial neural network (ANN) model [51] or an RF al-
gorithm [50]. The ANN serves as a coarse estimator to identify a preliminary
set of optimal data rate candidates, followed by a refined selection process to
determine the best candidate. This approach yields a notable enhancement of at
least 25% in mobile scenarios compared to baseline rate adaptation algorithms
like Minstrel [51]. Additionally, the RF algorithm implemented in [50] enhances
uplink data rate adaptation in VANETs by leveraging car position and veloc-
ity data to estimate SNR. By predicting transmission success probabilities for
each potential data rate option and selecting the most suitable candidate, this
approach achieves a minimum goodput improvement of 27% relative to existing
solutions such as collision-aware rate adaptation (CARA).

To address the variability of SNR and packet loss caused by fast fading, [52] in-
troduces a method inspired by stochastic learning automata (SLA), which avoids
assuming a predefined relationship between SNR and packet loss. This algorithm
updates a selection probability vector mapped to available data rates, adjust-
ing it based on throughput as the reward function and using ACK frames for
channel feedback. Consequently, the probability corresponding to the most re-
warding rate is updated, yielding a 15% throughput enhancement compared to
other solutions. Additionally, [53] employs ML models to establish thresholds for
successfully and unsuccessfully received packets, enhancing aggregate through-
put by counting ACKs. Building on the auto rate fallback (ARF) algorithm, the
data rate adjusts based on whether the total ACK count surpasses predefined
thresholds, with adjustments informed by an ANN’s estimation of correlation
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with achievable throughput. The results demonstrate a 10% increase in aggre-
gate output in networks with ten stations.

Rate selection methods include SL, as seen in [55], which classifies channel condi-
tions (e.g., residential or office environments) to determine the appropriate MCS
level based on selected characteristics of an 802.11 frame’s preamble. In con-
trast, Q-learning, as demonstrated in [54], dynamically adjusts the MCS level
based on the total number of received ACKs, with network state observation
inferred from timeout events (total number of missing ACKs). Simulations in
ns3-gym consider dynamic scenarios, such as receiver station movement at 80
m/s, yielding throughput comparable to Minstrel. Additionally, MCS selec-
tion may account for available bandwidth and selected spatial streams. In [75],
the DDQN model, incorporating goodput as a reward and employing prioritized
training, history-based initialization, and adaptive training interval, significantly
outperforms default mechanisms when implemented in hardware.

2. SGI Adaptation: The choice of SGI values, another aspect of link configu-
ration, can be optimized using ML models. SGI offers two (802.11ac) or three
(802.11ax) different values, and their selection is managed through Thompson
sampling (TS) as detailed in [56]. TS, an online learning method, adapts to
channel quality fluctuations like signal interference, fading, and attenuation.
Evaluations conducted via ns-3 simulations on an 802.11ac network with up
to 40 stations demonstrate slight throughput enhancements when SNR varies
randomly between 20–60 dB, compared to static SGI settings.

3. PHY Layer Trade-Offs: In the PHY layer, several trade-offs exist, such as
choosing wider channels leading to more interference, selecting MCS based on
required SNR, and considering frame aggregation versus packet loss. These
trade-offs can be collectively managed to enhance overall performance using ML
techniques like multi-armed bandit (MAB) [35], [76–78], and DL [57].

An online learning approach based on the Multi-Armed Bandit (MAB) frame-
work is developed for configuring links in 802.11ac networks [35], [76–78]. This
method, utilizing a MAB-based adaptive learning (AL) (i.e., the ϵ-greedy algo-
rithm) with fuzzy logic, considers network load and channel conditions to en-
hance performance by exploring various configurations. Through this approach,
throughput is notably improved, with up to a 358% increase compared to exist-
ing methods. Additionally, a study by [57] introduces a two-step algorithm that
leverages Deep Neural Networks (DNNs) to estimate throughput based on PHY
and MAC layer parameters such as channel bonding, MCS, and frame aggrega-
tion settings. This algorithm then utilizes a predictive control-based search to
identify optimal parameter values, leading to superior performance in terms of
delay and throughput compared to baseline algorithms, as demonstrated through
experiments with IEEE 802.11ac client boards on laptops.

2.2.1.3 Frame Aggregation

Frame aggregation is a technique used in 802.11 networks to enhance throughput by
transmitting multiple data frames in a single transmission. This method reduces pro-
tocol overhead by consolidating multiple packets into a single transmission, thereby
reducing the number of headers required. There are two types of frame aggrega-
tion in 802.11: MAC Service Data Unit (MSDU) aggregation, which bundles multiple
packets from the upper layer into an aggregate-MSDU (A-MSDU) with a single PHY
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header, and MAC Protocol Data Unit (MPDU) aggregation, which consolidates mul-
tiple frames from the MAC layer into an aggregate MPDU (A-MPDU) transmitted
with a single PHY header.

Frame aggregation significantly affects communication efficiency by balancing use-
ful transmitted data with overhead [79]. Efficiency is evaluated based on packet de-
coding errors, where larger frames reduce overhead impact but are more susceptible
to transmission errors. To optimize efficiency, frame aggregation techniques determine
the ideal frame size. The 802.11 standard introduces two main aggregation methods:
aggregated MAC service data unit (A-MSDU) and aggregated MAC protocol data unit
(A-MPDU) [80]. These aggregations can also be used together [81]. While A-MSDU
is more efficient but prone to errors due to a single frame check sequence (FCS), A-
MPDU is more robust with multiple FCSs but introduces higher overhead. However,
these methods lack dynamic adjustment for varying CSI in wireless links.

ML techniques, including SL and RL, are employed to optimally select frame sizes
in dynamic conditions across various 802.11 network standards. SL and RL methods
are utilized to maximize throughput in generic 802.11 networks [58], improve goodput
in 802.11n networks [59, 60], and balance energy and throughput in 802.11ac networks
[61]. These techniques are also applied to estimate aggregation levels in 802.11ac
networks [82]. For instance, paper [59] introduces a low-complexity approach using
a random forest regressor (RFR) model to configure aggregation and MCS settings
in the downlink direction. This method, tested in small to medium-sized networks
with up to 20 stations, reduces retransmission rates and improves goodput by 18.36%
compared to traditional 802.11 aggregation methods.

ML-supported aggregation methods are applied in software-defined WLANs (SD-
WLANs) within an AI-based operating system [60]. Using low-complexity models like
M5P and RFR, these methods aim to optimize frame length for each user to maximize
goodput. Training with real Wi-Fi measurements in scenarios with up to 10 stations,
the RFR model achieves the highest goodput improvement (55%) compared to A-
MSDU. Additionally, predicting MCS levels through an ANN [62] involves training the
model in client devices using received packets from an AP within a 1-second window,
improving throughput by at least 13% over baseline algorithms. ML techniques are
also utilized in estimating aggregation levels to manage queue backlogging [82]. By
employing LR estimator models on hardware-level timestamps, accurate aggregation
level estimation with low computational complexity is achieved, particularly in non-
rooted hardware acting as client devices, with accuracy reaching close to 100%.

Frame aggregation settings can be optimized considering energy costs by select-
ing the aggregation level with the smallest frame error rate (FER) based on channel
conditions, as indicated by the SNR value [61]. Using an online learning algorithm
combined with fuzzy logic, this approach defines suitable aggregation levels and selects
the most appropriate one to minimize FER. Resulting in a 14% improvement in energy
efficiency compared to standard A-MSDU and A-MPDU mechanisms with 10 stations.
Additionally, addressing channel conditions and collision impacts, [58] adjusts frame
size and CW together using an ANN model trained with frame size-throughput pat-
terns. Simulation results for 10 mobile users demonstrate throughput improvement
compared to optimizing only the frame size without considering the optimal CW.

2.2.1.4 PHY Features

ML techniques are applied at the PHY layer to enhance Wi-Fi network performance
by addressing various issues such as collision detection characterization [63] and its
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mitigation [64, 65], interference power-level characterization [66] and its mitigation
[83], signal de-noising [67], source detection to improve spectral efficiency [68], predic-
tion of signal strength variability [69], and the enhanced modeling of the PHY and
MAC layer interactions to improve throughput [70].

1. Collision Reduction: To estimate collision occurrences in the channel, sta-
tions’ network activity is modeled using a hidden Markov model (HMM) [63].
RL techniques are employed to learn model parameters, allowing the calculation
of collision probabilities. The transition probabilities in the model are evalu-
ated using the expectation modification algorithm (EMA). By estimating the
total number of simultaneous transmitters, collision probabilities are directly
computed. Results from a study deploying seven APs with an equal number of
clients over two building floors demonstrate the accuracy of estimated deferring
probabilities, reflecting real-world conditions. Additionally, to enhance the de-
coding of request to send (RTS) frames during collisions, [64, 65] implement an
ML model using techniques like NB, naive Bayesian tree, J48 DT, and SVM. This
approach, integrated with a kϵ-greedy algorithm for channel allocation, improves
system performance significantly compared to legacy 802.11 operations.

2. Interference Estimation: The interference level in the network is estimated
using a determinantal point process (DPP) model [66]. A SL process is employed
to determine the number and positions of active transmitters that could poten-
tially interfere with each other. The interference is assessed by computing the
cumulative density function for the total number of active users. This informa-
tion is utilized to model the power of interference signals using a path-loss model
for individual links. Experimental results demonstrate a close correspondence
with theoretical models regarding the cumulative density function of interference
levels.

3. Signal Quality Estimation and Management: The paper [69] employs DL
techniques to predict received signal strength. Using a RNN model, it utilizes en-
coder and decoder components to capture and predict the CSI variability. The
model is trained under three different schemes to balance convergence speed
and performance: (i)guided training, which employs current measured signal
strength for faster convergence; (ii)unguided training, which utilizes predicted
signal strength for improved prediction performance; and (iii)curriculum train-
ing, which combines both methods to balance speed and prediction accuracy.
The curriculum training scheme notably enhances prediction accuracy of the
signal strength compared to linear regression and auto-regression methods.

DL techniques, as discussed in [67], contribute to enhancing the quality of re-
ceived signals at the PHY layer. Using an ANN, the preamble of 802.11 protocols
undergoes de-noising in the spectrogram domain, where noise is separated from
the useful signal. By processing the spectrogram as an image, the ANN functions
as a convolutional de-noising auto-encoder to estimate the original signal pat-
terns, achieving a reconstruction accuracy of approximately 85%. Additionally,
to improve Wi-Fi spectral efficiency by addressing the exposed terminal prob-
lem, [68] employs sender identification based on CSI. Models trained using kNN
and ANN techniques successfully predict potential interference among senders,
achieving an accuracy of 90% in indoor scenarios with 20 wireless stations, par-
ticularly excelling with the kNN model when total samples are limited.

22



Thesis Title: Development of Wi-Fi Networks through Machine Learning

4. Interaction With the MAC Layer: The PHY layer collaborates with the
MAC layer to assess the impact of various factors on observed throughput [70].
Input features like received power, channel width, spectral separation, traffic
load, and physical rates are selected to construct a mathematical function that
correlates these features with throughput, using SL. This function serves as a pre-
dictive model, enabling the optimization of throughput. Regression techniques
such as regression tree, gradient boosted regression tree (GBRT), and support
vector regressor (SVR) are utilized to derive this function. Simulation outcomes
reveal that GBRT and SVR offer superior accuracy compared to a benchmark
model.

2.2.2 Newer Wi-Fi Features

ML techniques play a crucial role in supporting recent Wi-Fi amendments, includ-
ing 802.11ac, 802.11ax, and 802.11be. These amendments introduce advanced and
intricate techniques such as multi-user communications (OFDMA, MU-MIMO) [84],
spectrum aggregation and opportunistic spectrum access (channel bonding [85], multi-
link operation [86–88]), spatial reuse [89], and multi-AP coordination [90, 91]. While
these techniques hold the promise of significant performance improvements in terms
of both throughput and latency, they also present new challenges. Table 2.3 presents
a summary of related work that has utilized ML in this area of Wi-Fi networking.

2.2.2.1 Beamforming

Transmissions within the millimeter-wave (mmWave) 60 GHz band in Wi-Fi networks,
particularly in scenarios like short-range (indoor) and long-range (outdoor) commu-
nication, known as fixed wireless access (FWA) [92], require beamforming to combat
increased signal attenuation. Beamforming, introduced in 802.11ad and extended in
802.11ay, aims to optimize beam sector pairs between transmitters and receivers. Tra-
ditional methods involve exhaustive beam searches, which can be time-consuming. To
address this, [93] employs NN algorithms to predict optimal beam sectors, including
historical data. [94] further enhances this approach by reducing training duration
through SL-based feature extraction and reinforcement learning-based beam selection.
Additionally, [95] presents DeepBeam, a framework utilizing DL to infer beam sector
selection without the need for time-consuming beam sweeping procedures, by passively
listening to other transmissions.

ML techniques are increasingly employed in beamforming for mmWave Wi-Fi net-
works. In [96], camera images are utilized to expedite beam alignment predictions,
significantly reducing setup time. Similarly, [97] leverages ML on camera images to
swiftly and accurately predict received power for beam selection. Additionally, camera-
based ML predictions aid in preemptively detecting link outage, improving handovers
in mmWave networks [98]. In scenarios necessitating dense AP deployment, such as
in 802.11ad/ay networks, beam coordination and interference management are cru-
cial. [99] employs statistical learning to construct a radio map, reducing cross-beam
interference. Meanwhile, [100] presents a DNN-based solution for optimizing beams
in centrally-managed deployments, achieving performance comparable to optimization
algorithms with reduced computational time.

23



Chapter 2. Background

Table 2.3. Summary of related works for newer Wi-Fi features.

Wi-Fi Aspects Ref. ML Application Novelty

Beamforming

[93] Selecting beam pair Reducing number of beam sectors
[94] Selecting beam pair Combining feature extraction with training beam selection
[95] Selecting beam pair Listening to ongoing transmissions passively
[96] Selecting beam pair Using camera imagery
[97] Predicting received power Using camera imagery
[98] Predicting link outage Using camera imagery
[99] Selecting AP and beam Reducing cross-beam interference

[100]
Selecting beam directions, Performing combined beam management

transmitted power and beamwidths and interference coordination
[101] Selecting AP and band Considering multiple APs and bands
[102] Classifying channel type Classifying channel using received preamble
[103] Predicting channel characteristics Applying prediction method to massive MIMO channels
[104] Selecting transmission rate Utilizing PHY layer features for rate selection
[105] Selecting transmission rate and beam pair Combined transmission rate and beam pair selection
[106] Estimating channel frequency response Utilizing transceiver location information

Multi-User

[107] Selecting users and configuring links Combined parameter optimization

Communication

[108] Selecting users, spatial mode and transmission rate Addressing MU-MIMO challenges
[109] Compressing CSI Minimizing CSI feedback airtime
[110] Predicting benefits of MU-MIMO Addressing MU-MIMO station mobility
[111] Selecting MU-MIMO group Utilizing ML to improve MU-MIMO performance
[112] Scheduling RUs Applying DRL to resource allocation in DLNK OFDMA
[113] Scheduling RUs Applying DRL to resource allocation in ULNK OFDMA
[114] Scheduling RUs Improvement of Q-value estimation
[115] Scheduling RUs Resource allocation based on queue
[116] Compressing CSI, scheduling RUs and allocating power Combined MU-MIMO and OFDMA optimization

Spatial Reuse

[83] Selecting channel and transmitted power Applying QL with training based on event

[117]
Selecting carrier sense threshold, Combined optimization of
transmission rate and power these parameters

[118] Deciding whether to transmit simultaneasly Adaptive CCA per frame
[119] Selecting antenna orientation Directional transmission in multi-AP indoor setting
[120] Selecting channel and transmitted power Dynamic channel assignment in a decentralized setting

[121]
Selecting channel, transmitted power SR Improvement in dense

and sensitivity threshold and uncoordinated WLANs
[122] Selecting channel and transmitted power Evaluating new strategies of action selection
[123] Selecting channel and transmitted power Deploying SR methods in a SDN architecture
[124] Selecting carrier sensitivity threshold Combining local and global operations
[125] Selecting transmitted power and sensitivity threshold Subsampling state space to solve dimensionality problem

Channel Bonding

[126] Selecting channel and bandwidth Applying stateless RL to channel allocation

[127]
Selecting channel Packet scheduler supporting
and bandwidth dynamic bandwidth channel access

[128] Selecting channel and bandwidth Considering non-continuous channels
[129] Selecting channel and bandwidth Utilizing laser oscillations to action space
[130] Selecting channel and bandwidth Applying DL to channel bonding issue
[131] Selecting channel and bandwidth Spatio-temporal changes in traffic demands
[132] Identifying stations under starvation Fairness of dynamic bandwidth channel access
[133] Selecting channel and bandwidth Proposing general spectrum management framework
[134] Selecting channel and bandwidth Considering traffic load per channel
[135] Predicting throughput Taking into account impact of channel bonding
[136] Predicting throughput Applying GNN to performance prediction
[137] Selecting channel and bandwidth Taking into account hidden stations

MLO, MIMO,

[138] Predicting channel idle state Applying PNN to multi-band Wi-Fi network

and Full Duplex
[139]

Selecting channel Combined parameter optimization

Communication

and clustering APs for distributed MU-MIMO networks
[140] Finding pairs for transmission simultaneously Applying ML to orchestrating full-duplex transmissions

[141]
Selecting band for Solution in retransmissions
retransmission over multi-band Wi-Fi network

In dense deployment scenarios, associating user stations with APs becomes chal-
lenging, particularly with the advent of multi-homing capable stations. This issue
is addressed using ML methods, as demonstrated in [101], where users autonomously
learn which APs to connect to and which bands to use. After identifying suitable beam
sectors in 802.11ad/ay, rate adaptation becomes necessary. For mmWave transmis-
sions, MCS selection relies on accurate channel classification, distinguishing between
Line of Sight (LoS) and Non-Line of Sight (NLoS) channels. ML augmentation is seen
in [102], employing RF techniques for channel classification. Furthermore, predicting
the statistical channel characteristics is crucial, with studies like [103] utilizing CNNs
to forecast channel statistics, particularly in indoor locations across various wireless
technologies using massive MIMO.

Alternatively, rate adaptation can rely on conventional metrics available in com-
mercial off-the-shelf (COTS) devices. In [104], optimal MCS settings are predicted us-
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ing three ML models: DT, RF, and SVM, with RF showing superior performance over
SNR-based rate selection strategies. This approach is extended in the learning-based
beam and rate adaptation (LiBRA) framework [105], where ML-based classification
methods determine whether rate selection or beam selection offers better performance
for a given link. Furthermore, Improving the data rate of mmWave links can be
achieved through enhanced channel estimation techniques. In [106], transceiver loca-
tion information is combined with a DNN to assess the channel frequency response.
This method reduces the number of transmitted pilot signals, thereby allocating more
bandwidth for user data.

2.2.2.2 Multi-User Communication

The IEEE 802.11ac amendment introduced support for downlink MU-MIMO transmis-
sions, enabling simultaneous transmission to different stations within the same TXOP
using spatial multiplexing. This feature was extended in IEEE 802.11ax, which sup-
ports both downlink and uplink MU-MIMO, along with OFDMA. OFDMA divides
the available bandwidth into sub-channels, known as RUs, allocated to different users.
These features will continue to be significant in future IEEE 802.11be networks, which
will support wider channels and more spatial streams, as well as improvements like
multiple RU allocation to the same user and implicit channel sounding [142].

Several papers tackle challenges in Multi-User MU-MIMO enabledWLANs through
various ML strategies. In [107], an ϵ-greedy strategy is employed to optimize config-
urations using experience. The study by [108] employs an SVM classifier for robust
MCS selection. [109] introduces a method using DNNs to compress and decompress
CSI to reduce overhead. Conversely, [110, 111] utilize a policy gradient technique to
determine client participation in MU-MIMO transmissions, with a NN representing
the policy function. These approaches consistently demonstrate significant improve-
ments in network throughput. In OFDMA, whether initiated by the AP or stations,
selecting the group of stations and RUs allocation is crucial. In AP-initiated transmis-
sions, the AP determines the station group and optimal RU allocation, while in uplink
transmissions, stations may select their RUs [143]. This challenge is tackled using
DRL techniques in [112–114]. The papers [113, 114] focus on decentralized RU selec-
tion for uplink, employing CNN-based DQN methods, showing significant gains over
random RU selection. Conversely, [112] focuses on AP-initiated downlink transmis-
sions, employing DRL-based scheduling using per-station channel quality and traffic
information. The study in [115] employs a deep deterministic policy gradient (DDPG)
algorithm to address OFDMA resource allocation, demonstrating improved latency
meeting and fairness compared to baseline solutions. Additionally, In the study [116],
the focus is on optimizing MU-MIMO and OFDMA together. The paper employs
Deep Supervised Learning (DSL) to develop DeepMux, executed at APs. DeepMux
utilizes DNNs to mitigate channel sounding impact and determine a nearly optimal
resource allocation policy. Experimental findings reveal throughput improvements of
up to 50%.

2.2.2.3 Spatial Reuse

The IEEE 802.11ax amendment introduced spatial reuse (SR) to Wi-Fi networks [89],
aimed at enabling concurrent transmissions among devices from different BSSs. De-
spite its effective gains, the conservative rule-based design of IEEE 802.11ax SR could
be further enhanced by adaptive mechanisms. ML techniques can play a crucial role
in making SR adaptive to various scenarios, determining when and how devices can
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benefit from spatial reuse opportunities, potentially leading to higher throughput and
latency improvements. Future amendments, such as IEEE 802.11be, are expected to
extend Wi-Fi SR capabilities, possibly allowing neighboring APs to coordinate trans-
missions. ML techniques are poised to enhance coordinated SR by addressing the
challenge of identifying devices that can transmit simultaneously, leveraging collected
CSI data from multiple devices.

ML solutions have increased some attention for addressing the SR problem, par-
ticularly using RL techniques. Methods like Q-learning and MABs have been widely
explored in recent studies [117–123]. These approaches involve multiple agents, each
empowered with ML capabilities, learning online to determine the best configuration
for APs. However, some studies highlight challenges when agents compete without col-
laboration, making convergence difficult. Other approaches use SL techniques, such
as NNs, to select appropriate SR parameters based on known scenario characteristics
[124, 144]. These methods contribute to optimizing SR in wireless networks.

The study [117] employs a Q-learning algorithm to optimize power, transmission
rate, and clear channel assessment (CCA) in Wi-Fi networks. Agents, located at each
device, act selfishly, and states are defined based on transmission power, interference,
and the used MCS. Actions involve adjusting transmission power and MCS to en-
hance performance. The study [118] utilizes Q-learning to enhance IEEE 802.11ax’s
SR mechanism, where agents decide whether to transmit concurrently or wait, con-
sidering current interferers. In this paper, the learning rate is adapted to ensure
quick adjustments in non-stationary scenarios. Meanwhile, Q-learning and MABs are
explored in various scenarios [120–122]. Stateless Q-learning optimizes channel selec-
tion and transmission power allocation, while MABs consider different action-selection
strategies. Results demonstrate that even when networks operate selfishly, optimal
proportional fairness is achieved, with sequential action taking reducing throughput
variability among BSSs. Additionally, the paper [125] proposes a centralized MAB-
based solution to dynamically adjust spatial reuse parameters, mitigating starvation
by selecting the best configuration using Thompson Sampling (TS). Simulation results
confirm the effectiveness of this approach in enhancing performance in dense WLANs.

SL methods like Multi-layer Perceptron (MLP) and DTs are explored in [124]
to optimize spatial reuse parameters for both APs and stations. These models are
trained offline using diverse datasets encompassing various scenarios. The paper [144]
proposes a centralized NN approach to configure all BSSs for maximizing SR, consid-
ering the correlation between device throughput and associated link parameters. In
another approach, [83] tackles interference mitigation by jointly optimizing APs’ trans-
mit power and channel allocation policies using a Q-learning model. This model un-
dergoes a learning process with reduced iterations triggered by network status changes,
resulting in a 16% throughput enhancement compared to state-of-the-art mechanisms.
Meanwhile, [119] adopts a distinct strategy for achieving spatial reuse with directional
transmissions, treating antenna orientation selection as a non-stationary MAB prob-
lem. Results from a software-defined radio (SDR) implementation demonstrate its
operational correctness and resilience to co-channel interference.

2.2.2.4 Channel Bonding

The capability to enable channels wider than 20 MHz was initially introduced in IEEE
802.11n, supporting up to 40 MHz channels. Subsequent amendments like IEEE
802.11ac and IEEE 802.11ax expanded the maximum channel width to 80 and 160
MHz, respectively. In IEEE 802.11be, channel width is further increased, accommo-
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dating up to 320 MHz channels. Wider channels facilitate higher transmission rates
and thus improved performance. However, in dense environments, wider channels may
intensify contention among neighboring BSSs, potentially leading to decreased perfor-
mance. Therefore, determining when to utilize wider channels, their appropriate size,
and the specific channels to use are crucial for enhancing WLAN performance. How-
ever, there is no universal solution to this question, as it depends on various factors
such as the number and positioning of contending devices, BSS loads, and available
channels in each specific scenario. ML techniques offer a solution to optimize channel
allocation and bonding configurations in various scenarios. Online learning, partic-
ularly when combining RL techniques with prediction models, emerges as a suitable
approach for rapid convergence in addressing this challenge [126].

MABs typically determine the optimal channel widths for maximizing WLAN per-
formance without considering additional network or user-related information [127–
129]. However, when factors like traffic loads, delay, and throughput are taken into
account, DRL techniques are proven to be effective in channel bonding decision-making
[130, 131].

The paper [127] proposes enhancing dynamic channel bonding by considering indi-
vidual station needs and access category requirements, using a MAB algorithm, Upper
Confidence Bound (UCB). Testbed results indicate performance gains reaching 100%
in certain scenarios. Similarly, the study [128] introduce an Iterative Trial and Error
(ITE) mechanism, employing trial and error to determine optimal channel bonding
strategies, including both contiguous and non-contiguous 20 MHz channels. ITE, im-
plemented using an ϵ-greedy strategy, outperforms default mechanisms and enhances
both Static Bandwidth Channel Access (SBCA) and Dynamic Bandwidth Channel
Access (DBCA) performance. Additionally, the study [132] proposes Hybrid Adaptive
DBCA (HA-DBCA) to address starvation issues in DBCA devices. HA-DBCA employs
a polling-based adaptive mechanism for contention-free access and utilizes the UCB al-
gorithm to identify starving stations, enabling them to transmit during contention-free
access periods. The paper [129] also models the channel bonding problem as a MAB,
using chaotically oscillating waveforms generated by semiconductor lasers for explo-
ration. The thresholds dynamically adjust based on waveform amplitudes, demon-
strating superior throughput compared to traditional MAB algorithms. Furthermore,
the study [133] advocates for model-free RL techniques for channel bonding, designing
a comprehensive RL framework and showcasing the effectiveness of lightweight MABs
through simulations. In this study, lightweight MABs offer efficient adaptation with-
out the complexity of Q-learning or deep reinforcement learning, presenting a viable
alternative for rapid learning in realistic scenarios.

DRL techniques are explored for optimizing channel bonding configurations in
WLANs. The paper [130] focuses on minimizing latency by dynamically allocating
channels to different BSSs based on their expected load and performance using an
on-demand channel bonding (DCB) algorithm. By employing multi-agent deep de-
terministic policy gradient (MADDPG) for training, suitable channel allocations are
determined. The paper [131] addresses the channel assignment problem in WLANs
with channel bonding, considering spatio-temporal changes in traffic demands. The
DRL solution adapts to varying service requirements by learning from historical traffic
loads, minimizing interactions with other BSSs when unnecessary. Additionally, the
study [134] proposes an opportunistic contiguous and non-contiguous channel aggre-
gation scheme for 802.11ax WLANs, using DRL to adjust aggregation probabilities
of secondary channels based on traffic load. Results demonstrate the superiority of
this strategy over predefined rules such as aggregating all channels or randomly select-
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ing one or two channels. The study [135] focuses on throughput prediction in dense
WLANs with channel bonding. The SL techniques including ANNs, graph neural net-
works (GNNs), RF regression, and gradient boosting are employed to build predictors.
Using data from the IEEE 802.11ax-oriented Komondor network simulator, these pre-
dictors are trained and validated. The accuracy achieved demonstrates the suitability
of ML for predicting complex WLAN throughput. Similarly, the paper [136] predicts
Wi-Fi performance using a GNN model that integrates topology information of the
deployment. Additionally, the study [137] addresses the issue of collisions with hidden
stations in channel bonding scenarios. In this paper, Smart Bond is proposed, em-
ploying a recursive neural network called Metropolis-Hastings generative adversarial
network (MH-GAN), to predict neighboring BSS activity. Results indicate that Smart
Bond reduces the probability of transmission errors due to hidden stations.

2.2.2.5 Multi-Link Operation, Network MIMO, and Full-Duplex

ML techniques play a vital role in enhancing various advanced mechanisms such as
multi-band WLAN operation [138], multi-AP coordination for network MIMO [139],
and in-band full-duplex [140]. Both RL and SL techniques are employed. For instance,
DRL optimizes distributed MIMO transmissions by considering channel allocation and
AP clustering [139]. Likewise, NNs predict channel states to enhance the performance
of multi-band WLANs [138] and identify groups of stations facilitating full-duplex
communication at APs [140]. Below, we delve into these solutions in more detail.

1. Multi-link Operation: Multi-link operation allows a WLAN device to trans-
mit over multiple interfaces concurrently, either on the same or different bands.
This capability, currently being developed in the IEEE 802.11be task group, en-
hances transmission efficiency. In the synchronous version, idle interfaces bond
together for transmission when any active backoff instance reaches zero. How-
ever, if some interfaces are busy but expected to become idle soon, it may be more
efficient to wait and aggregate these links instead of transmitting immediately
using a single interface. To address this uncertainty, [138] proposes a solution
using a probabilistic neural network (PNN) to predict when an interface will
become idle. Additionally, [141] explores multi-band operation combined with
Hybrid Automatic Repeat Request (HARQ) to enhance packet retransmission
efficiency. SL determines whether retransmissions should use the same band, a
different one, or all available bands simultaneously, leading to improved network
utilization and higher throughput.

2. Network MIMO: The paper by [139] explores the challenge of optimizing chan-
nel allocation and AP clustering in distributed MU-MIMO for Wi-Fi networks.
This problem is addressed using DRL, aiming to maximize per-user through-
put. Given the NP-hard nature of both problems, heuristic solutions dominate
the literature. Their DRL framework, utilizing a DNN agent and a distributed
MIMO Wi-Fi simulator, achieves a 20% enhancement in user throughput. Fur-
thermore, it can concurrently optimize multiple objectives, including throughput
and fairness.

3. Full-Duplex Communication: Full-duplex communication, particularly in
WLANs, enables simultaneous transmission and reception, effectively doubling
channel capacity. A significant challenge is the user pairing problem, wherein
groups of stations must be identified to enable the AP to transmit to one while
receiving from another. Addressing this combinatorial problem, [140] employs a
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DSL architecture. This approach offers the advantage of not requiring re-training
of the NN when the input length changes within an expected range. Results
demonstrate that the DSL-based solution surpasses low-complexity methods like
greedy and random assignment.

2.2.3 Wi-Fi Connectivity and Traffic Management

Connectivity management stands as a crucial task in Wi-Fi networks, encompassing
tasks such as channel allocation, band selection, and AP selection. The complexity
of this task arises from the fact that altering the configuration of a single link not
only impacts its performance but can also affect neighboring networks, particularly
in densely deployed environments. ML-based approaches are employed to address
the challenges of connectivity management, tackling subtasks related to optimizing
channel allocation and other parameters. Additionally, in this context, ML-based
methods prove valuable for predicting next user connectivity based on historical data
derived from human activity detection. Furthermore, ML approaches play a role in
forecasting future traffic loads and assessing the health of Wi-Fi link connections.
These techniques enable proactive network configuration updates, minimizing outage
probability, and enhancing user QoE, especially in scenarios involving rapid changes in
communication conditions [33, 145]. Table 2.4 illustrates a summary of related work
that has used ML in this area of Wi-Fi networking.

Table 2.4. Summary of related works for Wi-Fi connectivity and traffic Management.

Wi-Fi Aspects Ref. ML Application Novelty

Channel and

[146] Selecting AP for association Applying MAB for AP selection

Band Selection

[147] Selecting AP for association New Approach for AP selection to reduce network dynamics
[148] Selecting Channel and AP Joint channel allocation and AP selection
[149] Selecting AP for association Apply SL for AP selection
[150] Selecting channel Applying traffic prediction methods for channel allocation
[151] Selecting APs for association Applying DQN to multi-AP association
[152] Selecting AP for association Centralized SDN-based solution
[153] Selecting AP for association Taking into account connection establishment
[154] Selecting AP for association Using frame aggregation characteristics to derive expected throughput
[155] Handover decision Monitoring RSSI patterns for upcoming handover

[156] Handover decision
Predicting user location, AP load,

and signal strength to preserve QoS during handover
[157] handover decision Considering wireless signal spatial and temporal characteristics

Next User
[158, 159]

Selecting next connectivity Applying SVM to uncover

Connectivity
for association regularity for next cell prediction

[160]
Selecting next connectivity Applying Bayesian Model to uncover

for association regularity for next cell prediction

[161]
Selecting next connectivity Applying ANN to uncover

for association regularity for next cell prediction

Management
[162] Optimizing slice configuration Applying DRL to network slicing

Framework [163] AP load prediction
Enabling APs dynamically
based on load predictions

Health of Wi-Fi

[164] Classifying Wi-Fi problems Providing real-time diagnostics for Wi-Fi problems

Connection

[165] Classifying Wi-Fi problems Providing real-time diagnostics for Wi-Fi problems
[166] Classifying and predicting link status Creating analysis framework to decide for user.
[167] Classifying Wi-Fi problems Providing real-time diagnostics for Wi-Fi problems
[168] Evaluating QoE of video streaming Applying ML to estimate QoE by monitoring Wi-Fi parameters
[169] Evaluating QoE of video conferencing Applying ML to estimate QoE by monitoring Wi-Fi parameters

Wi-Fi Traffic
[170] Predicting transmission throughput Applying ML for Wi-Fi throughput
[171] Predicting traffic intensity Applying SVM to Wi-Fi traffic prediction
[172] Predicting network congestion Applying both regression and clustering to predict congestion

2.2.3.1 Channel and band selection

In the context of Wi-Fi connectivity management, channel allocation stands out as a
critical challenge in dense Wi-Fi networks. These networks face the task of sharing a
limited set of available channels among numerous co-located Wi-Fi BSSs. Inadequate
channel allocation leads to significant contention among APs and stations, resulting in
reduced throughput for each station. The primary research goal in proposed solutions
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is to allocate channels in a manner that prevents interference among APs using the
same channel and avoids assigning the same channel to highly loaded APs (a form
of load balancing). It is important to note that in scenarios with variable traffic
load, channel allocation must be performed periodically. ML-based algorithms offer
solutions to the challenges of channel and band selection. These algorithms provide
models capable of considering changing interference relations (e.g., due to station
mobility) and variable traffic loads (e.g., as a result of stations transitioning between
active and passive states) [33].

1. AP Selection and Association: the widespread deployment and concentra-
tion of Wi-Fi networks often result in the presence of multiple overlapping Wi-Fi
cells in the same spatial area. Consequently, a station must make a decision on
which of the identified APs to connect to. The 802.11 association method relies
on stations selecting the AP with the strongest signal. However, this simplistic
approach can lead to the inefficient use of some APs and overcrowding of oth-
ers. As a result, various approaches for AP selection and load balancing have
been extensively investigated to enhance network throughput. For instance, [146,
147] propose a decentralized AP selection procedure in which stations utilize a
Multi-Armed Bandit (MAB)-based approach to dynamically learn the optimal
mapping between APs and stations. This procedure aims to distribute stations
evenly among available APs. Each station independently explores different APs
within its coverage range and selects the one that best meets its requirements.
An innovative opportunistic ε-greedy approach with stickiness halts exploration
once a suitable AP is found. The station then remains associated with that AP
while satisfied, only resuming exploration after several unsatisfactory association
periods. Results indicate that this approach increases the number of satisfied
stations and the aggregated network throughput by up to 80% in the case of
dense AP deployments. In a related work, [148] investigates Multi-Armed Ban-
dit (MAB)-based solutions for decentralized channel allocation and AP selection
challenges in enterprise WLAN settings. The proposed approach involves the use
of agents by both APs and stations. Employing a Thompson sampling algorithm,
these agents explore and learn: (i) at the AP side, the optimal channel to use,
and (ii) at the station side, the best AP to associate with. In the paper, results
from a custom-built simulator reveal that the learning-based approach consis-
tently outperforms the static one across varying network densities and traffic
requirements.

In the study [149] a cognitive AP selection scheme is introduced, where stations
choose an AP expected to deliver optimal throughput based on past performance.
This scheme, part of the SL family, employs a multi-layer feed-forward neural
network (MFNN) to learn the correlation between environmental conditions (e.g.,
SNR, probability of failure, beacon delay) and achieved performance (through-
put). Results from an 802.11 testbed demonstrate the effectiveness of the ap-
proach, surpassing legacy AP selection strategies in diverse scenarios. Similarly,
two papers of [150, 173] employ a predictive performance approach within the
constraints of AP selection. Moreover, paper [151] introduces an interesting RL-
based approach for user-to-multiple AP association. Two distributed association
methods, leveraging deep Q-learning (DQL), empower stations to autonomously
learn the optimal set of APs to connect to. This learning process relies solely on
local knowledge of the wireless environment or limited feedback from the APs.
Each device is equipped with multiple wireless interfaces. The goal is to maxi-
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mize the long-term sum-rate while adhering to various constraints, such as AP
load or application QoS constraints. Numerical evaluations demonstrate that
the algorithms enhance targeted objectives and improve fairness among applica-
tions. The paper [152] proposes a centralized approach, introducing an RL-based
client-AP association algorithm aimed at improving aggregated throughput in
dense Wi-Fi networks. This Q-learning-based algorithm is centrally deployed
within a Software-Defined Network (SDN) controller, managing the associations
of new users and executing re-associations of connected stations. Simulation
results demonstrate that the proposed approach surpasses the standard 802.11
association procedure, particularly in scenarios with non-uniform user distribu-
tions, and performs comparably well in cases of uniform distributions.

The study [153] conducts a comprehensive study using extensive measurements
to identify factors influencing the Wi-Fi connection set-up process. Analyzing
data from 0.4 billion Wi-Fi sessions collected via the Wi-Fi Manager mobile app
from 5 million mobile devices, a 45% failure rate is observed in Wi-Fi connection
attempts, with approximately 5% taking more than 10 seconds. In response, an
SL-based AP selection algorithm is proposed that significantly enhances Wi-Fi
connection setup performance. The algorithm utilizes RF to categorize candidate
APs into slow or fast sets, considering features such as the hour of the day,
Received Signal Strength Indicator (RSSI), mobile device model, AP model,
and encryption status. Using this classification, a station avoids connecting to
APs in the slow set. Evaluation results demonstrate that this approach reduces
connection failures to 3.6% and improves connection setup time by over 10 times.
The study [154] highlights the effectiveness of frame aggregation in providing a
concise representation of anticipated throughput, enhancing AP selection. The
distinctive characteristics of subframes within frame aggregation encapsulate the
utilization, interference, and backlog traffic pressure for an AP. Employing an
SL-based approach, straightforward regression models (utilizing linear regression
and DT regression) predict the expected throughput of APs to improve AP
selection. The outcomes reveal a prediction accuracy exceeding 80%.

2. Station Handovers: in mobile scenarios, it is common for a station to move
from the coverage area of one AP to that of another. In such cases, the station
needs to execute a handover from the old AP to the new one. It is crucial to
make the handover decision early to prevent low data rates or connectivity out-
age. ML methods can predict network conditions, facilitating accurate handover
decisions. For instance, [155] utilizes ML to predict upcoming handovers. In
this context, an AP monitor the RSSI of connected stations is made and a NN is
used for pattern recognition in the RSSI evolution. This approach demonstrates
good prediction accuracy and resilience to noise, speed variations, and fading
phenomena. Moreover, [156] proposes ABRAHAM (mAchine learning Backed
multi-metRic Handover AlgorithM), a proactive handover algorithm based on
ML that leverages multiple metrics to forecast the future positions of stations
and the upcoming AP load. By employing LSTM, it predicts future RSSI values.
These predictions are then utilized to optimize AP load by strategically handing
over stations, ensuring the preservation of QoS and QoE metrics. ABRAHAM
demonstrates a 139% increase in overall throughput compared to the traditional
802.11 handover algorithm. In the paper [157] a handover management approach
is designed for dense WLAN networks, utilizing Deep Reinforcement Learning
(DRL), specifically a deep Q-network. The approach empowers the NN to learn
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from user behavior and network conditions, adjusting its learning in dynamic and
densely populated WLANs. The handover decision is formulated as a Markov
Decision Process (MDP), taking advantage of the temporal correlation property,
and relies on real-time network statistics to make informed decisions. Simulation
results indicate that this solution effectively enhances the data rate during the
handover process, surpassing the performance of the 802.11 handover scheme.

2.2.3.2 Next User Connectivity Prediction

In this section, we mention connectivity management from a distinct perspective, fo-
cusing on human activity detection rather than the network access side. Next cell/AP
and mobility prediction emerge as potent tools for network operators seeking to opti-
mize overall network performance [145]. In conventional approaches aimed at prevent-
ing connection disruptions during handovers, each base station (BS) typically allocates
a fixed set of resources for prospective incoming users. However, inadequate resource
reservation may lead to inefficiencies or suboptimal user experiences. To mitigate the
challenges posed by user mobility, an effective strategy involves the implementation of
mobility prediction [174]. Successful forecasting of user mobility enables network oper-
ators to employ a proactive (or preemptive) reservation policy [175], ensuring seamless
service continuity while avoiding excessive resource allocation. The successful imple-
mentation of passive reservation relies on the effectiveness of user mobility prediction, a
pivotal factor influencing resource allocation performance in wireless networks. Recog-
nizing that humans often exhibit recurring patterns of behavior, it becomes feasible to
predict individual movements based on historical location information. While studies
have demonstrated a remarkable 93% predictability of user mobility [176], achieving
such high precision poses challenges, particularly in contexts where sufficient contex-
tual data and specific movement patterns are lacking. In the following, we describe
the associated issues and characteristics concerning the predictability of next-cell/AP
transitions [177].

In our daily lives, our movements are not entirely random but often have direction
or specific destinations. People tend to follow particular routes regularly, such as stu-
dents commuting to school or office workers following their weekday commute paths.
In these trajectories, the cells to which mobile users connect have a high probability
of being fixed. By observing users’ mobility patterns over a certain period, it becomes
possible to identify the regularities in their movements and predict the subsequent
cells they will connect to while in motion. The work conducted by [176] explores the
predictability of human behavior by measuring the entropy of numerous trajectories
of mobile phone users. In this study, it is discovered that the potential predictability
of user mobility could reach up to 93%, and this predictability lacks variability. Es-
sentially, there is strong regularity in human mobility, theoretically allowing for the
development of accurate prediction models. Vehicular mobility predictability has also
been examined in [178], revealing that about 78%-99% of the location and over 70% of
the staying time are predictable. The study highlights the strong regularity in every-
day vehicular mobility, providing a basis for the development of practical prediction
algorithms.

User movement can be seen as a combination of regular and random movements
[158]. Regular movements exhibit patterns that can be discovered through users’
long-term (weeks or months) historical trajectories. The literature suggests various
prediction approaches to uncover regularity for next cell/AP prediction, including
Markov chain [179], HMM [180], Bayesian network [160], SVM [159], and ANN [161].
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However, when a user arrives at a new location, there is insufficient historical data
to analyze its mobility pattern, resulting in irregular movement. While predicting
random movements is more challenging due to their irregular nature, determining the
next cell/AP is possible to some extent using various strategies, such as real-time
monitoring [181].

In terms of spatial granularity, next-cell/AP prediction, unlike position and tra-
jectory predictions, involves a broader location forecast. Its goal is to identify the
cells/APs to which users will be connected, rather than pinpointing accurate locations.
Consequently, predicting a cell/AP or sequence of cells/APs is generally considered
easier than predicting fine-grained positions or trajectories.

2.2.3.3 Management Framework

The management of Wi-Fi networks involves adjusting numerous parameters across
various devices, which can be challenging. Several management frameworks utilize
AI-based control planes to simplify this task.

In the paper [60], an AI-based operating system called aiOS is introduced for
802.11-based Software-Defined WLANs (SD-WLANs). This system employs ML tool-
boxes to create a global intelligence platform, enhancing network performance through
adaptive frame length selection. Tests in a real-world environment demonstrate up to
a 55% improvement in network throughput.

The study in [162] utilizes DRL to dynamically optimize the configuration of net-
work slices in Wi-Fi networks. Each slice configuration comprises various parameters
such as CCA sensitivity level, MCS, and transmit power level. Unlike traditional ap-
proaches, the chosen action does not entail absolute configuration values but rather
adjusts the current parameter values. A basic DQN agent with DDQN, experience re-
play, and fitted Q-learning techniques are enhanced to improve convergence speed and
stability. Simulations in the ns-3 simulator demonstrate that this approach achieves
optimal performance comparable to exhaustive search methods. Additionally, DDQN
enables real-time optimization without requiring detailed AP deployment information
or knowledge about coexisting networks.

The paper discussed in [163] utilizes data from a university Wi-Fi system com-
prising 8,000 APs and 40,000 active users. Through a detailed analysis, it examines
the AP load and traffic throughput. It notes an idle phenomenon where many APs
remain unused and identifies a skewed distribution of AP load, with most APs serving
few users while a few serve hundreds. To address this, a management system called
LAM (large-scale AP management) intelligently switches off unused APs based on
user association patterns. LAM employs M algorithms to predict AP load, achieving
up to 90% accuracy. This strategy saves over 70% of power energy while ensuring
92% Wi-Fi coverage, resulting in significant cost savings of $59,000 annually for the
university Wi-Fi system.

The paper [182] proposes an SDN-based Wi-Fi control system to manage APs.
A central controller handles configuration tasks like channel and transmission power
settings for the APs. Decisions are made based on learned data, using ML techniques
such as reduced error pruning trees (REPTs) to predict both Wi-Fi and non-Wi-
Fi activities. By predicting these activities, the system can deploy more effective
configurations. The framework significantly reduces channel congestion by up to 47%.
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2.2.3.4 Predicting the Health of Wi-Fi Connections

The Wi-Fi networks operating in unlicensed bands are experiencing overcrowding due
to numerous deployments managed by different users. This situation worsens issues like
hidden terminals, flow starvation, and performance anomalies. Detecting these prob-
lems in real-world scenarios is challenging because they manifest as performance degra-
dation, which can stem from various causes needing distinct solutions. ML emerges
as a suitable approach for detecting specific impairments because it can process vast
amounts of raw measurement data and learn to identify the current operational state,
employing classification methods. The study presented in [164] introduces Wi-Dia,
an automatic diagnostic tool designed to identify the causes of performance issues in
Wi-Fi networks by understanding the wireless operating environment. Wi-Dia adopts
a data-driven approach and employs M techniques to classify various Wi-Fi problems
like hidden stations and flow starvation. It utilizes network topology features and mea-
sures channel utilization without disrupting regular network functions. The classifier
of Wi-Dia is trained using both simulated and experimental data, leveraging the flexi-
bility of network simulators and the realism of wireless testbeds. Results demonstrate
that Wi-Dia achieves high accuracy in detecting Wi-Fi issues in real-world scenarios.

In a study by [165], the detection of Wi-Fi performance issues, such as contention
with other devices, low SNR, hidden terminals, or capture effect, is addressed. A cen-
tralized Wi-Fi controller gathers performance metrics from connected APs, including
normalized channel access (NCA) and frame delivery ratio (FDR). NCA represents the
ratio of channel access attempts to the maximum possible attempts calculated using
802.11 models, while FDR indicates the ratio of successful transmissions to channel
access attempts. Through data modeling and feature extraction, four different algo-
rithms—DT, RF, SVM, and kNN—are employed for classification. After parameter
optimization, the algorithms achieve a high detection accuracy of 99.2% using the kNN
algorithm.

In the study by [166], WiNetSense is introduced, which is a centralized sensing
framework. It gathers Wi-Fi link quality statistics like RSSI from network devices to
establish a global network topology and real-time network health information. ML
algorithms such as kNN and NB are then applied to analyze the collected data and
predict wireless link health. This information aids in making decisions related to
load balancing, seamless handovers, and dynamic power control. Additionally, [167]
proposes an anomaly-detection approach utilizing a self-organizing hidden Markov
model map. This model, based on a self-organizing map trained via USL, demonstrates
enhanced accuracy and sensitivity in detecting anomalies compared to other hidden
Markov model (HMM)-based methods, as verified through simulations.

Furthermore, papers [168] and [169] present a new ML-based method for assessing
the perceived QoS in video streaming and video conferencing, respectively, using only
network performance data from Wi-Fi APs. The research utilizes datasets containing
specific network performance metrics from 802.11n/ac/ax standards, paired with mean
opinion scores. Various ML algorithms such as logistic model tree (LMT), reduced
error pruning tree (REPT), Naive Bayes Tree (NBT), and MLP are trained on these
datasets, achieving high accuracy ranging from 93% to 99% in estimating QoS classes.
Among these algorithms, LMT and REPT are identified as the most suitable for video
streaming and conferencing, respectively, considering accuracy, interpretability, and
computational efficiency. Furthermore, the developed ML model can be implemented
as a lightweight script on APs for continuous QoS monitoring.
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2.2.3.5 Wi-Fi Traffic Prediction

Traffic prediction techniques play a vital role in enhancing network management op-
erations for effective short- and long-term planning. Strategic planning, incorporating
methods like traffic forecasting, congestion control, power conservation, bandwidth al-
location, and buffer management, contributes to an enhanced user QoE. For example,
leveraging predicted traffic patterns enables APs to enhance load balancing and im-
plement effective admission control. Real-time traffic prediction poses a considerable
challenge in Wi-Fi networks, given the dynamic nature of channel conditions, evolving
network topologies, and unpredictable user traffic patterns. The accuracy of traffic
estimation is influenced by various factors, including the total number of users in the
network, SNR on the link, and the communication capabilities of both users and APs
[170]. In such complex scenarios, ML models provide a solution to handle the diverse
conditions of Wi-Fi networks, offering insights that are difficult to obtain through
traditional analytical methods.

In the proposed solution of the paper [171], a SVM is utilized to predict traffic evo-
lution, focusing on forecasting one step ahead. Moreover, by recursively applying this
one-step-ahead approach, the study extends the prediction to multiple steps ahead.
The SVM model, employing a Gaussian radial basis function, is trained with 100 sam-
ples to predict the subsequent 100 samples. The application of the SVM model results
in a reduction of at least 33% in the error for predicting upcoming traffic compared to
the performance of ANN. The study of [170] assesses various ML models—MLP, SVR,
DT, and RF—to predict traffic. Training these models involves extracting multiple
features from both simulation and real data (e.g., Wireshark network trace). Ex-
tracted features include the number of connected users, signal strength, modulation
scheme, data rate, inter-arrival time, packet arrival rate, number of re-transmissions,
and various other channel parameters. The evaluation is conducted in a Wi-Fi net-
work with 10 users and a single 802.11 AP. The reported prediction accuracy reaches a
maximum of 96.2%, 94.5%, 93.3%, and 91% for MLP, DT, RF, and SVR, respectively.
Additionally, the study explores the real-time complexity of these models by reporting
the time elapsed for each. MLP is identified as the most time-consuming, followed
by RF, SVR, and DT. Moreover, the study [172] employs both SL and USL models
to predict network congestion levels. Using attributes captured from data, such as
the number of clients, throughput, frame retry rate, and frame error rate, SVR and
polynomial regressor models predict corresponding values for a specific location, day,
and time. These predicted values are then input into an expectation maximization
algorithm to predict congestion levels, forming three distinct clusters. Each cluster
represents high, medium, and low congestion levels based on the numeric values of the
clustered samples. The achieved accuracy is 24%, 50%, and 26% for low, medium, and
high levels of network area congestion, respectively.

2.2.4 Other Types of Wi-Fi Scenarios

In addition to Wi-Fi categories (explained in detail previously), there are also types of
(i) co-existance scenarios of Wi-Fi with other technologies, and (ii) multi-hop Wi-Fi
scenarios, that ML has been used to improve network performance.

• ML-optimized coexistence of Wi-Fi with other technologies: Research into the
coexistence of Wi-Fi and cellular technologies has become increasingly popular
and appealing. While these technologies are highly advanced, with their latest
generations boasting peak data rates in the order of Gbit/s, coexistence scenarios
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in unlicensed bands (e.g., with LTE-LAA) still rely on relatively basic coexistence
schemes based on energy sensing. This reliance results in frequent collisions and
significant throughput degradation, sometimes reaching up to 90% [183, 184].
Coexistence schemes face challenges due to the heterogeneity of the underly-
ing technologies, including different MAC and PHY implementations, separate
management by operators, and a lack of native support for inter-technology
communication in spectrum sharing. Consequently, achieving fair sharing of
unlicensed radio resources remains an open challenge [185]. ML is applied to op-
timize these coexistence scenarios, particularly in areas such as channel sharing,
network monitoring, and cross-technology signal classification.

• Multi-hop Wi-Fi deployment: The primary design objective of IEEE 802.11
networks is to function as a single-hop access network (as discussed in detail
in previous subsections). However, it can also be employed in various multi-
hop scenarios, such as ad hoc or vehicular networks, either using the mainline
standards (802.11a/b/g/n/ac/ax) or dedicated amendments (such as 802.11ah
for IoT and 802.11p for vehicular networks). ML techniques is also used in
multi-hop Wi-Fi deployments, including ad hoc networks, mesh networks, sensor
networks, vehicular networks, and relay networks.

2.3 ML Techniques

ML techniques encompass three primary categories: Supervised Learning (SL), Un-
supervised Learning (USL), and Reinforcement Learning (RL). SL involves training
models on labeled datasets, where each input is matched with a corresponding output
label, facilitating the model’s ability to learn patterns. Within this realm, classifica-
tion tasks entail assigning input data points to predefined categories, while regression
tasks focus on predicting continuous numerical values. USL, on the other hand, oper-
ates without labeled data, seeking to uncover inherent structures and patterns within
the dataset independently. Clustering, a prevalent task in USL, groups similar data
points based on shared characteristics. Reinforcement learning diverges from the oth-
ers by enabling the model to learn through iterative interactions with an environment,
receiving feedback in the form of rewards or penalties. The objective in reinforcement
learning is to develop strategies that maximize cumulative rewards over time.

Databases contain valuable hidden information that can be leveraged for informed
decision-making. Within data analysis, classification and prediction emerge as two
approaches aimed at extracting models to describe significant data classes or predict
future data trends. Through such analysis, we gain a deeper understanding of the
data. While classification predicts categorical (discrete, unordered) labels, prediction
models continuous-valued functions. Various methods for classification and prediction,
proposed by researchers in ML, pattern recognition, and statistics, have been designed.
Many existing algorithms assume a small data size and reside in memory. However,
recent advancements in data mining research focus on scalable techniques for classifi-
cation and prediction capable of handling large datasets residing on disk [186]. Table
2.5 provides an summary of various ML techniques employed in this thesis, along with
their respective advantages, disadvantages, and the tasks they are best suited for.

A more comprehensive description of the ML algorithms used for classification and
prediction in this thesis is presented in the following:

• Logistic Regression (LR): is a versatile statistical method primarily used for
binary- and multi-class classification problems. Despite its name, it is more com-
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Table 2.5. Summary of comparison among different ML techniques used in the thesis.

Algorithm Advantages Disadvantages Suitable Tasks

LR Simple, interpretable Assumes linear decision boundary Classification

SVM Effective in high-dimensional spaces Computationally intensive for large datasets Classification, Regression

kNN Intuitive, no explicit training phase Sensitive to choice of k Classification, Regression

DT Interpretable, captures non-linear relationships Prone to overfitting Classification, Regression

RF Robust, handles high-dimensional data well Requires more computational resources Classification, Regression

NB Simple, efficient Assumes independence among features Classification

NN
Captures complex patterns, Requires more data for training,

Classification, Regression
adaptive black-box nature

ARIMA Captures temporal dependencies Requires stationary data Time Series Prediction

SRNN Captures temporal dependencies Prone to vanishing gradient problem Time Series Prediction

LSTM Captures long-term dependencies More computational resources Time Series Prediction

GRU Efficient architecture shorter memory compared to LSTM Time Series Prediction

CNN Captures complex features Not originally designed for time-series data Time Series Prediction

CNN-RNN Integrates spatial and temporal features Complexity Time Series Prediction

Transformer Captures intricate dynamics Complexity Time Series Prediction

monly employed for classification rather than regression tasks. The fundamental
idea behind LR is to model the relationship between a binary dependent vari-
able (target) and one or more independent variables (features) by estimating
probabilities using a logistic or Sigmoid function. In LR, a linear combination
of input features, weighted by coefficients, is computed. This linear combina-
tion is transformed using the Sigmoid function, producing probabilities that an
instance belongs to the positive class. A decision threshold is then applied to
classify instances based on these probabilities. Training involves adjusting the
coefficients to minimize the difference between predicted probabilities and ac-
tual class labels, typically using Maximum Likelihood Estimation. LR is simple,
interpretable, and works well when the decision boundary is linear [186–188].

• Support Vector Machine (SVM): stands as a versatile and potent M al-
gorithm adept at handling classification and regression tasks. Its fundamental
principle involves determining an optimal hyperplane that maximally separates
data points belonging to different classes in a feature space. The emphasis lies
in creating a margin, the space between the hyperplane and the nearest data
points of each class, with these critical data points termed as Support Vectors.
For classification, SVM initially assumes a linear separation, striving to find the
hyperplane that maximizes the margin while minimizing classification errors.
The optimization process involves formulating a cost function, penalizing mis-
classified points. SVM extends its utility to non-linearly separable data through
the kernel trick, wherein kernels transform input features into higher-dimensional
spaces, enabling the discovery of hyperplanes in these transformed dimensions.
In the realm of prediction problems, SVM adapts seamlessly for regression tasks
by modifying its formulation. Instead of classifying into discrete categories, SVM
regression predicts continuous outputs. The concept of epsilon-support vectors
is introduced to allow for a certain degree of error or deviation from predicted
values. It is effective in high-dimensional spaces and can handle non-linear data
using kernel functions [186–189].

• k-Nearest Neighbors (kNN): stands as a versatile M algorithm used for both
classification and regression tasks. Its methodology revolves around the concept
of proximity in the feature space. For classification, when tasked with catego-
rizing a data point, k-NN calculates the distances to all other data points in the
dataset. Subsequently, it selects the k-nearest neighbors based on the smallest
distances and employs a majority voting mechanism to assign a class label to
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the target data point. In regression tasks, k-NN follows a similar procedure,
computing distances and selecting k-nearest neighbors. However, instead of ma-
jority voting, it predicts the target value for the data point as the average or
weighted average of the target values of its k-nearest neighbors. Notably, k-
NN does not involve an explicit training phase; rather, it memorizes the entire
dataset, contributing to its simplicity and ease of implementation. The choice
of the crucial parameter, k (number of neighbors), plays a pivotal role in the
performance of k-NN. A smaller k results in a more flexible model, potentially
sensitive to noise, while a larger k provides a smoother decision boundary, albeit
with a risk of overlooking local patterns. Additionally, the distance metric used,
typically Euclidean distance, can be adapted based on the characteristics of the
data.It is intuitive and works well when data is locally clustered [186–189].

• Decision Tree (DT): is a ML algorithm utilized for tasks involving both clas-
sification and regression. This algorithm adopts a tree-like structure, wherein
internal nodes represent features or attributes, branches represent decision rules,
and leaf nodes signify the final outcomes. Understanding how DTs function in
both classification and prediction problems involves several key steps. For clas-
sification tasks, the process starts with the entire dataset, and the algorithm
selects the most informative feature to split the data based on criteria such as
Gini impurity or information gain. This splitting process continues recursively,
creating subsets until reaching stopping criteria, such as a maximum tree depth
or a minimum number of samples in a leaf node. Each leaf node corresponds to
a class or label, and the path from the root to a leaf node represents the decision
rules for classifying a data point. In regression tasks, DTs operate similarly but
focus on predicting numerical values. The algorithm selects features to split the
data based on criteria like mean squared error. The recursive splitting process
continues until the stopping criteria are met, and the leaf nodes now contain
predicted numerical values. To make predictions for a new data point, one tra-
verses the tree from the root to a leaf node following the decision rules, and the
predicted value is associated with that leaf. DT is interpretable and can capture
non-linear relationships in the data. However, it is prone to overfitting [186–189].

• Random Forest (RF): is based on building multiple DTs, generated during
the training phase, and merge them together in order to obtain a more accurate
and stable prediction or classification [27, 186]. Different from the single DT al-
gorithm, where each node of the tree is split by searching for the most important
feature, in RF, additional random components are included (i.e. for each node of
each tree the algorithm searches for the best feature among a random subset of
features). Once all the trees are built, the result of the prediction or classification
corresponds to the most occurred prediction from all the trees of the forest. RF
is robust, handles high-dimensional data well, and reduces overfitting [186–189].

• Naive Bayes (NB): is a probabilistic ML algorithm renowned for its efficacy
in classification tasks, particularly in scenarios involving text classification and
spam filtering. Its foundation lies in Bayes’ theorem, a mathematical formula
describing the probability of an event based on prior knowledge of related con-
ditions. The “naive” aspect of Naive Bayes stems from the assumption of con-
ditional independence among features given the class label. This simplifying
assumption, though not always strictly met in real-world scenarios, facilitates
computational efficiency and ease of implementation. In the classification pro-
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cess, Naive Bayes undergoes training where it calculates the prior probabilities
of each class and the conditional probabilities of features given the class. During
prediction, the algorithm computes the posterior probability of each class for a
new instance, using Bayes’ theorem. The class with the highest posterior proba-
bility is then assigned as the predicted class for the given instance. NB is simple
and efficient [186–189].

• Neural Networks (NN): in this case, the prediction is done by means of a
feed-forward NN that consists on an input layer, one or more hidden layers and
an output layer [186]. Each layer is made up of processing units called neurons.
The inputs are fed simultaneously into the units of the input layer. Then, these
inputs are weighted and are fed simultaneously to the first hidden layer. The
outputs of the hidden layer units are input to the next hidden layer, and so on.
The training of this network involves a SL technique known as back-propagation,
where errors in predictions are iteratively minimized by adjusting the weights
during the training process, ensuring the NN refines its ability to classify and
make accurate predictions over time [190].

• ARIMA Algorithm: AutoRegressive Integrated Moving Average (ARIMA)
algorithm is a popular time series prediction method [191]. It works by capturing
and modeling the patterns and trends within a time series dataset. The “AR”
stands for AutoRegressive, indicating that the model considers the relationship
between a data point and its previous values, helping to account for temporal
dependencies. The “I” stands for Integrated, which implies differencing the data
to make it stationary, enabling more accurate modeling. The “MA” stands for
Moving Average, suggesting the consideration of past forecast errors to improve
predictions. The order of an ARIMA model is denoted as (p, d, q), where
“p”, ”d”, “q”, are the autoregressive, differencing and moving average order,
respectively. In our study, in order to apply ARIMA to measurements of the
i-th target AP, a two-step process is followed. Initially, the appropriate model
order is determined using the auto-arima function. Once the optimal order
is identified, we utilize ARIMA with that specific order in conjunction with
a “Recursive Sampling” technique [192] (to increase prediction performance)
to yield our prediction results. Recursive Sampling in the context of ARIMA
refers to a technique where the prediction model is applied sequentially, with
each new prediction used to update the model for next prediction. It involves
iterating through the time series data, making one-step-ahead forecasts, and
then incorporating each forecasted value into the dataset for the subsequent
prediction. This iterative process continues until the desired forecast horizon is
reached.

• RNN Algorithms: Recurrent Neural Networks (RNN) are a family of Neural
Networks that have been successfully used for time-series prediction since they
recurrently make use of data that was previously fed into the neural network re-
sulting in a higher prediction accuracy. One of the first considered approach was
SimpleRNN (SRNN), that not only considers the current input, but it also takes
into account the information from previous time steps [193]. However, SRNN
suffers from the vanishing gradient problem, because it can only remember the
most recent information. Therefore, in order to make use of longer historical
measurements, Long Short-Term Memory (LSTM) was proposed. LSTMs pro-
cess sequential input data element by element. The network maintains memory
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cells to store and manage information over time, and three gates—input gate,
forget gate, and output gate—regulate the flow of information into and out of
these cells. This gating mechanism allows LSTMs to selectively remember or
forget information, making them adept at learning temporal patterns and de-
pendencies. In fact, LSTM cell is able to control the data flow by forgetting
unnecessary information and keeping the important one. The output layer of
the LSTM produces a continuous value representing the prediction for the next
time step in the sequence [194, 195]. However, more computational power and
time is required to process the data due to the algorithm complexity. Gated Re-
current Unit (GRU) is another variant of RNNs that, like LSTM, addresses the
challenge of modeling sequential dependencies. GRU simplifies the architecture
compared to LSTM by combining the memory cell and hidden state into a single
state vector. It introduces two gates, an update gate and a reset gate, to control
the flow of information. The update gate governs how much of the previous
state information should be carried forward, while the reset gate determines how
much of the past information should be forgotten. GRU’s design results in a
more streamlined architecture, reducing computational complexity and making
it more computationally efficient compared to LSTM. While both LSTM and
GRU share the fundamental goal of capturing long-term dependencies, GRU’s
architecture offers a trade-off between efficiency and expressiveness, making it a
suitable alternative for tasks involving sequential data and prediction. However,
GRU may not have such a long memory as LSTM [196].

• CNN Algorithm: Convolutional Neural Network (CNN) is also a type of NN
which is not originally designed for modeling time-series data. However, several
approaches [194][197] have adapted CNN algorithms for time series data process-
ing leading to good performance results. A possible way to adapt the input data
for CNN algorithm is to divide the sequence into multiple input/output patterns,
where a certain number of time steps are used as input and a time step is used as
output to predict the next step. CNN will make use of three kinds of layers (1.
filter layer, 2. pooling layer, 3. fully connected layer), combined together with
desired sequence to generate the output. It captures complex features by con-
volving input with some filter, pooling layer that compacts the learned patterns
for less computational resource, and fully connected layers which are designed
to extract non-linear features [194, 197].

• CNN-RNN hybrid algorithm: this architecture integrates CNN and RNN to
take advantage of the good capabilities of CNN to learn spatial domain features
and RNN to capture temporal dependencies [177]. Previous successful applica-
tions of this architecture include activity recognition and video description like
in [198].

• Transformer algorithm: A model architecture forsaking recurrence, relies
solely on an attention mechanism to establish global dependencies between input
and output [199]. The Transformer architecture consists on an encoder and a
decoder stack [200]. The encoder is constructed using a stack of identical lay-
ers, each containing two sub-layers: a multi-head self-attention mechanism, and
a position-wise fully connected feed-forward network. Residual connections are
integrated around each of these sub-layers, followed by layer normalization. All
sub-layers in the model, and the embedding layers, generate encoder outputs to
support these residual connections. Furthermore, the decoder is composed of a
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stack of identical layers, similar to the encoder. Each encoder layer includes the
two sub-layers present in the encoder, with the addition of a third sub-layer for
multi-head attention over the output of the encoder stack. Residual connections
and layer normalization are applied around each sub-layer. Moreover, positions
are prevented from attending to subsequent positions through appropriate mask-
ing in the decoder self-attention sub-layer. The concept of self-attention, entails
an attention mechanism that establishes relationships among different positions
within a single sequence to generate a comprehensive representation of the se-
quence. The attention function involves mapping a query and a set of key-value
pairs to produce an output, wherein all entries involved query, keys, values and
output, are represented as vectors. The output is then computed as a weighted
sum of the values, with the weight assigned to each value determined by a com-
patibility function that relates the query to its corresponding key [200]. In
the context of time series data, Transformer diverges from traditional sequence-
aligned models by eschewing ordered sequential processing. Instead, it operates
on an entire sequence of data and leverages self-attention mechanisms to dis-
cern dependencies within the sequence. As a result, Transformer-based models
exhibit the capacity to capture intricate dynamics inherent in time series data,
thereby surpassing the capabilities of conventional sequence models in handling
complex temporal Patterns [199].

2.4 General Framework of Thesis Goals

In this section, we present a framework for the AI/ML control loop utilized in our
study. This framework is depicted in Figure 2.3, utilizing the infrastructure-based
Wi-Fi network shown in Figure 2.2.

Fig. 2.3. AI/ML control loop of three objectives.

As depicted in Fig. 2.3, our framework consists of various entities responsible for
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managing the performance of this Wi-Fi network. These entities encompass manage-
ment tools that control Wi-Fi operations. Additionally, we implement processes or
optimization loops wherein network measurements such as association time, session
duration, AP names, connected users, signal strength, traffic load and packet traces
are collected and preprocessed. Subsequently, features are extracted from some com-
putational operations. Then, the training model is made for predicting the next AP to
which users will connect (Chapter 3), prediction of the amount of traffic data transmis-
sion in the user connections (Chapter 4), or classifying the types of traffic for the AP
traffic prioritization (Chapter 5). The trained model is used for prediction (Chapter
3 and 4) and classification (Chapter 5) of future value of new measurements collected
from the deployed network after data preparation. The particularization of this Figure
is also presented in each chapter. These predictions and traffic classification serve as
valuable inputs for making informed decisions or taking actions within the network.

In particular, if we can detect or predict the next connectivity and predict the
associated traffic load for each connection, we can obtain valuable insights for im-
plementing network reconfiguration actions. These actions encompass tasks such as
channel allocation, AP selection, and handovers for predicting the next user connec-
tivity. Additionally, they involve congestion control, load balancing, and resource
allocation for traffic prediction. For instance, adjusting the transmitted power of the
APs can aid in network reconfiguration efforts. In the context of traffic classification,
once implemented in a real system, the objective is to prioritize packets to enhance
QoS.
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UE Connectivity Prediction

3.1 Introduction

Prediction of UE connectivity within Wi-Fi communications networks is crucial for
optimizing resource allocation, enhancing QoS, and improving network management
strategies. Forecasting the next locations of users within Wi-Fi networks empowers
operators to allocate resources effectively and enhance user experiences. This predic-
tion capability is particularly valuable in scenarios where users move between different
APs within a network, influencing network load distribution and QoS provision. Wi-Fi
communication systems often exhibit distinct patterns in user mobility, characterized
by periodic movements and transitions between APs. However, conventional ML al-
gorithms face challenges in effectively capturing these mobility patterns due to the
complex and dynamic nature of Wi-Fi network environments. Sparse and incomplete
data resulting from irregular user reporting further complicates prediction tasks, lim-
iting the ability of ML models to accurately predict user movements between APs.

Drawing from the insights gained from Wi-Fi communication networks, our work
is guided by the understanding that predicting the next user location (AP) relies
not only on current sequential activities but also on periodic patterns evident in his-
torical data. Recognizing this, we propose various approaches to assess the impact
of different periodic factors on user mobility prediction. Additionally, incorporating
time representations into the embedding process empowers ML models to capture the
time-dependent nature inherent in Wi-Fi network dynamics. By integrating both se-
quential and periodic information, our approach aims to enhance the accuracy of next
user location prediction within Wi-Fi networks. Within this context, the novelty of
this work is the proposal of a methodology that predicts the future user connections
to the different APs of a Wi-Fi network according to historical user records. This
prediction leverages information from the user’s previous AP connections to capture
periodical patterns in user activity across different time intervals (e.g., hourly, daily,
and weekly behaviors). By comprehensively considering these temporal factors, our
model achieves better prediction performance, capturing the semantic motivation be-
hind user mobility patterns. An extensive evaluation of this methodology has been
done with a large data set of measurements of a real Wi-Fi network.

The remaining of the chapter is organized as follows. Section 3.2 provides an
overview of the existing literature. Section 3.3 presents the proposed AP prediction
methodology. The results are presented in Section 3.5, while Section 3.6 summarizes
the conclusions.
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3.2 Related Work

Multiple applicability examples of data monitoring and analytics in the context of
Wi-Fi or cellular networks can be found in the literature. As an example related to
mobile cellular networks and concerning the characterization of user habits, the collec-
tion of the Base Station and the mobile terminal communication activity (messages,
calls, etc.) has been used for urban and transportation planning purposes to identify
daily motifs, given that human daily mobility can be highly structural and organized
by a few activities essential to life [201]. Similarly, [202] proposed a methodology to
partition a population of users tracked by their mobile phones into four predefined
user profiles: residents, commuters, in transit and visitors. Applications envisaged
are traffic management, to better understand how traffic is affected by the residents
mobility compared to the commuters, or studying how the city is receiving people
from outside and how their movements affect the city. The paper [203] proposed
an agglomerative clustering to identify user’s daily motifs according to the cells in
which the user is camping during the day. Real measurements obtained from a 3G/4G
network were used. The obtained knowledge related to the network status, the per-
formance of the services, user habits, user requirements, etc. can also be useful for
supporting different decision-making processes over the network (e.g. adjusting the
usage of the network resources) which will lead to more efficient network management
tasks related to network reconfiguration and optimization. As an example, the use of
prediction methodologies for identifying the future Small Cell/Access Point (SC/AP)
which the user will be connected to, together with an estimation of the future user
traffic volume and perceived user performance may provide a more accurate future
user characterization. This can be useful for carrying out a more proactive network
reconfiguration approach. In the context of Wi-Fi networks, the prediction of APs to
which a client will connect in the future can be useful for a more efficient Pairwise
Master Key (PMK) caching or Opportunistic Key Caching (OKC) techniques which
can reduce the time for re-authentication when roaming to a new AP [204]. The ex-
tracted knowledge related to user location and mobility, user habits and interests, etc.
can also be useful for companies for commercial purposes. As an example, a reliable
prediction of future user location and length of stay connected to the different SC/AP
enables the use of Location Based Advertising mechanisms. This presents the possi-
bility for advertisers to personalize their messages to people based on their location
and interests [205].

Furthermore, in the context of wireless communication, two common problems
related to device mobility are handover prediction and AP selection [34, 206]. To
address these two issues, literature employs mathematical expressions (e.g., Markov
Model [207, 208] and Hidden Markov Model [209–211]) and ML techniques [34, 159,
212–214].

In the context of theoretical frameworks for AP selection, the paper [207] intro-
duces an innovative mobility prediction algorithm that leverages both long-term and
short-term user trajectories. The algorithm captures the regularity in user movements
by training a Markov Renewal Process using long-term trajectory data. Short-term
trajectory data within the current cell is then incorporated to account for potential
randomness in user behavior. Each neighboring cell is assigned two probabilities for
being the next crossing cell—one from the Markov Renewal Process and another based
on the direction of movements across the current cell. The assigned probabilities, de-
rived from the two trajectory datasets, are combined using Dempster-Shafer theory
to make the most informed decision about the future crossing cell. The study [208]
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utilized a real dataset containing information about APs, users, and the mobility paths
derived from it. The network was modeled with 4 APs in the research as a second-
order Markov chain, employing information about the current and preceding locations
of users to predict their potential next location. This prediction process involved com-
puting transition probabilities derived from the users’ historical movement patterns.

Concerning the AP selection in Wi-Fi networks, [209] proposed a mobility predic-
tion methodology based on a Hidden Markov Model that is used to forecast the next
AP that users will connect to, based on current and historical user location information.
In addition, in order to solve handover problem by mathematical solution, paper [210]
introduces an enhanced handoff mobility prediction scheme utilizing Hidden Markov
Models (HMM). The HMM acts as a predictor by analyzing the geographic locations
of mobile users to identify the most probable Femtocell AP for connection. The paper
regarded femtocell AP as hidden states and users’ geographical location as observable
states. Specifically, it selects the Femtocell AP in the user’s direction with the best
signal quality. The model’s performance was evaluated against Handoff-to-Nearest
neighbor Femtocell and Handoff-to-Randomly selected Neighbor Femtocell approaches
across varying network densities. Results indicated that the proposed scheme reduces
the number of handoffs and ping-pong handoffs compared to the other algorithms. Fur-
thermore, users utilizing this approach experience extended connections to the same
Femtocell AP, leading to increased dwell time and improved communication quality.
The paper [211] employs a Dual Hidden Markov Model (HMM) for effective prediction
of Wi-Fi APs. This model incorporates two hidden states and two observable states.
The initial HMM utilizes the user’s present location as input to predict future loca-
tions. Subsequently, these predicted locations become the input for the second HMM,
which then determines the optimal Wi-Fi AP for the next connection. Specifically,
the first HMM uses the mobile user’s future geographical coordinates as hidden states
and their current geographical coordinates as observable states to predict the user’s
location. In contrast, the second HMM utilizes optimal Wi-Fi AP and geographic
location as hidden and observable states, respectively, to predict the next Wi-Fi AP
for the user.

In recent years, the authors made use of ML models to solve these issues (i.e.
handover and AP selection) within wireless communication. ML models can adapt to
complex and dynamic patterns in data. They can learn and generalize from diverse
datasets, making them suitable for various scenarios. Additionally, ML models can
effectively handle high-dimensional data and consider a wide range of input features
simultaneously, enhancing prediction accuracy [34, 145]. In this context, from the
point of view of traffic offloading from cellular to Wi-Fi systems, length of stay predic-
tion at an AP can be useful for user bandwidth allocation e.g. giving higher priority
to soon-to-depart Wi-Fi users so that the larger amount of traffic is sent through the
Wi-Fi before performing the handover to the cellular system [214]. The paper [34]
introduced data-driven ML approaches to effectively tackle these two issues (i.e. han-
dover prediction and AP selection) in wireless LAN networks. The proposed solution
involved a centralized network architecture utilizing a SDN controller that incorpo-
rated ML algorithms for handover prediction and AP selection. RF was employed
for handover prediction, while MLP and SVR were utilized for AP selection. Firstly,
the scheme anticipated potential handover events and determines their necessity, re-
ducing the likelihood of unnecessary handovers, especially in ultra-dense deployments
with Overlapping Basic Service Set (OBSS). Secondly, it addressed AP selection by
predicting post-selection network throughput to identify the optimal AP.

To tackle AP selection issue by ML techniques, the paper [159] investigated a
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user location prediction method for 5G Ultra Dense Networks (UDN) utilizing SVM.
Addressing the specific characteristics of density and mobility in UDN, the approach
employs SVM to analyze the vector index of the mobile terminal and utilizes a re-
gression algorithm for predicting the terminal’s location in the next 5 seconds. The
proposed scheme achieved real-time and highly accurate predictions of the mobile
user’s position in UDN. Additionally, the utilization of SVM enhanced the prediction
scheme’s performance while concurrently decreasing hardware complexity. The study
[212] focused on a standard rectangular system network where users can establish con-
nections with one of the three closest Base Stations (BSs). The distance between a
user and a BS was determined through RSSI and a path loss model. For either pro-
cess of training and prediction, Recurrent Neural Networks (RNNs) were employed,
with the sequences of RSSI values as the input for the NN. This paper [213] evalu-
ated AI-assisted mobility predictors. Specifically, mobility prediction was modeled as
a multi-class classification challenge in order to predict the future association of the
mobile users with base stations. This is performed using Extreme Gradient Boosting
Trees (XGBoost) and DNN.

Our work primarily offers a comprehensive approach to user mobility prediction
within Wi-Fi networks by considering both sequential and periodic information, ex-
tending beyond the scope of existing literature primarily focused on cellular network-
related issues. Existing works predominantly focus on issues within cellular networks,
such as characterizing user habits based on BS and mobile terminal communication
activity [201], partitioning user populations into predefined profiles [202], and identi-
fying user daily motifs based on cell camping patterns [203]. Furthermore, our work
extends beyond traditional handover prediction and AP selection methodologies by
integrating time representations into the embedding process, allowing ML models to
capture the time-dependent nature of Wi-Fi network dynamics. This differs from exist-
ing literature, which primarily utilizes mathematical expressions (i.e. MM, or HMM)
or ML techniques for handover prediction and AP selection in wireless communication
networks.

3.3 Methodology Description

We particularize the framework of AI/ML control loop depicted in Fig. 2.3 to focus
only on the objective of predicting the next user connectivity. The proposed predic-
tion methodology designed for this specific objective is illustrated in Fig. 3.1. The
methodology assumes a Wi-Fi Network with monitoring capabilities for the collection
of measurements reported by the users when connected to the different APs. As we
described in Section 2.4, network measurements collected at the APs are sent to the
WLC and finally stored in a centralized database that contains the historical measure-
ments of the different APs. In the Collection of Network Measurements for training
process of the Fig. 3.1, a list of metrics for each u-th user (u = 1,. . . ,U) is collected
when connected to each AP (e.g. the instants of time when the user begins and
ends a connection to each AP, the average SNR-Signal to Noise Ratio-, the average
RSSI-Received Signal Strength Indicator-, the amount of bytes transmitted/received
during the connection of the user to each AP, etc.). All this information is stored
in a database. From this information, the instants when the user starts and ends
a connection to each AP, along with the AP names, are used to generate the final
dataset. Then, for each user, a pre-processing of the collected data is done so that
the measurements collected during each d-th day (with d = 1,. . . ,D) are split in M
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Fig. 3.1. General framework of proposed prediction methodology.

time periods with equal duration T . In particular, the pre-processing step generates
a matrix A for each user, so that each term ad,m (with m = 1,. . . ,M and d = 1,. . . ,D)
represents the AP identifier to which this user was connected during the m-th time
period of the d-th day. In case that the user connects to more than one AP at the
same m-th time period, it is assumed that the term ad,m will correspond to the AP
with the highest connection duration.

For the prediction of the AP to which the user will be connected in a specific m∗-th
time period of a specific d∗-th day in the future (ad∗,m∗), the proposed methodology
makes use of some historical information of the AP to which the user was connected
in the past and a prediction function f(·) that is obtained by means of a supervised
learning. For that purpose, the Selection of historical data process selects some specific
terms in matrix A. Different approaches are presented below:

• Prediction Based on Time-period Patterns (PBTP): in this case, the pre-
diction of ad∗,m∗ is based on the APs to which the user was connected in the lastN
previous time periods (i.e. ad∗,m∗−N ,...,ad∗,m∗−n,...,ad∗,m∗−1), as illustrated in Fig.
3.2a. In order to obtain the prediction function f(·), a vector B =(b1,...,bf ,...,
bF ) is built from all the F = D·M previous time periods in the last D days, i.e.
B =(a1,1,...,a1,m,...,a1,M ,...,ad,1,...,ad,m,...,ad,M ,...,aD,1,...,aD,m,...,aD,M). Then, B
is split into I different training tuples Bi, each one composed of the i-th element
and its N previous elements. This split is done by applying a sliding window of
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length N over the set of F measurements, resulting in a training set of F − N
training tuples of the form Bi =(bi−N ,...,bi−n,...,bi) with i = 1,...,F − N . The
f(·) function is learnt by a supervised learning that consists on observing the
relationship between bi and its N previous elements (bi−N ,...,bi−1) for all the
I = F −N tuples. The rationale of this approach is to identify user frequent AP
connectivity patterns in N consecutive time periods.

• Prediction Based on Daily Patterns (PBDP): in this case, the prediction
of ad∗,m∗ is done according to the APs to which the user was connected in the
previous N days at the same time period of the day (i.e. ad∗−N,m∗ , ..., ad∗−n,m∗ ,
..., ad∗−1,m∗), as depicted in Fig. 3.2b. In order to obtain the prediction function
f(·), a set of M vectors Bm =(b1,m, ..., bf,m, ..., bF,m) is built. Each Bm consists
of the AP to which the user connected in the last F = D days at the m-th
time period of the day, i.e. Bm =(a1,m, ..., aD−d,m,..., aD−1,m, aD,m). Then,
each Bm is split into I different training tuples Bi

m, each one composed of the
i-th element and its N previous elements, i.e. Bi

m =(bi−N,m,...,bi−n,m,...,bi,m)
with i = 1,. . . ,D − N . Then, a total of (D − N)·M tuples with size N + 1 are
generated. The rationale of this is to identify user periodical AP connectivity
patterns in N consecutive days at the same time of the day.

• Prediction Based on Weekly Patterns (PBWP): In this case, the predic-
tion of ad∗,m∗ is done according to the APs to which the user was connected in
the N previous weeks at the same day of the week and time period of the day (i.e.
ad∗−7N,m∗ ,. . . ,ad∗−7n,m∗ ,. . . ,ad∗−7,m∗), as demonstrated in Fig. 3.2c. Again, a set
of M vectors Bm =(b1,m,. . . ,bf,m,. . . ,bF,m) is built, each one consisting on the AP
to which the user connected in the last F = W weeks at each m-th time period of
a specific day of the week, i.e. Bm =(ad−7W,m,. . . , ad−7w,m,...,ad−7,m,ad,m). Then,
each Bm is split into different I training tuples Bi

m, each one composed of the
i-th element and its N previous elements, i.e. Bi

m =(bi−N,m,. . . ,bi−n,m,. . . ,bi,m)
with i = 1,. . . ,W − N . In this case, the total number of tuples is (W − N)·M .
The rationale of this is to identify weekly AP connectivity patterns at the same
day of the week and time of the day.

(a) (b) (c)

Fig. 3.2. The process of Prediction of ad∗,m∗ based on the last N previous time periods
for Time-period Patterns (PBTP) (a), Daily Patterns (PBDP) (b), and Weekly Pat-
terns (PBWP) (c).
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• Joint Based Prediction (JBP): It consists on the same methodology but do-
ing a combination of the three approaches described previously. In this case, the
prediction of ad∗,m∗ is done according to the APs to which the user connected
in the lastN time periods (i.e. ad∗,m∗−N ,. . . ,ad∗,m∗−n,. . . ,ad∗,m∗−1), the APs at the
samem-th time period for the lastN days (i.e. ad∗−N,m∗ ,. . . ,ad∗−n,m∗ ,. . . ,ad∗−1,m∗)
and the APs at the same day of the week and time period of the day for the last
N weeks (i.e. ad∗−7N,m∗ ,. . . ,ad∗−7n,m∗ ,. . . ,ad∗−7,m∗). The procedure is illustrated
in Fig. 3.3 to enhance comprehension of JBP. The prediction function f(·) is
learnt in a similar way as before by observing the relationship of specific ad,m
and the observations in the last N time periods, the last N days at the same
time period and the last N weeks at the same day of the week and time period
of the day. A total number of (W −N)·M tuples with size 3N +1 are obtained.

Fig. 3.3. The process of Joint Based Prediction (JBP) approach.

It is worth noting that all these terms ad,m in matrix A correspond to categorical
values (e.g. an AP identifier). For both the training and prediction, these terms are
converted into numerical attributes by means of the so-called dummy coding process
[215]. A dummy variable is a binary variable coded as 0 or 1 to represent the ab-
sence or presence of some categorical attribute. Therefore, each of the N elements
used for prediction aλ (λ = 1,. . . ,N) are converted into a set of G dummy variables
cλ =(cλ,1,. . . ,cλ,g,. . . ,cλ,G), where G is the number of different APs in the set of N
measurements, so that the term cλ,g = 1 if aλ corresponds to the g-th AP and cλ,g = 0
otherwise. Then, the resulting number of dummy variables D = N ·G are used for the
prediction of ad∗,m∗ according to (3.1). Before the training, the same dummy coding
is also done for all the training tuples of the training set.

ad∗,m∗ = f(c1,1, . . . , c1,G, . . . , cλ,1, . . . , cλ,G . . . , cN,1, . . . , cN,G) (3.1)
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To illustrate the process of dummy coding, let’s consider a scenario where we have
three APs: AP1, AP2, and AP3. If aλ corresponds to AP1, then cλ,1 = 1, the dummy
variables would be (1, 0, 0), denoting the presence of AP1 and absence of AP2 and
AP3. Similarly, the dummy variables would be (0, 1, 0) and (0, 0, 1) for AP2 and
AP3, respectively.

In the online prediction for the prediction of ad∗,m∗ , (see Fig. 3.1), the N mea-
surements of the user are used as input. Then, this input data is prepared, including
preparation of the input data and also dummy coding process, in a manner similar
to that in the training step. Finally, the prediction step makes use of the input pre-
processed data and the learnt f(.) function in order to make the prediction for this
specific user.

3.4 Scenario

The considered scenario involves a large Wi-Fi network with 429 APs deployed on a
university campus of the Universitat Politècnica de Catalunya, located in Barcelona,
comprising 33 buildings, each with four floors. The reported user measurements are
collected by the Cisco Prime Infrastructure tool [216]. The users’ measurements were
collected during D = 84 consecutive days (i.e. W = 12 weeks). The prediction
methodology was run for U = 967 users. According to the methodology described in
Section 3.3, the matrix A is built for each user by determining the AP to which the
user is connected in each of the M = 96 periods of T = 15 minutes for each of the
D = 84 days. According to this data, the proposed prediction methodology is run
in order to predict the AP which each user will be connected to in all the M = 96
time periods of T = 15 minutes in the subsequent week. The obtained predictions
are compared to the real APs which the user has been connected to. The prediction
accuracy is calculated as the percentage of time periods that have been predicted
correctly in the range between 6:00h and 22:00h for all the weekdays (from Monday to
Friday) for all the users that connected to the Wi-Fi network at least one time every
day. Two ML techniques, namely NN and RF, are chosen for this study. NN is selected
for its ability in recognizing complex patterns and managing non-linear relationships
within the data [190]. On the other hand, RF is chosen for its ensemble learning
approach, which combines multiple decision trees to improve accuracy, reduce the
risk of overfitting, and effectively address non-linear relationships [27, 186]. A brief
description of these two ML prediction techniques has been provided in Chapter 2
Section 2.3. The prediction methodology is implemented by means of Rapidminer
Studio [217]. The parameters of each supervised learning algorithm have been tuned
to obtain the maximum prediction accuracy. In particular, the NN is configured with
the following hyperparameters: a learning rate of 0.05, which controls the step size
during gradient descent; a momentum of 0.9, which accelerates gradient descent in
the relevant direction and dampens oscillations; 100 training cycles, which denote the
number of iterations over the entire dataset during training; and 1 hidden layer of size
20, which specifies the number of neurons in the hidden layer. Additionally, the RF
is set with 100 trees, which are individual decision trees used for ensemble learning;
gain ratio criterion, which measures the quality of a split in the decision tree based on
information gain ratio; and a maximal depth of 10, which limits the maximum depth
of each decision tree in the forest.
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3.5 Results

To demonstrate the effectiveness of our prediction methodology, we initially concen-
trate on predicting the AP for a specific user across all time periods on Wednesday.
Subsequently, we broaden our analysis to assess the methodology’s performance across
all users and time periods throughout an entire week. Furthermore, we evaluate the
effect of the sliding window size on the Joint Based Prediction (JBP) method for a
dataset spanning D = 84 days. Lastly, we investigate the influence of varying amounts
of historical data utilized in constructing the training set.

3.5.1 Example of the AP prediction methodology

To illustrate the performance of the proposed prediction methodology, we first focus on
the AP prediction for a specific user for all the time periods on Wednesday. Assuming
here the PBWP approach, the AP prediction at the m-th time period is based on
the APs to which the user connected to in the previous N = 6 Wednesdays at the
same m-th time period of the day. The training set is built by using the last F = 12
weeks. For validation purposes, the predictions are compared to the real AP where
the user connected to during this Wednesday. According to this, Fig. 3.4 presents
this comparison when using the NN algorithm. As shown, for this particular user, the
methodology is able to correctly predict the AP in 60 out of 64 periods of 15 minutes
(i.e. a 93.75% of prediction accuracy). In general, most of the transitions between AP
are correctly predicted. In fact, only an error of one period of 15 minutes is observed in
predicting the user time of arrival while a slightly higher error is also observed for the
prediction of departure. As shown, the user arrive at university at 11:00 AM. and leave
at 6:30 PM, while the NN algorithm predict to 10:45 AM and 7:15 PM, respectively.
During lunch time, the connection to AP XSFD4P202 is not correctly predicted, but
the prediction was AP XSFD4P102 that is located just in the lower floor within the
same building. This indicates that, although the AP is not well predicted in this case,
the methodology predicted correctly the region where the user was located.

Fig. 3.4. Comparison of real and predicted AP for a specific user on Wednesday with
NN.
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3.5.2 Comparison of the different proposed approaches

To gain insights into the performance of the proposed methodology, the prediction
process has been run for all the set of users in all the time periods of 15 minutes
during a whole week. Then, the predictions were compared to the AP to which each
user connected at each time period. Table 3.1 presents the percentage of users in
which each approach provides the best prediction accuracy for PBWP, PBDP and
PBTP. As shown for both NN and RF predictors, PBTP approach provides better
prediction accuracy than PBWP or PBDP for most of the users. This indicates that
the AP to which a user was connected in the most recent time periods is the most
useful information for prediction. However, it is worth noting that, for a relatively
high percentage of users, the best approach is obtained with PBWP or PBDP (e.g.
around 24% and 18% for NN and RF, respectively). This result indicates that the
daily or weekly periodical behavior of some users can be captured better in NN by
PBDP or PBWP approaches, respectively.

Table 3.1. Percentage of users in which the different approaches provide the best
accuracy.

NN RF

PBWP 24.07 18.62

PBDP 6.01 0

PBTP 69.90 81.37

Fig. 3.5a presents the Cumulative Distribution Function of the prediction accuracy
for the different prediction approaches with NN. For comparison purposes, in all the
approaches, the prediction is based on the 6 previous observations. Therefore, in
PBWP, PBDP and PBTP, the sliding window is set to N = 6. In JBP approach, the
sliding window is set to N = 2, i.e. the prediction is based according to the APs to
which the user connected to in the last N = 2 time periods (i.e. ad∗,m∗−2, ad∗,m∗−1),
the APs at the same m-th time period for the last N = 2 days (i.e. ad∗−2,m∗ , ad∗−1,m∗)
and the APs at the same day of the week and time period of the day for the last N = 2
weeks (ad∗−14,m∗ , ad∗−7,m∗). As shown in Fig. 3.5a, the JBP approach is able to provide
better prediction accuracy than the rest of the approaches separately. The reason is
that the JBP is able to jointly capture the hourly, daily and weekly user behavior.
Moreover, Fig. 3.5b presents a comparison between NN and RF in JBP. As illustrated
in the figure, the JBP approach using NN achieves better prediction accuracy than
using RF.

In Table 3.2, the average prediction accuracy and the average CT, required for
running the methodology for each user, are compared for the different approaches
for both NN and RF. The methodology was executed in a computer with a Core i5-
3330 processor at 3.00 GHz and RAM memory of 8GB running Microsoft Windows
10. It has been observed that the CT is mainly due to the process of training while
the time for the prediction step is negligible. As shown in Table 3.2, the PBTP and
PBDP approaches exhibit higher CT per user since they make use of larger number
of training tuples, leading to longer training times. As shown in Table 3.2, the JBP
approach provides the best prediction accuracy with a relatively low CT.

It is worth noting that the CT required for the training may impose some restric-
tions in the maximum number of users that can included in the AP prediction or the
frequency in which the training is updated. The values of the average CT per user ob-
tained in Table 3.2 may be excessively high in a Wi-Fi network that may have several
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(a)

(b)

Fig. 3.5. Cumulative Distribution Function (CDF) of the prediction accuracy for the
different approaches using NN in (a) and a comparison of the prediction accuracy
between NN and RF in (b).

thousands of simultaneous user connections. As a consequence, running the proposed
methodology for such a high amount of users may require the parallelisation of the
proposed methodology using multiple processors, each of them to run the prediction
of a group of users.

Table 3.2. Comparison of the different approaches.

Average Prediction Computational Time (CT)
accuracy(%) per user (s)

NN RF NN RF

PBWP 77.16 79.29 0.87 0.22
PBDP 79.88 79.64 33.33 3.74
PBTP 84.84 84.53 38.95 3.94
JBP 86.73 84.26 3.21 0.64

53



Chapter 3. UE Connectivity Prediction

3.5.3 Impact of the size of the sliding window

This section investigates the influence of the sliding window size on the JBP approach,
considering a dataset spanning D = 84 days for training set generation. Table 3.3
provides an overview of the average prediction accuracy and CT per user for varying
sliding window sizes (N). As depicted in Table 3.3, employing a sliding window that is
too small diminishes the method’s ability to capture weekly, daily, and hourly user be-
havioral patterns, consequently leading to decreased prediction accuracy. Conversely,
utilizing an excessively large sliding window results in a reduction of tuples available
for training set generation, thereby compromising the quality of the training process
and subsequently reducing prediction accuracy. Therefore, selecting an optimal sliding
window size is crucial to ensure an effective balance between capturing periodic user
behavior and maintaining an adequate training dataset size. However, the value of N
does not significantly impact the results; the differences in accuracy and CT are not
so high.

Table 3.3. Impact of the size of the sliding window on the JBP approach.

Average Prediction Computational Time (CT)
accuracy(%) per user (s)

NN RF NN RF

N=2 86.73 84.26 3.21 0.64
N=6 90.71 84.75 4.75 0.79
N=10 88.79 82.96 2.54 0.71

3.5.4 Impact of the amount of data used for training

This section delves into the impact of historical data quantity on training set construc-
tion. Specifically, Fig. 3.6a illustrates a comparison of prediction accuracy for the JBP
method with N = 2, utilizing NN and RF predictors, relative to the number of days
considered for training set generation. Conversely, Fig. 3.6b displays the average CT
per user. As depicted in Fig. 3.6a, the NN predictor consistently outperforms RF in
terms of average prediction accuracy. Moreover, Fig. 3.6a highlights that leveraging
a larger volume of data for training set generation leads to enhanced prediction ac-
curacy. However, processing an increased volume of data necessitates a longer CT,
particularly evident for NN, as illustrated in Fig. 3.6b. These findings underscore the
trade-off between prediction accuracy and CT efficiency, particularly in NN.

3.6 Conclusions

This chapter has proposed a methodology for the prediction of future APs to which
users will be connected in a Wi-Fi network. The proposed methodology is based on a
supervised learning that makes use of historical user connectivity to build a prediction
model. Different approaches have been defined depending the historical data that is
used. In general, the PBTP approach, in which the prediction is based according
to the most recent APs to which the user connected, provides the best prediction
accuracies. However, PBDP or PBWP perform better for users that follow some daily
or weekly periodical behavior. As shown, a joint approach (JBP) is able to provide
better prediction accuracy than the rest of the approaches separately with a relatively
low CT per user. The impact of the training set size has been illustrated for the
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(a) Average Prediction Accuracy

(b) Average Computational Time (CT) per user

Fig. 3.6. The impact of the amount of data.

JBP approach in terms of prediction accuracy and CT. As shown, higher amount of
days with measurements considered for generating the training set provides higher
prediction accuracy at expenses of higher CT, especially for NNs. The impact of the
size of the sliding window has been also evaluated. A too low value of the sliding
window results in a worse capability to detect weekly, daily and hourly user periodical
behavior while a too large value leads to a too low number of tuples for training.
The results indicate that the prediction based on the NN provides a higher prediction
accuracy than the prediction based on RF at expenses of an increase in the CT.

Therefore, the following key performance indicators of prediction accuracy and CT
efficiency have been addressed in this chapter of our study. The study evaluates the
prediction accuracy of different approaches, such as PBTP, PBDP, PBWP, and JBP,
for predicting future AP connections of users in a Wi-Fi network. The comparison
between these approaches demonstrates their effectiveness in achieving prediction ac-
curacy. The study also assesses the CT required by the prediction models, particularly
emphasizing the relatively low CT per user achieved by the joint approach (JBP). This
indicates consideration for CT efficiency in model development. The study was con-
ducted in a large Wi-Fi network environment comprising 429 APs deployed across
a university campus with extensive coverage, including 33 buildings, each with four
floors. Additionally, the study involved collecting user measurements over a span of
84 consecutive days, which amounts to a significant volume of data. Furthermore,
the prediction methodology was applied to a substantial number of users, totaling 967
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users to evaluate its capability to handle a large-scale Wi-Fi network environment and
a considerable volume of user data.
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AP Traffic Prediction

4.1 Introduction

Insights gained from predictive analysis of network characteristics play a pivotal role
in facilitating various decision-making processes within network management, partic-
ularly concerning network reconfiguration actions to improve network performance [1,
218]. For example, the prediction of a future peak of traffic in the area covered by
an AP may be useful for e.g. the reconfiguration of the admission control threshold
in order to control the amount of traffic at the AP or the activation of load balanc-
ing processes to encourage users to connect to less overloaded APs/radios. Numerous
methodologies have been proposed for cellular [219, 220] and Wi-Fi [170, 172, 221–223]
networks in this regard.

In real-world Wi-Fi networks, the dynamics of network traffic, performance, and
environmental conditions are constantly changing, necessitating predictive capabilities
that can adapt to these evolving circumstances. Temporal prediction models often rely
solely on historical data from the target AP itself, overlooking valuable contextual in-
formation provided by neighbouring APs. However, in complex network environments,
the behavior of an individual AP is influenced not only by its own historical data but
also by the surrounding network topology, user mobility patterns, and interference
from neighbouring APs. Therefore, an adaptive and context-aware prediction frame-
work that considers the spatio-temporal relationships between the target AP and its
neighbours is essential for accurate forecasting.

By incorporating information from neighbouring APs, the framework can capture
spatial dependencies and temporal correlations that impact the performance of the
target AP. For example, fluctuations in network traffic at neighbouring APs may
indicate potential changes in user behavior or network conditions that will affect the
target AP in the near future. A very large number of UEs in a specific AP means that
there is a concentration of many people. Then, when this large amount of people move
in this area, a large number of UEs may be expected in neighbour APs. Similarly, a
high number of failures in neighbour APs can help us to identify a high number of
failures in the target AP. It means that a large number of users in a region may lead
to an increase in interference that causes a larger number of failures. Moreover, the
presence of an external interference affecting a specific area, may affect not only to
the target AP but also to its neighbours. Likewise, variations in environmental factors
such as signal strength or interference levels can provide valuable insights into the
expected trajectory of network metrics at the target AP.
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In this context, the key novelty compared to prior studies lies in introducing a
comprehensive framework for forecasting future values of a particular network metric
within a Wi-Fi network’s AP. The proposed prediction methodology explores various
DL techniques, leveraging historical network measurements archived in a database. It
autonomously determines whether to incorporate historical data from neighbouring
APs based on identified spatial correlations among APs. A thorough assessment of
this methodology has been conducted using an extensive dataset comprising real-world
Wi-Fi network measurements.

The rest of the chapter is organized as follows. Section 4.2 provides an overview
of the existing literature. Section 4.3 explains the details of the proposed prediction
methodology. Section 4.4 describes the techniques used for prediction. The scenario
description presented in Section 4.5, and the obtained results are discussed in Sec-
tion 4.6. Section 4.7 explains the implementation aspects necessary for deploying the
methodology in a real network. Finally, conclusion is drawn in Section 4.8.

4.2 Related Work

In the context of traffic prediction, multiple approaches can be found in the literature.
The works such as, [224–227] make use of a Gaussian Model for traffic prediction. For
example, [224] proposed a wireless network traffic prediction model based on Bayesian
Gaussian tensor decomposition and Recurrent Neural Network with rectified linear
unit (BGCP-RNN-ReLU model), which effectively predict short-term changes in the
upstream and downstream network traffic. In turn, [225] proposed a wireless traffic
prediction model by applying the Gaussian Process (GP) method based on real 4G
traffic data. Finally, [228] proposed a data traffic prediction model based on autore-
gressive moving average (ARMA) utilizing the time series wireless data.

Other studies consider both temporal and spatial traffic analysis to enhance the
prediction accuracy. Spatio-temporal prediction combines spatial dependencies and
interactions, capturing how traffic at one location impacts neighbouring areas. It
considers traffic propagation effects, handles spatial variability, and adapts to dy-
namic network conditions. By modeling spatial and temporal features together, it
provides contextually aware, accurate, and adaptive predictions for network metrics
like traffic load and failures, optimizing network management and resource allocation.
Several works proposed a joint space/time traffic prediction, assuming that the traffic
is temporally and spatially correlated [177, 220, 229–231]. The study [231] includes
a correlation-based sub-predictor and a causality-based sub-predictor. The first one
predicts the regular traffic component (i.e. traffic volume, time stamps, cell location)
based on traffic spatio-temporal correlation, and the second focuses on forecasting the
traffic causality related features (e.g. existence of social events and user mobility in-
formation). The predicted traffic is generated by combining the results of these two
sub-predictors in order to improve the prediction accuracy at the expenses of increasing
the complexity of the prediction methodology. The methodology was evaluated at an
International Airport in China. In particular, in the context of cellular networks, [177,
230] presented a spatio-temporal prediction with CNN-RNN. Authors in [220] proposed
a strategy by combining auto-encoder and LSTM for spatio-temporal prediction of cel-
lular network traffic. Authors of [229] stated that auto-encoder may fail to learn the
fully characterized features for spatial dependencies between neighbouring cells so that
they proposed a CNN based framework. On the other hand, [177] claimed that a joint
CNN-LSTM method outperformed the CNN and LSTM for spatio-temporal mobile
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traffic prediction. In recent years, other novel approaches have been proposed for pre-
diction. As an example, transformer-based deep learning models have been proposed
to tackle the task of traffic time series prediction [232–235]. In this context, [232] intro-
duced a Transformer-based spatio-temporal model for traffic prediction by making use
of two New York City Taxi and Bike datasets. The paper presents a predictive model
capable of forecasting the inflow and outflow of different regions at a specific future
time by utilizing historical aggregated data. It makes use of a data-driven approach
to learn spatio-temporal dependencies between regions, without making assumptions
about spatial locality. The model considers dynamic spatio-temporal dependencies
for individual time slots and also incorporates the so-called attention mechanism to
capture potential periodic characteristics of spatio-temporal dependencies across mul-
tiple time slots. Moreover, in [233], the authors extracted intricate temporal, local,
and global spatial features utilizing the spatio-temporal transformer. Additionally, a
downsampling transformer is used to effectively capture global spatial features encom-
passing the entire city. Their proposed model comprises four integral components:
a spatio-temporal transformer to model the spatio-temporal correlations within mo-
bile traffic data, spatio-temporal fusion to effectively integrate information obtained
from both spatial and temporal transformers, a downsampling transformer designed
to capture a wider range of spatial features, and a prediction layer, responsible for
aggregating the spatio-temporal features.

To the best of the authors’ knowledge, the majority of the papers in the literature
focus on traffic prediction in cellular networks. However, very few papers deal with
traffic prediction in Wi-Fi networks. In this context, in the paper of [172] different
congestion levels (low, medium or high) in different locations are predicted in a Uni-
versity Campus. In order to do this, first, several network features (such as number of
clients, obtained throughput, frame transmission retries, frame errors) are predicted
by means of a support vector regression (SVR). Then, an expectation method (EM)
is used to obtain different clusters that represent different levels of congestion. The
obtained clustering model is used for the prediction of future levels of congestion. In
[170], data-driven ML techniques are employed to predict the transmission through-
put in Wi-Fi networks. Additionally, [221] extracted three categories of features, i.e.,
individual features, spatial features, and temporal features from network data to label
each AP. Then, these features are used to construct a DL architecture comprising two
separate deep RNN models. Leveraging the training model and historical client traffic
load input, future client traffic loads are predicted in real-time. In [223], a tempo-
ral prediction of channel and traffic utilization was performed to proactively allocate
resources more efficiently. Regarding this topic, the paper [222] is the only one that
is directly close to our work (i.e., spatio-temporal prediction in Wi-Fi systems). It
underscores the significance of integrating measurements from highly correlated AP
neighbours to enhance prediction accuracy. It analyzes data from 8 APs, while our
investigation extends this analysis to encompass a broader array of APs. Addition-
ally, our work incorporates contemporary prediction methods, including Transformers,
alongside other DL techniques posited in [222]. Unlike the approach of [222], which
provides a single time complexity for both training and prediction, our study sep-
arately calculates TCT and PCT that can effectively aim to tackle implementation
aspects, challenges, and real-world deployment considerations.
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4.3 Methodology Description

We particularize the framework of AI/ML control loop depicted in Fig. 2.3 to concen-
trate only on the objective of traffic prediction. The proposed prediction methodology
designed for this specific objective is illustrated in Fig. 4.1. As shown in Fig. 4.1,
network measurements collected at the APs are sent to the WLC and finally stored in
a centralized database that contains the historical measurements of the different APs.
Then, with this data, an offline training is run in order to extract knowledge from the
collected data. This offline training is done with certain periodicity in order to keep
updated the obtained model according to recent collected measurements. Then, the
prediction phase is done online and consists of using new measurements collected at
the APs together with the prediction function f(.) obtained in the training phase.

Fig. 4.1. General framework of proposed prediction methodology.

The proposed methodology, assumes a Wi-Fi Network consisting of I APs. Mea-
surements are collected from the different I APs with a periodicity of T over a total of
D days. The time sequence of a specific collected metric of the i-th AP is represented
as Xi = {xi,1, xi,2, ..., xi,N} where i = 1, 2, . . . , I, and N is the total number of samples
for each AP collected during the D days. With this data, the proposed methodol-
ogy aims to predict future values of this specific metric in a given AP by using the
last L collected measurements. The methodology can be used for the prediction of
different possible metrics (e.g. related to network traffic, network failures, network
performance, etc.).

After data collection, in the data preparation phase, the methodology runs a data
pre-processing according to the following steps: (i) The first step consists on automat-
ically determining missing data in some time periods. This may happen due to e.g.
possible errors in the collection of measurements, etc. Missing data can be completed
according to different possible techniques. In this work, backfilling [194] is used, in
which missing values at certain time period are filled with the data of the previous
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time period. If there are more than two consecutive time periods with missing data,
the measurements of this day are removed and are not considered for training. (ii)
The methodology determines the optimum value of the L. This process is done by the
Augmented Dickey-Fuller Test that uses an autoregressive model for determining the
most adequate value of L [194]. The Augmented Dickey-Fuller test iteratively assesses
the autocorrelation structure of time series data for various lag values. It selects the
lag value that minimizes the test statistic, indicative of optimal lag for the time series,
to evaluate its stationarity. For each AP, the optimum value of L is obtained. Then,
the most frequent value is selected. (iii) The input data Xi is normalized so that all
values are within the range between 0 and 1.

After the pre-processing step, the proposed methodology calculates the correlation
between each AP and all its neighbours. AP neighbours are determined by means of
the Neighbour Discovery Protocol (NDP) [236]. The criterion for the finding neighbour
APs is received power. According to this, each AP measures the received power from
nearby APs and determines a list of neighbours automatically with the APs detected
with a received power higher than a specific threshold. In particular, the correlation
between the i-th and the j-th APs (with i ̸= j) is calculated according to (4.1):

Ci,j =
N(

∑N
n=1 xi,nxj,n)− (

∑N
n=1 xi,n)(

∑N
n=1 xj,n)√

[N
∑N

n=1 x
2
i,n − (

∑N
n=1 xi,n)2][N

∑N
n=1 x

2
j,n − (

∑N
n=1 xj,n)2]

(4.1)

where xi,n and xj,n are the n-th measurement of the selected i-th AP and j-th AP,
respectively. These correlations Ci,j are used to determine the list of highly correlated
neighbours of each AP. Then, if the correlation Ci,j is higher than a specific threshold
(i.e. Ci,j > Ths), the j-th AP is included in the list of highly correlated neighbours
of the i-th AP. Then, for each i-th AP, a list of Mi highly correlated neighbours is
determined. As shown in Fig. 4.1, in case that no highly correlated neighbour has
been found for a given i-th AP (i.e. Mi = 0), then, the proposed methodology makes
a temporal based prediction using the L previous measurements of this AP in order
to predict the future value of this specific metric. Otherwise, (i.e. Mi > 0), a spatio-
temporal prediction is done based on the L previous measurements of the i-th AP and
also the L previous measurements of its Mi highly correlated neighbours.

With this data, an offline training is done in order to obtain a f(.) function that
will be used in the prediction step, as detailed hereinafter. For the case of the only
temporal-based prediction, this f(.) function is determined by observing the relation-
ship between a specific measurement and its previous consecutive L measurements for
a give AP. Specifically, the prediction function f(.) is determined according to the fol-
lowing. The set of measurements of the i-th AP Xi = {xi,1, ..., xi,N} is split into P dif-
ferent training tuplesXP

i = {xi,p, ..., xi,p+1, ..., xi,p+L, xi,p+L+1} with p = 1, ..., N−L−1.
Therefore, the f(.) function is learnt by a DL process that consists on observing the
relationship between xi,p+L+1 and its L previous elements = {xi,p, ..., xi,p+1, ..., xi,p+L}
for all the P = N − L − 1 tuples, as depicted in Fig. 4.2 for L measurements. The
rationale of this approach is to identify patterns for target AP’s time series values of
a network metric in L consecutive time periods. In fact, this concept is quite similar
to the PBTP approach explained in Section 3.3 for predicting the next AP.

In turn, for the case of space-time-based prediction, not only the L previous mea-
surements of the corresponding i-th AP but also the L previous measurements of each
of the Mi highly correlated neighbours are used for the prediction of the next sample
of i-th AP (i.e. the measurements {XP

i } and the measurements of the Mi highly cor-
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Fig. 4.2. Input and output data in the temporal prediction process (based on PBTP
approach).

related neighbouring APs {XP
m} with m = 1, . . . ,Mi), for the prediction of xi,p+L+1,

as illustrated in Fig. 4.3.

Fig. 4.3. Input and output data in the spatio-temporal prediction process.

In the online prediction for a specific i-th AP, (see Fig. 4.1), the N measurements
of this i-th AP and its Mi highly correlated neighbours are used as input. Then, this
input data is prepared in a manner similar to that in the training step. Finally, the
prediction step makes use of the input pre-processed data and the learnt f(.) function
in order to make the prediction in this specific AP. All the methodology processes are
presented in Algorithm 1. Based on this approach, correlations are initially calculated
for a given AP, identifying highly correlated neighbours, and subsequently, a model is
trained and saved. During predictions at this AP, the highly correlated neighbours are
utilized, employing the trained model represented by the function f(.). Periodically,
correlations are recalculated for this AP to monitor changes in the list of highly cor-
related neighbours, which may occur due to AP additions/removals or environmental
changes. In such cases, retraining the model for this AP and updating the f(.) function
for prediction becomes necessary.
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Algorithm 1 Temporal and Spatio-Temporal Prediction by RNN and CNN-RNN

1: Step 1: Data
2: Load historical data of target i-th AP: Xi = {xi,1, xi,2, ..., xi,N}.
3: Determine neighbours of each AP based on received power using NDP.
4: Calculate correlations between each AP and its neighbours using Equation (4.1).
5: Step 2: Division to Training and Test
6: for each AP do
7: Split the measurements into training and test sets:
8: Training set: Xtrain = {xi,1, xi,2, ..., xi,N−s} s = the number of test samples
9: Test set: Xtest = {xi,N−s+1, xi,N−s+2, ..., xi,N}

10: end for
11: Step 3: Define Offline Training Model
12: for each AP do
13: if highly correlated neighbours exist then
14: Extract measurements of the AP and its highly correlated neighbours.
15: Split the measurements into training tuples XP

m.
16: Define the hybrid CNN-RNN model:
17: Define: Model = Sequential()
18: Set: Layer.CNN(nodes, activation)
19: Layer.MaxPooling(stride size)
20: Layer.CNN(nodes, activation)
21: Layer.MaxPooling(stride size)
22: Layer.RNN(nodes, activation, dropout)
23: Layer.RNN(nodes, activation, dropout)
24: Layer.Dense(1)
25: Model.compile(optimizer=’adam’, loss=’mse’)
26: Train the hybrid CNN-RNN model:
27: for each training tuple XP

m do
28: Model(XP

m) to predict xm,p+L+1 given L previous measurements.
29: end for
30: else
31: Split the measurements into training tuples XP

i .
32: Define the RNN model:
33: Define: Model = Sequential()
34: Set: Layer.RNN(nodes, activation, dropout)
35: Layer.RNN(nodes, activation, dropout)
36: Layer.Dense(1)
37: Model.compile(optimizer=’adam’, loss=’mse’)
38: Train the RNN model:
39: for each training tuple XP

i :
40: Model(XP

i ) to predict xi,p+L+1 given L previous measurements.
41: end if
42: end for
43: Step 4: Evaluation
44: Evaluate the predictions using MSE, RMSE, MAE, and R2 score.
45: Step 5: Online Prediction
46: for each AP do
47: if highly correlated neighbours exist then
48: Use the spatio-temporal CNN-RNN model to predict the next sample.
49: else
50: Use the temporal RNN model to predict the next sample.
51: end if
52: end for
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4.4 ML Prediction Techniques

In this chapter, we perform both temporal prediction and spatio-temporal prediction.
Before the advent of DL techniques, traditional or classical methods (e.g. Autoregres-
sive Moving Average (ARMA)/Autoregressive Integrated Moving Average (ARIMA),
Exponential Smoothing (ETS)), were commonly performed for time series analysis
and prediction [191]. ARIMA, a widely used statistical method for analyzing and
forecasting time series data, is particularly useful when handling recurring patterns
or fluctuations. ARIMA makes predictions by taking into account factors such as
previous historical data and data trends.

However, the use of DL algorithms may provide better predictions thanks to their
inherent capacity to automatically learn complex and hierarchical representations from
the input data within a reasonable computational time.

DL algorithms are suitable for identifying intricate patterns that cannot be cap-
tured using conventional statistical ML. Owing to their great performance, they have
been used for different purposes, including time series data prediction [191, 237]. As
highlighted by [177, 222], DL algorithms such as LSTM, GRU, CNN, and a combina-
tion of them are adequate to model and predict wireless traffic usage time series data.
In recent years, new predictors (e.g. based on Transformers [200]) have been proposed
and developed in order to enhance the prediction accuracy.

In the case of Wi-Fi traffic prediction, DL algorithms can effectively capture the
spatial and temporal patterns present in the data, which are essential for accurate
predictions. On the other hand, CNNs can analyze spatial patterns across different
APs and identify relevant features that contribute to traffic fluctuations. Meanwhile,
LSTM and GRU architectures, equipped with memory cells and gating mechanisms,
excel at capturing long-term dependencies within the data. This ability is particu-
larly advantageous for Wi-Fi traffic prediction, where past traffic patterns may have a
significant impact on future ones. In addition, when adapted to time series data, the
Transformer architecture can effectively model long-range dependencies in the context
of Wi-Fi traffic prediction. Moreover, the aptitude of DL models to deliver improved
performance with larger datasets further strengthens their utility. Given the substan-
tial volume of Wi-Fi traffic data available, DL models can leverage their high capac-
ity more effectively to generate accurate predictions without necessitating extensive
handcrafted feature engineering. The amalgamation of these advantages renders DL
algorithms highly suitable for Wi-Fi traffic prediction tasks, yielding superior results
in comparison to traditional time series algorithms.

NNs, and in particular DL, capture the underlying pattern behind the measure-
ments by giving certain weights to the connection between neurons of two sequential
layers that derive the model. The DL methodology iteratively processes the dataset
and adjust the weights so that the sum of differences between predicted and orig-
inal values (which is known as the cost) is minimized, by running a process called
Back-propagation [190].

On the other hand, Transformer, originally designed for natural language process-
ing [200], has recently become an important interesting tool for time series prediction.
It includes a so-called attention mechanism that can be useful for capturing depen-
dencies between different time steps in a sequence.

A brief description of the classical and single time series methods considered in
this work has been presented in Chapter 2 Section 2.3. A detailed description of how
the two more novel ML methods are applied to available real data measurements in
spatio-temporal prediction of our proposed methodology is presented below.
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• CNN-RNN hybrid algorithm: We provide a detailed description of how the
available real data measurements are processed in a way that can be used as
input for the joint CNN-RNN algorithm-based prediction for spatio-temporal
context. Fig. 4.4 illustrates the proposed architecture that combines CNN and
RNN, where CNN is used for the spatial dependency extraction and RNN for
the temporal analysis. As depicted in Fig. 4.4, the CNN architecture integrates
the temporal measurements of the i-th AP and its M highly correlated APs to
analyze spatial dependencies. Following two convolutional layers with 1D filters
and two pooling layers, the dimensionality of the feature set is decreased. For
instance, in the initial input vector {xi,p+1, x1,p+1, ..., xM,p+1}, the resulting CNN
output becomes {y1,p+1, ..., yM−2,p+1}. Here, xi,p+1 denotes the target AP, while
{x1,p+1, ..., xM,p+1} represents the highly correlated APs, totaling M+1 features
for input and M-2 features for output. The CNN output serves as input for
the subsequent RNN phase (see Fig. 4.4) to predict the metric’s value in the
subsequent time period (xi,p+L+1).

Fig. 4.4. Hybrid CNN-RNN Architecture.

• Transformer algorithm: A comprehensive description is provided to illus-
trate how the available real data measurements are processed to generate an
input data suitable for predictive modeling in the spatio-temporal context using
Transformer. Fig. 4.5 depicts the general Transformer architecture for spatio-
temporal prediction. The available data is used as input to the encoder while the
decoder operates on the sequence input of xi,p+L to produce the decoder output
xi,p+L+1. Throughout the encoding phase, the traditional canonical self-attention
mechanism is substituted with the ProbSparse self-attention as implemented in
[238]. All the other sub-layers of the encoder remain unchanged and follow the
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Fig. 4.5. Transformer Architecture.

standard configuration of a normal encoder. In ProbSparse attention, each key
is permitted to attend exclusively to the dominant queries, a distinctive charac-
teristic that enhances the efficiency of the model and performance in handling
spatio-temporal predictions. Concerning the decoder, a standard decoder struc-
ture based on [200] is adopted. The decoder is composed of a stack of two
identical multi-head attention layers, which facilitate the ability of the model to
effectively capture complex dependencies and patterns in the data.

4.5 Scenario

To evaluate the proposed methodology, real measurements were collected from a total
of 100 APs deployed in a University Campus of Universitat Politécnica de Catalunya,
located in Barcelona over a three-month period. The collection and management of
these measurements is done by means of the Cisco Prime Infrastructure [216]. This
tool periodically collects a large amount of AP measurements to capture the network
status and centralises all this information to generate useful statistics for prediction
purposes and other analytical tasks. It’s notable that the proposed prediction approach
utilizes the data accessible through Cisco Prime Infrastructure, without necessitating
additional information or causing extra communication overhead.

The proposed prediction methodology can be useful for the prediction of different
user metrics. As an example, it’s applied to predict future AP traffic values and
transmission failures. The data is preprocessed in a form of time series data for each
AP, separately. The prediction methodology utilizes the measurements collected on
weekdays from September 9th to December 22th, 2019, spanning from 5:30 to 22:00
for every day with a periodicity T=30 minutes. This comprises 34 time periods per
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day, resulting in a total of D=75 days and N=2550 (34*75) measurements for each
metric.

After pre-processing, the traffic load and transmission failures measurements for
each single AP are derived. These two metrics are defined by equations (4.2) and (4.3).
Equation (4.2) computes the normalized traffic by dividing the number of transmitted
packets in each time period (TxC) by the maximum observed value in the measurement
data (MaxV ). On the other hand, the traffic transmission failures are calculated
according to equation (4.3) where, FTx, STx and STxR denote the number of failed
transmitted packets, the number of successfully transmitted packets and the number
of successfully transmitted packets after retransmissions, respectively.

Traffic Load =
TxC

MaxV
(4.2)

Failures =
FTx

STx+ STxR
(4.3)

To demonstrate the methodology, we begin with a small scenario comprising 6
APs, depicted in Fig. 4.6. Within this scenario, the temporal prediction focuses
on predicting future traffic and failure values for a specific AP (i.e. XSFA4PS205).
Subsequently, we extend our analysis to encompass 100 APs distributed across seven
buildings, each spanning four floors, to validate the obtained results.

Fig. 4.6. Location of APs in study and class area.

The collected dataset comprises numerous features, but we specifically utilize the
following:

• Time: this corresponds to the timestamp when the measurements have been
taken.
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• AP name: this feature is related to the name of AP.

• Radio type: it indicates the radio interface where the measurements are taken,
in our case, predicting traffic in the 2.4GHz band.

• Number of transmitted packets (TxC): this metric is a counter that is increased
every time a MSDU is transmitted.

• Number of successfully transmitted packets (STx): this metric is a counter that
is increased every time a MSDU is transmitted successfully without the need of
retransmission.

• Number of successfully transmitted packets after retransmissions (STxR): this is
a counter that is increased every time a MSDU is successfully transmitted after
one or more retries.

• Number of failed transmitted packets (FTx): this metric is a counter that is
increased every time a MSDU frame is not transmitted successfully after a max-
imum number of retransmission attempts.

These counters are collected with a given periodicity (T=30 minutes) and set again to
zero. Each time period in the dataset contains values for all features. The ”AP name”
and ”Radio Type” values are strings, ”Time” is in date/time format, and the remain-
ing features are integers. To prepare the dataset for prediction, we undergo several
preprocessing steps. Initially, traffic load and failure measurements are derived for
each AP by using equations 4.2 and 4.3, respectively (i.e. after this computation we
have 2 features of traffic load and failures per AP). These measurements are then
normalized by dividing them by the maximum collected measurement. Subsequently,
they are converted to measurements with a specific periodicity of T=30 using the “as-
freq” technique [194] in the Pandas Python library. The ”asfreq” technique in time
series data facilitates the adjustment of data frequency to a specified frequency. This
process fills in any missing values as needed, ensuring that the data aligns with the
desired periodicity. During this conversion, any missing data is filled using the back-
filling technique, ensuring that no more than one subsequent missing data point is
encountered. Following these preprocessing steps, the total of 2550 observations are
available for each AP, ready for further analysis and prediction. Before beginning the
training phase for each AP, we selected M=5 as the maximum number of neighbours
because considering the five most correlated neighbour APs captures sufficient spatial
dependencies for accurate predictions without overwhelming the model with excessive
information. In addition, we utilize the Augmented Dickey-Fuller test to determine
the optimal lag. When conducting temporal prediction with only one feature and one
column, the test straightforwardly identifies the lag. However, in the spatio-temporal
prediction, where we consider multiple correlated APs (with column 1 denoting the
main AP measurement and additional columns representing highly correlated APs),
we select the maximum lag value among all columns. This approach ensures effec-
tive capture of the temporal dependencies inherent in the data. However, we have
observed that the lag values for each column are frequently very close, resulting in
minimal impact on prediction performance.

After preprocessing the dataset for each RNN, CNN, and Hybrid model implemen-
tation, we utilize a validation method known as walk-forward validation (also referred
to as expanding window validation) [239], which is well-suited for time series data.
This method involves splitting the dataset into training and validation sets, with a
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split ratio of 0.3, where 30% of the data is allocated for validation. The model is
trained by using past data and subsequently validated on the next data point. This
process is repeated by updating the training set each time with the most recent data.
By doing so, the model can effectively adapt to changes in the time series pattern,
providing insights into its predictive performance in real-time scenarios [239]. The
hyperparameters that yield the optimal average result across all validation windows
are then selected for the ML prediction models.

A comparative analysis of various DL prediction algorithms is performed. The
comparison primarily focuses on evaluating prediction accuracy of the different algo-
rithms. This assessment utilizes several metrics, including the R2 Score, Mean Square
Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)
[191, 222]. The R2 Score, also referred to as the coefficient of determination, serves
as a statistical measure quantifying the proportion of variability in the observed time
series explained by a predictive model. It measures the model’s goodness of fit by
comparing the differences between the actual data and the model’s predictions. It
provides insight into the model’s goodness of fit: a higher R2 score indicates that the
model accounts for more of the variability in the data, while a lower score suggests
that the model may not be a good fit for the data. Ranging from 0 to 1, the score
represents no-fit to perfect fit, respectively. MSE calculates the squared average of
the differences between predicted and actual values, whereas RMSE is the square root
of MSE. On the other hand, MAE computes the absolute average of the residuals by
summing the differences and dividing the result by the total number of samples. These
metrics collectively provide comprehensive insights into the accuracy of the prediction
models.

Furthermore, the various prediction methods are evaluated with respect to CT.
This evaluation involves calculating the time spent during the training phase (TCT)
in seconds for a specific AP or the average TCT for all the APs, as well as determining
the runtime for online prediction (PCT) of a specific future value for a given AP or
the average PCT for all APs, also in seconds. By considering both training and test
runtime, our analysis provides valuable insights into the computational costs associated
with the different prediction methods. The CT of the proposed methodologies is
estimated utilizing a computer equipped with the following specifications: Intel(R)
Core(TM) i5-11500 CPU @ 2.70GHz, 16.00 GB RAM, x64 based processor.

Hyperparameter tuning is a critical phase in enhancing the prediction accuracy of
DL algorithms. However, when working with time series NN models, exploring numer-
ous hyperparameter combinations can significantly prolong the training process [194].
Therefore, our focus was on tuning the hyperparameters with the most substantial
impact on prediction accuracy. Our approach involved experimenting with various
combinations of hyperparameters to identify the optimal ones for specific performance
metrics. Initially, we examined with commonly used hyperparameters for time series
forecasting as documented in [177, 194, 222]. In CNN model, we tested different com-
binations of the number of kernels {16, 32, 64, 128, 256} and the number of layers
{1, 2, 3} to determine the best combination. Among these, the configuration with
16 kernels and 2 layers demonstrated the highest accuracy across the experiments.
Similarly, in the RNN model, particularly using LSTM, we explored combinations of
the number of cells {32, 50, 64, 100, 128, 256} and the number of layers {1, 2, 3}.
Notably, the configuration with 50 cells in each of the 2 layers demonstrated superior
performance and was chosen as the optimal configuration. Finally, we optimized the
hyperparameters for the CNN-RNN model by experimenting with various combina-
tions of batch sizes {16, 32} and numbers of epochs {50, 100}. The combination that
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yielded the highest performance consisted of a batch size of 16 and 100 epochs. Details
of all the hyperparameters considered in the NN models are provided in Table 4.1.

Table 4.1. Hyperparameters of the CNN-RNN Algorithms (RNN refers to either
SRNN, LSTM or GRU).

CNN

Layers Kernels Kernel Size Pool./Stride Size AF
Conv1D.1 16 2 - RelU

CNN Pooling1 - - Max/2 -
Conv1D.2 16 2 - RelU
Pooling2 - - Max/1 -

RNN
Layers Cells Cell Type Dropout Layer AF

RNN Layer1 50 RNN 0.3 RelU
Layer2 50 RNN 0.3 RelU

In our implementation, we considered hyperparameters similar to those outlined in
the work by [238]. The Transformer architecture comprises 2 encoder layers and 1 de-
coder layer. We utilized the ’Adam’ optimizer for the optimization process, initializing
the learning rate at e−4, and decayed it by 0.5 after each epoch. For the Transformer
model, we configured the batch size to 16, the dimension of the model (d model) to
512, the number of attention heads (n head) to 8, the dropout rate to 0.3, and the di-
mension of the feed-forward layer (d ff) to 2048. The training process is performed over
approximately 10 epochs, incorporating suitable early stopping mechanisms (patience
= 3) to prevent overfitting and ensure optimal model performance.

4.6 Results

4.6.1 Overview

This section outlines the results obtained from both the proposed temporal and spatio-
temporal prediction methods. In order to demonstrate the performance of the proposed
methodology, first, a straightforward scenario consisting of 6 APs located on the same
floor (refer to Fig. 4.6) is examined. Subsequently, the analysis is extended to the 100
APs located in seven distinct buildings within the University Campus. The evalua-
tion encompasses several metrics, including prediction accuracy, TCT, and PCT for
all DL methods in the proposed methodology. The TCT involves two distinct phases:
(i) preprocessing, which encompasses tasks such as computing traffic load and failure
measurements from raw data, frequency conversion to 30-minute intervals, backfill-
ing, and Augmented Dickey-Fuller test; and (ii) training, incorporating walk-forward
validation. According to this, section 4.6.2 presents the results obtained only from
temporal prediction, while section 4.6.3 describes the results of the spatio-temporal
predictions.

4.6.2 Temporal Prediction

The prediction results for the deployed 100APs when running the temporal-based
prediction are depicted in Table 4.2 and Table 4.3 for traffic load and transmission
failures, respectively. In this case, the obtained prediction metrics are averaged across
all APs. As shown in the tables, for all the methods, the results indicate highly accu-
rate predictions, with LSTM demonstrating a slightly superior performance compared
to other algorithms, although GRU closely follows LSTM and exhibits slightly better
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performance in MAE. Notably, LSTM achieves an R2 score of 89.73% and 89.87% for
traffic load and failures prediction, respectively. This superior accuracy of LSTM can
be attributed to its inherent capability to retain memory and capture sequential de-
pendencies, enabling effective modeling of complex relationships. Furthermore, the CT
required for training the model remains relatively low (in the order of tenths or hun-
dreds of seconds) across all methods, facilitating rapid offline training and retraining
processes to keep the model frequently updated, if needed.

Table 4.2. Comparison among different Prediction Techniques for all 100 APs Traffic
time series data.

R2 Score MSE RMSE MAE TCT(s) PCT(s)

ARIMA 0.8646 0.00036 0.01889 0.01641 427.072 0.00024
SRNN 0.8826 0.00020 0.01428 0.00830 69.414 0.245
LSTM 0.8973 0.00019 0.01364 0.00813 110.862 0.300
GRU 0.8968 0.00020 0.01421 0.00792 110.204 0.296
CNN 0.7821 0.00084 0.02896 0.01671 58.258 0.204
Trans. 0.8704 0.00035 0.01881 0.01630 410.244 1.360

Table 4.3. Comparison among different Prediction Techniques for all 100 APs Failures
time series data.

R2 Score MSE RMSE MAE TCT(s) PCT(s)

ARIMA 0.8745 0.00386 0.06216 0.04921 325.374 0.00025
SRNN 0.8830 0.00336 0.05795 0.04221 70.295 0.248
LSTM 0.8987 0.00254 0.05042 0.03854 112.134 0.303
GRU 0.8942 0.00257 0.05068 0.03842 110.358 0.300
CNN 0.7397 0.00686 0.08281 0.05958 59.318 0.207
Trans. 0.8872 0.00313 0.05592 0.03885 411.755 1.462

As shown in the tables, the Transformer method exhibits a marginally lower pre-
diction accuracy (e.g. R2 score) compared to the other methods and entails longer
TCT. Additionally, CNN demonstrates a relatively low TCT but provides the worse
prediction accuracy because CNN is more suited for space-based predictions rather
than temporal-based prediction. Furthermore, the performance of all DL prediction
models is compared with the ARIMA model. As shown, ARIMA model yields slightly
worse predictions than the other DL algorithms, except for CNN but requires more
TCT. This is mainly because ARIMA uses the technique of recursive sampling to
improve its performance. Moreover, there is a noticeable difference in the ARIMA’s
TCT for the case of traffic load and failures prediction. This difference is due to the
fact that finding optimal order for each target AP measurements to achieve accurate
predictions requires more TCT for traffic load than for failures. It is noteworthy that
approximately 40 to 50 seconds are allocated to determining the best order using the
auto-arima function. The auto-arima function is a feature in the ARIMA modeling
technique that automatically selects the optimal order of the ARIMA model based on
the provided data, helping to streamline the modeling process and improve prediction
accuracy.

As per the PCT, it is observed from Table 4.2 and Table 4.3 that ARIMA demon-
strates the lowest PCT, whereas Transformer exhibits the highest PCT due to its more
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complex architecture compared to other methods. For NNs, the PCT indicated in the
tables, excluding preprocessing, is very low, typically falls between 0.20 to 0.30. How-
ever, the preprocessing time, which typically ranging between 0.6 to 0.8, needs to be
added to the PCT. Consequently, the overall prediction time remains relatively low.

Fig. 4.7 illustrates a comparison between real values and predicted values of traf-
fic load using LSTM and Transformer models during weekdays of the last week in
autumn for a single AP (XSFA4PS205). As observed, the majority of the predicted
measurements closely align with the real data.

Fig. 4.7. Comparing the Real and Prediction traffic load of target AP(XSFA4PS205)
using LSTM and Transformer on weekdays of the last week.
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4.6.3 Spatio-temporal Prediction

In order to demonstrate the performance of the spatio-temporal prediction methodol-
ogy in a relatively simple scenario, we consider the scenario of 6 APs depicted in Fig.
4.6. These APs communicate among themselves and neighbours are detected accord-
ing to measured power. The APs are automatically designated as neighbours based on
an established threshold of -80dBm. Subsequently, the Pearson correlation [220, 222]
among these 6 APs is presented in Table 4.4 and Table 4.5. For the prediction of traffic
and failures pertaining to XSFA4PS205, the methodology identifies highly correlated
neighbouring APs with a correlation Ci,j > 0.50. Note that the term Ci,j is calculated
according to equation 4.1. The threshold of 0.50 is empirically determined to optimize
the resulting R2 score. In the example delineated in Table 4.4, AP XSFA4PS205 and its
four highly correlated neighbour APs (i.e., XSFA4PS201, XSFA4PS203, XSFA4PS204,
and XSFA4PS206) are utilized for spatio-temporal prediction of traffic data. However,
for the spatio-temporal prediction of failures in XSFA4PS205, all five neighbouring APs
are considered, as illustrated in Table 4.5.

Table 4.4. Spatial Correlation for Traffic data (In order to simplification, the prefix
”XSFA4PS” at the beginning of the AP name has been omitted).

Traffic 201 202 203 204 205 206

201 1 0.4950 0.5622 0.6824 0.5101 0.4907
202 0.4950 1 0.4185 0.5042 0.4172 0.4356
203 0.5622 0.4185 1 0.5985 0.5489 0.5049
204 0.6824 0.5042 0.5985 1 0.5384 0.4729
205 0.5101 0.4172 0.5489 0.5384 1 0.5130
206 0.4907 0.4356 0.5049 0.4729 0.5130 1

Table 4.5. Spatial Correlation for Failures data (In order to simplification, the prefix
”XSFA4PS” at the beginning of the AP name has been omitted).

Failures 201 202 203 204 205 206

201 1 0.7122 0.8494 0.8612 0.7659 0.5229
202 0.7122 1 0.7123 0.7239 0.7038 0.4849
203 0.8494 0.7123 1 0.8221 0.7831 0.6046
204 0.8612 0.7239 0.8221 1 0.7985 0.5508
205 0.7659 0.7038 0.7831 0.7985 1 0.6041
206 0.5229 0.4849 0.6046 0.5508 0.6041 1

Based on this, the results derived from the spatio-temporal prediction methodology
are presented in Table 4.6 and Table 4.7 and are also compared with the results of tem-
poral prediction of this AP. Regarding temporal prediction, LSTM demonstrates su-
perior performance compared to other methods, with the exception of MAE for traffic
prediction, where GRU and LSTM exhibit similar performance, albeit with a slightly
better performance in GRU. For the sake of benchmarking, within the spatio-temporal
context, the initial three methods listed in the Tables (i.e., LSTM, GRU, and CNN)
pertain to individual DL algorithms, whereas the last three methods (CNN-SRNN,
CNN-LSTM, and CNN-GRU) correspond to hybrid CNN-RNN prediction algorithms.
As illustrated in Tables 4.6 and 4.7, the results yielded by the spatio-temporal LSTM,
CNN and GRU methods provide higher prediction accuracy, albeit accompanied by
an increase in the TCT compared to the methods only based on temporal prediction.
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Table 4.6. Comparison of different Traffic Prediction Methods for AP XSFA4PS205.

DL Methods R2 Score MSE RMSE MAE TCT(s) PCT(s)

T
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SRNN 0.8737 0.00121 0.03479 0.02479 71.3415 0.267
LSTM 0.8957 0.00099 0.03162 0.02207 106.557 0.305
GRU 0.8908 0.00105 0.03235 0.02184 107.354 0.305
CNN 0.8754 0.00119 0.03456 0.02608 57.164 0.207

Transformer 0.8670 0.00128 0.03574 0.02495 406.238 1.521
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LSTM 0.9241 0.00073 0.02698 0.01966 248.245 0.302
GRU 0.9197 0.00077 0.02775 0.01971 238.142 0.286
CNN 0.8854 0.00100 0.03164 0.02645 98.455 0.187

Transformer 0.9174 0.00082 0.02868 0.02073 523.15 1.891

H
y
b
ri
d CNN-SRNN 0.9350 0.00062 0.02496 0.01860 152.778 0.234

CNN-LSTM 0.9521 0.00046 0.02143 0.01612 233.547 0.271
CNN-GRU 0.9465 0.00051 0.02262 0.01599 223.0490 0.264

Table 4.7. Comparison of different Failures Prediction Methods for AP XSFA4PS205.

DL Methods R2 Score MSE RMSE MAE TCT(s) PCT(s)
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SRNN 0.8257 0.00939 0.09692 0.07217 72.159 0.256
LSTM 0.9073 0.00498 0.07060 0.05607 108.337 0.307
GRU 0.8896 0.00594 0.07708 0.05750 105.474 0.298
CNN 0.8700 0.00699 0.08361 0.06699 57.170 0.254

Transformer 0.9044 0.00506 0.07116 0.05614 406.684 1.421
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LSTM 0.9286 0.00382 0.06177 0.04748 254.754 0.261
GRU 0.9118 0.00471 0.06865 0.05178 247.456 0.248
CNN 0.9041 0.00513 0.07157 0.05555 116.354 0.203

Transformer 0.9265 0.00404 0.06354 0.05004 534.799 1.721

H
y
b
ri
d CNN-SRNN 0.9551 0.00239 0.04895 0.03864 157.246 0.252

CNN-LSTM 0.9599 0.00214 0.04631 0.03698 238.472 0.302
CNN-GRU 0.9523 0.00255 0.05048 0.03919 237.576 0.294

In any case, this increase in TCT is not relevant since the training is performed offline.
The online computational time (PCT) for both temporal and spatio-temporal predic-
tions is similar. In Table 4.6 and Table 4.7, the Transformer’s accuracy closely aligns
with that of GRU and LSTM, respectively. Focusing on the hybrid CNN-RNN models
based on the architecture depicted in Fig. 4.4, it is worth noting that they provide a
superior prediction performance with a reduced TCT when compared to the single DL
methods (see Tables 4.6 and 4.7). The reason is that the inclusion of the first CNN
process in the hybrid methodology, in order to facilitate the identification of spatial
relationships among APs, reduces the number of features after 1D-Conv and pooling
layer, thus reducing the TCT of the latter RNN process. Tables 4.6 and 4.7 highlight
that the hybrid CNN-LSTM exhibits the highest prediction accuracy for both traffic
usage and failures of a target AP, except for MAE in traffic load, where CNN-GRU
slightly outperforms CNN-LSTM (see Table 4.6). Note also that CNN-SRNN provides
a relatively high prediction accuracy (e.g. in terms of R2 score) with a significantly
lower TCT than CNN-LSTM. The PCT for both single and hybrid NN models ex-
hibits minimal difference or is closely matched. The PCT of the Transformer model
in spatio-temporal prediction is higher compared to other models. However, when
compared to temporal prediction, it remains relatively similar or close.

It is noteworthy that having a higher number of correlated neighbours may not
necessarily lead to higher accuracy in predictions. The quality of these correlations,
meaning how strong they are, is also important. To demonstrate this point, we consider
a quantitative example involving a target AP of XSFA4PS205 in failure measurements.
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As depicted in Table 4.5 (related to spatial correlation for failures data), adjusting
the correlation threshold from 0.50 to 0.77 yields two highly correlated APs for the
target AP. Subsequently, we assess the performance of CNN-LSTM model on failures
metric across this revised threshold. On the other hand, if we set a threshold of 0.8,
there would not be any highly correlated neighbour. Therefore, the methodology runs
only temporal prediction based on LSTM. Table 4.8 illustrates a slight enhancement
in results as the threshold is increased from 0.5 to 0.77, leading to a reduction in the
number of correlated APs. However, an excessively high correlation threshold can lead
to situations wherein an AP lacks neighbours with such high correlation (e.g. threshold
of 0.8 in the Table 4.8). This may cause that relevant information of neighbouring
APs is not considered for prediction leading to worse prediction results. Furthermore,
we have included Table 4.9 to analyze the impact of the threshold value on traffic load
data. For threshold 0.5, the methodology utilizes spatio-temporal prediction with
CNN-LSTM, while for a threshold of 0.77, the methodology employs only temporal
prediction with LSTM (i.e. there are no highly correlated neighbours). In order to
deal with this trade-off, we have selected a correlation threshold of 0.5.

Table 4.8. Comparison between three thresholds, (Ci, j)s for failures data of AP
XSFA4PS205.

Ci, j R2 Score MSE RMSE MAE

0.5 0.9599 0.00214 0.04631 0.03698
0.77 0.9684 0.00167 0.04083 0.03252
0.8 0.9073 0.00498 0.07060 0.05607

Table 4.9. Comparison between two thresholds, (Ci, j)s for traffic load data of AP
XSFA4PS205.

Ci, j R2 Score MSE RMSE MAE

0.5 0.9521 0.00046 0.02143 0.01612
0.77 0.8957 0.00099 0.03162 0.02207

The spatio-temporal prediction method has also been undergone evaluation across
all the 100 APs situated in seven different buildings. After the analyzing the traffic
correlation among the various APs, it was observed that 42APs have one or more
neighbouring APs exhibiting a correlation Ci,j higher than the specified threshold (i.e.
Ci,j = 0.50). Regarding the failures’ correlations among APs, 55APs with one or more
highly correlated neighbours are identified. In order to compare the different spatio-
temporal prediction DL methods, Table 4.10 and Table 4.11 present the obtained
results when exclusively running the spatio-temporal prediction method for the APs
with one or more highly correlated neighbours (i.e. 42 APs for traffic predictions and
55APs for failure predictions). The obtained prediction metrics correspond to the
averaged values of each metric across all the APs. According to Table 4.10 and Table
4.11, the hybrid DL methods outperform the prediction accuracy metrics compared to
single DL models. The average TCT for spatio-temporal prediction across 42 APs for
traffic load and 55 APs for failures is relatively similar to that of AP XSFA4PS205.
The PCT for NN methods ranges between 0.20 and 0.32 seconds, whereas Transformers
exhibit a higher PCT compared to others.

Finally, the performance of the different prediction methods is summarized in Ta-
ble 4.12 and Table 4.13 when considering the LSTM algorithm. Specifically, Table
4.12 compares the different proposed temporal and spatio-temporal predictions for
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Table 4.10. Comparison of different Traffic Prediction Methods for the 42 APs with
one or more highly correlated neighbours.

DL Methods R2 Score MSE RMSE MAE TCT(s) PCT(s)

S
in
g
le

LSTM 0.9250 0.00061 0.02464 0.01518 247.488 0.301
GRU 0.9202 0.00050 0.02240 0.01482 241.516 0.313
CNN 0.8471 0.00114 0.03378 0.02186 100.225 0.206

Transformer 0.8930 0.00080 0.02834 0.01962 435.09 1.457

H
y
b
ri
d CNN-SRNN 0.9313 0.00057 0.02392 0.01483 153.232 0.233

CNN-LSTM 0.9371 0.00047 0.02161 0.01364 235.086 0.273
CNN-GRU 0.9345 0.00050 0.02243 0.01422 225.047 0.271

Table 4.11. Comparison of different Failures Prediction Methods for the 55 APs with
one or more highly correlated neighbours.

DL Methods R2 Score MSE RMSE MAE TCT(s) PCT(s)

S
in
g
le

LSTM 0.9065 0.00278 0.05270 0.04141 248.958 0.259
GRU 0.9058 0.00268 0.05178 0.04151 243.783 0.258
CNN 0.8046 0.00574 0.07579 0.05967 114.481 0.207

Transformer 0.9050 0.00270 0.05200 0.04096 486.110 1.768

H
y
b
ri
d CNN-SRNN 0.9081 0.00268 0.05178 0.04073 153.893 0.240

CNN-LSTM 0.9241 0.00223 0.04720 0.03727 234.192 0.271
CNN-GRU 0.9229 0.00225 0.04745 0.03733 232.667 0.251

the 42 APs with one or more highly traffic correlated neighbours and the 55 APs with
one or more highly failure-correlated neighbours. As illustrated, the proposed hybrid
spatio-temporal prediction methods, particularly CNN-LSTM, demonstrate slightly
higher prediction accuracy (i.e. R2 Score) at the expense of an increase in the average
TCT compared to the only temporal prediction for both traffic load and transmission
failures. The PCT values for all methods range from 0.259 to 0.304 seconds, indicating
relatively low computational overhead.

Table 4.12. Comparison of different Proposed Temporal and Spatio-temporal Predic-
tion Methodologies for Traffic Load and Failures based on LSTM.

Temporal Prediction Spatio-temporal Prediction
LSTM Single LSTM Hybrid CNN-LSTM

Considered APs Metric R2 Score TCT(s) PCT(s) R2 Score TCT(s) PCT(s) R2 Score TCT(s) PCT(s)

42 APs Traffic Load 0.9175 111.700 0.298 0.9250 247.488 0.301 0.9371 235.086 0.273
55 APs Tx. Failures 0.9043 113.972 0.304 0.9065 248.958 0.259 0.9241 234.192 0.271

Table 4.13. Performance of the Combined Temporal and Spatio-temporal Prediction
Methodology for Traffic Load and Failures based on LSTM.

Temporal Prediction Combined Temoporal and Spatio-temporal Prediction
LSTM Single LSTM Hybrid CNN-LSTM

Considered APs Metric R2 Score TCT(s) PCT(s) R2 Score TCT(s) PCT(s) R2 Score TCT(s) PCT(s)

100 APs Traffic Load 0.8973 110.862 0.300 0.8989 171.265 0.299 0.9041 165.782 0.284
100 APs Tx. Failures 0.8987 112.134 0.303 0.9000 191.341 0.271 0.9101 182.795 0.287

Table 4.13 demonstrates the performance of a combined methodology. For com-
parison purposes, the only temporal-based predictions with the LSTM algorithm (i.e.
first column of prediction part in the Table) are presented as a benchmark in Table
4.13. This comparison is performed for all the 100 APs. The combined methodology
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has two possibilities: (i) for APs where no highly correlated neighbour is identified,
temporal prediction is performed based on LSTM and in cases where some highly
correlated neighbours are identified, spatio-temporal prediction is conducted based on
Single LSTM (the second column in Table 4.13), and (ii) for APs where no highly
correlated neighbours are identified, only temporal prediction based on LSTM is ex-
ecuted, while spatio-temporal prediction based on CNN-LSTM is employed for APs
with highly correlated neighbours (the third column in Table 4.13). In our dataset
of 100 APs, the methodology applies spatio-temporal prediction to 42 APs for traffic
load and temporal prediction to the remaining 58 APs. Similarly, for failures, spatio-
temporal prediction is applied to 55 APs and temporal prediction to the other 45
APs. We present the performance of our data under these combined settings in Ta-
ble 4.13. As shown, the combined temporal LSTM and spatio-temporal CNN-LSTM
(the third column) exhibit slightly superior prediction accuracy compared to temporal
LSTM alone, albeit with a higher TCT. However, the PCT values for both temporal
prediction and the combined models remain very similar.

4.7 Implementation Aspects in Real Network

The escalating demand for enhanced network management strategies within Wi-Fi
environments has been underscored by the rapid development and increased usage
of Wi-Fi technologies. In response to this imperative need, a novel methodology
has been devised to predict future network metrics. This proactive approach not
only enhances network reliability and performance but also elevates the overall user
experience by mitigating downtime and congestion. Additionally, the potential for cost
optimization is evident through reduced reactive maintenance efforts and informed
resource investments, thereby highlighting the significance of this research in tackling
real-world challenges encountered in network management.

Implementing our methodology in a real network entails defining and addressing
Key Performance Indicators (KPIs) relevant to the specific network environment and
operational requirements. KPIs such as TCT, PCT, prediction accuracy serve as cru-
cial metrics for evaluating the performance of prediction methods in a real network
setting. In our evaluation, various methods were assessed for temporal and spatio-
temporal prediction in a Wi-Fi network. Across all methods, the TCT for training
the models remained relatively low, facilitating fast offline training and retraining
processes. This ensures the adaptability of models, allowing for frequent updates if
necessary, without incurring significant computational overheads. Moreover, the PCT
associated with both temporal and spatio-temporal prediction methods was found to
be minimal, enabling nearly real-time predictions. This fast prediction capability is
crucial in supporting timely decision-making processes and enhancing network respon-
siveness to dynamic operational conditions.

To scale up to a larger number of APs (i.e., adding new APs), the process involves
collecting data for each new AP and its neighbours, preprocessing the data (such as
filling missing data), calculating correlations, and executing the training process to
obtain the trained model. However, it may be necessary to retrain everything at cer-
tain instant of time in the future, perhaps every few months. Furthermore, in our
scenario, adapting to new circumstances might involve either fine-tuning the model’s
trainable parameters or full retraining it. For instance, in the context of a Univer-
sity Campus, when there are changes in classroom setups or the introduction of new
academic programs, adjusting the predictive model becomes necessary. This adapta-
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tion entails fine-tuning the model’s parameters or retraining from scratch to better
suit the updated circumstances. In our dataset, after splitting the training dataset to
training and validation sets (70-30) using walk-forward validation, the model considers
approximately one month for validation. The trained model remains valid throughout
the entire period covered by our available dataset, but retraining from scratch might
be necessary in the future. Generally, evaluating the frequency of retraining requires
more available data, which is outlined as part of future work.

4.8 Conclusion

Prediction of future values of network metrics (such as future traffic values at the APs,
future obtained performance metrics, etc.) can be useful to make proactive decisions
over the network by means of e.g. load balancing, proactive resource allocation, con-
gestion control, etc., that can enhance the network performance. This study proposes
a new approach for predicting future specific parameter values based on historical
data and leveraging spatial correlations among neighbouring APs. The methodology
commences with an analysis of spatial correlations among a cluster of APs within a
given area. Depending on the outcomes of this analysis, it either conducts a temporal
prediction grounded in past measurements of the target AP or a spatio-temporal fore-
cast that integrates historical data from both the target AP and its highly correlated
neighbouring APs. The proposed prediction methodology harnesses NNs and unfolds
in two phases. Initially, historical data is utilized to train the NN in an offline process.
Then, newly collected data is fed into the trained NN during the prediction phase.

Various DL methods have been analysed, including SRNN, CNN, GRU, LSTM
and Transformer for both temporal and spatio-temporal prediction tasks. Moreover,
hybrid DL algorithms have been proposed, starting with a CNN phase to capture spa-
tial correlations, followed by an RNN phase to leverage temporal correlations. The
proposed methodology has been evaluated using real data obtained from a Wi-Fi net-
work deployed on a University Campus to predict future AP traffic and transmission
failures. Employing hybrid DL techniques, the methodology achieved impressive pre-
diction accuracy, with average R2 scores reaching 93.7% and 92.4% for traffic load
and failures, respectively. The computational overhead, indicated by TCT and PCT,
remained modest, with TCT in the order of hundreds of seconds and PCT below 2
seconds. In particular, integrating spatial correlations among neighbouring APs sig-
nificantly improved prediction accuracy in spatio-temporal predictions compared to
temporal predictions alone, albeit with a marginal increase in TCT. However, PCT
values for both temporal and spatio-temporal prediction NN models remained largely
consistent. Furthermore, performance evaluation of the combined temporal and spatio-
temporal prediction methodology demonstrated slight enhancements in prediction ac-
curacy when exploiting spatial relationships among APs with one or more highly cor-
related neighbours.

The chapter has also discussed the practical implementation of our methodology
within an real network context. This involved two key aspects: Firstly, a comparative
analysis of various ML techniques was conducted, focusing on KPIs pertinent to real-
world network operation and management. Metrics such as accuracy, TCT, and PCT
were analyzed to assess the strengths and limitations of each technique. Secondly,
considerations regarding scalability were briefly addressed, particularly with regards to
accommodating a larger number of APs and the necessity of periodic model retraining
to maintain prediction efficacy in dynamic network environments.
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Wi-Fi Traffic Classification

5.1 Introduction

The escalating need for high-speed data transmission has spurred considerable research
into developing novel methods for identifying and categorizing network traffic. Inef-
fectively managed mechanisms in this regard can detrimentally affect critical network
operational tasks such as Fault Tolerance, Traffic Engineering, QoS provisioning, and
Dynamic Access Control. For example, in Fault Tolerance, quickly identifying traffic
patterns can help in the rapid detection and isolation of network failures, ensuring
minimal disruption to services. In Traffic Engineering, understanding the nature of
the traffic allows for better routing decisions, optimizing the flow of data across the
network and preventing congestion. QoS provisioning relies on precise traffic cate-
gorization to allocate the appropriate bandwidth and resources to different types of
traffic, ensuring that high-priority services receive the necessary support to function
effectively. Lastly, Dynamic Access Control can benefit from accurate traffic identifi-
cation by adjusting access policies in real-time based on the type and behavior of the
traffic, enhancing both security and efficiency. Essentially, an accurate traffic identifi-
cation process enables the effective management of available network resources, thereby
facilitating more precise and resilient resource allocation strategies [240]. Traffic classi-
fication methods are typically categorized into three main groups, namely port-based,
payload-based known as Deep Packet Inspection (DPI), and ML-based techniques
[240]. Port-based identification is a straightforward approach that associates network
applications with well-defined port numbers, a method that still finds widespread use.
While this approach has been dependable for many applications, it faces challenges
with the growing trend of applications employing dynamic port numbers, which can
impact its reliability. Payload-based methods involve the scrutiny of packet payloads
to discern the nature of the traffic, a valuable technique in many contexts. However,
the efficacy of this approach may be limited when dealing with privacy regulations and
encryption practices, which can restrict access to packet payloads. Conversely, DPI
classification examines both packet header and payload, entails substantial computa-
tional overheads and necessitates ongoing manual signature maintenance, making it a
less practical option for traffic classification in some contexts. ML-based methodolo-
gies present a viable solution to circumvent certain constraints inherent in port-based
and payload-based approaches. Specifically, ML techniques demonstrate the capacity
to classify network traffic by leveraging traffic statistics that are independent of ap-
plication protocols. These statistics encompass metrics such as flow duration, packet
length variance, maximum and minimum segment sizes, window size, round trip time,
and packet inter-arrival time. Moreover, ML approaches offer the advantage of reduced
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computational complexity and the ability to effectively discern encrypted traffic [189].

Building upon the foundation of traffic classification, the applicability of traffic
classification extends to various network management tasks, including the prioritiza-
tion of services with strict latency requirements such as XR traffic in Wi-Fi networks.
The XR merges physical and virtual realms, fostering immersive environments through
technologies such as Augmented Reality (AR), VR, and Mixed Reality (MR). XR’s
deep interactivity and immersion provide users with captivating virtual experiences
globally [241]. In the future years, the widespread integration of XR into our daily
lives, impacting areas like education, work, health, and entertainment, will bring about
significant social changes. The XR market is expected for significant growth, with pro-
jection indicating an increase from USD 105.58 billion in 2023 to USD 472.39 billion
by 2028, at a robust Compound Annual Growth Rate (CAGR) of 34.94% during the
forecast period [242].

Wi-Fi technology serves as a vital component in enabling VR experiences [241]. A
typical setup involves running a video game on a robust desktop system and utilizing a
Wi-Fi network to transmit the game’s visuals to end-users, often in the form of Head
Mounted Displays (HMDs) or VR headsets. In the downlink process, the desktop
sends the video frames of the VR game to the VR headset, allowing users to immerse
themselves in the visual content. Concurrently, in the uplink phase, the VR headset
transmits motion data back to the desktop. This bidirectional data exchange facilitates
a feedback loop where the desktop generates subsequent VR video frames based on
the user’s current viewpoint [243, 244]. Throughout this discussion, we will refer to
this setup as VR edge streaming over Wi-Fi.

The successful integration of XR technologies into society hinges on the ability of
wireless networks to meet rigorous performance demands. Real-time and interactive
XR applications involve the exchange of high-quality video and metadata, necessi-
tating high throughput (hundreds of Mbps per user) and low latency (ms or even
sub-ms), which often present conflicting objectives. Present wireless networks are
not fully equipped to efficiently support the widespread utilization of XR applica-
tions, prompting both academic and industrial sectors to pursue innovative solutions,
aiming for readiness by 2030. Despite Wi-Fi’s expected continued dominance as the
preferred wireless access solution in unlicensed bands, its current limitations in pro-
viding efficient low-latency guarantees highlight the need for further advancements.
Latency emerges as a significant concern in VR, impacting both wired and wireless
systems [243]. Excessive latency in VR services can create a noticeable delay between
the actions in the VR video game and the corresponding visual feedback, potentially
leading to motion sickness and diminishing the overall user experience [243]. This in-
consistency arises not only from transmission delays but also from the jitter in feedback
during uplink transmission [243]. Effective Wi-Fi QoS management holds the potential
to significantly enhance user experiences by minimizing latency and jitter in real-time
applications like gaming, thereby ensuring uninterrupted immersive experiences and
reducing lag during access to cloud and edge services [245].

In light of the importance of network traffic classification and the need to identify
VR traffic, the novelty of this chapter is the proposal of an interactive VR ML traffic
classification model in the edge streaming VR scenario. The proposed model evaluates
the use of some common classifiers, fed with the features previously extracted. The
model is evaluated by using VR traffic traces coming from a multi-user VR scenario,
and using single-user traces from a VR framework not included in the training traces.
Finally, a Wi-Fi network environment is simulated in order to illustrate how the model
can be used to detect VR traffic, and give it higher priority to improve its QoS.
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The rest of the chapter is organized as follows. Section 5.2 provides an overview
of the existing literature. Section 5.3 describes the experimental design, including
dataset creation, and traffic classification methods. The obtained results in both
feature extraction and traffic classification are presented in Section 5.4, while the
testing process of the model in a multi-user experimental setup and the evaluation of
VR traffic identification in a Wi-Fi environment simulation are discussed in Section
5.5. Finally, conclusion is drawn in Section 5.6.

5.2 Related Work

In the context of network traffic identification, the port-based and DPI traditional
methods require manual tuning, whereas an ML-based approach works seamlessly
after training. The early network traffic classification solutions used port numbers
to classify network traffic to their correspondence protocols. The Internet Assigned
Numbers Authority (IANA) assigned standard port numbers to different services or
protocols [246]. These port numbers are divided into three ranges: system ports (0-
1023) known as standard ports, user ports (1024-49,151), and dynamic ports (49,152-
65,535). Typically, the classification process involves inspecting the port numbers
in Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) pack-
ets. For instance, port number 80 is associated with the HTTP protocol. The paper
[247] assessed the port-based identification approach for classifying network traffic,
such as HTTP and FTP. Their evaluation showed an accuracy of no more than 70%,
regardless of the number of packets observed. The paper [248] examined the effec-
tiveness of port-based methods for classifying P2P traffic. Their data indicated that
standard ports accounted for only 30% of the dataset, resulting in low performance
for the classification. The DPI approach overcomes the shortcomings of port-based
classification since it does not rely on port numbers. Consequently, it avoids issues
related to masquerading and port randomization [249]. DPI inspects the payload of
network traffic to identify the originating applications. By analyzing the content of
packets—including characters, strings, bit patterns, and symbols—a signature is cre-
ated to classify applications. A signature library contains records, each associated
with a specific application. This method allows the classifier to examine the content
of individual packets or groups of packets and compare them against the signature
library. If a match is found, the traffic is identified and associated with an application.
This technique enhances accuracy compared to port-based identification, even when
applications use non-standard ports. The paper [250] proposed a framework named
Lightweight DPI (LW-DPI) aimed at reducing the detection process’s overhead while
maintaining acceptable accuracy. This solution classifies network traffic by examining
the content of a limited number of packets or a fraction of the payload in a given
packet. The evaluation used network traffic collected from commercial ISPs and lo-
cal university laboratories, covering multiple network protocols. The accuracy results
were up to 99% for P2P and mail network traffic. The paper [251] introduced the
Bitcoding framework, which generates bit-level DPI signatures for traffic classifica-
tion. It analyzes the first n bits of the network flow, extracts signatures, and converts
them into a state transition machine for further comparison. Hamming distance was
integrated into their system to reduce collisions and increase the number of targeted
applications.

The dynamic nature of ports and encryption techniques in both port-based and
DPI methods has led to the increased prominence of ML-based approaches as widely

81



Chapter 5. Wi-Fi Traffic Classification

adopted technologies for traffic identification. [252, 253]. In recent years, scholars
have made research into the domain of traffic identification. Researchers in [254],
identify cloud game video traffic by proposing a novel approach for extracting distinc-
tive features from video scenes to distinguish traffic patterns and then an adaptive
distribution distance-based feature selection technique for feature selection. In ad-
dition to conventional statistical features derived from standard network attributes
(e.g. packet payload size, packet inter-arrival time), the authors defined the ’peak
point’ as the maximum data transmission in a given period for the feature extraction
process. This innovation aimed to enhance the video identification process, reducing
unnecessary costs, time overhead, and potential negative impacts on the identification
model.

In the paper [255], researchers focused on classifying Cloud Gaming (CG) traf-
fic to optimize the use of a low-latency queue within the L4S (Low Latency, Low
Loss, Scalable Throughput) architecture. The objective is to minimize latency fluc-
tuations that could negatively impact QoS at the network edge. Three classification
models (Thresholds, DT, RF) were developed and evaluated to distinguish CG traffic
from other high-bitrate UDP-based applications. These models were constructed using
12 features derived from network flow data, including packet sizes and Inter-Arrival
Times (IAT). Additionally, the study introduced a fully functional implementation
of the classifier in the form of a micro-service architecture, suitable for deployment
as Virtual Network Functions (VNFs) following the Network Function Virtualization
(NFV) paradigm. In [256, 257], researchers conducted model tuning in SVM and eval-
uated various SVM kernel functions, including linear, polynomial, sigmoid, and radial
kernels, to classify Internet traffic categories such as database, mail, www, multimedia,
game, and service. The results indicated that the Radial Kernel exhibited superior
performance compared to the other kernels. The researchers employed a sequential
forward feature selection algorithm to improve accuracy by reducing irrelevant and
redundant features. Notably, in [256], the authors compared the results of SVM with
unsupervised K-means clustering. The paper [258] compared the accuracy of C5.0
with C4.5, SVM, and NB learning algorithms. Extracted features comprised packet
rate, data rate, and inter-arrival time statistics (minimum, mean, maximum, and stan-
dard deviation). Using a private dataset of 17 applications (e.g. FTP, HTTP, Skype,
Game, BitTorrent) collected in their labs, the experimental evaluation demonstrated
C5.0’s superior performance.

In the paper [240], the authors introduced a ML framework based on NB designed
for real-time application classification, particularly focusing on video network traf-
fic. The framework was trained using 13 statistical features, encompassing packet
arrival time, the average of decimal values, and the average value of IP datagram
length. Feature extraction involved LAN frame length and IPv4 header fields, utiliz-
ing a feature extractor script in a three-packet window. This calculated values like
Time between Packets, Mean and Variance of Time between Packets, IP Total Length,
Time to Live, and Protocol field. They collected the dataset in their labs, comprising
YouTube and Netflix videos, along with files downloaded. The classification module
effectively distinguished between Netflix streaming video, YouTube streaming video,
and background traffic, particularly involving two file downloads.

In the paper [259], the authors tackled the challenge of reducing the computational
resources required by the traditional SVM learning classifier in the context of internet
traffic classification. They introduced Incremental SVM (ISVM), a concept aimed at
decreasing the high training costs associated with memory and CPU usage. Addition-
ally, the authors put forth the Authenticator ISVM (AISVM) framework, leveraging
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valuable information from prior training datasets. Comparative experiments with NB
and NBKDE (Naive Bayes algorithm with kernel density estimation) learning algo-
rithms revealed lower accuracy than SVM. The study demonstrated that the proposed
frameworks (ISVM and AISVM) yielded higher accuracy results while utilizing fewer
computational resources than SVM. Note that features included simple statistics about
packet length, inter-packet time, and information derived from traffic flows. The study
[260], aimed to boost the accuracy of a traffic classification model based on SVM. It
introduced two modules: one for feature selection and another for optimizing the SVM
algorithm. The feature module used an innovative algorithm to extract the most rep-
resentative features, while the classifier module employed an Improved Grid Search
algorithm to enhance parameter selection. Evaluation on the Moore dataset showed
high accuracy compared to SVM, NB, and kNN algorithms in a smaller feature space.

The paper [261], focused on the identification of Social Media, Audio, and Video ap-
plications, particularly when they are encrypted. A ML-based approach was assessed
using a comprehensive dataset gathered from four distinct networks and generated
via four different off-the-shelf traffic flow exporters. This dataset encompassed a di-
verse array of services, including Web Browsing, Email, Chat, Streaming, File transfer,
VoIP, and P2P. The evaluation of the proposed system primarily centers on its accu-
racy in classifying the aforementioned applications. Within this investigation, four
distinct feature sets derived from various off-the-shelf network traffic flow exporters
(Tstat, Tranalyzer, SiLK, and Argus) were employed for the classification task using
DT. While some features were common across the four exporters, each computed them
differently (e.g., average Round Trip Time). Furthermore, certain features were exclu-
sive to specific exporters (e.g., IP Time To Live change count exists solely within the
Tranalyzer feature set).

The paper [262] introduced an improved SVM approach called cost-sensitive SVM
(CMSVM) to address accuracy, computational cost, and data imbalance issues. CMSVM
incorporates an active learning technique to dynamically assign weights to specific ap-
plications. Evaluation using MOORE SET and NOC SET datasets for classifying
network flows into service groups demonstrated that the proposed solution is more
effective than the traditional SVM classifier in terms of accuracy and addressing data
imbalance. The paper [263] examined the effectiveness of classifying VPN and non-
VPN network traffic using ensemble classifiers, focusing on precision, recall, and F1-
score. Their experiments, using the ISCX dataset, revealed that Gradient Boosting
(GB) and RF ensemble classifiers outperformed single classifiers like DT, Multi-Layer
Perceptron (MLP), and kNN in terms of accuracy. In another work, The paper [264]
introduced a ML scheduling framework for prioritizing network traffic in an IoT envi-
ronment based on QoS requirements. The study compared the performance of seven
supervised learning algorithms, including RF, kNN, MLP, NB, LR, and SVM. Using
the UNSW dataset with 21 IoT/non-IoT devices, RF achieved the highest accuracy
results.

This chapter’s primary focus is the application of ML classifiers for identifying
interactive VR traffic, a topic not thoroughly explored in prior research. VR traffic
comprises both uplink (user tracking) and downlink (video batches) data, and it ex-
hibits a distinct relationship between these two components. The interactive nature
of VR traffic —in contrast to video streaming alone— makes it essential to differenti-
ate from non-VR traffic, necessitating high-priority QoS profiles in Wi-Fi networks to
ensure optimal performance and user experience.
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5.3 Experimental Setup

In this section, we describe the process followed for the generation of the datasets. We
also present the definition and selection of the features used for classification, the design
of the proposed classifiers and the aspects related to the tuning the hyperparameters
of the considered classifiers1.

5.3.1 Dataset

The dataset that is used in this work consists on two different traffic datasets, one
for VR traffic and one for Non-VR traffic. In our case, the first VR traffic dataset
is related to a range of VR applications, including SteamVR Home, Half Life: Alyx,
Budget Cuts, and a Custom Game developed in Unity called Alteration Hunting, in
different configurations involving three distinct frame rates of 60, 90 and 120 frames
per second (fps), as well as three different bit rates of 40, 50 and 100 Mbps. The second
dataset representing Non-VR traffic focuses on commonly used application types such
as non-game videos (i.e., multimedia streaming services like Youtube, Netflix), and
online meetings (i.e., Zoom, Google Meet). This section provides an overview of the
network environment in which the dataset was generated, outlines the data collection
process, and presents the analysis of traffic data traces for both VR and Non-VR
traffic.

1. Network Setup: the network setup consists of a Desktop computer, AP that
supports Wi-Fi 6 [11, 80, 266], a Head Mounted Display Meta Quest 2 and a
laptop, as shown in Fig. 5.1. The desktop computer is connected to the AP
with an ethernet cable and the clients are connected to the AP via Wi-Fi. The
equipment used is also illustrated in Table 5.1.

Fig. 5.1. The network setup for data collection.

For VR, we have used two platforms to play games: Steam and Unity. In the
Steam platform, the Desktop computer and HMD in Fig. 5.1 are used as a server
and a client, respectively for streaming. We install the SteamVR2 platform, and
the Air light VR (ALVR)3 server on the Desktop in order to allow users to play
PC-based VR games on their HMD via a Wi-Fi connection. We also connect
HMD as a client using the ALVR application. So, Playing games here is done

1The raw packet traces, the input files and Python scripts for both the feature extraction and
traffic classification are available on Zenodo [265]. We also reserve some special traces for the final
test

2https://www.steamvr.com
3https://github.com/alvr-org/ALVR
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Table 5.1. Equipment.

Desktop

OS
Windows 10 (Unity),

Ubuntu 22.04 LTS (Steam)
CPU 12th Gen Intel Core i5
GPU NVIDIA GeForce RTX 3080
RAM 2 x Kingston 16GB DDR5

Laptop
OS Ubuntu 22.04 LTS
CPU 11th Gen Intel Core i7
RAM 16GB

HMD Model Meta Quest 2
AP Model RT-AX58U

on the HMD while the Desktop handles rendering and processing, streaming
downlink data (i.e. game content like video, audio and haptics) to the HMD and
uplink data (i.e. pose tracking, controller input, and performance metrics) from
the HMD back to the Desktop for processing. In the Unity platform, the Desktop
computer and laptop in Fig.1 are used as a server and a client, respectively for
streaming. In order to develop a custom VR game, first the VR game is created
and integrated in Unity, enabling VR support for the laptop. Downlink and
uplink traffic in Unity is similar to ALVR.

For Non-VR, we just made use of the laptop connected to the AP linked to
the internet in the Fig.5.1. For the streaming process of multimedia services,
we played the content on the laptop. The streaming operation involves sending
requests for video and audio content as uplink data and in response, downloading
video content from multimedia servers as downlink data. For the streaming
process of online meetings, the process involves transmitting audio and video
data as uplink information while receiving incoming video and audio streams as
downlink data from the conference servers.

2. Data Collection: this section presents an overview of our dataset and the pro-
cess by which we generated it. We collected VR and Non-VR traffic data in
Desktop and laptop, respectively, as shown in Fig.5.1. In our study, we utilized
Wireshark, a network protocol analyzer, to gather raw traffic data and to save
as .pcap files. The collected traffic data are organized into distinct network flows
based on their five-tuple information, comprising {source IP address, source port
number, destination IP address, destination port number, and transport protocol
(i.e., UDP or TCP)}. During the data collection process, we took measurements
to minimize interference from non-targeted traffic by shutting down other ap-
plications. Before describing traffic traces, we should explain briefly some used
terms:

• Traces: Traces refer to the recorded sequence of data transmissions or recep-
tions over a network during a specific period. In the context of VR traffic
data, traces represent the individual instances of data exchange between
devices, such as VR headsets and servers.

• Batches: Batches are collections of related data items grouped together for
processing or transmission. In VR traffic data, batches typically contain
multiple frames or fragments of data, often representing a cohesive unit of
information, such as a video stream or a sequence of user interactions.
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• Frames: Frames are discrete units of data transmitted over a network, typi-
cally containing information such as video frames, audio samples, or control
signals. In VR traffic data, frames may represent individual frames of a
video stream or other multimedia content.

• Fragments: In the context of network communication, frames are sometimes
divided into smaller segments known as fragments. When a frame is too
large to be transmitted in one piece, it is fragmented into smaller fragments
for transmission over the network. These fragments are then reassembled
into the original frame at the receiving end. Each fragment may contain
portions of multiple packets, depending on the size and structure of the
data being transmitted.

• Packets: Packets are the fundamental units of data transmission in network
communication. Each packet contains a portion of the data being trans-
mitted, along with additional information such as source and destination
addresses, error-checking codes, and sequencing information.

• Bytes: Bytes are the basic units of digital information storage and trans-
mission. In the context of VR traffic data, bytes represent the smallest
units of data exchanged between devices over the network.

To provide a more clear understanding of the traffic traces collected within the
VR and Non-VR contents, we briefly outline the traffic traces4 in the following:

• VR Traffic Traces Description: for better understanding of the Inter-
active VR traffic data traces, a plot of SteamVR Home (120fps, 40Mbps)
for a 50ms time interval, is presented in the upper plot of Fig. 5.2. Most
uplink traces are around 254 bytes, which are related to user tracking data.
The other smaller uplink values of traces can be related to the statistics
of HMD. On the downlink side, fragments with traces 1490 bytes are com-
mon, representing the larger data packets associated with video batches.
In the plot, six video batches are depicted, each containing fragments of
1490 bytes. One batch is zoomed in for clarity to highlight packets with
this similar size. Besides, within each batch, there is a smaller-size packet,
representing the residual packet resulting from frame fragmentation, which
is smaller than a full fragment.
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Fig. 5.2. Traffic traces for VR (SteamVR Home) and Non-VR (Youtube-4K) over
50ms. In order to highlight the presence of multiple packets in each batch, zoomed-in
view of one VR downlink batch has been illustrated.

4An example of Wireshark packet traces for both VR and Non-VR is presented in Appendix. A
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• Non-VR Traffic Traces Description: A plot of the Non-VR data traces
in YouTube (as an example) for a 50ms time interval, is depicted in the
lower plot of Fig. 5.2. YouTube primarily streams pre-recorded video con-
tent, which is relatively consistent in terms of data size, driven by video
streaming requirements and it is not interactive. As shown in the figure,
uplink packets are around 80 bytes, representing client video requests, while
downlink packets are around 1290 bytes, related to video streaming that is
sent to the client.

3. Feature Engineering: in this section, feature extraction and feature selection
are employed to create features that are useful for the subsequent classification
process, as discussed below:

• Feature Extraction: the dataset contains Wireshark traces with informa-
tion about the exchanged data packets. In the initial step of our analysis,
we define some short periods of time. Each set of packets within a period is
called a ‘sample’. For each sample, first, we separate the downlink and up-
link data, and then compute Number of Packets, Total Bytes and statistics
such as Minimum, Maximum, Mean, and Standard Deviation for Packet
Size and Packet Inter-arrival Time, for both downlink and uplink, sepa-
rately. In general, VR services follow some common and repetitive patterns
in the downlink and uplink directions. Therefore, incorporating features
that consider this distinct relationship or correlation between downlink and
uplink can contribute to a more robust analysis and accurate identification
of VR and Non-VR traffic. Therefore, we also compute three additional
features considering this correlation. The first one is the Ratio of Number
of Packets (derived from the division of Number of Packets in downlink by
Number of Packets in uplink). The Ratio of Total Bytes (calculated from
the division of Total Bytes in downlink by Total Bytes in uplink) is consid-
ered as a second feature in each sample for further analysis. Furthermore,
in each sample we incorporate the cross-correlation among total bytes in
a group of downlink and uplink traffic as a third feature. To compute the
cross-correlation for each sample, we divide the duration of each sample
into a certain number of sub-samples, resulting in τ , according to the next
expression (5.1):

τ =
ω

N
, (5.1)

where ω designates the duration of the sample and N denoted to number
of sub-samples. Fig. 5.3 illustrates the partitioning of a sample within a
duration ω into a designated set of N sub-samples. The total number of

Fig. 5.3. The division of ω into a specified N number of sub-samples.

bytes per sub-sample (ρn) can be obtained by the next expression (5.2):

ρn =
P∑

p=1

Sp (5.2)
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where ρn denotes total sum of packet sizes Sp (in bytes) considered in the
duration of τ , where n = {1, 2, . . . , N} and p = {1, 2, . . . , P} being P the
total number of packets in a duration of τ . The expression 5.2 can be used
for obtaining ρn for both downlink and uplink. These sub-samples can be
gathered in two vectors, designated asD = {ρn} for downlink and U = {ρn}
for uplink. Therefore, the Pearson correlation [267] is calculated according
to the expression 5.3:

CD,U =
N(

∑N
j=1DjUj)− (

∑N
j=1Dj)(

∑N
j=1 Uj)√

[N
∑N

j=1D
2
j − (

∑N
j=1 Dj)2][N

∑N
j=1 U

2
j − (

∑N
j=1 Uj)2]

(5.3)

The CD,U is the cross correlation between D and U considered as a feature
for each sample. We obtain the correlation values for all samples in each
dataset.

Table 5.2 shows the considered symbols for the 23 features extracted for
each sample and a brief description of each. It is worth noting that, for the
sake of simplicity in the work, we have assigned a symbol to each feature,
which can be found in Table 5.2 for reference.

In addition to extracted features, a binary label is also included in the
dataset to identify VR from Non-VR (i.e., assigning 1 to VR and 0 to
Non-VR).

• Feature Selection: This technique is a critical step in SL aimed at iden-
tifying the most relevant features for predicting the target variable. There
are several feature selection techniques in supervised learning, like “filter”
that selects feature subsets based on their relationship with the target vari-
able by statistical methods or feature importance methods, “wrapper” that
searches for effective feature subsets [189, 268], “intrinsic” that selects by
algorithms like Decision Trees to perform automatic feature selection dur-
ing training [268] or some novel “hybrid models”, combining them [260].
We use filter selection using a feature importance method, called “permu-
tation importance” that is both model-agnostic and easily comprehensible.
Permutation importance stands out as it possesses both of these qualities.
It assesses feature importance by quantifying the impact on model error
(e.g., Mean Absolute Error (MAE), r-squared, accuracy) when the values
of a single feature are permuted, providing an intuitive and straightforward
measure [269]. Permutation importance is a technique used to estimate
the importance of features in a model by assessing the change in model
performance when the feature values are randomly shuffled. The process
begins by calculating the baseline performance of the trained model on a
validation dataset. For each feature, the values are permuted, breaking the
association between the feature and the target variable, and the model’s
performance is then evaluated on this modified dataset. The importance of
a feature is determined by the difference between the baseline performance
and the performance on the permuted dataset: a significant drop in perfor-
mance indicates a highly important feature, while a small change suggests
a less important feature. This procedure is repeated for all features. Some-
times, importance values are normalized to sum to 1, but this is not always
the case, especially for non-parametric models like kNN, where the impor-
tance values may not sum to 1 due to their inherent characteristics and the
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Table 5.2. The Description of Symbols for Features Extracted. Ten similar features
are considered for downlink and uplink separately, distinguished by ‘DL’ or ‘UL’ at
the end of their respective symbols.

Feature Symbol Description (per ω)

NoPDL
Number of packets

NoPUL
TBDL

Total Bytes
TBUL

MinPSDL
Min Packet Size

MinPSUL
MaxPSDL

Max Packet Size
MaxPSUL
MeanPSDL

Mean Packet Size
MeanPSUL
StdPSDL

Standard Deviation Packet Size
StdPSUL

MinPIATDL
Min Packet inter-arrival time

MinPIATUL
MaxPIATDL

Max Packet inter-arrival time
MaxPIATUL
MeanPIATDL

Mean Packet inter-arrival time
MeanPIATUL
StdPIATDL

Standard Deviation Packet inter-arrival time
StdPIATUL

RoNoP Ratio of Number of Packets (DL/UL)
RoTB Ratio of Total Bytes (DL/UL)
CC Cross Correlation (i.e. CD,U )

nature of the permutation test. This method provides an insightful way
to understand feature significance by observing the impact of disrupting
each feature’s relationship with the target variable. Based on permutation
importance feature selection technique, the importance of each feature has
been obtained in each specific dataset with a single sample duration, spe-
cific correlation sub-sample and for each ML classification algorithm. For
most of these algorithms, it is clear that using all the features is crucial to
achieve high performance. Nevertheless, there are instances where certain
features have been disregarded by the algorithms, such as the DT classifier
in all varied settings.

5.3.2 Traffic Classification

Traffic classification methods are essential for managing and optimizing network perfor-
mance by identifying the types of traffic flowing through the network. In this section,
we first present a background of existing traffic classification methods, highlighting
the comparison among them. Then, we describe how we apply ML to classify traffic
in our dataset.
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5.3.2.1 Traffic Classification Background

Different kinds of traffic classification methods can be found in the literature. Tradi-
tional methods are based on port-based or payload-based (DPI). On the other hand,
other traffic classification methods are based on AI/ML. Table 5.3 compares these
three methods according to several aspects including complexity, computational time,
handling encrypted traffic, and adaptability. The traditional methods require manual
tuning, whereas the ML-based approach works seamlessly after training. Moreover,
port-based classification is simple to implement, requires minimal computing resources,
and offers high-speed classification. However, it involves accessing the packet’s header
and examining the utilized port number, providing a simple method with low com-
putational demands. Payload-based (DPI) achieves higher classification accuracy by
analyzing the content of packets within the monitored flow. Furthermore, DPI meth-
ods are ineffective in classifying encrypted network traffic because encryption obscures
the payload, making it unreadable without the decryption keys, which are not acces-
sible due to privacy and security reasons. This issue reduces their utility as many
applications utilize encryption. Moreover, DPI’s processing speed is slower, particu-
larly when handling aggregated packets. In contrast, ML-based, specifically Super-
vised Learning (SL)-based classification methods, provide high accuracy by learning
from data patterns and moderate computational time, handle encrypted traffic well
by analyzing metadata and traffic patterns, and offer fine-grained detection without
needing to access the content of network traffic, thus making them highly adaptable
to new scenarios without manual intervention. ML-based techniques require moderate
complexity for feature extraction and model training [189].

Table 5.3. Comparison of Traffic Classification Methods.

Aspect Port-based Payload-based ML-based
Complexity Low High Moderate

Computational
Low High Moderate

Time
Handling

Yes No Yes
Encrypted Traffic

Adaptability Low Low High

5.3.2.2 ML-based Traffic Classification

We particularize the framework for the AI/ML control loop depicted in Fig. 2.3 to
focus only on the objective of traffic classification. The framework designed for this
specific objective is illustrated in Fig. 5.4. As shown in Fig. 5.4, traffic traces data
collected at the AP are sent to data preparation step to preprocess and to extract
features. Then, with this data, an offline training is run in order to extract knowledge
from the collected data. This offline training is done with certain periodicity in order to
keep updated the obtained model according to recent collected measurements. Then,
the traffic classification phase to predict label is done online and consists on making
use of new measurements collected at the APs together with the binary classification
model that were obtained in the training phase. Note that the first sample of a
session (flow) is only classified because for instance, once the model identifies that this
session corresponds to VR traffic, the prioritization is carried out without needing to
classify the remaining samples of the current VR session. The obtained results in the
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Fig. 5.4. General framework of traffic classification.

prediction process may be useful prioritization of VR traffic to satisfy the requirements
at expenses of a slight degradation in the quality of other kinds of traffic.

For traffic classification, we aim to identify simple classifiers that can be later easily
implemented in the AP. As such, six common and distinct ML classifiers, namely LR,
SVM, kNN, DT, RF, and NB [187] are selected. A brief background on these classifiers
has been described in Chapter 2, Section 2.3. In our case, we apply these supervised
learning classifiers for binary classification, assigning labels as either “VR” or “Non-
VR” traffic. All classification models are constructed using the scikit-learn [269] ML
library. During the classification process, we perform hyperparameter tuning for ML
models using GridSearchCV [187, 269] for each classifier. GridSearch is employed
to identify the optimal hyperparameters for each classifier. Below, we provide brief
descriptions of the common hyperparameters considered for each classifier:

• LR and SVM: in both LR and SVM, a key hyperparameter is “C”, representing
the regularization strength. “C” controls the degree of regularization applied to
the model and inversely influences its level of regularization. However, there are
specific hyperparameters unique to each algorithm. In LR, we have the “solver”
hyperparameter, which dictates the optimization algorithm used during model
training. Meanwhile, SVM introduces the “kernel” hyperparameter, determining
the kernel function applied to the input data to facilitate the discovery of non-
linear decision boundaries. This transformation is vital for SVMs to capture
complex relationships within the data.

• kNN: in kNN, two essential hyperparameters are “n neighbors” and “weights.”
“n neighbors” determines the number of nearest neighbors that the algorithm
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considers when making a prediction for a new data point and “weights” defines
the weight assigned to each neighbor when making a prediction. The “weights”
hyperparameter in kNN can take on one of two common values: “uniform,”
which assigns equal weight to all neighbors in the prediction, or “distance”,
which assigns weights inversely proportional to each neighbor’s distance from
the data point being predicted.

• DT and RF: for DT and RF, one of the hyperparameters is “max depth” that
signifies the maximum depth of a tree. When left unspecified, the tree expands
until each leaf node contains only one value. Therefore, by reducing this param-
eter, we can prevent the tree from learning all training samples, thus mitigating
the risk of overfitting. In addition, among the other hyperparameters in DT
and RF, such as min samples leaf, max leaf nodes, and min impurity decrease,
which allow for the development of asymmetric trees and impose constraints at
the leaf or node level, we consider the impact of “min samples split”. In the
case of only RF, the hyperparameter “n estimator” is also taken into account to
restrict the number of decision trees in the ensemble.

• NB: the “var smoothing” hyperparameter in NB algorithms, controls the amount
of smoothing applied to the variance of numerical features. Smoothing helps pre-
vent issues when calculating probabilities, especially for features that have zero
variance in the training data.

5.4 Results

This section first describes the obtained results for the extracted features and the
corresponding files generated based on them, which serve as input for the classification
process. Second, it presents the results of traffic classification.

5.4.1 Feature Extraction

We define ω with values of 1000ms (1 second), 500ms, 200ms, 100ms, and 50ms. From
initial packet traces, for different values of sample duration (ω), we extract features,
sample by sample, and store in a single dataset, resulting in a total of five datasets.
We consider only samples that contain a set of non-zero packets. Table 5.4 illustrates
the count of obtained VR samples for VR, Non-VR samples and total number of
samples when the sample duration (ω) takes different values. In the training phase
of the classification process, it is essential to strive for a balanced distribution of data
across labels. We can observe inconsistencies between the number of VR and Non-VR
samples as we consider smaller values of ω. VR applications demand rapid updates and
real-time interactions, leading to more frequent transmission of smaller data chunks
and therefore, even for low ω, the number of samples with zero packets is low. On the
other hand, Non-VR data show more samples with zero packet traces than VR due to
their own nature. To address this, we removed the last samples of VR to balance the
data distribution across VR and Non-VR labels. This removal process was applied
to all dataset except dataset with ω = 1sec, and in the case of ω = 500ms, fewer
number of samples were removed. As we approach about ω = 50ms, a larger number
of samples needs to be removed to maintain balance.

In order to calculate the CC feature, we define the values of 5, 10, and 20 for N .
Therefore, for each specific values of ω and N (referred to as a setting in this study),
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Table 5.4. The count of obtained VR samples, Non-VR samples and total number of
samples for different values of sample duration (ω). Note that shorter sample duration
leads to higher number of samples.

VR Traffic Non-VR Traffic Total
ω

samples samples samples

1sec 790 841 1631
500ms 1359 1291 2650
200ms 2421 2435 4856
100ms 4176 4237 8413
50ms 7694 7790 15484

we store the obtained features in separate dataset, resulting in a total of 15 datasets
including both VR and Non-VR samples for each of dataset. Table 5.5 displays the
average CC obtained from VR samples and Non-VR samples for different values of ω
and N (i.e. settings).

Table 5.5. Average CC obtained from VR samples and Non-VR samples for different
values of sample duration (ω) and number of sub-samples (N) (i.e. different settings).

Type of samples Average of CC Values per N
ω

(No. of samples) 5 10 20

1sec
VR (790) 0.96889 0.95294 0.92365

Non-VR (841) 0.84653 0.80525 0.71961

500ms
VR (1359) 0.96321 0.93112 0.84515

Non-VR (1291) 0.83223 0.75383 0.66058

200ms
VR (2421) 0.93459 0.86528 0.76849

Non-VR (2435) 0.78340 0.63742 0.48915

100ms
VR (4176) 0.85400 0.75078 0.55645

Non-VR (4237) 0.66973 0.50797 0.40811

50ms
VR (7694) 0.74553 0.55422 0.33449

Non-VR (7790) 0.53264 0.42503 0.33813

In Table 5.5, it is observed that the average correlation of VR traffic is consistently
higher than that of Non-VR traffic across all settings with the exception of the ω =
50ms and N = 20, where they exhibit nearly identical levels of correlation. As we
decrease the ω, the correlation values tend to decrease. Moreover, as the number of
sub-samples used to calculate the correlation increases, the correlation values decrease.
As Table 5.5 reveals, within ω = 50ms and N = 20, a narrowing gap exists between
the correlations for VR and Non-VR traffic.

5.4.2 Traffic Classification Results

In this process, we evaluate all six classifiers for each of the 15 different input datasets,
one per setting. Before the classification process, the dataset is split into 70% for train-
ing and 30% for validation. Within the classification phase, hyperparameter tuning
and feature selection are conducted as follows:

1. Hyperparameter Tuning: The considered hyperparameters by using Grid-
SearchCV framework, which incorporates a robust cross-validation approach
with a fixed count of three, are listed as below:
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• “LR parameters”: [“solver”: [‘liblinear’, ‘saga’], ‘C’: [0.1, 1]]

• “SVM parameters”: [‘kernel’: [‘rbf’,‘sigmoid’], ‘C’: [0.1, 1]]

• “kNN parameters”: [‘n neighbors’: [5,10], ‘weights’: [‘uniform’, ‘distance’]]

• “DT parameters”: [‘min samples split’: [5,8], ‘max depth’: [5,10]]

• “RF parameters”: [‘n estimators’: [5,20,50], ‘min samples split’: [5,8], ‘max depth’:
[5,10]]

• “NB parameters”: [‘var smoothing’: np.logspace(0,-9, num=100)]

2. Permutation Importance Feature Selection: using this technique, we select
the most crucial features to influence the traffic classification process according
to the specific ML classification algorithm under consideration. Features with
an importance rate of zero are excluded from participation in the classification
process.

By incorporating these two processes, we perform classification method. Four com-
monly used metrics, namely Accuracy, Precision, Recall, and F1-Score, are employed
to evaluate the effectiveness of the built classifiers in a supervised classification prob-
lem [189, 270]. Accuracy indicates the overall performance of the model by measuring
the proportion of correctly classified samples out of the total number of samples in
a dataset. It provides a general sense of how well the model is performing across all
classes. Accuracy is calculated as the ratio of the sum of true positives (correctly
predicted positive cases) and true negatives (correctly predicted negative cases) to the
total number of samples, which includes true positives, true negatives, false positives
(incorrectly predicted positive cases), and false negatives (incorrectly predicted nega-
tive cases). Precision measures the proportion of true positive results among all the
positive results predicted by the model. It indicates how many of the predicted posi-
tive cases were actually correct. Precision is important when the cost of false positives
is high. It is calculated as the ratio of true positives (correctly predicted positive
cases) to the sum of true positives and false positives (incorrectly predicted positive
cases). Recall, also known as sensitivity or true positive rate, measures the proportion
of true positive results among all the actual positive cases in the dataset. It reflects
the model’s ability to identify all relevant instances and is crucial when the cost of
false negatives is high. Recall is calculated as the ratio of true positives to the sum of
true positives and false negatives (actual positive cases that were incorrectly predicted
as negative). The F1-Score is a single metric that balances both precision and recall
by taking their harmonic mean. It is useful when you need to balance the trade-off
between precision and recall, especially in situations where the class distribution is im-
balanced. The F1-Score provides a comprehensive measure by considering both false
positives and false negatives. It is calculated as 2 times the product of precision and
recall divided by the sum of precision and recall [189]. In light of this, we present a
comparison of the accuracy results of classifiers during the validation phase referred to
as the validation score in the study, for each specific ω and N (i.e. each of 15 settings)
in Table 5.6. In the context of correlation analysis, as depicted in Table 5.5, a subset
of 5 sub-samples exhibited superior correlation outcomes than 10 or 20 sub-samples,
while as indicated in Table 5.6, the best validation score pertains to sample duration
of 500ms (i.e. ω = 500ms) and the utilization of 20 sub-samples (i.e. N = 20) for
the correlation analysis across five distinct classifiers, namely SVM, kNN, DT, RF,
and NB. The most favorable outcome is attributed to the RF classifier, yielding a
validation score of 0.99245. However, when evaluating LR, a slightly better perfor-
mance is observed with sample duration of 500ms and the 20 number of sub-samples
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dataset, although the differences in accuracy between these values are minimal. It
is important to note that while the average correlation values (as presented in Table
5.5) are higher for the 5 and 10 considered sub-samples compared to the 20 number
of sub-sample dataset, the results indicate that classifiers exhibit a better ability to
distinguish between VR and Non-VR in the 20 number of sub-sample dataset.

Table 5.6. Validation scores of six classifiers for all considered setting (i.e. different
values of ω and N). The highest accuracies are highlighted in bold.

N ω LR SVM kNN DT RF NB

20

1sec 0.9388 0.9326 0.9306 0.9265 0.9347 0.8939
500ms 0.9597 0.9811 0.9624 0.9874 0.9924 0.9459
200ms 0.9547 0.9547 0.9588 0.9547 0.9554 0.8881
100ms 0.9616 0.9596 0.9612 0.9592 0.9592 0.8918
50ms 0.9621 0.9578 0.9587 0.9597 0.9632 0.9053

10

1sec 0.9224 0.9326 0.9265 0.9286 0.9306 0.8918
500ms 0.9572 0.9597 0.9610 0.9572 0.9648 0.9270
200ms 0.9526 0.9561 0.9554 0.9513 0.9513 0.8964
100ms 0.9544 0.9564 0.9552 0.9576 0.9584 0.8930
50ms 0.9537 0.9529 0.9518 0.9507 0.9546 0.9029

5

1sec 0.9286 0.9245 0.9265 0.9245 0.9265 0.9122
500ms 0.9610 0.9535 0.9459 0.9522 0.9535 0.9157
200ms 0.9554 0.9574 0.9581 09574 0.9581 0.8888
100ms 0.9481 0.9485 0.9497 0.9473 0.9509 0.8902
50ms 0.9546 0.9565 0.9574 0.9582 0.9593 0.8969

In Table 5.7, we provide the validation report for each classifier under the best-
performing setting, which corresponds to sample duration of 500ms and number of
sub-samples of 20 (i.e. ω = 500ms and N = 20). In the support column, indicating
the actual occurrences of each class in the specified dataset, it is evident that 795
samples are included in the validation process to assess the training data, comprising
392 for Non-VR and 403 for VR. Regarding the Precision, Recall, and F1-Score metrics
for the top three classifiers (kNN, DT, and RF), all values stand at 0.98 and 0.99, with
an increase in the precision of VR in the top-performing classifier, RF, which is higher
than 0.995 and rounds to 1.00.

Table 5.7. Validation report for the setting of ω = 500ms and N = 20.

Type of
Classifier

Traffic
Precision Recall F1-Score Support

LR
Non-VR 0.94 0.98 0.96 392

VR 0.98 0.94 0.96 403

SVM
Non-VR 0.97 0.99 0.98 392

VR 0.99 0.98 0.98 403

kNN
Non-VR 0.98 0.98 0.98 392

VR 0.98 0.99 0.98 403

DT
Non-VR 0.99 0.98 0.99 392

VR 0.99 0.99 0.99 403

RF
Non-VR 0.99 0.99 0.99 392

VR 1.00 0.99 0.99 403

NB
Non-VR 0.99 0.90 0.94 392

VR 0.91 0.99 0.95 403
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Table 5.8 displays the confusion matrices depicting true labels and predicted labels
for all classifiers in the best-performing setting. In the case of the top-performing clas-
sifier, RF, it correctly labels 390 out of 392 Non-VR samples, with only 2 misclassified
as VR. For the 403 VR samples, it accurately predicts 399 as true VR and misclassi-
fies 4 of them. Conversely, in the case of NB, which exhibits lower accuracy metrics
compared to the others, we observe that this performance is primarily influenced by
the misclassification of 39 Non-VR traffic instances as VR.

Table 5.8. Confusion matrices of validation data for the setting of ω = 500ms and
N = 20.

Predicted Label
Classifier Type of Traffic

Non-VR VR

T
ru

e
L
a
b
el

LR
Non-VR 384 8

VR 24 376

SVM
Non-VR 387 5

VR 10 393

kNN
Non-VR 384 8

VR 6 397

DT
Non-VR 386 6

VR 4 399

RF
Non-VR 390 2

VR 4 399

NB
Non-VR 353 39

VR 4 399

Upon reviewing all the results, we assessed the importance of the features for
the top three classifiers in the best-performing setting. This was done to gauge the
significance of each feature in the process of permutation importance feature selection.
Table 5.9 provides a breakdown of the importance of each feature for each classifier in
sequential order. It is worth noting that symbols representing the features are used in
this table to simplify and streamline the presentation. In the best-performing setting
for these three classifiers, we can observe the order of feature importance that yielded
the best results. In the case of kNN, all features are utilized in the classification
process, whereas the DT classifier employs only 12 features. Moreover, in DT, the
first feature ranked in importance is RoNoP, with a high value (i.e., 0.7751) which can
present the significance of the correlation between downlink and uplink to distinguish
VR from Non-VR. In RF, all features except for “MinPIATDL” are utilized in the
classification process.

Regarding the hyperparameters selected among all those considered during Grid-
SearchCV for the three best classifiers, we observe that setting the following values
leads to stabilized accuracy metrics:

• For kNN, configuring n neighbors as 5 and employing ’distance’ as the weighting
scheme.

• For DT, setting max depth to 10 and min samples split to 5.

• For RF, setting max depth as 10, min samples split as 8, and employing 50
estimators (n estimators).

96



Thesis Title: Development of Wi-Fi Networks through Machine Learning

Table 5.9. Importance of the features in three top-performing classifiers for the best-
performing setting (i.e. ω = 500ms and N = 20).

Features Importance
No.

Features Importance
No.

Features Importance
ranked values ranked values ranked valuesNo.

importance for kNN
No.

importance for DT
No.

importance for RF

0 NoPDL 0.0930 0 RoNoP 0.7751 0 MaxPSUL 0.2155

1 CC 0.0894 1 MaxPSUL 0.1484 1 MaxPIATDL 0.1380

2 TBDL 0.0809 2 NoPUL 0.0344 2 RoNoP 0.1199

3 NoPUL 0.0445 3 MinPIATUL 0.0137 3 TBDL 0.1107

4 MeanPSDL 0.0323 4 TBDL 0.0064 4 MeanPSUL 0.1000

5 TBUL 0.0216 5 MaxPIATUL 0.0051 5 MeanPIATDL 0.0796

6 MeanPSUL 0.0163 6 StdPIATUL 0.0048 6 TBUL 0.0473

7 MaxPSDL 0.0079 7 MinPSUL 0.0038 7 StdPIATDL 0.0374

8 RoNoP 0.0069 8 MaxPIATDL 0.0024 8 MinPSDL 0.0348

9 MaxPSUL 0.0066 9 CC 0.0021 9 MeanPIATUL 0.0313

10 RoTB 0.0054 10 NoPDL 0.0020 10 RoTB 0.0299

11 StdPSDL 0.0036 11 TBUL 0.0017 11 NoPUL 0.0202

12 MaxPIATDL 0.0036 12 MeanPSDL 0.00003 12 MaxPSDL 0.0177

13 StdPSUL 0.0030 13 StdPIATDL 0.0000 13 NoPDL 0.0040

14 MinPSDL 0.0027 14 MeanPIATDL 0.0000 14 MinPIATUL 0.0037

15 MaxPIATUL 0.0022 15 MinPIATDL 0.0000 15 MinPSUL 0.0033

16 MeanPIATDL 0.0013 16 MeanPSUL 0.0000 16 MaxPIATU 0.0015

17 StdPIATDL 0.0012 17 StdPSUL 0.0000 17 StdPSDL 0.0014

18 StdPIATUL 0.0012 18 StdPSDL 0.0000 18 StdPIATUL 0.0013

19 MinPSUL 0.0009 19 MeanPIATU 0.0000 19 StdPSUL 0.0012

20 MinPIATDL 0.0005 20 MaxPSDL 0.0000 20 MeanPSDL 0.0011

21 MeanPIATUL 0.0002 21 MinPSDL 0.0000 21 CC 0.0002

22 MinPIATUL 0.0002 22 RoTB 0.0000 22 MinPIATDL 0.0000

5.5 Evaluating the Interactive VR Traffic Identifi-

cation model

5.5.1 Model testing

In this section, we evaluate the classification model using the packet traces from: (i)
a multi-user VR session using ALVR, and (ii) a single-user session using Steam Link5.

First, we test the classification model with packet traces of three users playing VR
games in a multi-user experimental setup [244]. As shown in Fig. 5.5, each computer
is connected to the AP using an Ethernet cable, and each HMD is connected to the
AP over Wi-Fi 6. Each HMD client is connected to a server running on a computer.
During the training process, we used single-user traffic traces. The evaluation aims
to ensure that the model performs effectively on multi-user data that was not part
of training process. To achieve this, we evaluate the model for each user, separately.
This process is illustrated in the Fig. 5.5. For each user, in traffic classification, first
we apply the feature extraction model on packet arrivals to obtain samples in which
the features are computed and then, the classification model to obtain whether the
model can correctly predict its type or not. We apply two top-performing classifiers
(i.e., DT and RF), for best-performing setting (i.e., ω = 500ms, N = 20). From 128
samples of the first user (i.e., Client A) that was playing a VR game, 127 samples
are correctly classified (i.e., VR), and only one is misclassified when applying the
RF classifier. Therefore, the accuracy result for the test phase (referred to as test

5https://store.steampowered.com/app/353380/Steam Link/
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Fig. 5.5. Testing the Interactive VR Traffic Identification Model in a Multi-user Ex-
perimental Setup.

score) is: 0.9922, while with DT, 126 samples are predicted in a correct class and 2
misclassified and the test score is: 0.9844. For the Client B and Client C, both DT
and RF classifiers achieve consistent test scores of 0.9925 for Client B and 0.9921 for
Client C. Only one VR sample is misclassified by both classifiers, with 134 samples for
Client B and 127 samples for Client C. Additionally, we assessed the computational
time exclusively for Client A. In each sample, it takes approximately 0.7670 seconds
for feature extraction and 0.0131 seconds for classification using a DT classifier. The
computational time increases slightly to 0.0240 seconds when using a RF classifier.
Thus, the total computational time (i.e. both feature extraction and classification
phases) remains below 1 second for each sample. Consequently, when a user starts a
game, the AP can promptly detect whether the traffic corresponds to VR or not.

Secondly, we test the classification model with packet traces from Steam Link in a
single-user setup. Steam Link is the streaming solution of Valve that has been recently
made available for VR. This evaluation aims to ensure that the model performs effec-
tively with a source that was not used in the training process. Note that in the training
process we only used packet traces from ALVR and Unity Render Streaming. For the
traffic of a single user, we first use the feature extraction model on the packet arrivals
to obtain samples with computed features. Then, we apply the two top-performing
classifiers (i.e., DT and RF), for best-performing setting (i.e., ω = 500ms, N = 20).
From 123 samples of the user playing a VR game, 121 samples are correctly classified
as VR, with only two misclassified by both the DT and RF classifiers. Therefore, the
test phase accuracy (test score) is 0.9837. Furthermore, we evaluated the computa-
tional time, too. For each sample, feature extraction takes about 0.8710 seconds, and
classification with a DT classifier takes 0.0137 seconds. When using an RF classifier,
the classification time increases slightly to 0.0251 seconds. Therefore, the total com-
putational time, including both feature extraction and classification, remains less than
1 second per sample.

5.5.2 Enhancing Wi-Fi QoS through the Prioritization of VR
traffic

In this section we use a network simulator to analyze the impact that VR traffic
identification can have in current Wi-Fi networks. We employ an extended version
of the C++ simulator used in [271], which allows us to simulate Wi-Fi 6 networks
reproducing ALVR traces. For this particular simulation we set the position of the
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nodes, the channels that they use and their bandwidth, as well as their transmission
power, which is 20 dBm, a standard. Then we setup the traffic generation, which can
be modified to transmit lower volumes (like 50 MBps for instance), and the frame
rate is also variable for VR. In addition, we consider a Cloud Edge VR scenario that
consists of an AP and two STAs. The following MCS are used: 1024-QAM 5/6 for the
first STA, and 256-QAM 5/6 for the second one, both use 80 MHz channels on the
5 GHz band. The first STA is using ALVR to play a VR game at 100 Mbps and 90
fps. The second STA is receiving non-VR background (BG) ON/OFF traffic with a
load ranging from 200 to 400 Mbps. The ON/OFF BG traffic alternates the ON and
OFF states (exponentially distributed) for 70 ms and 30 ms in average respectively.
During the ON period, packets arrive to the AP following a Poisson distribution. To
showcase the impact that traffic identification can have in Wi-Fi QoS, we allow the
AP to detect whether the traffic is VR or BG, and prioritize the first one accordingly,
ignoring all BG packets until all VR packets are transmitted. For best-performing
setting (i.e. ω = 500ms and N = 20), there are between 280 to 300 packets in each
VR sample of 500 ms. After applying the classification model and determining that
the first sample of an VR session corresponds to VR traffic, all arriving packets with
the same source and destination IP will receive high priority from the AP and will be
transmitted. Note that the classifier is activated once enough packets are gathered for
a 500ms sample to determine the label of incoming traffic in the sample. To better
illustrate the AP prioritization process, a traffic scenario for a few packets is depicted
in Fig. 5.6.

BufferPacket arrivals

Buffer

Buffer

AP uses model to 
classify traffic 

Priority is applied to 
re-order transmissions 

Packets are 
transmitted

VR traffic

BG traffic

AP

STA

Fig. 5.6. System operation example: VR traffic classification and prioritization.

Fig. 5.7 shows the median and worst-case delay (99th percentile) for both VR traffic
and BG traffic with and without VR prioritization active in the downlink. Blue and
yellow bars show default First In First Out (FIFO) operation (i.e., no prioritization),
and red and purple bars show the delay once VR prioritization is active. The 5 ms
and 10 ms delay thresholds have been highlighted with dashed lines. VR requires very
low latency, 5 ms or under would lead to the optimal experience, while delays above
10 ms would lead to a loss of video frames and an uneven experience that is noticeable
to the player. Unprioritized VR traffic remains under 5 ms of worst-case delay for
200 Mbps, and 10 ms for 300 Mbps, maintaining a stable experience for the end user.
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Fig. 5.7. A comparison of traffic packet delay for VR and BG traffic (downlink) in
both medium and worse delay scenarios, with and without VR prioritization.

At 400 Mbps however, the delay for VR traffic exceeds 25 ms, more than twice the
maximum delay we need. Once VR prioritization is active, VR delay decreases in all
cases, and for 400 Mbps we can observe a 76.27% decrease, leading to a delay of less
than 10 ms, and a smoother experience for the player. For BG traffic on the other
hand, prioritization leads to an increase in the delay. This increase is negligible at
lower loads, but for 400 Mbps the delay is more than doubled. Indeed, prioritizing
one type of traffic will lead to worse delays for other traffic types. However, BG traffic
could be a file download or video streaming through Youtube, which either do not have
strict latency requirements (former) or can compensate through the use of buffering
(latter), which VR traffic cannot use.

In this section, we have shown that Interactive Traffic Identification can be used to
significantly improve the performance of VR traffic. By identifying the types of traffic
being driven through an AP, the AP can then make smart decisions that prioritize
delay-sensitive traffic at the expense of non-sensitive traffic. With our approach, we
have achieved VR traffic delays 4.2x lower than without prioritization, with only a
2.3x higher delay in the BG traffic.

VR flows (i.e., VR sessions) can last several minutes. However, the online traffic
classification process is run only for the first sample of a VR flow. The total com-
putation time for both feature extraction and classification of a sample is below one
second by using a standard personal computer. A similar value can be obtained with
an AP which may have dedicated resources to support ML operations. This value is
very small compared to the VR session duration. Therefore, when the first sample of
the VR flow is correctly classified as VR traffic, we can assume that the rest of the
packets of the VR flow corresponds to VR traffic, without the necessity of running the
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classification process for the rest of the samples. Then, once the flow is identified as
VR traffic, the prioritization process can be done without having an impact in terms
of latency. Note that the training time – considering training is done offline and before
deploying the model – is not evaluated since it is not relevant for real-time operations.

5.6 Conclusion

Interactive XR/VR traffic identification over Wi-Fi can be helpful to decrease la-
tency for XR users, improving network QoS and user experience. In this chapter,
we initially extracted statistical features from network characteristics across 15 set-
tings, employing specific duration of sample (i.e. each of 1sec, 500ms, 200ms, 100ms,
and 50ms) and a certain number of sub-samples (5, 10, and 20). We also included
three features related to the correlation between downlink and uplink (i.e., RoNoP,
RoTB and CC). Specifically, CC was computed based on a number of sub-samples
(5, 10 and 20). Subsequently, in the classification phase, six ML methods were com-
pared across all settings to determine the best-performing setting. This phase included
feature selection (utilizing permutation importance) and hyperparameter tuning (via
GridSearchCV). Evaluation metrics such as Accuracy, Precision, Recall, and F1-Score
were employed for assessing the performance of the classification methods. The set-
ting with ω = 500ms and N = 20 emerged as the best-performing one, where two
top-performing ML methods, DT and RF, achieved accuracies of 0.9874 and 0.9924,
respectively.

To evaluate the interactive VR traffic identification model obtained from the train-
ing phase, two distinct processes were executed. Firstly, we evaluated the model by
using (i) three datasets, each associated with a different user in a multi-user experi-
mental setup, and (ii) a dataset collected when using SteamLink in single-user setup.
These datasets were not part of the training dataset. In the multi-user dataset, using
the top-performing classifiers (DT and RF) with the best setting (ω = 500ms and
N = 20), we achieved accuracies above 0.992 for all users, except for one instance
where DT accuracy was 0.984. The total computational time for Client A was under
1 second per sample for both classifiers. In the single-user SteamLink dataset, both
DT and RF also achieved high accuracy (0.984) with a computational time under 1
second per sample. The results indicate that our model performs well across these
three streaming solutions. Therefore, it is likely that the classification model can work
with other technologies, regardless of the source, as long as the traffic is encapsulated
in transport protocols.

In general, this chapter demonstrates that the ML-based traffic classification method
offers a compelling balance between accuracy and computational efficiency. In our test-
ing phase using the DT or RF classifier, we achieved an accuracy higher than 0.984
with a computational time under 1 second per sample. This indicates that the com-
putational time is moderate, making it suitable for long-lasting real-time applications.

Secondly, we utilized a network simulator to investigate the potential impact of
VR traffic identification in existing Wi-Fi networks. In a scenario involving an AP
and two STAs, the first STA engaged in playing a VR game using ALVR, while the
second STA received non-VR background traffic. The AP was configured to detect
whether the traffic is VR or BG, and prioritize VR traffic, disregarding BG packets
until all VR packets were transmitted. With this prioritization approach, we achieved
VR traffic delays 4.2 times lower than without prioritization, accompanied by only a
2.3 times higher delay in the BG traffic.
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Conclusion and Future lines of Work

6.1 Conclusion

The increasing number of Wi-Fi users and the emergence of bandwidth-intensive ap-
plications have led to a greater demand for denser AP deployment, resulting in more
intricate network management requirements. Additionally, advancements in data mon-
itoring and analytics technologies provide opportunities to glean valuable insights into
network behavior, thereby enhancing network management efficiency. Utilizing ma-
chine learning techniques offers a promising avenue to tackle these challenges and
enhance Wi-Fi network performance. This thesis has proposed a general framework
to contribute to enhancing Wi-Fi network management using machine learning tech-
niques, focusing on three core elements: Next user connectivity prediction, Wi-Fi
metric prediction (with an emphasis on traffic prediction), and Traffic classification.

Firstly, this thesis introduces a method for predicting future Wi-Fi APs to which
users will connect (Chapter 3). This method utilizes supervised learning, leveraging
historical user connections to develop a prediction model. Various approaches are de-
lineated based on the historical data used. Generally, the PBTP (Prediction Based on
Time-Period Patterns) approach, which predicts based on the most recent user connec-
tions, yields the highest prediction accuracies. However, PBDP (Prediction Based on
Daily Patterns) or PBWP (Prediction Based on Weekly Patterns) may perform better
for users exhibiting daily or weekly behavioral patterns. Notably, a combined approach
(JBP) demonstrates superior prediction accuracy compared to individual approaches,
with relatively low computation time per user. The impact of training set size on JBP
accuracy and computation time is explored, revealing that a larger number of days in
the training set enhances prediction accuracy at the expense of increased computation
time, particularly for Neural Networks. Additionally, the influence of sliding window
size is assessed, highlighting the trade-off between detecting user behavior patterns
and ensuring an adequate number of training samples. Results suggest that Neural
Network-based prediction achieves higher accuracy than Random Forest but requires
increased computational time.

Secondly, we presented a methodology for predicting future values of specific net-
work metrics such as traffic load and transmission failures (Chapter 4). This predictive
capability enabled proactive network management actions like load balancing, resource
allocation, and congestion control, ultimately enhancing network performance. Our
approach leveraged historical measurements and spatial correlations among neighbor-
ing APs. We began with a spatial correlation analysis among APs in a given re-
gion, followed by either temporal prediction based solely on historical measurements
of the target AP or spatio-temporal prediction incorporating data from both the tar-
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get AP and its highly correlated neighbors. Our prediction methodology relied on
Neural Networks and operated in two steps: offline model training using historical
data and real-time prediction using newly collected data. We evaluated various DL
methods including SimpleRNN, CNN, GRU, LSTM, and Transformer for both tem-
poral and spatio-temporal prediction tasks. Additionally, we proposed hybrid DL
algorithms combining CNN for spatial correlation extraction and RNN for temporal
correlation exploitation. Evaluation with real Wi-Fi network data from a univer-
sity campus demonstrated high prediction accuracy, accompanied by relatively small
Training Computational Time and Prediction Computational Time. Exploiting spa-
tial correlations yielded higher accuracy in spatio-temporal predictions, albeit with a
slight increase in TCT. Evaluation also highlighted improvements in prediction accu-
racy when considering the spatial domain for APs with highly correlated neighbors.
Implementation aspects were discussed, including comparison of ML techniques based
on key performance indicators and considerations for scalability and model retraining
in real network environments. As a result, the RNN (often LSTM) exhibited better
performance than other ML methods in temporal prediction. In spatio-temporal pre-
diction, the CNN-RNN (often CNN-LSTM) showed superior performance compared
to other DL methods and even outperformed only temporal prediction. Regarding
the combined methodology of temporal and spatio-temporal prediction in a scenario
with 100 APs, LSTM (for temporal)+CNN-LSTM (for spatio-temporal) demonstrated
slightly better prediction accuracy than LSTM+Single LSTM and only temporal pre-
diction with LSTM. Specifically, incorporating spatial correlations among neighboring
APs notably enhanced prediction accuracy in spatio-temporal predictions compared
to temporal predictions alone, albeit with a slight increase in TCT. Nonetheless, PCT
values for both temporal and spatio-temporal prediction NN models remained rela-
tively small.

Finally, a ML-based approach was presented for identifying interactive VR traf-
fic within a Cloud-Edge VR environment, aimed at mitigating latency for XR users
and enhancing network QoS and user experience by means of VR traffic prioritization
(Chapter 5). Initially, statistical features were extracted from network characteristics
across various settings, varying sample duration (ranging from 1 second to 50 millisec-
onds) and sub-sample sizes (5, 10, and 20). Additionally, three features pertaining to
the correlation between Downlink and Uplink were incorporated. Subsequently, in the
classification phase, six ML methods were compared across all settings to determine
the best-performing setting. The setting with a sample duration (ω) of 500 millisec-
onds and a number of sub-samples of N = 20 emerged as the most effective, with
DT and RF achieving high accuracies. The interactive VR traffic identification model
was evaluated using three-user VR traffic traces from a multi-user VR scenario and
single-user traces from a VR framework not included in the training data, yielding
consistently high accuracies for all users. Moreover, the Computational cost analysis
revealed processing times under 1 second for each sample for both classifiers. Fur-
thermore, a network simulator was employed to evaluate the impact of VR traffic
identification in existing Wi-Fi networks, demonstrating a significant reduction in VR
traffic delays with prioritization compared to scenarios without prioritization, while
incurring only a modest increase in delay for background (BG) traffic.
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6.2 Topics for Further Research

Our research contributions introduce new possibilities for future investigations. Some
of the possible interesting directions for future research on the issues that our work
has not yet covered are discussed as follows.

• One promising avenue for further research lies in the prediction of various aspects
of user behavior and network activity. This includes forecasting user traffic
demands, understanding user interests to tailor network services, and predicting
user traffic activity patterns, such as when a user will be active or inactive on
the network. By delving into these areas, user needs are anticipated and the
network performance is developed.

• For the case of next AP prediction (see chapter 3) different approaches have been
considered to collect the user patterns at different time (hourly, daily of weekly)
scales, leading to PBTP, PBDP, PBWP approaches, respectively. However, for
the case of traffic prediction (Chapter 4), an approach similar to the PBTP
has been considered, in which the prediction is based on the recent values of
AP traffic in the previous time periods. An extension of this traffic prediction
methodology to extract also daily and weekly patterns, or even a joint approach
similar to JBP presented in Chapter 3, would be another future line of work.

• In our real university dataset scenario, accommodating new circumstances may
involve adjusting the model’s parameters or conducting a complete retraining.
For instance, in the context of a University Campus, changes in classroom setups
or the introduction of new academic programs necessitate modifications to the
predictive model. This adaptation process entails fine-tuning the model’s pa-
rameters or conducting a training from scratch to better align with the evolving
circumstances. While the current model remains valid throughout the available
dataset period, future retraining might be necessary. Assessing the frequency of
retraining typically requires access to additional data, which is highlighted as a
component of future research endeavors.

• Another potential area for future research in our university’s real dataset pertains
to energy saving efforts. This involves identifying periods of low or zero traffic in
specific APs, allowing them to be switched off to save energy. This can be done
by means of ML prediction/classification methods. Additionally, it is imperative
to verify that the network continues to work effectively during periods where APs
are switched off. In particular, it is important to guarantee that UEs entering
in the coverage area of a switched-off AP should have the possibility to connect
to neighbour APs or other wireless networks (e.g. cellular networks).

• Finally, in Chapter 5, considering the significance of network traffic classification,
particularly in identifying VR traffic, the future line of work involves expanding
the classification scope to multi-classification scenarios. While the current work
focuses on binary classification for VR traffic detection, extending the classifica-
tion framework to encompass multiple classes of network traffic would enhance
its applicability and utility. This extension could involve the development of
novel ML models tailored for multi-class classification tasks, leveraging insights
gained from the existing binary classification approach. Additionally, explor-
ing techniques to address challenges specific to multi-class classification, such as
class imbalance and overlapping feature distributions, would be essential. By
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broadening the classification scope to encompass various types of network traf-
fic beyond VR, the proposed model’s versatility and effectiveness in network
management and optimization can be further augmented. On the other hand,
in the context of VR services within Wi-Fi networks, in order to consider ad-
ditional network effects, such as delays and packet losses, which can introduce
variability in the received data stream at the AP and impact the reliability of VR
applications. Investigating novel Wi-Fi mechanisms tailored specifically for VR
traffic is another crucial area of focus, as these mechanisms have the potential
to significantly enhance the overall performance of VR experiences. This may
involve making adjustments to existing Wi-Fi standards to better accommodate
the unique demands of VR applications and ensure optimal user experiences.

6.3 List of Publications

The three objectives of the thesis have been published and/or submitted for publication
in journals and conference. In the context of second journal paper, after the first
round of review, the editor and reviewers request to carry out ”moderate” (not major)
changes. These activities are listed in the following:

6.3.1 Journals

• Seyedeh Soheila Shaabanzadeh and Juan Sánchez-González, “A spatio-temporal
prediction methodology based on deep learning and real Wi-Fi measurements”,
Computer Networks, Elsevier, June 2024, ISSN 1389-1286, https://doi.org/
10.1016/j.comnet.2024.110569.

• Seyedeh Soheila Shaabanzadeh, Marc Carrascosa-Zamacois, Juan Sánchez-
González, Costas Michaelides, and Boris Bellalta. “Virtual Reality Traffic Pri-
oritization for Wi-Fi Quality of Service Improvement using Machine Learning
Classification Techniques”. In Journal of Network and Computer Applications,
Elsevier (Under Review).

6.3.2 Conference

• Seyedeh Soheila Shaabanzadeh and Juan Sánchez-González. “On the predic-
tion of future user connections based on historical records in wireless networks”.
In: Artificial Intelligence Applications and Innovations. AIAI 2020 IFIP WG
12.5 International Workshops: MHDW 2020 and 5G-PINE 2020, Neos Mar-
maras, Greece, June 5–7, 2020, Proceedings 16. Springer. 2020, pp. 84–94.

6.4 Collaboration

I have been doing a nine-month research stay at Universitat Pompeu Fabra (UPF),
and I collaborated with the “Wireless Networking research group” in “Department
of Engineering”. Our research carried out is related to the applicability of machine
learning classification techniques to improve Wi-Fi QoS through the prioritization of
Virtual Reality traffic.
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Appendix A

Traces Samples for Traffic Classifi-
cation

As mentioned, packet traces were captured using Wireshark. In the following, we
present samples of raw traffic traces for SteamVR Home (120fps, 40Mbps) representing
VR (A.1) and Youtube-4K representing Non-VR (A.2), both captured by Wireshark.
Note that the plots for these traces have been depicted in 5.2 over a period of 50ms.

Fig. A.1. Some samples of traffic traces for VR (SteamVR Home) captured by Wire-
shark

Firstly, features are extracted from these raw packet traces using a script of ‘Feature
Extraction’. To distinguish between DL and UL and extract features specific to each,
as well as three features computed from both DL and UL (i.e. RoNoP, RoTB, CC), we
utilize the Client IP addresses, namely ‘192.168.50.3’ for VR and ‘192.168.50.235’ for
Non-VR, as illustrated in A.1 and A.2. The ‘Feature Extraction’ script generates CSV
output files, which serve as inputs for the ‘Classification Model’ script. Secondly, the
‘Classification Model’ script is utilized to conduct binary classification on the inputs
for training and testing obtained from ‘Feature Extraction’ phase. The raw packet
traces files, the input files and Python scripts for both the feature extraction and
traffic classification are available on Zenodo [265].
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Fig. A.2. Some samples of traffic traces for Non-VR (Youtube-4K) captured by Wire-
shark
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[156] Ensar Zeljković et al. “ABRAHAM: machine learning backed proactive han-
dover algorithm using SDN”. In: IEEE Transactions on Network and Service
Management 16.4 (2019), pp. 1522–1536.

[157] Zijun Han et al. “Artificial intelligence-based handoff management for dense
WLANs: A deep reinforcement learning approach”. In: IEEE Access 7 (2019),
pp. 31688–31701.

[158] Jiamei Chen, Lin Ma, Yubin Xu, et al. “Support vector machine based mo-
bility prediction scheme in heterogeneous wireless networks”. In: Mathematical
Problems in Engineering 2015 (2015).

[159] Jianxi Yang, Chuping Dai, and Zhengguang Ding. “A scheme of terminal mo-
bility prediction of ultra dense network based on SVM”. In: 2017 IEEE 2nd In-
ternational Conference on Big Data Analysis (ICBDA). IEEE. 2017, pp. 837–
842.

[160] Yaxing Qiu et al. “Intelligent user profile prediction in radio access network”.
In: Signal and Information Processing, Networking and Computers: Proceed-
ings of the 5th International Conference on Signal and Information Processing,
Networking and Computers (ICSINC). Springer. 2019, pp. 437–445.

[161] CP Koushik and P Vetrivelan. “Heuristic relay-node selection in opportunistic
network using RNN-LSTM based mobility prediction”. In: Wireless Personal
Communications 114.3 (2020), pp. 2363–2388.

[162] Sibren De Bast et al. “Deep reinforcement learning for dynamic network slicing
in IEEE 802.11 networks”. In: IEEE INFOCOM 2019-IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS). IEEE. 2019,
pp. 264–269.

[163] Feng Lyu et al. “Large-scale full WiFi coverage: Deployment and management
strategy based on user spatio-temporal association analytics”. In: IEEE Inter-
net of Things Journal 6.6 (2019), pp. 9386–9398.

[164] Pierluigi Gallo and Domenico Garlisi. “Wi-Dia: Data-driven wireless diagnostic
using context recognition”. In: 2018 IEEE 4th International Forum on Research
and Technology for Society and Industry (RTSI). IEEE. 2018, pp. 1–6.

119



References

[165] Ilias Syrigos et al. “On the employment of machine learning techniques for
troubleshooting WiFi networks”. In: 2019 16th IEEE Annual Consumer Com-
munications & Networking Conference (CCNC). IEEE. 2019, pp. 1–6.

[166] Nikita Trivedi, Bighnaraj Panigrahi, and Hemant Kumar Rath. “WiNetSense:
Sensing and analysis model for large-scale wireless networks”. In: IEEE INFO-
COM 2020-IEEE Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS). IEEE. 2020, pp. 787–792.

[167] Anisa Allahdadi et al. “Hidden Markov models on a self-organizing map for
anomaly detection in 802.11 wireless networks”. In: Neural Computing and Ap-
plications 33.14 (2021), pp. 8777–8794.

[168] Maghsoud Morshedi and Josef Noll. “Estimating PQoS of video streaming on
Wi-Fi networks using machine learning”. In: Sensors 21.2 (2021), p. 621.

[169] Maghsoud Morshedi and Josef Noll. “Estimating PQoS of video conferencing
on Wi-Fi networks using machine learning”. In: Future Internet 13.3 (2021),
p. 63.

[170] Muhammad Asif Khan et al. “Real-time throughput prediction for cognitive
Wi-Fi networks”. In: Journal of Network and Computer Applications 150 (2020),
p. 102499.

[171] Huifang Feng et al. “SVM-based models for predicting WLAN traffic”. In: 2006
IEEE international conference on communications. Vol. 2. IEEE. 2006, pp. 597–
602.

[172] Alisha Thapaliya, James Schnebly, and Shamik Sengupta. “Predicting con-
gestion level in wireless networks using an integrated approach of supervised
and unsupervised learning”. In: 2018 9th IEEE Annual Ubiquitous Computing,
Electronics & Mobile Communication Conference (UEMCON). IEEE. 2018,
pp. 977–982.

[173] Mehmet Karaca and Björn Landfeldt. “Load-aware channel selection for 802.11
WLANs with limited measurement”. In: 2016 23rd International Conference on
Telecommunications (ICT). IEEE. 2016, pp. 1–5.

[174] Apollinaire Nadembega, Abdelhakim Hafid, and Tarik Taleb. “Mobility-prediction-
aware bandwidth reservation scheme for mobile networks”. In: IEEE Transac-
tions on Vehicular Technology 64.6 (2014), pp. 2561–2576.

[175] Floriano De Rango, Peppino Fazio, and Salvatore Marano. “Utility-based pre-
dictive services for adaptive wireless networks with mobile hosts”. In: IEEE
Transactions on Vehicular Technology 58.3 (2008), pp. 1415–1428.

[176] Chaoming Song et al. “Limits of predictability in human mobility”. In: Science
327.5968 (2010), pp. 1018–1021.

[177] Chih-Wei Huang, Chiu-Ti Chiang, and Qiuhui Li. “A study of deep learning net-
works on mobile traffic forecasting”. In: 2017 IEEE 28th annual international
symposium on personal, indoor, and mobile radio communications (PIMRC).
IEEE. 2017, pp. 1–6.

[178] Yong Li et al. “Limits of predictability for large-scale urban vehicular mobil-
ity”. In: IEEE Transactions on Intelligent Transportation Systems 15.6 (2014),
pp. 2671–2682.

[179] Arfah Hasbollah et al. “Mobility prediction method for vehicular network using
Markov chain”. In: Jurnal Teknologi 78.6–2 (2016), pp. 7–13.

120



References

[180] Hongbo Si et al. “Mobility prediction in cellular network using hidden markov
model”. In: 2010 7th IEEE consumer communications and networking confer-
ence. IEEE. 2010, pp. 1–5.

[181] Shubhajeet Chatterjee et al. “An improved mobility management technique for
IEEE 802.11 based WLAN by predicting the direction of the mobile node”. In:
2012 National Conference on Computing and Communication Systems. IEEE.
2012, pp. 1–5.

[182] Ashish Patro and Suman Banerjee. “Outsourcing coordination and manage-
ment of home wireless access points through an open API”. In: 2015 IEEE
conference on computer communications (INFOCOM). IEEE. 2015, pp. 1454–
1462.

[183] Eugene Chai et al. “LTE in unlicensed spectrum: Are we there yet?” In: Pro-
ceedings of the 22nd Annual International Conference on Mobile Computing
and Networking. 2016, pp. 135–148.

[184] Fuad M Abinader et al. “Enabling the coexistence of LTE and Wi-Fi in unli-
censed bands”. In: IEEE communications magazine 52.11 (2014), pp. 54–61.

[185] Gürkan Gür. “Expansive networks: Exploiting spectrum sharing for capac-
ity boost and 6G vision”. In: Journal of Communications and Networks 22.6
(2020), pp. 444–454.

[186] Jiawei Han, Jian Pei, and Hanghang Tong. Data mining: concepts and tech-
niques. Morgan kaufmann, 2022.

[187] Jason Brownlee. Machine learning mastery with Python: understand your data,
create accurate models, and work projects end-to-end. Machine Learning Mas-
tery, 2016.

[188] Charu C.. Aggarwal. Data Classification: Algorithms and Applications. CRC
Press, 2020.

[189] Ahmad Azab et al. “Network traffic classification: Techniques, datasets, and
challenges”. In: Digital Communications and Networks (2022).

[190] Bayya Yegnanarayana. Artificial neural networks. PHI Learning Pvt. Ltd.,
2009.

[191] Wayne A Woodward, Bivin Philip Sadler, and Stephen Robertson. Time series
for data science: Analysis and forecasting. CRC Press, 2022.

[192] Robert H Shumway, David S Stoffer, and David S Stoffer. Time series analysis
and its applications. Vol. 3. Springer, 2000.

[193] Sachin S Talathi and Aniket Vartak. “Improving performance of recurrent
neural network with relu nonlinearity”. In: arXiv preprint arXiv:1511.03771
(2015).

[194] Jason Brownlee. Deep learning for time series forecasting: predict the future
with MLPs, CNNs and LSTMs in Python. Machine Learning Mastery, 2018.

[195] Weicong Kong et al. “Short-term residential load forecasting based on LSTM
recurrent neural network”. In: IEEE transactions on smart grid 10.1 (2017),
pp. 841–851.

[196] Mirco Ravanelli et al. “Light gated recurrent units for speech recognition”.
In: IEEE Transactions on Emerging Topics in Computational Intelligence 2.2
(2018), pp. 92–102.

121



References

[197] Anastasia Borovykh, Sander Bohte, and Cornelis W Oosterlee. “Conditional
time series forecasting with convolutional neural networks”. In: arXiv preprint
arXiv:1703.04691 (2017).

[198] Jeffrey Donahue et al. “Long-term recurrent convolutional networks for visual
recognition and description”. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition. 2015, pp. 2625–2634.

[199] Neo Wu et al. “Deep transformer models for time series forecasting: The in-
fluenza prevalence case”. In: arXiv preprint arXiv:2001.08317 (2020).

[200] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural in-
formation processing systems 30 (2017).

[201] Shan Jiang, Joseph Ferreira, and Marta C Gonzalez. “Activity-based human
mobility patterns inferred from mobile phone data: A case study of Singapore”.
In: IEEE Transactions on Big Data 3.2 (2017), pp. 208–219.

[202] Barbara Furletti et al. “Identifying users profiles from mobile calls habits”. In:
Proceedings of the ACM SIGKDD international workshop on urban computing.
2012, pp. 17–24.

[203] Juan Sanchez-Gonzalez et al. “On extracting user-centric knowledge for person-
alised Quality of Service in 5G networks”. In: 2017 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM). IEEE. 2017, pp. 971–974.

[204] Amit Kumar and Hari Om. “A secure seamless handover authentication tech-
nique for wireless LAN”. In: 2015 International Conference on Information
Technology (ICIT). IEEE. 2015, pp. 43–47.

[205] Chen Yan et al. “CELoF: WiFi dwell time estimation in free environment”. In:
International Conference on Multimedia Modeling. Springer. 2016, pp. 503–514.

[206] 3GPP. “Technical specification Group services and system Aspects”. In: Release
15 (2018).

[207] Meysam Goodarzi et al. “Next-cell prediction based on cell sequence history
and intra-cell trajectory”. In: 2019 22nd Conference on Innovation in Clouds,
Internet and Networks and Workshops (ICIN). IEEE. 2019, pp. 257–263.

[208] Pratap S Prasad and Prathima Agrawal. “Mobility prediction for wireless net-
work resource management”. In: 2009 41st Southeastern Symposium on System
Theory. IEEE. 2009, pp. 98–102.

[209] Khong-Lim Yap and Yung-Wey Chong. “Optimized access point selection with
mobility prediction using hidden Markov model for wireless network”. In: 2017
ninth international conference on ubiquitous and future networks (ICUFN).
IEEE. 2017, pp. 38–42.

[210] Ahlam Ben Cheikh et al. “Optimized handoff with mobility prediction scheme
using hmm for femtocell networks”. In: 2015 IEEE International Conference
on Communications (ICC). IEEE. 2015, pp. 3448–3453.

[211] Khong-Lim Yap, Yung-Wey Chong, andWeixia Liu. “Enhanced handover mech-
anism using mobility prediction in wireless networks”. In: PloS one 15.1 (2020),
e0227982.

[212] Dilranjan SWickramasuriya et al. “Base station prediction and proactive mobil-
ity management in virtual cells using recurrent neural networks”. In: 2017 IEEE
18th Wireless and Microwave Technology Conference (WAMICON). IEEE. 2017,
pp. 1–6.

122



References

[213] Marvin Manalastas et al. “Where to go next?: A realistic evaluation of AI-
assisted mobility predictors for HetNets”. In: 2020 IEEE 17th Annual Con-
sumer Communications & Networking Conference (CCNC). IEEE. 2020, pp. 1–
6.

[214] Justin Manweiler et al. “Predicting length of stay at wifi hotspots”. In: 2013
Proceedings IEEE INFOCOM. IEEE. 2013, pp. 3102–3110.

[215] Smita Skrivanek. “The use of dummy variables in regression analysis”. In: More
Steam, LLC (2009).

[216] Cisco Prime Infrastructure. 3.5 Administrator Guide.

[217] RapidMiner Studio. http://www.rapidminer.com. Accessed: Online.

[218] Anurag Kumar, D Manjunath, and Joy Kuri. Wireless networking. Elsevier,
2008.

[219] Kaisa Zhang et al. “A new method for traffic forecasting in urban wireless
communication network”. In: EURASIP Journal on Wireless Communications
and Networking 2019 (2019), pp. 1–12.

[220] Jing Wang et al. “Spatiotemporal modeling and prediction in cellular networks:
A big data enabled deep learning approach”. In: IEEE INFOCOM 2017-IEEE
conference on computer communications. IEEE. 2017, pp. 1–9.

[221] Wenxiong Chen et al. “Flag: Flexible, accurate, and long-time user load predic-
tion in large-scale WiFi system using deep RNN”. In: IEEE Internet of Things
Journal 8.22 (2021), pp. 16510–16521.
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