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Summary 

The technological progress and the development of wireless 
communication market have experienced a spectacular growth over the last 
decades. They have been globally expanded to a competitive and mass market 
oriented environment. There is a consensus forecast that the wireless 
communication market will continue to be one of the most dynamical in industrial 
area and one of the fundamental pillars for the informational society progress. 

The low utilization of the limited radio spectrum bands has motivated the 
research communities to focus on the concept of granting, use and management of 
radio spectrum, in particular, to achieve a dynamic management of spectrum. The 
ability to perform a secondary use of radio spectrum that ensures that no harmful 
interference occurs on primary users, who are licensed for a particular band, is 
something that in our days has already begun to be experimented and standardized, 
e.g. with IEEE 802.22 standard for the secondary use of TV bands. In this 
framework, the use of geo-location databases and the more general concept of 
Radio Environment Map (REM) that stores different characteristics of the radio 
environment are recognized as important pillars for bringing dynamic spectrum 
management and Cognitive Radio (CR) concepts to reality.  
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The topic of this Ph.D. dissertation had been written in the context of CR 
networks, which promise significantly improvements to enhance the utilization of 
radio spectrum. In this framework, the studies performed in this thesis are 
concentrated on techniques for estimating the context where the CR network 
operates, extracting the relevant parameters that can be stored in the REM to be 
further used to achieve an optimized CR network operation. This estimation will be 
done by means of properly combining a number of samples about the received 
power gathered by secondary sensors located at different positions. Then, 
methodologies for the primary transmitter detection making use of both 
omnidirectional and directive antennas will be proposed first. 

Afterwards, with the goal of deeper characterization of CR context, this 
thesis proposes and evaluates techniques for propagation model estimation (which 
includes the estimations of propagation factor, received power at 1 m, and 
shadowing standard deviation), antennas orientation estimation, and antenna 
radiation pattern estimation. Knowledge about these parameters becomes an 
essential aspect for an efficient CR network deployment and operation. 

In the field of proposed methodologies, this thesis also tackles a 
comparative study of different interpolation techniques for the measurement 
obtained from a limited number of sensors and the evaluation of the results in 
several frameworks, including correlated and non-correlated shadowing effects. 
Finally, this thesis examines a comparative study of the obtained results with a 
state-of-the-art Maximum Likelihood reference algorithm, with the aim of 
obtaining inferior complexity and less computation times, while keeping adequate 
performance. 
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1. 
Introduction 

Wireless communications have facilitated our lives for more than one 
hundred years. It all started in 1893, in St. Louis, Missouri, when Nikola Tesla 
made his public demonstration of radio. That time he presented his demonstration 
of wireless radio communication in front of Franklin Institute in Philadelphia and 
the National Electric Light Association. From that time, communications and 
information technologies have spread so much into everyone’s lives that their 
devices invaded our homes, workplaces, even our bodies. 

The applications and consumers of wireless communication have highly 
developed and continue to expand. Accordingly, the demand for the radio spectrum 
is anticipated to rise even more quickly in the coming years. However, this radio 
spectrum is finite, and progressively crowded. All this indicates a coming soon 
crisis of radio spectrum. 

Dr. Martin Cooper, a former vice-president of Motorola who helped to 
create the first cell phone, said that the only way to solve people’s need to 
communicate wirelessly “is by new technology. You can’t create new spectrum” 
[1]. And he is right. The problem is not about the lack of spectrum, but the way it 
is used. 
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Some preliminary field spectrum measurements have pointed out the 
scarcity and inefficient use of the radio spectrum in the environment [2]. Many 
studies have focused on improving spectrum efficiency by employing spectrum 
sharing techniques.  

Cognitive radio (CR) techniques are proposed to solve these problems, by 
providing the capacity to use or share the spectrum in an opportunistic manner and 
smartly adjust radio parameters in conformity with the surrounding environment 
[3]. CR devices have the ability to sense, learn, and adapt to its surroundings by 
dynamically changing their parameters in conformity with the detected conditions 
of the environment. These devices can access and use the unutilized detected 
spectrum bands without causing harmful interference to other wireless devices.  

A proper estimation of context where these devices operated is essential 
for the proper operation of CR networks (CRNs). This context includes features 
such as transmitter positions, transmission power, radiation pattern, path loss 
model, and shadowing characterization among others. Once obtained, this context 
information should be stored in a database system, usually denoted as Radio 
Environment Map (REM) [4], to be used during the optimization of the CR 
operation. 

There are many challenges on this domain. Even that the first phone over 
CR was already made, in January 2010 [5], there is still long way to go before 
everyone can enjoy the benefices of CR devices. 

1.1. Objectives of the thesis 

The main purpose of this thesis is to contribute to the evolution and 
development of CR and in particular of the REM concept. It discusses the need for 
building REMs in cognitive radio and introduces different computing frameworks 
that discover the surrounding radio environment. 

The objectives of this thesis rely in the identification, characterization, 
estimation and performance related issues for the calculation of the context 
components of CR, using to this end just the radiofrequency (RF) strength 
measurements performed by a number of mobile terminals or sensors lying in the 
CRN deployed area. Context would include at least the knowledge of the primary 
transmitter positions, primary antenna radiation patterns, transmitter power, 
estimates of the path loss and shadowing features of the local environments. 
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A key issue in this thesis will consist in envisaging scalable and simple 
enough procedures to be carried out without imposing hardware/software extra 
constraints on the terminals and sensors, keeping in mind a cost as low as possible 
in terms of incurred overhead. To this end, a realistic image-based methodology 
will be introduced that favors the simplicity at the expense of having sub-optimum 
but realistically attained performance. 

1.2. Outline of the thesis 

The organization of this Ph.D. dissertation is depicted in Figure 1.1. 
Chapter 2 presents the basic background of several concepts that are used in this 
thesis. Through the topics discussed in this chapter, concepts such as CR, CRNs, 
cooperative spectrum sensing, and REM will be reviewed.  

The estimation of context features on CR starts in Chapter 3 where two 
methods of transmitter position estimation are presented. Chapter 4 continues with 
antenna orientation estimation, antenna radiation pattern estimation, and 
propagation model estimation. 

In Chapter 5, different interpolation techniques used in context features 
estimation are presented, like natural neighbor interpolation, linear interpolation, 
and kriging interpolation. Chapter 6 contributes with a more complex and 
promising methodology, based on Maximum Likelihood (ML) estimation. Finally, 
the document is concluded in Chapter 7 with a detailed description of the most 
important aspects of the thesis and with some suggestions for future work. 

1.3. Publications 

The following publications have been derived from the work of this 
dissertation. 

Journal publications 

• Liliana Bolea, Jordi Pérez-Romero, Ramón Agustí, “ML aided context 
feature extraction for cognitive radio,” submitted for publication to 
Computer Networks. 
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Figure 1.1: Structure of the thesis. 

• Liliana Bolea, Jordi Pérez-Romero, Ramón Agustí, Oriol Sallent, “Primary 
transmitter discovery based on image processing in cognitive radio,” Lecture 
Notes in computer science , Springer, vol. 5773, pp. 178 – 187, Oct. 2009, 
ISBN: 978‐3‐642‐03699‐6, 

http://www.springerlink.com/content/55u721983r802p53/. 

Conference publications 

• Liliana Bolea, Jordi Pérez-Romero, Ramón Agustí, “Received signal 
interpolation for context discovery in cognitive radio,” International 
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Symposium on Wireless Personal Multimedia Communications (WPMC), 
pp. 1 – 5, Oct. 2011, ISBN: 978‐1‐4577‐1786‐4, 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6081519. 

• Liliana Bolea, Jordi Pérez-Romero, Ramón Agustí, Oriol Sallent, “Context 
discovery mechanisms for cognitive radio,” IEEE Vehicular Technology 
Conference (VTC–Spring), pp. 1 – 5, May 2011, ISBN: 
978‐1‐4244‐8332‐7, 
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5956366. 

• Liliana Bolea, Jordi Pérez-Romero, Ramón Agustí, Oriol Sallent, “Image 
processing techniques as a support to transmitter positioning determination 
in cognitive radio networks,” Advanced International Conference on 
Telecommunications (AICT), pp. 112 – 117, May 2010, ISBN: 
978‐1‐4244‐6748‐8; 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5489870. 

• Liliana Bolea, Jordi Pérez-Romero, Ramón Agustí, Oriol Sallent, “Primary 
transmitter discovery based on image processing in cognitive radio,” 
International Workshop on Eunice - The Internet of the Future, pp. 178 – 
187, Sep. 2009, ISBN: 978‐3‐642‐03699‐6, 

http://www.springerlink.com/content/55u721983r802p53/ 

• Liliana Bolea, “Context discovery in cognitive radio networks,” Proceedings 
of the 2012 Barcelona Forum on Ph.D. Research in Information and 
Communication Technologies, pp. 69 – 70, Oct. 2012, ISBN: 
978‐84‐615‐9915‐8, 
http://phdbarcelonaforum.upc.edu/documents/proceedings-forum-phd-2012-
final. 

 

 

 

 

 



 

 

 



2. 
Overview of related works on 

Cognitive Radio 

The goal of this Chapter is to present a general overview of the technical 
foundations of the work derived from this thesis. Therefore, this Chapter is 
organized into three parts. Section 2.1 presents an insight into CR, particularly 
different definitions in the literature and its structure architecture. In the second 
part, Section 2.2 examines in details the spectrum management functions. The 
Radio Environment Maps are described in Section 2.3, with a specific focus on 
context discovery. 

2.1. Cognitive Radio survey 

Lately we have been witness of an important increase in the demand for 
radio spectrum. With the emergence of new applications and the compelling need 
for mobile Internet access, demand for the spectrum is expected to grow even more 
rapidly in the coming years. Nevertheless, as it is nowadays widely recognized, the 
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licensed radio frequency spectrum is severely underutilized in most regions [2], 
[6], with temporal and geographical variations in the utilization of the assigned 
spectrum ranging from 15% to 85% [7], as shown in Figure 2.1. As a result, CR 
and Dynamic Spectrum Access (DSA) paradigms [3], [9] – [11] have emerged in 
the last decade as a promising solution to exploit the existence of the non used 
spectrum, the so-called white spaces, through opportunistic spectrum access. It 
consists in allowing secondary users (SUs) to access in an opportunistic and non-
interfering manner some licensed bands temporarily unoccupied by primary users 
(PUs) holding a license. 

2.1.1. Cognitive Radio definition 
Different definitions have been given in the literature to the CR concept 

since it was originally proposed. In 1999, Joseph Mitola III defines a cognitive 
radio as [10]: “A radio that employs model based reasoning to achieve a specified 
level of competence in radio-related domains.” 

A formal definition of CR was given by Federal Communications 
Commission  (FCC) in [7] as: 
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Figure 2.1: Spectrum utilization [8]. 
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“CR is a radio that can change its transmitter parameters based on 
interaction with the environment in which it operates”. 

On the other hand, Haykin proposed a more detailed definition in [11]: 

“CR is an intelligent wireless communication system that is aware of its 
surrounding environment (i.e., its outside world), and uses the methodology of 
understanding-by-building to learn from the environment and adapt its internal 
states to statistical variations in the incoming RF stimuli by making corresponding 
changes in certain operating parameters (e.g., transmit power, carrier-frequency, 
and modulation strategy) in real-time, with two primary objectives in mind: highly 
reliable communications whenever and wherever needed and efficient utilization of 
the radio spectrum.” 

A definition of CR now adopted by most is given by International 
Telecommunication Union (ITU) in [12] as: 

“CR system is a radio system employing technology that allows the system 
to obtain knowledge of its operational and geographical environment, established 
policies and its internal state; to dynamically and autonomously adjust its 
operational parameters and protocols according to its obtained knowledge in 
order to achieve predefined objectives; and to learn from the results obtained.” 

From these definitions, some common characteristics of the cognitive 
radio can be extracted [7] – [12]: 

• cognitive capability: the ability to acquire information from radio 
environment; 

• reconfigurability capability: the ability to adapt to the changes from radio 
environment; 

• learning capability: the capability to learn from the results obtained in order 
to improve its performance. 

Thanks to the above characteristics, CR offers a great potential for 
implementing the DSA concept. The basic idea of DSA is to allow SUs 
(unlicensed users) to access some licensed bands temporarily unoccupied by PUs 
(licensed users) without causing harmful interference. The operating rule is to 
identify spatial and temporal spectrum gaps not occupied by PUs, place SU 
transmissions within such spaces and vacate the channel as soon as PUs return. 
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The term “spectrum holes” stands for those licensed subbands of the radio 
spectrum that are not actually utilized at a particular instant of time and specific 
geographic location [11], (see Figure 2.2). These spectrum holes could be used 
opportunistically by SUs provided that they are able to sense the spectrum, to 
detect the presence of either PU or SU transmissions, and to adapt to the varying 
spectrum conditions, ensuring that the primary rights are preserved [13]. 

2.1.2. Cognitive Radio Network Architecture 
A typical architecture of a Cognitive Radio Network (CRN), also referred 

to as DSA network or Next Generation (xG) network ([8], [14]), is shown in 
Figure 2.3, where different possible scenarios are considered. The components of 
such network architecture can be classified in primary network and secondary/CR 
network. 

Primary network is referred as an existing network infrastructure that has 
an exclusive right to access a certain spectrum band. Some examples are the 
mobile telephony networks and the broadcast TV networks. Primary (licensed) 
users (PUs) have a license to operate in a certain spectrum band and are controlled 
by primary base station (BS). 

On the contrary, CR (secondary or unlicensed) network is defined as a 
network with fixed infrastructure or an ad hoc network, without license to operate  
 

  Power Spectrum in Use

Frequency

Time
“Spectrum Hole”

 Power Spectrum in Use

Frequency

Time
“Spectrum Hole”  
Figure 2.2: Spectrum hole concept [8]. 
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Figure 2.3: CR network architecture [8], [14]. 

in a specific band. The secondary users (SUs) are making use of the spectrum in an 
opportunistic manner without affecting the primary network transmission. That is, 
the SUs coexist with the primary ones geographically and temporally. CR base 
station provides single hop connection to SUs without spectrum access license [8]. 
An important element of these networks is the spectrum broker. This central 
network entity is in charge of managing the access and the usage of the spectrum 
between different CRNs [15] – [17]. 

2.2. Spectrum management functions 

In order to access licensed bands without affecting the primary network 
and to guarantee efficient usage of the spectrum, a set of function are claimed by a 
CRN, which can be summarized as follows [8], [14]: 
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• Spectrum sensing: this function determines which portions of the spectrum 
are available and detect the presence of PUs when a user operates in a 
licensed band so as to avoid interference. 

Depending on information sheering on the CR network, spectrum sensing 
techniques can be performer in a non-cooperative detection approach or a 
cooperative detection approach. In the first case, SUs take decision based on 
there on local observation of the spectrum. However, in case of cooperative 
spectrum sensing, SUs rely also on the information shared by other nodes in 
the network [18] – [24]. The detection capability can improve significantly 
through cooperation spectrum sensing [19] – [21]. 

Cooperative detection can be performed in a centralized ([25] – [27]) or 
distributed ([28] – [31]) mode. In centralized schemes, a central unit (that 
could be a CR BS or one of the SUs [21]) collects the information from SUs 
with the purposes of finding spectrum holes. In the distributed method, 
different SUs share sensing information and take the decision independently. 

To have knowledge about the spectrum and to avoid harmful interference 
with PUs, CR needs to detect not only the spectrum holes but also to detect 
PUs, by observing the radio environment. In case of primary transmitter 
detection, the sensing is effectuated over the weak signal received by the 
SUs from primary transmitter. Related work [32] – [35] have investigated 
techniques for detecting primary transmitters through three main schemes: 
matched filter detection, energy detection, and cyclostationary feature 
detection. Reference [36] presents a study that extensively evaluates the 
performance and limitations of these detection methods. A primary receiver 
detection method is based on detecting the local oscillator leakage power 
emitted by the RF front-end of the primary receiver [37]. Relative work has 
proposed detection of primary receivers based on the concept of interference 
temperature [38] – [39]. Primary transmitter detection techniques from 
network optimization perspective have bean investigated in [40]. 

The work reporting in [41] – [44] demonstrates that cooperative spectrum 
sharing systems between primary and secondary networks regarding 
spectrum utilization would enable secondary systems to have perfect 
knowledge of the spectrum. Still, this approach implies modification of the 
existed primary network, which may not be feasible. 
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The concept of spectrum sensing can be generalized to the so-called 
spectrum awareness that incorporates all the means to acquire information 
about spectrum occupancy. This includes the use of geolocation databases 
that can provide different levels of information ranging from pure spectrum 
availability to more detailed elements of the radio environment 
characterization including transmitter characteristics, propagation models, 
etc., in what is usually called Radio Environment Map (REM). This concept, 
which constitutes a key element of this thesis, will be detailed in the next 
sub-section. A classification of the spectrum sensing forms is presented in 
Figure 2.4. 

• Spectrum decision: by this function, CR analyzes the information from the 
spectrum sensing stage and selects the most appropriate channel for 
transmission. This decision is made at the beginning of the transmission, 
when the quality of the current transmission degrades, or when a PU 
appears. 

• Spectrum sharing: by means of this function, CR coordinates access to the 
spectrum with other SUs. Spectrum sharing is based on cooperation or 
coexistence. In first case, there is clear communication and coordination  
 

 

Figure 2.4: A taxonomy of spectrum sensing [45]. 
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between primary networks and secondary networks meanwhile in second 
case there is none [46]. In case of coexistence, the primary network is not 
aware of the presence of CRN, practically CRN is invisible for it. 

• Spectrum mobility: this function vacates the channel whenever a PU is 
detected and move to an alternative spectrum hole. This function has to be 
executed when the PU is detected, when, due to mobility, the SU loses its 
connection, or when the current spectrum band can not provide the desired 
quality of transmission. 

2.3. Radio environment map 

The difficult tasks of SUs to decide about the adequate spectrum band to 
transmit, modulation formats, power level, and so on, are highly affected by the 
radio environment and the PUs activity. Simply knowing about the presence or 
absence of the PUs in a specific spectrum band in the moment of decision is not 
enough information. The efficiency of spectrum decision can be significantly 
improved by having additional information of the radio environment. The concept 
of REM was introduced by the Virginia Tech team as information collection that 
can assist cognitive operation [4], [47]. REM has been proposed as a centralized or 
distributed database containing information on the radio environment such as 
device locations and their activities, policies and regulations, geographical 
features, available services, etc. (see Figure 2.5). 

In 2010, the FCC set as a rule that, for the unlicensed operation in the TV 
broadcast bands, the SUs need to access a database for the list of the available 
channels [48]. This reflects the relevance of the use of databases, such as the REM, 
for implementing CRNs. The Available Resource Map (ARM) proposed by Krenik 
as a real time map of all radio activity in the network ([49] – [50]) can be seen as a 
precursor of REM. 

The aim of REM is to allow CR to become situation-aware by simply 
referencing the REM [46]. Hence, it will considerably decrease the work of CRN. 
The observations of CR nodes can be used to update the global or/and local REM 
information (depending on the origin, extent and the purpose of the information 
stored [51]), which can be broadcasted throughout CRNs, providing the useful 
awareness of environmental status [52].  
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The CR central entity is responsible for collecting sensing data, 
constructing REM, and coordinating the Radio Resource Management (RRM) [53] 
(see Figure 2.6). It consists of two blocks: REM Manager and REM data Storage 
and Acquisition (SA) unit. 

Characterization

Integration REM

Radio Environment Data

Geographical Information

Service and Networks

Regulation and Policy

Activity Profile of Radio 
Devices

Experiences

Characterization

Integration REM

Radio Environment Data

Geographical Information

Service and Networks

Regulation and Policy

Activity Profile of Radio 
Devices

Experiences  
Figure 2.5: REM characterizes the radio scenario and offers network support and prior 

knowledge [4]. 

 

 
Figure 2.6: REM architecture [53]. 
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Measurement Capable Devices (MCDs) are network entities in charge to 
provide local measurements from the environment and represent the SUs. REM SA 
acquires sensing data from MCDs (REM acquisition) and saves it as a local 
database (REM storage). The last unit preserves, besides this raw reported data by 
the MCDs, also processed data in form of maps [54]. 

REM Manager decides which measurements are performed, by which 
nodes, and when they should be performed. It sends measurement instructions to 
the REM SA, and it processes raw data to generate REMs [55]. The resulting REM 
database can be accessed and controlled by different entities of the network in 
charge of making decisions about the management of the available spectrum 
resources. This thesis is focused on REM manager, more precisely in processing 
data from MCDs. 

REMs could store different relevant data. According to [56], the 
information contained in REM can be grouped in three categories, described as 
following: 

• Radio elements which represent static information, data that do not change 
frequently; this includes location and mobility of each radio device, 
transmitters and receivers operations, etc. 

• Radio environment which represent volatile information, data that is highly 
dynamic; this include geographical information and propagation model, both 
used to estimate the radio interference field, etc. 

• Radio scene includes both static and dynamic information (derived); this 
category covers policy derivation, socio-economic information, security and 
access rights, etc. 

There is a large amount of existing work on REM that has been 
investigated on how to improve its accuracy and decrease the number of 
measurement required. A trade-off exists between the accuracy of REM and the 
number of measurements needed to achieve it. This relationship was considered in 
[57] where it was demonstrated by computer simulations that the REM accuracy 
increases by increasing the density of sensors. However, a too high density of 
sensors would not lead to any meaningful improvement. 

The main function of REM is to store information of the surrounding radio 
environment, based on the local measurements. Many studies on localization use 
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the Received Signal Strength (RSS) measurements [58] – [59]. RSS is a measure 
of how strong a signal is when it arrives at a sensor. It is commonly taken as a 
voltage measurement, or equivalently calculated as a signal power (e.g., the 
magnitude squared). In [60], a Maximum Likelihood (ML) estimator was derived 
for self-localization of a network of omnidirectional sensors, in which small 
subsets of the sensors were "anchor nodes" at known locations. In [61], the Cramer 
Rao Lower Bounds for such location estimation techniques were derived. 

The construction of REM was investigated by many researchers in the last 
years. An iterative process based on kriging interpolation technique in order to 
obtain the REM was proposed in [62]. Reference [63] proposed a REM obtained 
by combining measurements performed by heterogeneous sources that can assist in 
detecting, identifying and using spectrum opportunities. In [64], Yilmaz and Tugcu 
proposed an active transmitter LIvE (LocatIon Estimation) based REM 
construction technique in fading channels. They used the least squares method to 
estimate channel parameters that can help building the REM. 

As was mention before, the main function of REM is storage. Apart from 
storing, REM also process data, one of the methods being spatial interpolation. A 
brief overview of the interpolation methods in the literature in context of REM is 
presented in Chapter 5. 

2.3.1. Context discovery 
Besides the determination of the presence or absence of PUs in RF 

environment, not so many published works have made an attempt to describe and 
determine the context where a CR network operates [65] – [69]. L. Husheng 
proposed the concept of geographical-spectral pattern of interruptions from 
primary users within an area [65]. This pattern can be considered as hyperspectral 
images for multi-channel case and can be recovered form reports of SUs. 

A detection and RF characterization algorithm, collecting signal data from 
multiple points in the network, using a network of Software-Defined Radios 
(SDRs) as an experimental test bed was implemented in [66]. The authors 
implement a ML RSS scheme on a cheap for exploring transmitter 
characterization.  

In [67], a ML based approach is used to estimate transmitted power and 
transmitter positioning relying on a low number of sensors. The authors assume a 



2 Overview of related works on Cognitive Radio 

 18 
 

scenario with independent lognormal shadowing and consider omnidirectional 
antennas in a well known propagation environment. 

In [68], RSS data is used to jointly estimate the locations and radiation 
patterns of multiple transmitters. These estimates are used to create an RF footprint 
of each transmitter, and the collection of footprints can be used to estimate which 
nodes are communicating with other nodes. 

The 5.1 dimensional RF topography developed by Martin and Thomas [69] 
uses simulation results to demonstrate their transmitter characterization algorithm 
which identifies the presence, positions, and additional transmitter parameters such 
as power, path loss, transmitter directionality and beamwidth of PUs within a 
search space populated by SUs cooperating in a noisy environment. Using the RSS 
obtained at each receiving sensor and known receiver positions, they have 
demonstrated how their algorithm can be used to improve decisions on spectrum 
availability in a dynamic spectrum access system. However, authors investigate 
only the case of Gaussian antenna pattern. Moreover, the 3D or 2D search space 
over a set of different parameters involves great complexity of the algorithm. 

In this context, the goal of this thesis is to explore the characterization of 
the relevant PUs context features through the use of a simple methodology but still 
retaining satisfactory performance and without making any a priori considerations 
regarding the radiation patterns of the PUs or RF environment. Thus, transmitter 
position estimation and other context features estimation will be presented in 
Chapter 3, respectively Chapter 4, while Chapter 6 describes a more complex 
methodology that will be explained there. 

2.4. Conclusions 

This Chapter has reviewed the technical concepts where this Ph.D. 
dissertation develops its work. At start, an introduction into CR has been presented, 
providing details as relevant definitions in the literature or explaining concepts as 
“spectrum holes”. Then, the components of a typical CRN architecture were 
presented. The second section of this Chapter has explained the spectrum 
management functions where a special emphasis has been placed on sensors 
sensing function. This chapter has also reviewed, in the third part, the basic 
concepts of REM, covering details about its meaning, structure architecture, 
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contained elements, and construction. It has also been illustrated the concepts and 
most relevant approaches found in the literature on context discovery. 

 



 

 

 



3. 
Estimation of transmitter 

position 

The fundamental problems of context discovery were described in 
subsection 2.3.1 of Chapter 2. It was concluded that knowing about primary 
network can be an important input for secondary users to determine the frequencies 
available for secondary use at different points. This Chapter focuses on estimating 
the transmitter position. The two methods presented here, the binary method and 
the multi-level method, are based on image processing techniques, aimed at 
combining a number of sensed samples at different geographical positions 
collected by secondary sensors, in order to estimate the positions of the different 
primary transmitters and to have an insight about their coverage area. In the 
following, Section 3.1 presents in more detail the system model and problems that 
are considered in this thesis. The two proposed methodologies for estimating 
transmitter position are described in Section 3.2. Afterwards, simulation 
environments and simulation results are presented in Section 3.3, respectively 
Section 3.4. Finally, the conclusions are summarized in Section 3.5. 
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3.1. Problem statement and assumptions 

Let assume a generic scenario such as the one depicted in Figure 3.1 It is 
characterized by a number of transmitters corresponding to different Radio Access 
Technologies (RATs) which operate at different frequencies and having very 
different coverage areas (e.g., the central transmitter operating in a broadcast-like 
RAT with an extensive coverage area at frequency f5, or the transmitters operating 
at RATs 1 and 2 with frequencies f1, f2, f3 and f4 that could correspond to some 
cellular-like RATs). The k-th transmitter is located at geographical position (xk, yk). 
Its horizontal antenna pattern is Gk(ϕ  – ϕk) (dB) where ϕk is the pointing direction. 
The maximum of the antenna pattern is Gk(0) = 0 dB, for the pointing direction ϕ  
= ϕk. 

The secondary network can rely on the information measured by a number 
of sensors randomly scattered in the scenario and that could be built-in e.g., mobile 
terminals, and the appropriate post-processing of this information. This 
corresponds to the concept of “Sensor Network aided Cognitive Radio” [70] in 
order to assist in the detection of primary networks. Then, this elaborated 
information could be stored in a REM, for further assistance in future decisions of  
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Figure 3.1: Generic scenario with different RATs and frequencies. 
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the secondary network operation (the utility of REM was presented in Chapter 2, 
Section 2.3). It is supposed that the sensors cooperate with each other in a 
centralized manner, where a central entity plays the role to gather all sensing 
information from the sensors and to estimate the different context parameters. 

A sensor measures the received power in a number of N specific 
frequencies in its geographical position. It is considered that frequency fi (i = 1, 2, 
…, N) is detected by the sensor at position (xs, ys) when the received power is 
above a given threshold Pth(fi). It is assumed that in a given sensor position, only 
one transmitter is received above the threshold Pth(fi) in a given frequency fi. This 
could be a reasonable assumption in case that the threshold Pth(fi) is set in 
accordance to typical sensitivity levels of specific primary systems. Nevertheless, 
multiple transmitters can be detected at different frequencies in the same sensor 
position. 

Received power will be affected by the distance-dependant propagation 
and by the long-term shadowing effects. It is assumed that fast fading effects are 
averaged. Then, a sensor located at position (xs, ys) will measure a power PR,k(xs, ys) 
from the k-th transmitter given by (in dBm): 

( ) ( ), 0, , 10 , ,, 10 l gR k s s k k s k k k s k s kP x y P G o dϕ ϕ α ξ= + − − + , (3.1) 

where P0,k (dBm) is the received power at reference distance 1 m, αk is the path 
loss exponent (ranging, in practice, between approximately 2 in free space 
propagation model and 5 in dense urban environments [61]), and ξs,k is a Gaussian 
random variable with 0 mean and standard deviation σk (dB) representing the 
shadowing losses, ranging in practice from 4 dB (corresponding to uncluttered 
environment, e.g., open area) to 12 dB (corresponding to environments rich in 
shadowing and multipath, e.g., urban canyons) [71]. ds,k and ϕs,k are, respectively, 
the distance between the sensor and the transmitter and the angle of the sensor with 
respect to the transmitter, given by: 

( ) ( )2 2
,s k s k s kd x x y y= − + −  (3.2) 

and 

, arctan s k
s k

s k

y y
x x

ϕ −
=

−
. (3.3) 
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For simplicity in the notation, the explicit dependency with the frequency 
fi in the above parameters of the propagation model has been removed, assuming 
that in the sensor location each transmitter k is received at a different frequency. 

Different RSS measurements at random positions associated to the sensors 
represent a partial vision of the scenario. The problem considered in this thesis 
consists in defining a methodology to smartly combine these measurements in 
order to get a full vision in which the primary transmitters’ parameters are 
estimated. This Chapter focuses on determining, for each transmitter, its 
geographical position (xk, yk) while Chapter 4 focuses on determining, for each 
transmitter, its antenna direction ϕk, its antenna radiation pattern Gk(ϕ  – ϕk), and 
parameters of propagation model, P0,k and αk. 

Two different methods are presented in this Chapter, denoted as binary and 
multi-level methods. In the binary method, each sensor sends just one bit, for each 
frequency fi, to a central entity, in charge of combining the measurements of every 
sensor. Instead, in the multi-level method, the value detected by a given sensor for 
each frequency is quantified to a set of 2n – 1 values. Then, the sensor will send to 
the central entity this value encoded as a word of n bits. The binary method is build 
to be used in case of omnidirectional antennas only, instead the multilevel method 
can be used also in case of directive antennas. 

It is worth mentioning that this thesis focuses mainly on the combination 
of the sensing results to extract the context features, assuming these sensing results 
are available at the central entity. Both the considerations on the sensing process 
itself (such as errors in the process or the determination on which frequencies has 
to sense every sensor) and the means to report the sensing results are out of the 
scope of the thesis and are left for future work. 

3.2. Proposed techniques for transmitter 
position estimation 

It is assume that the radio environment can be characterized by an image 
[72], where each pixel (i.e., a rectangular area of dimensions Δx × Δy) contains the 
information of the RSS levels associated to the frequencies measured in this area. 
It is assumed that a pixel can only have the result of one sensor. This information 
can be encoded either with the binary or the multi-level methods. Then, given that 
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only the values of the pixels where a sensor is located are known, these values 
need to be combined using image processing techniques in order to reconstruct the 
overall image and to estimate primary network, as it is illustrated in Figure 3.2.  In 
the following, the proposed methods, that have the purpose to discover the 
transmitter positions, are presented. 

3.2.1. Binary method 
As previously mentioned, in binary method each sensor measures the 

received power in a number of specific frequencies in its position and sends just 
one bit, for each frequency fi, which takes the value 1 if the received power is 
above a given threshold Pth(fi) and 0 otherwise. Considering that transmitter k uses 
frequency fi, it can be obtained the following binary representation for each 
frequency at each sensor position: 

( ) ( ) ( ) ( )
( ) ( ) ( )

,

,

1          if    detected in , if ,
, ,

0       if  not detected in , if ,
i s s R k s s th i

i s s
i s s R k s s th i

f x y P x y P f
M f x y

f x y P x y P f
⇔ ≥⎧⎪= ⎨ ⇔ <⎪⎩

. (3.4) 

From this binary representation, it is possible to characterize the 
measurement at all frequencies given by the sensor at coordinate (xs, ys) by a value 
corresponding to the sum of the binary representations of the entire N considered 
frequencies: 

( ) ( ) 1

1
, , , 2

N
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s s i s s
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=
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Figure 3.2: Inputs and outputs of the considered problem. 
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It is assumed that the coverage area of a transmitter to be discovered will 
be approximately circular, which would be valid in terms of average received 
power according to the distance-dependent path loss whenever omnidirectional 
antennas are used. Then, the proposed methodology aims at identifying in the 
image the existing circular regions, using an object-based reconstruction technique. 

The steps of this method are illustrated in Figure 3.3 and explained in the 
following. 

• First, from the information received from the secondary sensors an image is 
build by interpolating the intermediate pixels for those positions where no 
sensor was available. It is done through the nearest neighbor interpolation 
technique, by attributing to each unknown pixel the value of the nearest 
known pixel. More about other interpolation techniques are presented in 
Chapter 5. 

• From the resulting image, a set of N binary images are built, each one 
corresponding to one frequency. The pixels of the binary image 
corresponding to frequency fi take the binary values M(fi, xs, ys). These 
images will be used as the basis to identify the different “objects” (i.e., an 
object is a region where a certain frequency fi is detected, or correspondingly 
where the pixels of the binary image take the value 1). 

• It is possible that in some cases, some objects are not properly detected, 
because they are not clearly separated from each other. In order to eliminate 
this drawback, before of object-based reconstruction technique, an image 
processing technique called erosion is applied to the binary images resulting 
from the interpolated image. In the erosion, the value of the output pixel is 
the minimum value of all the pixels in the input pixel's neighborhood. It is 
considered that a pixel’s neighborhood corresponds to a circular structuring 
element [73], defined by a circular area of radius 5 pixels around the input 
pixel. Note that in the particular case of a binary image, if any of the pixels 
of the neighborhood is set to the value 0, the output pixel after the erosion 
will be set to 0, which will tend to decrease the size of the objects and thus 
to separate them. 

• Then, for each binary image (i.e., for each frequency fi), an object-based 
reconstruction technique is applied in order to detect the objects and 
measure their properties. Object detection is done following the so-called 
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connected-component labeling technique [74] that consists in scanning the 
image and making groups of adjacent pixels having the same value (it is 
assumed that pixels are adjacent if their edges touch). For each detected 
object, the measured properties are the centroid and the radius, which 
correspond, respectively, to the centre and radius of a circle with the same 
area than the object. With these properties, the object-based reconstruction 
process regenerates a new image replacing each object by a circle with the 
corresponding radius and centered in the corresponding centroid. 

• Because of the prior erosion process, the resulting object area after object-
based reconstruction technique has become smaller than in the binary 
images, which would lead to more reduced coverage areas than in the real 
situation. To compensate this effect, the dilation technique is applied to the 
binary images resulting from the object-based reconstruction technique. A 
simple example of erosion and dilation is shown in Figure 3.5. The dilation 
is the image processing technique opposite to the erosion process, and in this 
case the value of the output pixel is the maximum value of all the pixels in 
the input pixel's neighborhood [73]. In particular, in a binary image, if any 
of the pixels of the neighborhood is set to the value 1, the output pixel is set 
to 1, which will tend to increase the size of the objects. The same 
neighborhood shape (i.e., circular structuring element) as in the erosion is 
considered. After dilation, a second object based reconstruction process is 
carried out, to obtain the final centroids and radii of the detected objects. 
Note that the computed centroids will correspond to the final estimated 
transmitter positions. In addition, the radii will provide a first insight of the 
coverage ranges. 

• Due to the shadowing effects in the propagation, after the reconstruction 
process, it may happen that certain objects are detected with an area 
significantly smaller than that of the rest of objects, so they cannot be 
considered as transmitters. To cope with this, in the last step, the resulting 
images are filtered out by eliminating those objects that have an area below 
a fraction β of the average area of all the detected objects. 

• Finally, after this filtering, the binary images are combined to obtain a new 
image including information of all the frequencies. This image includes the 
transmitter estimated positions, coverage areas assumed to be circular and 
frequencies of the different primary transmitters. 
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3.2.2. Multilevel method 
In the multi-level method, each sensor measures the received power in a 

number of specific frequencies in its position and quantifies this value in a set of 2n 
– 1 levels within the range [Pth(fi), Pmax(fi)] (note that the value 0 is reserved for the 
case that the received power is below the threshold Pth(fi)) and with quantification 
step Δ given by: 

( ) ( )max

2 1
i th i
n

P f P f−
Δ =

−
. (3.6) 

This value is sent to the CR central entity encoded as a word of n bits, for each 
frequency. 

From the information of each sensor, an image is built in which each pixel 
is characterized not only by the frequencies detected, like in the binary method, but 
also by the values of received powers at each frequency. In particular, the value of 
one pixel will be a set of quantified values, one per frequency. The steps of multi-
level method are shown in Figure 3.4 and explained in the following. 

• From the results of the sensors an image is built by interpolating the 
intermediate pixels for those positions where no sensor was available. The 
process is equivalent to the interpolation of the binary method, aiming to fill 
the empty spaces by attributing to each unknown pixel the value of the 
nearest known pixel. 

• From the resulting interpolated image, like in the binary method, a set of N 
binary images is built, one per frequency fi, whose pixels take the value 1 
when frequency fi is detected (i.e., it is above Pth(fi)) and 0 otherwise. These 
images will be used as the basis to identify the different “objects”. 

• Then, for each binary image (i.e., for each frequency fi), an object 
identification technique following the same connected component labeling 
technique (explained in the description of the binary method) is applied. 
Each group of pixels will be then an “object” associated to the coverage area 
of a certain transmitter using frequency fi. 

• The pixels belonging to each of the identified objects at frequency fi are 
colored again using the quantified values from the received power after the 
interpolation process. Then, as a result of the object identification process,  
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Original image                   Erode image                       Dilate image 

 

   

 

   

 

 
Figure 3.5: Exemple of erosion and dilation for a simple image. 

the algorithm will provide a color image per object (i.e., transmitter) and 
frequency composed by all the pixels where the corresponding transmitter 
was detected and the associated power levels (see Figure 3.4). 

• Then, each object is individually analyzed to determine the transmitter 
positions. In particular, given that the highest received power will be 
measured in the pixels where the primary transmitter is located, for each 
object the pixels with the highest received power are identified and the 
centroid of these pixels is calculated. The value of the centroid will be the 
estimated transmitter position. 

On the other hand, in addition to the transmitters’ positions it can also be 
obtained an estimate of the coverage range for each transmitter by applying to the 
binary images the same object-based reconstruction technique that was used in the 
binary method. 

3.2.2.1. Particular case of directive antennas 

In case of having a directional antenna, the estimated position is biased as 
the quantified and retained maximum received power extends in a greater extent 
the pixels’ laying in the direction of the radiation pattern. In this situation, and 
once it is observed that the antenna is directive (will be explained in Chapter 4), 
the estimation can be further refined as follows. 

1.- Take as an intermediate estimation of the transmitter position the extreme point 
of the object formed with the pixels of maximum received power in the opposite 
direction of the maximum radiation pattern (point B in Figure 3.6). 
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2.- Assuming point B as the transmitter position, estimate antenna pattern and 
propagation model coefficient as will be explained in Chapter 4. 

3.- Estimate transmitter position by shifting the previous intermediate estimation 
(point B in Figure 3.6) in the direction of the antenna by distance d1. This distance 
is computed considering that the received power in points A and B of the figure, 
respectively, is equal, meaning that the following relationship holds: 

( ) ( )
( ) ( )1 2 1 2 1

0 1
k kk

k kG G
d d d d dα αα

π
= =

− −
, (3.7) 

where G(π) is the value of the antenna radiation pattern in the back direction, α is 
the propagation coefficient and d2 is the distance between the extreme points A and 
B in Figure 3.6. From previous expression d1 is easily obtained as: 

( )
( )

1/
2

1 1/

·
1

k

k
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d G
d
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α
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π
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+
, (3.8) 
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Figure 3.6: Position estimation for directive antennas. 

3.3. Simulation environment 

The proposed methods have been evaluated by means of computer 
simulations in different scenarios. In the following basic simulation elements and 
parameters are presented. 
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3.3.1. Scenario A: Omnidirectional antennas placed 
homogeneously in a field 

First scenario consists in 42 cell radius of 1 km placed uniformly in a field, 
following a hexagonal layout, with a 3 frequency reuse pattern (f1, f2, f3). The total 
scenario size is 10 × 10 km2, and the pixel size is Δx = Δy =10 m. The transmitter 
power is 30 dBm, propagation losses as a function of distance d (km) are given by: 

10128.1 37.6logL d= + , (3.9) 

and the shadowing standard deviation is 3 dB. Power threshold Pth(fi) is set at –
99.6 dBm for all frequencies. 

Figure 3.7 shows the original image corresponding to the digitalization 
(i.e., the image if all the pixels were known). Having just N = 3 frequencies, pixels 
are encoded according to (3.5) with 8 = 2N different intensity levels (i.e., colours) 
where the value 7 = 1112 corresponds to the areas where three cells are overlapped, 
the values 3 = 0112, 5 = 1012, and 6 = 1102 corresponds to the areas where two  
 

 

0

1

2

3

4

5

6

7

 
Figure 3.7: Image corresponding to scenario A with 3dB shadowing standard deviation. 
In the right part, the color scale corresponding to each pixel intensity between 0 and 7 is 

plot. 
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cells overlap, and finally the values 1 = 0012, 2 = 0102, and 4 = 1002 correspond to 
the central areas of each cell. 

3.3.2. Scenario B: Omnidirectional antennas 
irregularly distributed in a field 

Scenario B has 5 frequency reuse pattern (f1, f2, f3, f4, f5) in a field of 10 × 
10 km2. Pixel size is Δx = Δy = 20 m. There are 21 primary transmitters, each one 
having EIRP (Equivalent Isotropic Radiated Power) of 40 dBm. Simulated cellular 
network deployment should represent a realistic network deployment. For that, in 
this scenario, propagation losses are computed using a planning tool in a realistic 
environment (ATOLL – one of the most famous tools in radio network planning 
and optimization domain), given by (distance d in km): 

( )
( ) ( ) ( )

10 10 10 10

2
10 10 10 10

46.3 33.9log 13.82log 44.9 6.55log log

1.1log 0.7 1.56log 0.8 4.78 log 18.33log 40.94

L f Hb Hb d

f Hr f f f

= + − + − −

− − + − − + −
, (3.10) 

where frequency f is 900 MHz, transmitter’s height, Hb, is 30 m, receiver’s height, 
Hr, is 1.5 m. Relation (3.10) does not apply to small path lengths. After 
calculations and transforming distance d in meters, propagation losses are: 

108.16 35.22logL d= − + , (3.11) 

Power threshold Pth(fi) is set to –85 dBm for all frequencies. Furthermore, 
the number of bits used to encode the RSS measurements is n = 5 and the 
quantization step is Δ = 3.6 dB. In turn, the value of β in the object detection 
process is 0.3. Figure 3.8 presents the original image representing the scenario with 
the position of transmitters, corresponding to a terrain in the surroundings of 
Barcelona, and Figure 3.9 presents the transmitters’ coverage area where each 
color represents a different frequency. 

3.3.3. Scenario C: Directive antennas 

The third scenario has a tri-sector antenna system that uses 3 frequency 
reuse pattern (f1, f2, f3). The total scenario size is 3780 × 3780 m2 and pixel size is 
Δx = Δy = 20 m. The EIRP is 57.15 dBm, propagation losses as a function of 
distance d (km) are computed using the same planning tool as the previous 
scenario in a realistic environment and are given by: 
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Figure 3.8: Image corresponding to scenario B and its transmitter positions. 

 

  

 

Figure 3.9: The coverage area of primary transmitters in scenario B. 
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( )
( )( ) ( )

10 10 10 10

2 2
10 10 10

69.55 26.16log 13.82log 44.9 6.55log log

3.2 log 11.75 4.97 4.78 log 18.33log 40.94

L f Hb Hb d

Hr f f

= + − + − −

− + − + −
, (3.12) 

where frequency f is 1800 MHz, transmitter’s height, Hb, is 30 m, receiver’s 
height, Hr, is 1.5 m. After the calculations and transforming distance d in meters, 
the propagation losses are: 

103.3 35.22logL d= − +   (3.13) 

Power threshold Pth(fi) is set to –85 dBm for all frequencies. In addition, in 
multi-level method, the number of bits is n = 5 and the quantization step is Δ = 2 
dB. Figure 3.10 shows the original image representing the new scenario with the 
position of transmitters, corresponding to a terrain in the surroundings of 
Barcelona, and Figure 3.11 presents the radiation pattern of the transmitter 
antenna, the same for all 3 transmitters. 

 
Figure 3.10: Image corresponding to scenario C and its transmitter positions. 
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Figure 3.11: Horizontal radiation pattern of the transmitter antenna on scenario C. 

3.4. Simulation results 

In this Section some results are provided to illustrate the performance of 
the two proposed methods. 

3.4.1. Binary method 

The original image of the scenario A (3.3.1) with omnidirectional antennas 
uniformly distributed in a field is sensed with a random sensor distribution with 
average density D and then the binary method is applied. In Figure 3.12 it can be 
observed the difference between the original image with shadowing effects, the 
sensed and interpolated image, and the reconstructed image, in case that density of 
sensors D = 100 sensors/km2. Visually it can be remarked an important 
improvement of the original image as the shadowing effects are no longer included 
in the reconstructed image, so that the positions and coverage areas of the different 
transmitters can be more clearly identified. 

Figure 3.13 plots the resulting images for different values of the sensor 
density D. Note that for a low density of sensors such as D = 4 sensors/km2 the 
transmitters can not be properly identified. 
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       Original               Sensed and interpolated          Reconstructed 
 

      

 
 

 

Figure 3.12: Comparation between the original image, the sensed and interpolated 
image, and the reconstructed image for the case D = 100 sensors/km2, binary method 

applied on scenario A. 
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Figure 3.13: Images resulted after binary method for different sensor densities on 
scenario A. 

Every centroid of the detected objects represents the estimation of the 
position of each transmitter. In order to measure the accuracy in this estimation, 
the relative error in the position estimation is computed as the difference between 
the real transmitter position and the detected position, divided by the estimated 
transmitter coverage radius. For this computation, the transmitters that are located 
in the borders of the image are not taken in account, since they do not form a 
complete circle in the original image and consequently they lead to larger errors 
due to border effects. 

Figure 3.14 presents the relative error for each transmitter in the 
considered scenario in case that density of sensors D = 100 sensors/km2. It can be 
observed that, in all the cases, the values of the relative errors are below 8%. 

The mean error and the standard deviation error (represented as vertical 
lines) for different density of sensors are shown in Figure 3.15. In addition, Figure 
3.16 plots the rate of transmitter detection representing the ratio between the  
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Figure 3.14: Relative error in the transmitter positions for D = 100 sensors/km2, binary 
method applied on scenario A. 
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Figure 3.15: Mean error and standard deviation error, binary method applied on scenario 
A. 
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Figure 3.16: Rate of transmitter detection, binary method applied on scenario A. 

number of transmitters properly detected and the exact number of transmitters. In 
case D = 4 sensors/km2, only 40% of the transmitters are detected, and the mean 
error is high, as well as the standard deviation error. As the density of sensors 
grows, the rate of detection is 100%, and the mean error is smaller. Gathering more 
than about 25 sensors per km2 (i.e., on average 1 sensor every 200 × 200 m2 or 
equivalently about 80 sensors per transmitter coverage area) leads to minor 
marginal gains to the mean error of about 5% (or 50 m in the base station position) 
and to a detection probability of 100% in the analysis performed. 

Figure 3.17 and Figure 3.18 show the obtained results for different values 
of cell radius. As expected, in case that the cell radius is small (e.g., 500m), fewer 
sensors are inside the cell coverage area, the errors are bigger, and the rate of 
detection smaller. Instead, if the cell radius is large (e.g., 1500m), the number of 
sensors inside the cell coverage area is also large, the errors are smaller, and the 
rate of detection is higher. 

Accepting an error below 5% and a rate of transmitter detection above 
95%, from the results it can obtained the minimum density of sensors necessary in 
order to make a proper estimation of the transmitters’ position. This is indicated in 
Table 3.1. 
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Figure 3.17: Relative error for different values of cell radius, binary method applied on 
scenario A. 
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Figure 3.18: Rate of transmitter detection for different values of cell radius, binary 
method applied on scenario A. 
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Table 3.1: Minimum density of sensors necessary for different cell radius, binary method 
applied on scenario A. 

 cell radius 
500 m 

cell radius 
700 m 

cell radius 
1000 m 

cell radius 
1200 m 

cell radius 
1500 m 

density of 
sensors per  

km2 
110 73 28 22 10 

3.4.2. Multi-level method for omnidirectional antennas 

A random sensor deployment with average density D is retained and multi-
level method is applied on scenario B (3.3.2) with omnidirectinal antennas 
randomly distributed in the field. In Figure 3.19 one can observe the reconstructed 
images for different values of the sensor density D – this will represent the 
estimate coverage area of the primary transmitters. It can be noticed that as the 
density of sensors grows the performance improves, providing a better estimation 
of the reference image (Figure 3.9). 

100 sensors/km2   70 sensors/km2   50 sensors/km2   25 sensors/km2   4 sensors/km2 
 

 

 

 

 

 

 

 

 
 

 

Figure 3.19: Images resulted after multi-level method for different sensor densities on 
scenario B. 

Figure 3.20 plots the comparison between the real primary transmitter 
positions and the corresponding positions estimated with both methods, binary and 
multi-level, on scenario B. It can be observed that, although the two methods are 
able to identify quite accurately the positions, the estimation is more precise with 
the multi-level method. 

As it was mentioned in previous subsection, the relative error is computed 
as the difference between the real transmitter position and the estimated position, 
divided by the estimated transmitter coverage radius. Figure 3.21 shows the 
relative error for each of the 21 transmitters in scenario B for D = 100 sensors/km2, 
together with the estimated radii with the two methods. One can remark that, with 
the binary method, the values of the relative errors have a wide variation for the 
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Figure 3.20: Real and estimated primary transmitter positions for D = 100 sensors/km2, 
compare between binary and multi-level methods on scenario B. 
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Figure 3.21: Relative error in transmitter positions and estimated radius for D = 100 
sensors/km2, compare between binary and multi-level methods on scenario B. 
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different transmitters and can be in some cases as high as 45%. Instead, with the 
multi-level method, in all the cases the values of the relative errors are below 7%. 
It can also be observed that the estimated radius for the different transmitters is 
quite similar for the two methods. 

Figure 3.22 shows the mean relative error and the standard deviation error 
for different values of sensor density D with the two considered methods. For the 
binary method, notice that the mean error improves very slowly when increasing 
the sensor density. In particular, the mean relative errors are still above 24%, for 
sensor densities as high as D = 100 sensors/ km2. On the contrary, for the multi-
level method, it can be observed a more significant reduction in both the average 
error and the standard deviation error as the density of sensors grows. Notice in 
this case that only for a rather low sensor density (e.g., D = 4 sensors/km2) the 
mean error as well as the standard deviation error are high. These results allow 
establishing the minimum required density of sensors for a desired accuracy. For 
example, in order to achieve an error below 5%, the required density of sensors 
will be D = 50 sensors/km2 with multi-level method. 
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Figure 3.22: Mean relative error and standard deviation error in the transmitter position 
estimation, compare between binary and multi-level methods on scenario B. 
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3.4.3. Multi-level method for directive antennas 

Figure 3.23 presents the mean error and standard deviation error of the 
final position estimation and initial position estimation based on Figure 3.6, for 
different values of sensor density D, in a scenario C with directive antennas 
(3.3.3). Results were averaged for the three transmitters over 10 realizations of 
sensors distribution. Errors are reduced as the density of sensors increases in both 
average error and standard deviation error. It can be noticed a remarkable 
improvement in the final position estimation compare with the initial position 
estimation. 

3.5. Conclusions 

In this Chapter two frameworks have been proposed, binary and multi-
level methods, built on image processing techniques, targeted to estimate positions 
and coverage areas of different primary transmitters. The information obtained can 
be store in databases (e.g., REM) which can be used by secondary networks in 
order to discover the presence of primary network transmitters and to use spectrum  
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Figure 3.23: Mean error and standard deviation error in initial and final transmitter position 
estimation for different sensor densities, multi-level method on scenario C. 
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opportunities without disturbing the primaries. The results obtained with binary 
method in a scenario with omnidirectional antennas uniformly distributed reveal 
the utility and efficacy of this method, with relative errors below 5% in the 
transmitter position. Instead, in more complex scenarios, under data obtained from 
a planning tool, the results with multi-level method for omnidirectional antennas 
and directive antennas reveal the advantages of the proposed framework, with 
relative errors below 7%, respectively 150 m in the transmitter position estimation. 

 



 

 

 



4. 
Extraction of other context 

features 

Some of the most relevant primary context features that a secondary 
system would require to be properly deployed are: the transmitter positions, 
orientations of their directional antennas, radiation pattern, and propagation model. 
Chapter 3 starts the estimation of primary networks by presenting two positioning 
estimation methods. This Chapter extends prior work by including in multi-level 
method other context features like antenna pattern, antenna orientation, and 
propagation model. 

The structure of this Chapter is as follows. Section 4.1 and Section 4.2 
presents a methodology that estimates antennas orientation and antenna radiation 
pattern of primary networks. Then, in Section 4.3 a propagation model estimation 
is proposed. Simulation results of the considered estimation methods are discussed 
in Section 4.4. Finally, the conclusions of the work are drawn in Section 4.5. 
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4.1. Antenna orientation estimation 

One important context component relies in the radiation pattern of the 
primary transmitter’s antenna. In practice, omnidirectional antennas can not be 
necessarily assumed. Usually, directional antennas are used, and even this radiation 
pattern can vary with smart antennas. So, in order to plan the deployment of a 
secondary network, it is a key issue to be aware of the actual radiation features of 
the primary system. In this respect, the proposed methodology considers two steps, 
the first one to estimate the antenna orientation, explained in this Section, and the 
second one to estimate the radiation pattern, explained in Section 4.2. 

First, it is determined whether a transmitter k corresponds to an omni-
directional or a directive antenna and which is the orientation. Using the 
methodology of Chapter 3 (see Figure 3.3), for each identified object (i.e., 
transmitter), the values of the pixels corresponding to the quantified received 
power after interpolation are analyzed. This is done by analyzing the values of the 
pixels corresponding to the quantified received power after interpolation for each 
identified object. In particular, the procedure computes the difference between the 
maximum and minimum power of all the pixels located at a given distance dp,k 
from the initial estimation of transmitter position in subsection 3.2.2.1 (centroid in 
Figure 3.4) for different azimuth angles ϕ, and averages this difference over the set 
of distances dp,k: 

( ) ( )( ), , , ,
1

1 max , min ,
M

I I
k R k p k R k p k

p

P d P d
M ϕϕ

δ ϕ ϕ
=

= −∑ , (4.1) 

where M is the number of distances d1,k, ..., dM,k considered in the computation 
(with a granularity of 1 pixel) and ( ), , ,I

R k p kP d ϕ  is the quantified received power of 

object k after interpolation at distance dp,k and angle ϕ from the estimated 
transmitter position. In case δk is below a given threshold δth it is assumed that the 
antenna is omnidirectional, while on the contrary the antenna is assumed to be 
directive. In the latter case, the estimation of the antenna direction ϕk is given by 
the angle with maximum received power averaged over the different distances, 
which is: 

( ), ,
1

1 argmax ,
M

I
k R k p k

p

P d
M ϕ

ϕ ϕ
=

= ∑ . (4.2) 
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As previously mentioned, in case that the antenna is found to be directive 
after the first execution of this step, the position estimation process is further 
refined following the procedure explained in subsection 3.2.2.1. 

4.2. Antenna radiation pattern estimation 

In this step, once transmitter position (xk, yk) and direction ϕk have been 
obtained, antenna’s radiation pattern can be estimated for directional antennas 
based on the average over the distances of the received power for each azimuth 
angle ϕ relative to the average power at the antenna direction ϕk, that is: 

( ) ( ) ( )( ), , , ,
1

1 , ,
M

I I
k k R k p k R k p k k

p

G P d P d
M

ϕ ϕ ϕ ϕ
=

− = −∑ . (4.3) 

4.3. Propagation model estimation 

The knowledge of the key propagation parameters can make more efficient 
the planning and deployment for a secondary system. Following the radio signal 
propagation model expressed in (3.1) and based on the prior estimation of the 
transmitter position, in this step a linear regression analysis with the available 
sensors is carried out to obtain the estimate of parameters αk and P0,k (see Figure 
4.1 (a). A differentiation has to be done between the case of directive and 
omnidirectional antennas. Specifically, for directive antennas, to remove the effect 
of antenna radiation pattern in the propagation model estimation, the power values 

used in the regression analysis, ( ), ,R k s sP x y∗ , are obtained by subtracting the value 

of the estimated radiation pattern from the measured power at each sensor, that is: 

( ) ( ) ( ), , ,, ,R k s s R k s s k s k kP x y P x y G ϕ ϕ∗ = − − . (4.4) 

It should be noted that, in addition to providing αk and P0,k as the slope and 
the constant term of the regression analysis, respectively, an estimation of the 
shadowing standard deviation σk as the standard deviation error of the regression is 
also obtained. 

The regression analysis can also be used to discard those objects identified 
in subsection 3.2.2 that do not actually correspond to transmitters but are due to 
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effects such as shadowing or detection noise. In particular, the regression analysis 
should reveal a clear correlation between distance (to the estimated transmitter 
position) and received power for all the identified objects, translating into 
reasonable values of correlation coefficient rd,P,k (a measure of the strength of the 
linear relationship between two variables) [75], defined as: 

( ) ( )
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(4.5) 

Correlation coefficient rd,P,k can range from +1 to –1; the value of –1 
indicates a perfect negative correlation, a value of +1 indicates a perfect positive 
correlation while a value of 0 indicates that the two variables are not linearly 
correlated. Values between 0.7 and 1.0 (–0.7 and –1.0) indicate a strong positive 
(negative) linear relationship via a firm linear rule. In this situation, when no clear 
correlation of power with the distance is found (a value of rd,P,k between –0.7 and 
0.7) this will correspond to an object that is not actually a transmitter. In Figure 4.1 
(b), what the process has detected and identified as an object is not actually a 
transmitter but an error of the process due to shadowing effects. This allows 
identifying and filtering “spurious” objects. The pseudocode of discarding 
“spurious” objects algorithm is presented in Figure 4.2. 

4.4. Simulation results 

The two scenarios, scenario B that include omnidirectional antennas and 
scenario C that include directive antennas, presented in 3.3.2, respectively 3.3.3, 
are used in order to evaluate the proposed methodology. This Section presents the 
performance evaluation results through these scenarios. Threshold δth, that 
determine if the transmitter has a directive or omnidirectional antenna, was set to 
10 dB after various calculation of δk (4.1) for different objects (corresponding to 
omnidirectional or directive antennas), for distance between 0.5 km and 1.1 km. 
Figure 4.3 presents two examples of calculating δk for an omnidirectional antenna 
(a), respective  a directive antenna (b). 
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Figure 4.1: (a) Clear correlation with distance; (b) No correlation with the distance. 

 

4.4.1. Scenario with omnidirectional antennas 
Based on the propagation model used by the planning tool on scenario B 

(3.11), and knowing that: 

( ) ( ) ( )P dBm EIRP dBm L dB= − , (4.6) 
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1. for every object k do 

2. calculate rd,P,k from (4.5): 

3. if |rd,P,k|≤ 0.7 then 

4.  object k is not a transmitter; 

5.  eliminate object k; 

6. else 

7.  object k is a transmitter; 

8.   calculate αk and P0,k by regression analysis; 

9.  end if; 

10. end for; 

Output (αk, P0,k) 
 

Figure 4.2: Pseudocode of discarding “spurious” objects algorithm. 

the expected received power should be: 

( ) ( )1048.16 35.22logP dBm d m= − , (4.7) 

which should be taken only as a reference, since there can be additional losses due 
to diffraction (considered by the planning tool depending on the terrain) and also 
there is some heterogeneity in the scenario so that different propagation 
expressions depend on each region type. 

The correlation between distance and received power for the available 
sensors was examined for each transmitter detected. As an example, Table 1 
presents 10 values of correlation coefficient rd,P for 10 different identified objects 
that are plotted in Figure 4.4, for the case D = 25 sensors/km2. According to the 
algorithm presented in Figure 4.2, objects 1, 2, 3, 4, 5, 6, and 9 are considered 
“spurious” objects and they are discarded while the rest of the objects indicate a 
strong negative relationship of power and distance and are considered real 
transmitters. 

With respect to the propagation model estimation, Figure 4.5 plots the 
average received power (corresponding to one transmitter) measured by sensors 
according to the distance between each of the sensors and the transmitter, for D =  
100 sensors/km2. The estimated received power as a function of the distance  
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Figure 4.3: Exemple of calculating δk for an omnidirectional antenna  (a), respective a 
directive antenna (b). 

obtained from linear regression is given by: 

( ) ( )53.65 30.62lgP dBm d m= − . (4.8) 

In turn, in a scenario with sensor density D = 50 sensors/km2, the estimated 
received power as a function of the distance obtained from linear regression leads 
to: 
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Table 4.1: 10 values of correlation coefficient for 10 different identified objects for 
the case D = 25 sensors/km2, on scenario B. 

Identified objects rd,P Decision 

1 0.3521 “spurious” object 

2 -0.3606 “spurious” object 

3 0 “spurious” object 

4 0 “spurious” object 

5 0 “spurious” object 

6 0 “spurious” object 

7 -0.7108 real transmitter 

8 -0.8971 real transmitter 

9 0 “spurious” object 

10 -0.9214 real transmitter 
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Figure 4.4: 10 different identified objects for the case D = 25 sensors/km2, on scenario 
B. 
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Figure 4.5: Linear regression of the received power as a function of distance in case of D 
= 100 sensors/km2, for one transmitter on scenario B. 

 

( ) ( )54.34 30.87lgP dBm d m= − . (4.9) 

As it can be observed, the relative error in the propagation factor α is 
around 13.06% for D = 100 sensors/km2, and around 12.35% for D = 50 
sensors/km2, while the relative error in the received power, P0, is 11.39% for D = 
100 sensors/km2, and increases up to 12.83% for D = 50 sensors/km2. 

The mean estimated values and standard deviation errors of propagation 
factor α and power P0 are presented in Figure 4.6 (a), respectively Figure 4.6 (b) as 
function of sensor density for all the transmitters on scenario B (named “Estimate” 
in figures). The theoretical values according to (4.7) are also plotted, named “Real” 
in figures. As it is expected, in both of the parameters, the errors reduce when 
increasing the sensor density. It is worth pointing out that there is an insignificant 
gain of the parameters above 20 sensors/km2. 

4.4.2. Scenario with directive antennas 
In scenario C, the expected received power at distance d should be 

approximately: 
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Figure 4.6: Estimated propagation factor α (a), estimated power P0 (b), and their standard 
deviation error as a function of sensor density, on scenario B. 

 

( ) ( )53.85 35.22lgP dBm d m= − . (4.10) 

When considering a sensor density D = 100 sensors/km2 the estimated propagation 
model based on regression analysis of one transmitter leads to: 

( ) ( )47.8 35.68lgP dBm d m= − . (4.11) 
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Instead, in case of a scenario with sensor density D = 50 sensors/km2, the estimated 
received power as a function of the distance obtained from linear regression is 
given by: 

( ) ( )49.04 35.93lgP dBm d m= − . (4.12) 

Notice that the error in the propagation factor α is only 1.3% for D = 100 
sensors/km2, and 2% for D = 50 sensors/km2, while the error in power P0 is around 
11.2% for D = 100 sensors/km2, respectively 9% for D = 50 sensors/km2, similar to 
the previous scenario with omnidirectional antennas. The higher accuracy of the 
directive antenna case compared with the omnidirectional situation could be 
justified by the lower terrain heterogeneity associated to the area covered by a 
narrower antenna beam. 

Figure 4.7 presents the mean error and standard deviation error in 
antenna’s direction estimation, for different values of sensor density D. Results 
were averaged for the three transmitters over 10 realizations of sensors 
distribution. It should be noted that the average error in the estimation of the  
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Figure 4.7: Mean error and standard deviation error in antenna’s direction estimation for 
different sensor densities, on scenario C. 
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antenna direction is very close to zero and the standard deviation of the error 
decreases when increasing the sensor density. 

The estimated radiation pattern of the primary transmitter antenna is 
presented in Figure 4.8 for the case D = 50 sensors/km2. It can be observed how 
the estimated radiation pattern follows quite adequately the original radiation 
pattern, particularly in the main lobe, and differences with respect to the real 
pattern mainly appear in the back side of the antenna. For the case D = 50 
sensors/km2, the beam width at –3 dB is detected to be 75.04º, a value 10.3º higher 
than the beam width of the considered antenna. 

4.5. Conclusions 

This Chapter has introduced a methodology that continues the estimation 
of primary networks started in Chapter 3 by providing an acceptable accuracy in 
context features such as antenna pattern, antennas orientation, and propagation  
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Figure 4.8: Horizontal radiation pattern of the primary transmitter’s antenna for the case 

D = 50 sensors/km2, on scenario C. 



4 Extraction of other context features 

 59 

model, particularly in the case of directive antennas. Methodology has been tested 
in different scenarios with both omnidirectional and directive antennas under data 
obtained from a planning tool. The results have reveled that an acceptable accuracy 
can be obtained, with errors in order of 12 % for propagation model estimation. 

 



 

 

 



5. 
Analysis of interpolation 

techniques 

This Chapter expands the prior work that used nearest neighbor 
interpolation in the multi-level method by considering three other interpolation 
techniques, namely linear, natural neighbor, and kriging interpolation. These three 
methods, in spite of not retaining the great simplicity of the nearest neighbor 
interpolation, are still non-involved methodologies that can offer a better 
characterization of the RF environment. The rest of this Chapter is structured as 
follows. Section 5.1 presents a summary of interpolation in cognitive context. Then 
Section 5.2, Section 5.3, Section 5.4, and Section 5.5 describe in details the four 
interpolation techniques: nearest neighbor, linear, natural neighbor, and kriging 
interpolation. The simulation environment is shown in Section 5.6 while the results 
are presented in Section 5.7. A summary of the main conclusions of this Chapter is 
finally given in Section 5.8. 
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5.1. Interpolation in cognitive context 

Interpolation is the process of approximating the values of a given function 
by using the known values at a discrete set of points. In this way, from the 
measurements of the sensors at a given frequency an image will be created by 
interpolating the intermediate pixels for those positions where no sensor was 
available. This is the first step intended to determine the RSS associated to those 
pixels without any sensor based on the pixels available. 

The concept of sensor network aided cognitive radio with cooperative 
sensing has been envisaged to characterize the whole area where a primary 
transmitter is detected [76]. By combining (with appropriate fusion rules) the 
signals measured by a number of sensors deployed it is possible to estimate the 
received power in any position. As shown in Figure 5.1, the power measurements 
(on a given frequency) taken by a number of neighboring sensors at different 
positions can be used to estimate the power at a given position (x, y). 

From a general perspective, the interpolation can be done as: 

( ) ( ) ( ) ( )( )1 1 1 2 2 2, , , , ,..., ,N N NP x y f P x y P x y P x y= , (5.1) 

 

Sensor 1: 
P1(x1,y1)

Sensor 2: 
P2(x2,y2)

Sensor N: 
PN(xN,yN)

d1
d2

dN

P(x,y)??

 
Figure 5.1: Interpolation of the sensors power measurements at different position. 
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where p = 1,..., N would be the closest sensors to position (x, y). 

From the information received from the secondary sensors an image is 
built by interpolating the intermediate pixels for those positions where no sensor 
was available.  

The need for interpolation from irregularly spaced data occurs in many 
different fields, such as earth science and geographic [77] medical imaging, 
meteorological or geological modeling, cartography, and computer aided 
geometric design. In [78], the author presents a survey of scattered data 
interpolation methods in image processing. The linear interpolation of intensity 
was first introduced in [79] and is known as Gouraud Shading. The use of various 
linear and non-linear interpolation schemes has been constantly suggested to 
improve the speed and visual quality of the results, as these are two thrust areas in 
the improvement of rendering algorithms [80]. 

Natural neighbor interpolation was suggested by Sibson in [81] and [82] 
for data approximation and smoothing. It has been shown that natural neighbor 
interpolation avoids most of the problems of conventional methods and therefore 
performs well for irregularly distributed data [76]. 

First introduce by a South-African mining engineer Krige [83], kriging 
interpolation is a spatial interpolation method used to estimate the value of a 
property at un-sampled location by referring to neighboring locations. In case data 
is sparse, kriging is the best interpolation technique available for applications in 
geosciences [84]. 

Kriging is not a new concept in cognitive context. In [85], authors 
introduce the concept of Interference Cartography (IC) that correspond to a geo-
localized combination and exploitation of radio measurements. IC is defined as a 
map of the measured quantity (e.g., the total RSS values on a specific frequency 
band) on the whole area of interest and kriging interpolation is used to build it. In 
[86], a possible implementation of IC in a hierarchical access context is given. 

Among the existing interpolation methods, the ones considered in this 
thesis are nearest neighbor, linear, natural neighbor, and kriging interpolation, 
explained in the following. 
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5.2. Nearest neighbor interpolation 

It is the simplest method of multivariate interpolation. The nearest 
neighbor algorithm selects for each position the value of the nearest sampling 
point. The value of the ( ), ,I

R k p pP x y  in all positions without sensor can be 

interpolated simply as: 

( ) ( ), ,, min ,
k

I
R k p p R k k kd

P x y P x y= , (5.2) 

that is, the value of ( ), ,I
R k p pP x y  is simply obtained as the value measured by the 

closest sensor (i.e., the one with minimum distance dk). This algorithm is very 
simple to implement. 

5.3. Linear interpolation 

It involves estimating a new value by connecting two adjacent known 
values with a straight line. If the two known values are PR,k(x1, y1) and PR,k(x2, y2), 
then the interpolated value at position (xp, yp) is: 

( ) ( ) ( ) ( )( ), , 1 1 , 2 2 , 1 1, , , ,I
R k p p R k R k R kP x y P x y u P x y P x y= + − , (5.3) 

where u is a number between 0 and 1 representing the fraction of the distance 
between (x1, y1) and (x2, y2) at which (xp, yp) lies, defined as: 

,1

2,1

= pd
u

d
. (5.4) 

This method works best when the function is not changing quickly between known 
values. 

5.4. Natural neighbor interpolation 

Natural neighbor interpolation is a weighted average method that 
constructs the interpolant by using natural neighbor coordinates based on Voronoi 
tessellation of a set of positions. This has the advantage over simpler methods in 
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that it provides a smoother approximation to the underlying “true” function. 
Interpolation is given by the following expression: 

( ) ( ) ( ), ,
1

, , ,
J

I
R k p p j p p R k j j

j
P x y h x y P x y

=

= ∑ , (5.5) 

where (xp, yp) is the query pixel to be interpolated, and ( ), ,I
R k p pP x y is the 

corresponding interpolated function value at this query pixel, [81] [82]. The points 
(xj, yj) j = 1, ..., J are the J natural neighbors of the query pixel (xp, yp) in the 
Voronoi diagram of the original data sites, with known function values PR,k(xj, yj). 
The values hj(xp, yp) are the coefficients referred to as natural neighbor coordinates 
for each natural neighbor. Figure 5.2 shows an example, where query pixel (xp, yp) 
has J = 5 natural neighbors (x1, y1), …, (x5, y5). 

For a given query pixel (xp, yp) to be interpolated, the process builds first 
the Voronoi polygons of its J natural neighbours. The Voronoi polygon of the j-th 
neighbour (xj, yj), denoted as Vj, consists of all pixels which are closer to (xj, yj) 
than to any other neighbour. Then, the Voronoi polygon of the query pixel (xp, yp), 
denoted as VP(xp,yp), is also built with the pixels that are closer to (xp, yp) than to any 
of its neighbours (in the example of Figure 5.2 VP(xp,yp) is represented in dotted lines 
and grey color while the Voronoi polygon of neighbour 1, V1, is represented in 
solid line and sky blue). Based on these 2 polygons, the coefficient for the j-th 
neighbour is computed as the ratio between the area of the intersection between 
VP(xp,yp) and Vj (for the case of V1 this intersection is represented in Figure 5.2 as the 
highlighted blue area labeled h1) and the area of VP(xp,yp), that is: 

( ) ( )( )
( )( )
,

,

, p p

p p

jP x y

j p p

P x y

Area V V
h x y

Area V
=

∩
. (5.6) 

5.5. Kriging interpolation 

Kriging is a statistical process that estimates a value at a point using the 
spatially dependent values in a neighborhood zone near the point. The kriging 
process is based upon the concept of using regionalized variables to model 
spatially dependent data. Kriging makes the common assumption that there is a  
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Figure 5.2: Illustration of the computation of natural neighbor coordinates. 

spatial, linear relationship between the unknown value at a point and the known 
values of neighboring points. Kriging computes the value for the unknown data 
point using a weighted linear sum of known data values. 

As explained in [87], the aim of kriging is to estimate the unknown value 
of a function ( ), ,I

R k p pP x y  at the location (xp, yp) based on the available values of 

this function in the neighboring locations , 1{ ( , )}J
R k j j jP x y = . This is expressed 

through a weighted linear combination: 

( ) ( ), ,
1

, ,
J

I
R k p p j R k j j

j
P x y w P x y

=

= ∑ , (5.7) 

wj corresponds to the kriging weights and depends on the spatial correlation 
between the considered data samples. To calculate the kriging weights a new 
function is necessary, called semi variogram, defined as: 

( ) ( ) ( ), 1 1 , 2 2
1 , ,
2

γ ⎡ ⎤= −⎣ ⎦k R k R kd Var P x y P x y , (5.8) 

where dk is the distance between (x2, y2) and (x1, y1). The kriging interpolation 
includes the number of available neighboring observations J in the calculation of 
the missing values at the unobserved locations. Due to practical considerations, an 
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ordinary kriging version developed by Sidler [87] is considered in this work. In 
[87], kriging interpolation is proposed with Von Karman covariance model [88], 
which is: 

( ) ( )
2

12

υ

υυ

χ
υ−

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟Γ ⎝ ⎠ ⎝ ⎠
k k

k
d dC d K
a a

, (5.9) 

where dk is the distance separating two locations, χ2 is the variance, a is the 
correlation length, Γ is the gamma function, and Κυ is a modified Bessel function 
of the second kind of order 0 ≤ υ ≤ 1. The relation between semi variogram and 
covariance, for a first and second order stationary function, is given by [89]: 

( ) ( ) ( )0γ = −k kd C C d . (5.10) 

5.6. Simulation environment 

To test the interpolated data accuracy, a framework was built to perform 
the proposed methodology, namely scenario D. This scenario has a total size of 
3780 m x 3780 m with pixel size Δx = Δy = 20 m. There is one transmitter located 
in the center with EIRP 55 dBm. Propagation losses as a function of distance d (m) 
are given by: 

30.5 35.22lgL d= +  (5.11) 

Based on the propagation model, the considered transmitted power, and 
according to (4.6) the received power at 1 m is P0 = 24.5 dBm and the path loss 
exponent α = 3.522. Sensors are randomly scattered in the whole scenario, with a 
sensor density varied in the different simulations. The antenna direction is 0º. The 
same non-parameterized radiation pattern antenna used in scenario C, shown in 
Figure 3.11, is considered. 

5.7. Simulation results 

At start, the influence of the quantification parameters is analyzed by 
investigating the impact of threshold power Pth and quantification step Δ on 
scenario D. Then, three different situations are analyzed in the following, 
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considering first the case where no shadowing exists, and then the cases with non-
correlated and spatially correlated shadowing. For kriging interpolation method, 
parameter J (available neighboring observation) is set at 12, variance, χ2, is 1, 
correlation length, a, is 100, and the order of modified Bessel function, υ, is 0.98, 
based on [87]. 

5.7.1. Impact of quantification parameters 
As was mentioned in Section 3.1, it is assumed that a sensor detects a 

given frequency fi if the received power is above Pth(fi). In this subection, the 
influence of Pth on the multi-level method is analyzed first, while the value of 
quantification step Δ is determined afterwards. 

5.7.1.1. Minimum received threshold Pth 

Because the threshold value highly impacts the results in measuring the 
presence or absence of PUs, the decision threshold is a critical parameter in data 
post-processing. A high value of threshold power may conduct to underestimation 
of the actual spectrum occupancy. Nevertheless, a low threshold may conduct in 
overestimation caused by noise samples above the threshold. A set of empirical 
data was post-processed, in order to establish the value of threshold power. 

To perform this analysis it is assumed that position and antenna direction 
are known a priori. A shadowing with 6 dB standard deviation is taken into 
account. No quantification is considered and all the pixels are assumed to be 
known. The impact of Pth on the non-parameterized radiation pattern antenna is 
shown in Figure 5.3 where the estimated values of path loss coefficient α, power 
P0, and beam width are named “Estimate,” while the expected values of this 
parameters are named “Real” in figure. 

It is clear from the figure that a high value of Pth leads to higher errors. 
Generally the optimal threshold setting is as low as possible to have optimal 
sensitivity, but well above noise level to prevent overestimation of spectrum 
occupancy [90]. In the following, the threshold power Pth is chosen to be –120 
dBm. 

5.7.1.2. Quantification step Δ 

In this subsection, the influence of the quantification step Δ on the  
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Figure 5.3: The impact of Pth on the antenna. 

proposed multi-level method is analyzed, using nearest neighbor and natural 
neighbor interpolation. In order to determine the value of quantification step Δ, 
various cases are analyzed. In scenario D with 6 dB shadowing standard deviation, 
the non-parameterized radiation pattern antenna is used as a transmitter, under the 
condition of unknown position and direction of the transmitter, power threshold Pth 
being set to –120 dBm. From (3.6), Pmax is defined as: 

( )max 2 1n
thP P= + − Δ  (5.12) 

It is consider that the number of bits n used to encode the RSS 
measurements is fixed to 6 and the quantification step Δ is varied between 1 dB 
and 1.5 dB, meaning that Pmax varies between –56 dBm and –24 dBm. The results 
are averaged over 150 realizations of sensor distributions for each sensor density. 
Figure 5.4 plots the comparison of the cases when Δ = 1 dB and Δ = 1.5 dB, where 
it may be noticed that lower errors are given by Δ = 1.5 dB, respectively Pmax = –24 
dBm for both of the interpolation methods. 

In the following it is consider that Pmax is fixed to –24 dBm, n varies 
between [4, 5, 6, 7], meaning that the quantification step Δ takes the values [6.0,  
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Figure 5.4: The impact of quantification step Δ and power Pmax in transmitter position 
estimation, for different sensor densities. 

3.0, 1.5, 0.75] dB. Figure 5.5 plots the mean error in the transmitter position 
estimation as a function of the sensor density for different values of n. The results 
presented in Figure 5.5 show that the largest errors in transmitter position 
estimation are given by the case with n = 4 bits while the cases of n = 5, n = 6, and 
n = 7 bits present very similar results, so the proposed methodology is not very 
sensitive to the number of bits as long it is above a minimum. This facilitates the 
minimization of the signaling requirements for transmitting the sensing results 
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Figure 5.5: The impact of quantification step Δ and n in transmitter position estimation, 
for different sensor densities. 

needed to execute the proposed methodology. In the following, the case of n = 6 
bits is analyzed, meaning that the quantification step Δ = 1.5 dB. 

5.7.2. Impact of interpolation without shadowing 
In this part, it is evaluated scenario D where received power threshold Pth 

is –120 dBm, the quantification is made with Pmax = –24 dBm, n = 6 bits, and the 
quantization step is Δ = 1.5 dB, no shadowing being added. Figure 5.6 presents the 
mean error and standard deviation error of the transmitter position estimation (a) 
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and antenna direction estimation (b), respectively, for different values of sensor 
density D, for all four methods of interpolation. Results were averaged over 150 
realizations of the sensors distribution. For a low sensor density such as D = 4 
sensors/km2 the mean error as well as the standard deviation error in both position 
estimation and antenna direction estimation are high for all four interpolation  
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Figure 5.6: Mean error and standard deviation error in transmitter position estimation (a) 
and in antenna direction estimation (b) for different sensor densities, on scenario D 

without shadowing. 
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methods. As the density of sensors grows, errors are reduced. For example, with 50 
sensors/km2 the error is roughly 100 m that corresponds to 5 pixels. As a reference, 
this is approximately 5% of the transmitter coverage radius in the direction of the 
maximum antenna gain. Slightly higher errors are given by nearest neighbor 
interpolation method. 

Concerning the estimation of the propagation model, Figure 5.7 plots the 
mean estimated value and standard deviation error of propagation factor α in  
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Figure 5.7: Estimated propagation factor α (a) and estimated P0 (b) as a function of sensor 
density, on scenario D without shadowing. 
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Figure 5.7 (a), respectively power P0 in Figure 5.7 (b), as functions of sensor 
density D. Also the theoretical values according to (3.1) are showed. Errors with 
respect to these theoretical values are reducing when increasing the sensor density. 
For both parameters, nearest neighbor interpolation gives a bit less errors while 
kriging interpolation gives a lower standard deviation than the other interpolation 
methods. It can be noted that neither in the estimation of the position nor of the 
propagation model parameters there exists a significant gain when the sensor 
density increases above 50 sensors/km2, approximately. 

The estimated radiation pattern of the primary transmitter antenna is 
presented in Figure 5.8 for the case D = 50 sensors/km2, for all four methods of 
interpolation, and their standard deviation error is presented in Table 5.1. Observe 
the similarity of the original radiation pattern and the estimated radiation patterns, 
especially in the main lobe. As it can be seen in Figure 5.8, the estimated radiation 
patterns are less accurate when looking at the back directions for all four 
interpolation methods. All four interpolation methods present a very similar 
behavior. The lowest standard deviation error is given by kriging interpolation as 
seen in Table 5.1. 
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Figure 5.8: Horizontal radiation pattern of primary transmitter’s antenna for the case D = 
50 sensors/km2, on scenario D without shadowing. 
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Table 5.1: Standard deviation of the error in horizontal antenna radiation pattern for the 
case D = 50 sensors/km2, on scenario D without shadowing. 

 Kriging Natural Linear Nearest 

Standard deviation 
error (dB) 

1.3513 1.5534 1.4843 2.2453 

5.7.3. Scenario with non-correlated shadowing 
In this subsection, random shadowing losses are added to scenario D with 

a standard deviation σ = 6 dB. Non-correlated shadowing is considered first, 
meaning that the shadowing losses are independent in all the pixels of the scenario. 
Pth is –120 dBm, Pmax = –24 dBm, n = 6 bits, and Δ = 1.5 dB. Figure 5.9 (a) 
presents the mean error and standard deviation error of position estimation, for 
different values of sensor density D, for all four methods of interpolation. 
Similarly, Figure 5.9 (b) presents the mean error and standard deviation error in 
antenna’s direction estimation. Like in the previous sub-section, results were 
averaged over 150 realizations of sensors distribution. As expected, errors are 
reduced as the density of sensors increases. The performance is approximately the 
same with all four considered methods. When comparing with the case without 
shadowing in Figure 5.6 it can be observed how the introduction of shadowing 
causes an increase in average estimation errors and standard deviations errors. 

Figure 5.10 shows the corresponding results for the mean estimation value 
and standard deviation error of the propagation factor α and power P0 for different 
values of sensor density D. Errors are decreased as the density of sensors grows. In 
this case, it can be observed how nearest neighbor case offers the worst 
performance among the considered interpolation methods, while the differences 
between kriging, natural neighbor, and linear cases are small. Table 5.2 presents 
standard deviation error of the estimated antenna radiation pattern for the case D = 
50 sensors/km2. In this situation, kriging exhibits the largest deviation in error, 
while natural neighbor provides a slightly better result than linear. 

5.7.4. Scenario with correlated shadowing 
In this part, correlated shadowing losses with 6 dB shadowing standard 

deviation are added to the original scenario. Shadowing is spatially correlated  
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Figure 5.9: Mean error and standard deviation in transmitter position estimation (a) and in 
antenna direction estimation (b) for different sensor densities, on scenario D with non-

correlated shadowing. 

Table 5.2: Standard deviation of the error in horizontal antenna radiation pattern for the 
case D = 50 sensors/km2, on scenario D with non-correlated shadowing. 

 Kriging Natural Linear Nearest 

Standard 
Deviation (dB) 

4.2434 3.0019 3.1533 3.6904 
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Figure 5.10: Estimated propagation factor α (a) and estimated P0 (b) as a function of 
sensor density, on scenario D with non-correlated shadowing. 

following an exponential autocorrelation function with decorrelation distance 
dcorr = 400 m. The generation of 2D spatially correlated shadowing is done using 
the methodology of [91] based on filtering a set of independent shadowing samples 
using a 2D filter defined from the Fourier transform of the exponential 
autocorrelation function. Results are obtained by averaging a total of 10 different 
shadowing realizations of the scenario, each of them consisting in turn in 150 
realizations of the sensor distribution. 
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Table 5.3 shows the simulation results, for the case D = 50 sensors/km2, 
for all four methods of interpolation, and comparing them with the cases without 
shadowing and non-correlated shadowing. Results are presented in terms of 
average and standard deviation values of the error in position, antenna direction, 
and propagation model parameters. It can be observed how the case of correlated 
shadowing in general exhibits better estimation errors than the case of non-
correlated shadowing for all parameters with the only exception of power P0. In 
general, kriging interpolation presents better results than the rest of the  
 

Table 5.3: Simulation results for case D = 50 sensors/km2, on scenario D without 
shadowing, with non-correlated shadowing, and with shadowing correlated. 

 
Pos. 

error -
Avg (m) 

Pos. 
error –

Std. dev 
(m) 

Dir. 
error-

Avg (º) 

Dir. 
error –

Std. dev 
(º) 

α  
(avg) 

α  
(Std. 
dev) 

P0 -Avg 
(dBm) 

P0 – 
Std. dev 

(dB) 

 Kriging 

No sdw 102.361 55.277 0.086 5.452 3.625 0.092 26.580 2.291 

Non 
corr. 
sdw 

144.159 134.521 1.452 19.053 3.489 0.332 24.592 9.545 

Corr 
sdw 

123.040 71.471 -0.146 7.050 3.551 0.151 29.092 4.186 

 Natural neighbor 

No sdw 110.794 65.075 0.490 7.168 3.655 0.114 27.258 2.859 

Non 
corr. 
sdw 

128.962 92.654 1.646 11.957 3.561 0.218 25.690 6.107 

Corr 
sdw 129.016 81.432 -0.537 8.392 3.605 0.171 30.206 4.655 

 Linear 

No sdw 109.404 63.718 0.374 6.870 3.654 0.113 27.252 2.868 
Non 

corr.sdw 136.329 95.608 1.505 12.700 3.566 0.231 25.921 6.520 
Corr 
sdw 129.81 79.453 -0.391 8.150 3.604 0.171 30.212 4.693 

 Nearest neighbor 

No sdw 130.049 71.698 0.009 8.265 3.621 0.134 26.577 3.270 
Non 

corr.sdw 149.891 87.390 -0.092 12.717 3.444 0.241 22.867 6.836 
Corr 
sdw 147.066 90.712 0.226 9.361 3.530 0.189 28.484 5.127 
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interpolation methods. Differences are particularly significant from the perspective 
of standard deviation, which is larger with the nearest neighbor interpolation. 

5.8. Conclusions 

This Chapter has presented a comparative study of kriging, natural 
neighbor, linear, and nearest neighbor interpolation techniques used to combine a 
set of RSS measurements obtained by a sensor network having the target of 
estimation and characterization of different context features such as transmitter 
position, antenna orientation estimation, antenna pattern estimation, and 
propagation model characterization. The results had been analyzed in different 
situations depending on the type of shadowing losses in the environment, either 
correlated or non-correlated.  

It had been inferred that, in absence of shadowing, the proposed 
methodology is able to extract the transmitter position, the antenna orientation, the 
antenna pattern, and propagation model features adequately regardless the 
considered interpolation technique. On the other hand, when shadowing is present, 
either spatially correlated or non-correlated, the errors increase. In this case, 
kriging interpolation provides slightly better results while nearest neighbor 
interpolation provides similar performance from an average perspective but 
exhibits a larger dispersion than kriging, natural neighbor, and linear interpolation 
depending on how sensors are located in the different realizations. 

 



 

 

 



6.  

ML aided context features 

extraction for Cognitive Radio 

Few published works have tried to characterize the context where a 
secondary network operates. In this respect, [69] is so far one of the most relevant 
references in terms of a wide context acquisition. As it was mentioned in Chapter 
2, it proposes a context characterization algorithm based on ML estimation which 
identifies the presence, positions, and antenna patterns of PUs in a scenario 
populated by CR nodes acting as sensors and cooperating in a noisy environment. 

This Chapter proposes a new methodology, so called Maximum 
Likelihood Aided Context Feature Extraction (MLACFE), that combines the multi-
level methodology, previous introduced in Chapter 3, Chapter 4, and Chapter 5 
together with the ML approach. This enables to keep the benefits of the optimality 
of ML performance but yet reducing dramatically the computational complexity. 
As a significant difference from the work in [69], no prior knowledge about the 
antenna pattern is required under the MLACFE approach. Similarly, this 
methodology does not require knowing in advance the propagation model 
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parameters. The MLACFE methodology is compared against the optimal ML 
procedure of [69] in terms of both obtained accuracy and computation time. 

In this context, Section 6.1 describes in detail the proposed hybrid 
algorithm, MLACFE, which is a combination of multi-level methodology and ML 
estimation algorithm. Afterwards, Section 6.2 presents the simulation environment 
and Section 6.3 presents, analyzes and discusses the obtained experimental results. 
Finally, Section 6.4 summarizes the main conclusions derived from the study 
presented in this chapter. 

6.1. MLACFE method description  

The main steps of the proposed MLACFE methodology are presented in 
Figure 6.1 and consist in interpolation, object identification, intermediate 
extraction of context features, and final extraction of context features with local 
ML estimation. The first three steps are identical as the ones from multi-level 
methodology, described in subsection 3.2.2 of Chapter 3, in Chapter 4, and in 
Chapter 5, and will provide transmitter position estimation (xk,in, yk,in), antenna 
orientation estimation (ϕk,in), antenna radiation pattern estimation (Gk,in(ϕ  – ϕk,in)), 
propagation model estimation (αk,in, P0,k,in), and shadowing standard deviation 
estimation σk. In the following, a detailed description of the operations performed 
in the last step of the proposed methodology is presented. 

6.1.1. Final extraction of context features with local 
ML estimation 

In this final stage of the MLACFE methodology the intermediate 
estimations of the different context features in the previous steps are used in a ML 
estimation process to obtain the final values of the estimated features. 

Focusing on the k-th transmitter, let define pk = (PR,k(x1, y1), PR,k(x2, y2), …, 
PR,k(xS, yS))T as the sensor power vector, whose components correspond to the 
quantified power (in dBm) measured in each one of the deployed sensors. The s-th 
component PR,k(xs, ys) of vector pk is assumed to be Gaussian of mean: 

( ), 0, , 10 ,10 logϕ ϕ α= + − −s k k k s k k k s km P G d , (6.1) 
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Input
Sensors measurements

PR,k(xs, ys)

Interpolation

connected-component
labeling technique 

Intermediate extraction 
of context features

- transmitter position (xk,in, yk,in);
- transmitter orientation ϕk,in;

- radiation pattern Gk,in(ϕ – ϕk,in);
- propagation model P0,k,in, αk,in.

Final extraction of
context features with
local ML estimation

Output
- transmitter  position (xk, yk);
- transmitter orientation ϕk;

- radiation pattern Gk(ϕ – ϕk);
- propagation model P0,k, αk.

Object identification

fi

… …
1

2

obj. 1 obj. 2

Input
Sensors measurements
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Interpolation

connected-component
labeling technique 

Intermediate extraction 
of context features

- transmitter position (xk,in, yk,in);
- transmitter orientation ϕk,in;

- radiation pattern Gk,in(ϕ – ϕk,in);
- propagation model P0,k,in, αk,in.

Final extraction of
context features with
local ML estimation

Output
- transmitter  position (xk, yk);
- transmitter orientation ϕk;

- radiation pattern Gk(ϕ – ϕk);
- propagation model P0,k, αk.

Object identification

fi

… …
1

2

obj. 1 obj. 2

 

Figure 6.1: Overall steps of the MLACFE methodology. 
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The covariance matrix of the additive Gaussian random variable accounting for the 
shadowing fading in the different components of vector pk is: 

2σ=k kC I , (6.2) 

being σk the standard deviation of the uncorrelated shadowing fading, which has 
also been obtained in the previous step (see Section 4.3), and I the Identity matrix. 

The vector pk is affected by the unknown context features to be estimated, 
namely P0,k, αk, σk, transmitter location (xk, yk), antenna pattern radiation Gk(ϕ  – ϕk) 
and orientation of the antenna main beam ϕk. 

Let define as zk the vector with all the above unknowns except the antenna 
radiation pattern Gk(ϕ  – ϕk) which is assumed to be obtained from the estimation 
carried out in previous step, i.e., Gk(ϕ  – ϕk) = Gk,in(ϕ  – ϕk). Then, zk = [P0,k, αk, xk, 
yk, ϕk]T. By adopting the ML estimation strategy, the estimation ZML,k of vector zk is 
given by: 

( ), argmax ln |=
k

ML k k k
z

Z f p z , (6.3) 

where f(pk|zk) is the joint probability density function of pk conditioned to each one 
of the possible combinations of values of the context parameters in zk and lnf(pk|zk) 
is the so called log-likelihood function that can be formulated as: 

( ) ( ) ( )11ln |
2

−= = − −T
k k k k k k k kL f p z p m C p m , (6.4) 

where mk = (m1,k, m2,k, …, mS,k). 

Typically, this expression is solved by setting the gradient of the log-
likelihood function to zero and solving the resulting set of equations. This 
formulation is feasible for all the above context parameters in case the antenna 
pattern is a priori known or parameterized to a specific pattern. 

In that respect, this Chapter proposes to use the previous estimation of the 
antenna pattern that has been performed in multi-level methodology (detailed in 
Section 4.2) as an input to the ML estimation. Then, the proposed methodology 
does not require any a priori knowledge about the antenna pattern. 
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Unfortunately, the equations resulting from considering all 5 unknown 
parameters zk = [xk, yk, ϕk, P0,k, αk] are highly nonlinear. Therefore, an approach, as 
considered in [69], is to solve the equations to obtain [P0,k, αk] for a given 
combination [xk, yk, ϕk] and then to perform an exhaustive search in a 3D grid for 
all possible values of [xk, yk, ϕk]. In particular, if the position and direction of the 
transmitter were given by combination [xk, yk, ϕk], P0,k and αk can simultaneously 
be solved by simple linear algebra by setting the log-likelihood gradient with 
respect to the unknown parameters to zero, that is: 

0δ
δ

=k

k

L
z

, (6.5) 

Then, the following equations are obtained: 

( ) ( ) ( ) ( )2 2

, , , , , , , , , ,

0, 22

, ,

, , ϕ ϕ ϕ ϕ− − − + −
=

−

s k R k s s s k s k R k s s s k k s k k s k s k k s k k

k

s k s k

d P x y d d P x y d G d d G
P

d d

, 
(6.6) 

 

( ) ( ) ( ) ( ), , , , , , , ,

22

, ,

, , ϕ ϕ ϕ ϕ
α

− − − + −
=

−

s k R k s s s k R k s s s k k s k k s k k s k k
k

s k s k

d P x y d P x y d G d G

d d

, 
(6.7) 

where 〈⋅〉 represents a sample average, and 

, 10 ,10log=s k s kd d , (6.8) 

Next, the whole 3D grid search for all possible values of [xk, yk, ϕk] would 
ultimately be necessary to determine the combination of parameters for which Lk is 
maximized. Yet, in practice, this approach is computationally too cumbersome as 
stated in [69]. 

To overcome this limitation, this thesis proposes an approach that takes 
advantage of the previous intermediate estimation that has been performed in the 
previous Chapters. In particular, just a local ML search is performed over the 
pixels falling in intervals Δxe, Δye and Δϕe around the intermediate estimations 
(xk,in, yk,in, ϕk,in) obtained with the procedure introduced in subsection 3.2.2.1 and 
Section 4.1, to refine their estimates. In this context, the ML estimation is applied 
over a much smaller search space, instead of the whole 3D space. The detailed 
pseudocode of the proposed procedure is presented in Figure 6.2. 
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While one of the focuses of this thesis is on unknown generic radiation 
patterns, for comparison purposes this Chapter will also consider the Gaussian 
shaped radiation pattern. Radiation pattern has the following parametric 
expression: 

( ) ( )2

10 2

4
10log exp ln 2

ϕ ϕ
ϕ ϕ

π ϕ ϕ π

⎡ ⎤⎛ ⎞−
⎢ ⎥− = −⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
− < − ≤

k
k k

k

k

G
BW , (6.9) 

Thereby, the antenna radiation pattern estimation is reduced to the 
estimation of the two parameters, namely the orientation angle ϕk and 3 dB beam 
width BWk.  

In this particular case, the local ML estimation algorithm is presented in 
Figure 6.3. 

Input (xk,in, yk,in, ϕk,in) 

1. for xk ∈ (xk,in - Δxe, xk,in + Δxe) in steps of Δx do 

2.  for yk ∈ (yk,in - Δye, yk,in + Δye) in steps of Δy do 

3.    for ϕk ∈ (ϕk,in - Δϕe, ϕk,in + Δϕe) in 
steps of Δϕ do 

4.      calculate P0,k and αk by 
solving (6.6) and (6.7); 

5.      calculate Lk from (6.4); 

6.    end for 

7.  end for 

8. end for; 

9. estimate ( ) ( ), , =argmax kx y φ Lk k k ; 

10. retain P0,k and αk corresponding to ( ), ,x y φk k k  

Output (xk, yk, ϕk, P0,k ,αk) 
 

Figure 6.2: Pseudocode of the local ML algorithm for performing the final estimation of 
context. 
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Input (xk,in, yk,in, ϕk,in) 

1. for xk ∈ (xk,in - Δxe, xk,in + Δxe) in steps of Δx do 

2.  for yk ∈ (yk,in - Δye, yk,in + Δye) in steps of Δy do 

3.    for ϕk ∈ (ϕk,in - Δϕe, ϕk,in + Δϕe) in 

steps of Δϕ do 

4.      calculate P0,k, bk, and αk 
by solving  

( )

( ) ( ) ( )

( )

( )
( )( )

( )
k
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5.      calculate Lk from (6.4); 

6.    end for 

7.  end for 

8. end for; 

9. estimate ( ) ( ), , =argmax kx y φ Lk k k ; 

10. retain P0,k, bk, and αk corresponding to ( ), ,x y φk k k . 

11. 
( )

k

⋅ 1020ln2 log
=2

k

e
BW

b
 

Output (xk, yk, ϕk, αk, P0,k, BWk) 
 

Figure 6.3: Pseudocode of the local ML algorithm for a Gaussian shaped antenna pattern. 

6.2. Simulation environment 

Two scenarios are used to evaluate MLACFE methodology. One is 
Scenario D, described in Section 5.6, and the second one is Scenario E, a copy of 
Scenario D, with the difference that a Gaussian shaped radiation antenna pattern is 
used in the transmitter. The beam width at 3 dB of this antenna is 70.52º. As 
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before, the quantization step is Δ = 1.5 dB and the number of bits used to encode 
the RSS measurements is n = 6 bits. The local 3D grid is Δxe = Δye = 200 m, Δϕe = 
10º. Moreover, Δx = Δy = 20 m and Δϕ = 1º are used in the algorithms of Figure 
6.2 and Figure 6.3. 

6.3. Simulation results 

This Section presents a comparison of multi-level methodology, described 
in Chapter 3, Chapter 4, and Chapter 5, with the proposed MLACFE methodology, 
using natural neighbor interpolation. The following results are shown for two 
cases, namely the non-parameterized radiation antenna pattern and the Gaussian 
antenna pattern, corresponding to the two Scenarios, D and E. 

6.3.1. Scenario with Gaussian shaped radiation 
antenna pattern 

Figure 6.4 presents the mean error and standard deviation error in 
transmitter position estimation (a), antenna direction estimation (b), and estimated 
beam width (c), for different values of sensor density D, for both of the 
methodologies, the multi-level methodology (named “multi-level” in figures) and 
the proposed MLACFE methodology (named “MLACFE” in figures). The 
theoretical value of beam width is also shown (named “Real” in figure). The 
results were averaged over 150 random realizations for each sensor density. 

As it may be seen from Figure 6.4, MLACFE methodology reduces the 
mean error of the transmitter position estimation almost by half, presents a similar 
behavior in antenna direction estimation (very close to the expected value), and 
also reduces the error of beam width. As an example, with 50 sensors/km2, the 
error of position is about 60 m that corresponds to 3 pixels, reflecting a very good 
performance. For all three parameters, MLACFE methodology gives a lower 
standard deviation error than the multi-level methodology. 

Regarding the estimation of the propagation model, Figure 6.5 plots the 
mean estimated value and standard deviation error of the propagation factor α (a) 
and power P0 (b), as function of sensor density D, for multi-level and MLACFE 
methodologies. Also the theoretical values are plot. It can be observed how the two 
methodologies offer very similar performance in terms of average error while  
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Figure 6.4: Mean error and standard deviation error in transmitter position estimation (a), 
and in antenna direction estimation (b), and estimated beam width (c) for different sensor 
densities, comparing multi-level methodology and MLACFE methodology, on scenario 

E. 
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Figure 6.5: Estimated propagation factor α (a) and estimated P0 (b) as a function of 
sensor density, comparing multi-level methodology and MLACFE methodology, on 

scenario E. 

MLACFE algorithm reduces the standard deviation error. 

The estimated radiation pattern of the primary transmitter antenna for the 
case D = 50 sensors/km2 is presented in Figure 6.6, comparing the MLACFE 
methodology (that provides exactly the same result as multi-level methodology) 
with the theoretical value. A very good estimation of the original radiation pattern 
is observed, especially in the main lobe. 
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Figure 6.6: Horizontal radiation pattern estimation of Gaussian antenna for D = 50 
sensors/km2, on scenario E. 

Additional simulations ware made, where the shadowing standard 
deviation σ had a range from 4 dB to 12 dB. As example, Figure 6.7 presents the 
mean error in transmitter position estimation of Gaussian antenna, on MLACFE 
methodology, for different values of sensor density D and different values of 
shadowing standard deviation σ. The results revealed that the errors are lower as 
the shadowing standard deviation decreases and as sensor density grows. For the 
case σ = 4 dB errors in the estimation are reduced down to 24 m which is very 
close to the pixel size (i.e., the resolution of the scenario). 

6.3.2. Scenario with non-parameterized antenna 
pattern 

The results in this subsection consider the non-parameterized antenna 
pattern shown in Figure 3.9. Figure 6.8 (a) shows the mean error and standard 
deviation error of the position estimation, for different values of sensor density D, 
for the multi-level methodology and the MLACFE methodology. Similarly, Figure 
6.8 (b) shows the mean error and standard deviation error in the antenna direction 
estimation, revealing that there are very small differences between both  
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Figure 6.7: Mean error in transmitter position estimation for different sensor 

densities and for different shadowing standard deviation, MLACFE methodology, on 
scenario E. 

approaches. Like in the previous subsection, results were averaged over 150 
realizations for each sensor density. 

For a low sensor density (D = 4 sensors/km2) the mean error as well as the 
standard deviation error are high for all parameters. As the sensor density 
increases, both position and direction errors decrease. MLACFE methodology 
achieves a lower error than the reference scheme for the case of the position, and at 
the same time a lower standard deviation error for both estimated parameters. 

Figure 6.9 shows the estimated radiation pattern of the primary transmitter 
antenna for the case D = 50 sensors/km2. It is clear from the figure that the 
estimated radiation pattern follows the original radiation pattern, especially in the 
main lobe. 

Figure 6.10 plots the mean error in transmitter position estimation of the 
non-parameterized antenna, using MLACFE methodology, for different values of 
sensor density D and different values of shadowing standard deviation σ. Like with 
the Gaussian antenna, the results show that the errors are higher as the shadowing 
standard deviation increases and as sensor density decreases. 
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6.3.3. Comparison of MLACFE performance 
against ML estimation 

In this subsection, the ML estimation algorithm proposed by Martin and 
Thomas in [69] is compared against the MLACFE methodology. In order for the 
comparison to be fair, only the Gaussian antenna pattern is considered, since this is 
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Figure 6.8: Mean error and standard deviation error in transmitter position estimation (a), 
and in antenna direction estimation (b) for different sensor densities, comparing multi-

level methodology and MLACFE methodology, on scenario D. 
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Figure 6.9: Horizontal radiation pattern estimation of non-parameterized antenna for 
D = 50 sensors/km2, on scenario D. 
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Figure 6.10: Mean error in transmitter position estimation for different sensor 

densities and for different shadowing standard deviation, MLACFE methodology, on 
scenario D. 
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the assumption of [69]. Given the extremely high computational complexity 
associated to the method in [69] when all parameters are unknown, the results are 
only presented for the sensor density of D = 25 sensors/km2 and averaged with just 
10 realizations of sensor distributions. 

Table 6.1 presents the comparison between the proposed MLACFE 
methodology, the ML estimation algorithm ([69]) and the multi-level methodology 
described in Chapter 3, Chapter 4, and Chapter 5. The results present the mean 
estimated value for each parameter, its bias against the real value, and the standard 
deviation of the error. 

In general, ML estimation algorithm offers better estimation of position 
transmitter than the proposed MLACFE methodology, while there are not many 
differences in the estimation of the antenna beam width and the propagation model 
parameters. When comparing MLACFE with multi-level similar conclusions as 
stated in subsection 6.3.1 are obtained. A lower standard deviation error is given 
by ML estimation algorithm, for all of the parameters. However, as illustrated in 
 

Table 6.1: Comparison of MLACFE methodology against ML estimation algorithm and 
multi-level methodology for a sensor density D = 25 sensors/km2, on scenario E. 

ML estimation 
algorithm [69] 

multi-level 
methodology 

MLACFE 
methodology 

Variable 
exact 
value est. 

value 
bias 

std. 
dev 

est. 
value 

bias 
std. 
dev 

est. 
value 

bias 
std. 
dev 

position 
error 
(m) 

N/A N/A 37.26 18.74 N/A 181.80 88.56 N/A 82.71 81.35 

direction 
(º) 

0 0.6 0.6 1.35 -2.60 -2.60 17.51 -0.1 -0.1 10.98 

α 3.52 3.48 -0.04 0.12 3.51 -0.01 0.31 3.52 0 0.21 

P0 
(dBm) 

24.5 22.71 -1.79 3.69 23.54 -0.96 8.94 22.86 -1.64 5.47 

beam 
width (º) 

70.64 74.90 4.26 1.93 74.97 4.33 17.50 75.42 4.78 4.77 
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Figure 6.11, it is worth noticing this is at the expense of a much higher 
computational complexity.  

This figure shows the average computation times observed in the 
simulations performed in the context of this study, based on Matlab running in a 
PC with an Intel Core2 Quad processor at 1.86 GHz. It can be observed how the 
proposed MLACFE methodology achieves a very significant reduction, about three 
orders of magnitude, with respect to the ML estimation algorithm. 

At it was mentioned in subsection 6.1.1, ML estimation algorithm is 
looking into the entire 3D grid, analyzing every combination of (xk, yk, ϕk) to 
choose the best solution, leading to a slower process than the proposed algorithm. 
In turn, the multi-level methodology is much faster to run, having a lower 
computational time compared to both ML estimation algorithm and to MLACFE 
methodology. Still, as it had been previously stated, it provides worst performance 
in terms of position error estimation and standard deviation of the error for 
different parameters. Consequently, MLACFE methodology achieves a better 
trade-off between computational cost and obtained performance. 
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Figure 6.11: Computational complexity analysis of the ML estimation algorithm, 
multi-level methodology, and MLACFE methodology as function of sensor density, 

on scenario E. 
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6.4. Conclusions 

This Chapter has proposed the MLACFE methodology for estimating 
different context features of a primary user network, namely the transmitters’ 
positions, antenna pattern, antenna direction and propagation model parameters, by 
properly combining RSS measurements obtained by a number of secondary 
sensors randomly deployed in a given scenario. Like the previous proposed 
methods, this methodology neither assumes any prior knowledge about the 
characteristics of the primary network, nor requires any type of cooperation 
between primary and secondary networks, so it can be exploited to capture the 
relevant contextual elements that can guide the spectrum selection decisions of the 
secondary network. The proposed methodology combines an ML approach with 
image interpolation and processing techniques, which enables keeping at a great 
extent the benefits of the optimality of ML performance while at the same time 
reducing dramatically the overall computational complexity with respect to the ML 
approach.  

The proposed MLACFE methodology had been compared against the ML 
estimation algorithm presented in [69], revealing that it can provide a quite similar 
performance in terms of average estimation errors while at the same time reducing 
the computation time in about three orders of magnitude, for the considered case 
study. In addition, the MLACFE methodology does not require any prior 
knowledge about the type of antenna patterns used by the primary transmitters. On 
the other hand, MLACFE methodology had also been compared against multi-level 
methodology, revealing a better performance in terms of position error estimation 
and standard deviation error for different parameters. 

 



 

 

 



7. 
Conclusions and future work 

This thesis has tackled the problem of characterizing the RF environment 
where CRNs are deployed with the scope of building REMs that can be easily used 
in the optimization of CR operation. In this aspect, different sensed samples at 
different geographical positions collected by secondary sensors are gathered in a 
CR central entity and are combined, using image processing techniques, for the 
purpose of estimating context features where CRNs are deployed. The acquired 
information is stored in a database, like REM, which can be further used by CRNs. 
Section 7.1 summarizes the main conclusions of this thesis, while Section 7.2 
discusses possible work to be carried out in the future. 

7.1. Conclusions 

The context discovery was started with transmitter position estimation, for 
which the thesis has proposed two new algorithms: binary method and multi-level 
method, both of them based on image processing techniques. In the first method, 
from the measurements of the received power of specific frequencies, each sensor 
sends to CR central entity just one bit for each frequency detected. In turn, in the 
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multi-level method, the information collected by the sensors was being quantified 
to a set of 2n – 1 values and sent to CR central entity as a word of n bits, for each 
frequency detected. 

It is worth to remark the simplicity of the proposed binary method, which 
revealed error below 5% in the transmitter position estimation in a scenario with 
omnidirectional antennas placed homogeneously in a field. Instead, in a more 
complex scenario, with omnidirectional antennas irregularly distributed in a field, 
the errors were increasing till 25%. In this scenario, the multi-level method is more 
efficient, presenting error below 7% in the transmitter position estimation. 

In case of a scenario with directive antennas, the results obtained with 
multi-level method revealed the utility and benefits of this algorithm, with errors 
below 150 m in the transmitter position estimation. By increasing the number of 
bits that are to be sent to CR central entity, which means also an increase of the 
complexity of the method, passing from binary to multi-level, the efficiency of the 
algorithm is increasing as well. 

The following stage in the workflow of this dissertation has been to 
expand the context features estimation by adding new features like antenna pattern 
estimation, antenna orientation estimation, and propagation model estimation on 
multi-level method. The algorithm includes also a process to determine if the 
transmitter has an omnidirectional antenna or a directive antenna. The estimation 
of propagation model is made through a regression analysis of the received power 
at the available sensors. Moreover, this process allows also identifying which of 
the detected transmitters actually correspond to real transmitters and to discard 
spurious effects due to the shadowing. 

It is worth pointing out the efficacy of the proposed algorithm that 
presented errors in the order of 12% in propagation model estimation for both 
omnidirectional antennas scenario and directive antennas scenario. Furthermore, in 
case of a scenario with directive antennas, the errors in antenna orientation 
estimation were close to zero while the estimated radiation pattern tracked 
satisfactorily the original radiation pattern. 

With the objective of improving the characterization of RF environment, a 
comparative study of different interpolation techniques was introduced in the 
thesis, where the nearest neighbor interpolation used in multi-level method was 
compared with other three interpolation techniques: linear interpolation, natural 
neighbor interpolation, and kriging interpolation. These techniques were tested in a 
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scenario with directive antenna that included correlated or non-correlated 
shadowing losses in the environment, or no shadowing at all. 

It is worth mentioned that all four interpolation techniques showed an 
acceptable accuracy in the estimation of context features (which means transmitter 
position estimation, antenna orientation estimation, antenna radiation pattern 
estimation, and propagation model estimation), presenting a similar behavior in a 
scenario without shadowing. 

However, as it was expected, the errors grew in the presence of 
shadowing, either correlated or non-correlated. On the whole, in case that 
shadowing is presented in the scenario, kriging interpolation offered slightly better 
results than the rest of the interpolation techniques. In turn, nearest neighbor 
interpolation displayed a higher standard deviation error. The obtained results also 
demonstrated that in general the errors are reduced in case of spatial correlated 
shadowing, comparing with the case of non-correlated shadowing. 

The last part of the thesis tackled the proposal of a new algorithm, namely 
MLACFE, which can be exploited to capture more accurately the relevant 
contextual elements that can guide the spectrum selection decisions of the 
secondary network. This new algorithm is the result of the combination of multi-
level method with ML estimation method previously presented in [69], aimed on 
characterizing the RF environment where SUs are deployed. Unlike the work from 
[69], no prior information about antenna radiation pattern was needed by the 
proposed method. 

The results obtained with MLACFE method were compared with the ones 
from multi-level method, in scenario either with a Gaussian shaped radiation 
antenna pattern or with a non-parameterized radiation antenna pattern. It was 
shown the advantage of the proposed MLACFE algorithm that displayed better 
error in transmitter position estimation, while reducing the standard deviation error 
for all the parameters. 

By comparing MLACFE algorithm with ML approach, it was concluded 
that the performance of these two methods was similar in terms of average 
estimation errors, with slightly better results being obtained with ML. However, 
the proposed MLACFE method decreases dramatically the computational time in 
about three orders of magnitude. 



7 Conclusions and future work 

 102 
 

7.2. Future research lines 

During the implementation of this dissertation, several new research 
directions have emerged to be study in the future. In the following, some possible 
investigation lines are suggested to improve and develop the studies accomplished 
in this thesis. 

The studies performed in this thesis have been considered in a centralized 
approach, where a CR central entity gathers information from specific number of 
sensors. However, distributed resource allocation algorithms are of significant 
interest. An important aspect to investigate in the future is to consider a distributed 
implementation of the frameworks proposed in this thesis. As investigated in [92] 
– [94], it is possible that the centralized algorithms can be precursors for 
distributed algorithms. 

In the research investigated in this dissertation, only static PUs were 
considered. An ambitious goal for future work would be to study the mobile of 
PUs. This fact puts restrictions in terms of computational costs and performance 
achievements that should be investigated. Many questions will arise like the need 
to target properly when to sense, to know which sensors should be activated out of 
the N deployed, to estimate the traffic load that the CRN has to manage as 
overhead, etc. Initially simulations should be extensively used trying to envisage 
feasibility of the methodology as well as to know the limits attained in terms of 
performance and computational cost. Certainly, prior to that, a simulation scenario 
with a number of primaries including different mobility patterns will have to be 
identified. 

Another possible investigation line will be to devise a scenario that 
includes PUs of different types as well as a deployed secondary system. There are 
many possible combinations that will be necessary to bound to those that still can 
capture the major key ingredients including different featured contexts, and a 
particular deployment of a CRN based on the context knowledge acquired. 
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