

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

Department of Signal Theory and Communications

Universitat Politècnica de Catalunya

Computing Resource Management in

Software-Defined and Cognitive Radios

DISSERTATION

Vuk Marojevic

Dr. Antoni Gelonch
(Ph.D. Supervisor)

Barcelona, July 2009

ii

iii

I would like to thank the Radio Communications Research Group of the UPC for supporting my Ph.D.

studies, which led to the elaboration of this thesis. I also thank the Mobile and Portable Radio Research

Group of Virginia Tech for their support during my short term visiting scholar in 2007.

This work has been supported by the CICYT (Spanish National Science Council) under grants TIC2003-

08609 and TEC2006-09109, which are partially financed from the European Community through the

FEDER program, and the AGAUR agency of the Catalonian Government.

Summary

Our research aims at contributing to the evolution of modern wireless communications and to the devel-

opment of software-defined radio (SDR) and cognitive radio, in particular. It promotes a general resource

management framework that facilitates the integration of computing and radio resource management. This

dissertation discusses the need for computing resource management in software-defined and cognitive

radios and introduces an SDR computing resource management framework with cognitive capabilities.

The hard real-time computing requirements of software-defined digital signal processing chains (SDR

applications), the associated radio propagation and quality of service (QoS) implications, and heterogene-

ous multiprocessor platforms with limited computing resources (SDR platforms) define the context of

these studies.

We examine heterogeneous computing techniques, multiprocessor mapping and scheduling in particu-

lar, and elaborate a flexible framework for the dynamic allocation and reallocation of computing resources

for wireless communications. The framework should facilitate partial reconfigurations of SDR platforms,

dynamic switches between radio access technologies (RATs), and service and QoS level adjustments as a

function of the environmental conditions. It, therefore, assumes the facilities of the platform and hardware

abstraction layer operating environment (P-HAL-OE).

We suggest a modular framework, distinguishing between the computing system modeling and the

computing resource management. Our modeling proposal is based on two computing resource manage-

ment techniques, which facilitate managing the strict timing constraints of real-time systems. It is scalable

and can account for many different hardware architectures and computing resource types. This work fo-

cuses on processing and interprocessor bandwidth resources and processing and data flow requirements.

Our computing resource management approach consists of a general-purpose mapping algorithm and a

cost function. The independence between the algorithm and the cost function facilitates implementing

many different computing resource management policies. We introduce a dynamic programming based

algorithm, the tw-mapping, where w controls the decision window. We present a general and parametric

cost function, which guides the mapping process under the given resource constraints. An instance of it

facilitates finding a mapping that meets all processing and data flow requirements of SDR applications

with the available processing and bandwidth resources of SDR platforms. Several SDR reconfiguration

scenarios and analyses based on simulations demonstrate the suitability and potentials of our framework

for a flexible computing resource management.

We extend our SDR computing resource management concepts to the cognitive radio context. The two

primary objectives of cognitive radio are highly reliable communications whenever and wherever needed

and the efficient use of the radio spectrum. We formulate a third objective as the efficient use of computing

resources. We analyze the cognitive capabilities of our framework─the cognitive radio’s interface to SDR

platforms─and indicate the potentials of our cognitive computing resource management proposal.

The cognitive computing resource management needs to be coordinated with the radio resource man-

agement. We, therefore, introduce the joint resource management concept for cognitive radios. We

vi

present three cognitive cycles and discuss several interrelations between the radio, computing, and appli-

cation resources, where application resources refer to the available SDR and user applications. Our ap-

proach potentiates flexibility and facilitates radio against computing resource tradeoffs. It promotes cogni-

tion at all layers of the wireless system for a cooperative or integrated resource management that may in-

crease the performance and efficiency of wireless communications.

Resumen

El objetivo de las investigaciones que se están llevando a cabo dentro del grupo de investigación es con-

tribuir a la evolución de las radiocomunicaciones modernas y, en particular, al desarrollo de los conceptos

software radio (SDR) y cognitive radio. El planteamiento general es el de extender la flexibilidad global

del sistema de comunicaciones planteando la definición y desarrollo de un entorno en el que pudiesen

explorarse las relaciones entre la computación y las prestaciones del sistema de comunicaciones móviles

facilitando la integración de los recursos de computación con los recursos radio.

Dentro de este marco, la presente tesis plantea la discusión de la necesidad de la gestión de los recur-

sos de computación en entornos SDR y cognitive radio y define un entorno de operación que asume las

características especificas del concepto SDR a la vez que incorpora capacidades cognitivas en la gestión

de los recursos de computación de las plataformas que den soporte a las nuevas generaciones de sistemas

móviles. Los estrictos requerimientos de procesado en tiempo real de las cadenas de procesado digital de

la señal definidas por software (aplicaciones SDR), las implicaciones asociadas con la propagación radio y

el concepto de calidad de servicio (QoS) y plataformas heterogéneas de múltiples procesadores con recur-

sos de computo limitados (plataformas SDR) definen el contexto de estos estudios.

Se examinan técnicas de cómputo de propósito general para definir un entorno de operación que fuese

capaz de asignar de forma flexible y dinámica los recursos de cómputo necesarios para facilitar las radio-

comunicaciones a los niveles de QoS deseados. Ello debería facilitar los cambios dinámicos de una tecno-

logía de acceso radio a otra, permitiendo el ajuste del tipo de servicio o calidad de servicio en función de

las preferencias de los usuarios y las condiciones del entorno. Dicho entorno de operación asume las po-

tencialidades del platform and hardware abstraction layer operating environment (P-HAL-OE).

La estructura del entorno de operación se define de forma modular y consiste en un modelado genérico

y flexible de las plataformas de computación SDR y en una gestión de recursos de computación abierta y

capaz de ajustarse a diferentes objetivos y políticas. En el trabajo se exponen dos técnicas de gestión que

pretenden asegurar la consecución estricta de los límites temporales típicos de los sistemas en tiempo real.

En cuanto al modelado, este es escalable y capaz de capturar un amplio abanico de arquitecturas hardware

y recursos de computación. En el presente trabajo nos centramos en los recursos y requerimientos del pro-

cesado y transferencia de datos.

Se introduce un algoritmo de mapeo genérico e independiente de la función de coste. La independen-

cia entre el algoritmo y la función de coste facilita la implementación de diferentes políticas de gestión de

recursos computacionales. El tw-mapping es un algoritmo basado en dynamic programming, donde w con-

trola la ventana de decisión. Se presenta una función de coste genérica y parametrizable que permite guiar

el proceso de gestión de los recursos. Una instancia de ella facilita encontrar una solución al proceso de

asignación de recursos que cumpla todos los requerimientos de procesado y trasferencia de datos de las

aplicaciones SDR con los recursos disponibles de las plataformas SDR. Diferentes escenarios y varios

análisis basados en simulaciones demuestran la adecuación del entorno de trabajo definido y desarrollado,

así como sus potencialidades para una gestión flexible de los recursos de cómputo.

viii

Se extienden los conceptos mencionados previamente para entornos cognitive radio. Los principales

objetivos del concepto cognitive radio son la disponibilidad de comunicaciones altamente robustas en

cualquier lugar y momento en que sean necesarias y el uso eficiente del espectro. Como tercer objetivo

formulamos el uso eficiente de los recursos de cómputo. Analizamos las capacidades cognitivas de nuestro

entorno de operación─la interfaz del sistema cognitive radio a las plataformas SDR─y resaltamos las po-

tencialidades de nuestra propuesta de gestión cognitiva de los recursos computacionales.

Dicha gestión cognitiva de los recursos computacionales plantea una integración con la gestión de los

recursos radio. Para ello introducimos el concepto de gestión de recursos conjunta para entornos cognitive

radio. Se presentan tres ciclos cognitivos y se discuten algunas interrelaciones entre los recursos radio, de

cómputo y de aplicación, donde los recursos de aplicación se refieren a las aplicaciones SDR y de usuario

disponibles. Nuestra propuesta de gestión de recursos conjunta potencia la flexibilidad y facilita los inter-

cambios entre recursos radio y de computación.

Contents

Abbreviations .. xiii

1 Introduction ... 1

1.1 Modern Radio Communications ... 1

1.2 Software-Defined Radio ... 2

1.3 Cognitive Radio .. 3

1.4 Resource Management in SDR and Cognitive Radio ... 4

1.4.1 Radio Resource Management .. 4

1.4.2 Computing Resource Management .. 7

1.5 Contribution and Outline .. 10

2 SDR Computing Resource Management Context ... 13

2.1 Introduction ... 13

2.2 SDR Frameworks .. 13

2.2.1 SCA ... 13

2.2.2 Q-SCA ... 16

2.2.3 P-HAL-OE ... 17

2.2.4 Other SDR Frameworks .. 20

2.3 SDR Computing Resource Management Problem .. 21

2.3.1 SDR Computing Environment ... 21

2.3.2 Problem Formulation ... 22

2.3.3 Scope and Assumptions ... 22

2.4 Related Work .. 23

2.4.1 Maximizing Speedup ... 24

2.4.2 Meeting Real-Time Deadlines ... 25

2.4.3 Following Other or Multiple Objectives .. 25

2.5 Conclusions ... 26

CONTENTS

x

3 SDR Computing System Modeling ... 29

3.1 Introduction ... 29

3.2 Computing Resource Management Facilities ... 30

3.2.1 Metrics ... 30

3.2.2 Time Slots and Pipelining .. 30

3.3 Modeling ... 31

3.3.1 Platform Modeling ... 31

3.3.2 Application Modeling .. 37

3.4 Meeting the SDR Computing Constraints ... 41

3.5 Modeling Examples .. 42

3.6 Additional Modeling Features and Extensions ... 47

3.6.1 Dividing and Merging of Platforms or Applications ... 47

3.6.2 Hierarchical Modeling ... 48

3.7 Summary ... 49

4 SDR Computing Resource Management .. 51

4.1 Introduction ... 51

4.2 Mapping Algorithms ... 52

4.2.1 The tw-mapping .. 53

4.2.2 The gw-mapping ... 55

4.2.3 Exemplifying the tw- and gw-mapping .. 56

4.3 Cost Function .. 62

4.3.1 Cost Function Template ... 63

4.3.2 Cost Function Instance .. 63

4.4 Complexity Analysis ... 65

4.4.1 General Complexity Formulation .. 65

4.4.2 Specific Complexity Formulation .. 66

4.4.3 General versus Specific Complexity Formulation ... 69

4.5 SDR Computing Resource Management Example ... 69

4.6 Summary ... 72

5 SDR Scenarios and Simulations .. 73

5.1 Introduction ... 73

5.2 UMTS Task Graph .. 73

5.2.1 Scenario – Simulation Setup .. 73

5.2.2 Simulation Results ... 74

5.2.3 Practical versus Theoretical Complexities ... 74

5.3 Random Task Graphs .. 78

5.3.1 Scenario – Simulation Setup .. 78

5.3.2 Simulation Results ... 78

5.4 Summary ... 81

6 Computing Resource Management Analyses .. 83

6.1 Introduction ... 83

CONTENTS

xi

6.2 Mapping Order .. 83

6.2.1 Motivation and Scope .. 83

6.2.2 Modeling Support .. 84

6.2.3 Scenario and Results, Part I ... 85

6.2.4 Scenario and Results, Part II .. 87

6.3 Hardware Architecture .. 89

6.3.1 Motivation and Scope .. 89

6.3.2 Connectivity and Communication Flexibility .. 90

6.3.3 Distribution of Computing Resources ... 92

6.4 Window Size versus Cost Function Parameter ... 96

6.4.1 Motivation and Scope .. 96

6.4.2 Scenario and Methods .. 97

6.4.3 Simulation Results ... 97

6.4.4 Performance versus Complexity Analysis ... 97

6.5 Summary ... 101

7 Computing Resource Management in Cognitive Radio .. 103

7.1 Introduction ... 103

7.2 Related Work .. 103

7.3 Cognitive Computing Resource Management .. 104

7.3.1 Extended Computing Environment ... 104

7.3.2 Extended Cognitive Radio System .. 105

7.3.3 Cognitive Computing Cycle .. 107

7.3.4 Computing System Modeling .. 108

7.4 Proof of Concept ... 109

7.4.1 Basic Scenarios .. 109

7.4.2 Simulations .. 110

7.5 Summary ... 116

8 Joint Resource Management for Cognitive Radios ... 117

8.1 Introduction ... 117

8.2 Environments and Resources .. 118

8.3 Cooperative versus Integrated Resource Management ... 119

8.4 Cognitive Cycles ... 121

8.4.1 Radio Cycle ... 121

8.4.2 Computing Cycle ... 122

8.4.3 Application Cycle .. 123

8.4.4 Joint Resource Management Implications ... 124

8.5 Proof of Concept ... 125

8.5.1 Discussion .. 125

8.5.2 Simulations .. 126

8.6 Summary ... 129

CONTENTS

xii

9 Conclusions ... 131

9.1 Contribution .. 131

9.2 Future Work .. 132

References ... 133

Abbreviations

2G Second generation wireless systems

3G Third generation wireless systems

3GPP 3rd Generation Partnership Project

4G Fourth generation wireless systems

ADC Analog-to-digital converter

AE Application environment

ALOE Abstraction layer and operating environment

API Application programming interface

ASIC Application-specific integrated circuit

B3G Beyond 3G

BER Bit error rate

BSLA Baseline algorithm

CCC Communication-to-computation correlation

CCR Communication-to-computation ratio

CE Computing environment

CF Core framework

COMM Communication

COMP Computation

CORBA Common object request broker architecture

COTS Common of-the-shelf

CP Control processor

CPU Central processing unit

CRC Cyclic redundancy check

CRM Computing resource management

CRRM Common radio resource management

CU Computing unit

DAC Digital-to-analog converter

DAG Directed acyclic graph

DCA Dynamic channel allocation

DCP Dynamic critical-path

DLS Dynamic level scheduling

DPS Dynamic priority scheduling

DSA Dynamic spectrum allocation

DSP Digital signal processor

ET Execution time

FD Full-duplex

FFT Fast Fourier Transform

FIFO First-in-first-out

FISC Flexible integrated system capability

ABBREVIATIONS

xiv

FlexNets Flexible wireless systems and networks

FPGA Field-programmable gate array

GB Gigabyte

GPP General-purpose processor

GPRS General packet radio system

GSM Global system for mobile communications

HD Half-duplex

HIPERLAN High performance radio LAN

HLFET Highest level first with estimated times

HSDPA High speed downlink packet access

IDL Interface definition language

IEEE Institute of electrical and electronics engineers

IF Intermediate frequency

IRM Integrated resource management

IRMA Integrated resource management algorithm

ITU International Telecommunication Union

JARM Joint application resource management

JCRM Joint computing resource management

JRARM Joint radio application resource management

JRRM Joint radio resource management

JUARM Joint user application resource management

JTRS Joint Tactical Radio System

kbps Kilo bits per second

KUAR Kansas University Agile Radio

LAN Local area network

LGDF Large grain data flow

MAIL Maximum allowable increase in load

MAC Multiply accumulate (operation)

MB Megabyte

Mbps Mega bits per second

MBPTS Megabits per time slot

MCP Modified critical path

MOPS Million operations per second

MOPTS Million operations per time slot

MPRG Mobile and Portable Radio Research Group

MP-SoC Multiprocessor system on a chip

MT Mobile terminal

mWPS Milliwatt per second

NoC Network on a chip

Node B 3GPP term for a base station

NP Nondeterministic polynomial time

OE Operating environment

OFDM Orthogonal frequency division multiplexing

OMG Object management group

ORB Object request broker

OS Operating system

OSI Open system interconnection

OSSIE Open source SCA implementation embedded

PE Processing element

PHAL Platform and hardware abstraction layer

P-HAL-OE PHAL operating environment

POSIX Portable operating system interface

P-SCH Primary synchronization channel

QoS Quality of service

Q-SCA QoS-enabled SCA

RAE Radio application environment

RAN Radio access network

RARM Radio application resource management

RAT Radio access technology

RE Radio environment

ABBREVIATIONS

xv

RF Radio frequency

RKRL Radio Knowledge Representation Language

RRM Radio resource management

RT-CORBA Real-time CORBA

RTOS Real-time operating system

SAD Software assembly descriptor

SCA Software communications architecture

SCD Software component descriptor

SE Service environment

SDF Synchronous data flow

SDR Software-defined radio

SDR-BS SDR base station

SDR-MT SDR mobile terminal

SNR Signal-to-noise ratio

SoC System on a chip

SPD Software package descriptor

SPTS Seconds per time slot

TANH TDS algorithm for network of heterogeneous systems

TDS Task duplication based scheduling

TS Time slot

UAE User application environment

UARM User application resource management

UE User equipment

UMTS Universal mobile telecommunications system

USB Universal serial bus

USRP Universal Software Radio Peripheral

UTRAN UMTS terrestrial radio access network

VM Virtual machine

WiMAX Worldwide interoperability for microwave access

WCDMA Wideband code division multiple access

WLAN Wireless local area network

WPAN Wireless personal area network

XML Extensible markup language

1
Introduction

1.1 Modern Radio Communications

Except for the word radio in radio communications, today’s wireless communications have little in com-

mon with the radio introduced by Marconi more than a century ago. Wireless communications are nowa-

days part of our professional and private life. Their manifold utility ranges from providing basic commu-

nications services to interactive multimedia entertainment. Universities and companies, including tele-

communications specialist as well as computer scientists, steadily strive for evolving wireless communica-

tions. We approach a wireless world that, in many senses, increases our quality of life.

The coexistence of radio access technologies (RATs) characterizes modern wireless communications.

The emerging 3G systems, for example, neither pretend to substitute the worldwide available access to 2G

services nor directly compete with wireless local or personal area networks (WLANs or WPANs). These

RATs rather complement each other: 2G systems, such as the global system for mobile communications

(GSM) and the general packet radio system (GPRS), offer worldwide roaming for carrying voice traffic

and low-volume data. 3G systems─the universal mobile telecommunication system (UMTS) and its

American and Asian predecessors or derivatives─offer higher data rates for many classes of (multimedia)

services. WLANs locally offer very high data rates at lower cost for accessing global information, whereas

WPANs wirelessly interconnect personal devices. This view of cooperative rather than competitive radio

access networks (RANs) facilitates providing personalized services and a ubiquitous wireless access [1].

Beyond 3G (B3G) is the common term that describes today’s coexistence of RATs. It characterizes a

heterogeneous radio environment where the user, and not the radio, takes the central stage. That is, the

traditionally RAT-driven wireless communications become service-driven and personalized wireless

communications with quality of service (QoS) differentiations. As RATs evolve over time, today’s state-

of-the-art RATs may become obsolete some day. The trend, however, indicates that only few RATs will

actually be replaced so that the radio environment will remain or become even more heterogeneous.

The latest radio standards increase the spectral efficiency and facilitate a more flexible use of radio re-

sources. UMTS, for example, allows for more flexible channel allocations than 2G systems. This makes

variable data rates and bandwidth-on-demand possible. Streams with different bit rates can, moreover, be

multiplexed and transmitted together. Flexible bit rates efficiently support multimedia applications, possi-

bly consisting of voice, video, and file transfer components [11]. The high speed downlink packet access

(HSDPA) and the worldwide interoperability for microwave access (WiMAX), the successors of UMTS

and WLAN, add additional features for increasing the spectral efficiency and service diversity.

As new radio standards emerge, the radio operators desire reusing existing radio infrastructure. Simi-

larly, the introduction of a new user service cannot imply the need for a new mobile terminal. Designing

multipurpose infrastructure and mobile terminals for integrating existing and future radio standards is

challenging. Multimode hardware designs may be economically feasible today, but will soon become ob-

solete because of their limited flexibility. A software solution should then be considered, where software

CHAPTER 1: INTRODUCTION

2

at least partly defines the radio transmission and reception modes of radio equipment. This is known as

software-defined radio (SDR). Apart from the flexibility of using one or another air interface and provid-

ing one or another service, SDR facilitates infrastructure or hardware upgrades and signal processing or

software updates.

SDR introduces flexibility to wireless communications, whereas cognitive radio adds intelligence.

Cognitive radio facilitates a situation dependent allocation and use of resources for wireless communica-

tions. It can automate the reconfiguration process of SDR equipment for optimally using the available

resources at a given place and time. SDR and cognitive radio together offer the required flexibility and

intelligence for the personalized and omnipresent service provisioning. The rest of this chapter briefly

reviews both concepts and indicates the current SDR and cognitive radio research, focusing on resource

management.

1.2 Software-Defined Radio

In the early 90s Mitola envisaged radio transmitters and receivers (transceivers) that implement the entire

signal processing chain in software (Fig. 1.1a). He coined this vision software radio [3], [4]. Software

radio describes multistandard, multiservice, and multiband radio systems, which are software-

reconfigurable or reprogrammable. It promises to become a pragmatic solution to the variety of available

and incompatible radio standards [6]. The technological difficulty for digitalizing radio frequency (RF)

signals [7], [8], [9] led to the introduction of SDR [10]. SDR may be considered as a generalization of

software radio. It characterizes a transceiver that implements one or more signal processing blocks in

software. Since digitalization usually takes place at the intermediate frequency (IF) stage (Fig. 1.1b), part

of the IF, baseband, and higher layer processing can then be implemented in software [11].

SDR introduces flexibility to wireless systems: It permits adjusting or switching a terminal’s RAT im-

plementation for adapting to changes in the heterogeneous radio environment. As opposed to traditional

radio communications, the software that runs on an SDR platform defines its radio functionality. SDR

platform stands for a software-programmable computing equipment, including handset transceivers, base

stations, and core networks. SDR application or waveform refers to (part of) a RAT-specific digital signal

processing chain. Reconfiguring an SDR platform to execute another SDR application could then change

the deployed radio standard for establishing a radio communications link. Dynamic RAT switches or mod-

ifications during communications sessions are also envisaged.

For about a decade, SDR-related research along the whole line between the mobile terminal transceiv-

er and the core network has been ongoing [12], [13], [14], [15]. It is motivated by the evolution of infor-

mation technology: The introduction of new RATs, such as UMTS or the IEEE 802.11 family of WLANs,

the required compatibility with the existing RATs, including GSM and GPRS, and the increasing demand

for new and differentiated user services call for flexible transceiver solutions. Therefore, the flexibility of

general purpose processors (GPPs), digital signal processors (DSPs), field-programmable gate arrays

(FPGAs), picoArrays [25], networks on a chip (NoCs) [26], or multiprocessor systems on a chip (MP-

SoCs) [27] is becoming more important than the energy efficiency of application-specific integrated cir-

cuits (ASICs) [28], [29], [30]. Today’s reconfigurable devices offer high computing capacities at moderate

Fig. 1.1. Conceptual software radio (a) and software-defined radio (b) transceivers.

(a)

software-defined

User data

presentation/

capturing

RF

processing

(digital)

IF

processing

(digital)

ADC/

DAC

Baseband

processing

(digital)

Higher layer

processing

(digital)

(b)

IF

processing

(digital)

software-defined

User data

presentation/

capturing

RF + IF

processing

(analog)

ADC/

DAC

Baseband

processing

(digital)

Higher layer

processing

(digital)

COGNITIVE RADIO

3

power consumptions. As a result, we observe a tendency of expanding the digital and reconfigurable radio

part while reducing the analog and nonreconfigurable circuits.

Fig. 1.2 shows Mitola’s layered software radio architecture [5]. It does not specify a particular SDR

implementation, but, rather, a general framework for SDR communications. Its four layers are indepen-

dent to some extent. The communications services range from simple phone calls to interactive multime-

dia services. They are steadily redefined or extended as a function of user demands and market success.

Radio applications stand for SDR applications or waveforms. They define the signal processing and over-

the-air transmission modes for adequate service and QoS provisioning. The radio infrastructure is the

abstract execution environment for radio applications. It may feature middlewares, virtual machines

(VMs), resource managers, and conflict solvers. The hardware platform typically consists of a set of hete-

rogeneous processors, data converters, and operating systems (OSs).

The figure indicates that radio applications and hardware platforms are heterogeneous. That is, a radio

application consists of several modules that provide different functionalities. These modules assemble the

waveform, but each one of them may be more or less complex and, thus, require more or less computing

resources. Hardware platforms correspondingly consist of different types of processing elements (PEs),

ranging from ASICs to GPPs. To flexibly support dynamic software and hardware environments, the re-

source management module needs to be independent from a particular radio application and from a certain

hardware platform. It is therefore located within the platform and application-independent radio infrastruc-

ture (Fig. 1.2).

1.3 Cognitive Radio

In the late 90s and less than a decade after introducing software radio, Mitola coined cognitive radio

[114]. His dissertation [115] initiated worldwide cognitive radio research [116], [117], [118], [119] and

led to many different interpretations of the cognitive radio concept. A cognitive radio system is commonly

considered as an intelligent wireless communication system aiming at the efficient usage of radio re-

sources [116], [118]. It is, however, a much broader and more powerful concept [115], [133]. Mitola de-

fines it as “a goal-driven framework in which the radio autonomously observes the radio environment,

infers contexts, assesses alternatives, generates plans, supervises multimedia services, and learns from its

mistakes” [137]. We suggest the following, similar definition:

Fig. 1.2. Layered software radio architecture [5].

Communications Services
Robustness, Isochronisms, Multiple Services, Bridging, Applets/

Scripts, Low-Cost Upgrades (Over-The-Air Downloads)

Radio Applications

Source

Coding &
Decoding

Service &

Network
Support

Modem
IF

Processing

RF/

Channel
Access

INFO-

SEC

Joint Control

Specific Waveform Personalities

Hardware Platform

FPGA Hardware

ADCs

DACs

Conflict Detection

Demod Filter
ASICs Multiple DSPs & GPPs

Multiple OS

Radio Infrastructure

Soft Radio Interface Layer Java Layer Conflict Resolution

Middleware

Open Architecture

Resource Management

CHAPTER 1: INTRODUCTION

4

Fig. 1.3. Software-defined versus cognitive radio.

Definition 1 A cognitive radio system is an ambient-aware wireless communications system that

can intelligently adjust itself to its operating environment. The system can particu-

larly modify the radio transmission modes or parameters as a function of the re-

source availabilities, end-to-end QoS requirements, business models, or the like.

Cognitive radio evolved from SDR [137] although it does not necessarily require a reconfigurable

hardware environment (Fig. 1.3). Multimode radio terminals, whose reconfiguration capabilities are li-

mited to mode switches between a limited set of modes, are apt for cognitive radios. The flexibility of

software implementations, however, increases the potential of environmentally stimulated radio adjust-

ments: Cognitive radio can, as an intelligent management layer on top of an SDR system, automate and

optimize the reconfiguration of SDR equipment. It is the application for SDRs.

Fig. 1.4a sketches a simplified interpretation of Mitola’s cognition cycle [114], [137]. It consists of the

observe, reason and decide, learn, and act phases. The environment is observed and analyzed. Decisions

are made as a function of these observations and the available knowledge. These decisions are executed

and evaluated. This observe-think-act cycle runs continuously. The system gains experience during opera-

tion. The general objective is optimizing the use of resources for wireless communications at any time

while satisfying the users’ service requests and increasing the operators’ revenues. Cognitive radio can

take advantage of the versatility of the B3G context.

Haykin [116] concretizes Mitola’s cognition cycle, considering it for solving radio resource manage-

ment (RRM) issues. The basic cognitive cycle of Fig. 1.4b essentially consists of the radio-scene analysis

and the channel-state estimation and predictive modeling blocks, which process the RF stimuli for the

transmit-power control and spectrum management. The corresponding actions may affect the radio envi-

ronment and lead to new RF stimuli [116].

1.4 Resource Management in SDR and Cognitive Radio

Resource management is an important topic of SDR and cognitive radio research. This Section provides a

brief overview of some advanced RRM techniques, which are investigated in cognitive radio. We then

discuss the need for computing resource management in software-defined and cognitive radios. After ex-

amining the related work, we present our resource management outlook as a motivation for this disserta-

tion. We, particularly, indicate some challenges and possibilities of our research and its possible impact on

future radio communications as a whole.

1.4.1 Radio Resource Management

Spectrum for radio communications is a limited physical resource. Physical and technological limits re-

strain the RF carriers to frequencies that range from approximately 0.25 MHz to 6 GHz [137], although

the use of higher frequencies is recently explored. The steadily growing bandwidth demand thus creates

contention for radio spectrum, a precious radio resource. Spectrum is internationally regulated by the ITU

and nationally by governmental agencies [120], [121]. It has traditionally been leased to operators, gaining

them exclusive rights to spectrum portions for specific usage. The operators are responsible for efficiently

using the acquired radio resources while complying with the specifications imposed by the regulation bo-

dies.

SDR
Cognitive
Radio

Reconfigurability

&

Cognition/

Intelligence

Reconfigurability
Cognition/

Intelligence

RESOURCE MANAGEMENT IN SDR AND COGNITIVE RADIO

5

Fig. 1.4. Simplified cognition cycle (a) and Haykin’s [116] basic cognitive cycle (b).

RRM is an essential topic in modern wireless communications, which leverage diversity and flexibility

and facilitate a higher spectral efficiency. Spectral efficiency is related to system capacity and revenues.

This explains the importance of an efficient usage of radio resources.

The basic RRM concept, where each operator manages the radio resources individually for each RAT,

has been extended with the introduction of 3G and its coexistence with other radio standards. Common or

joint RRM (CRRM or JRRM), for example, refers to the management of radio resources pertaining to

different RATs of a single operator [132], whereas dynamic spectrum access implies a more flexible spec-

trum allocation and management [133]. These techniques are widely investigated in the 3G, B3G, and

cognitive radio contexts. We sketch them below.

A) RRM in 3G and B3G

The spectrum auctions for UMTS licenses in Europe have revealed the importance of RRM. (UMTS is the

most widely adopted 3G system, which is standardized by the 3GPP [2].) As opposed to 2G systems, the

UMTS terrestrial radio access network (UTRAN) can achieve higher spectral efficiencies through ad-

vanced coding and multiple access techniques, diversity schemes, and so forth. The wideband code divi-

sion multiple access (WCDMA) technique, which UTRAN employs, implicitly calls for interference or

radio resource management, because many users concurrently transmit over the same frequency channel

with possibly different data rates. Manufacturers then have to introduce more sophisticated RRM strate-

gies than those that were used in the past. Service differentiations, the QoS concept, and the possibility of

dynamically adapting the resource allocations to the given channel conditions make RRM more powerful

but also more challenging [122].

We have already mentioned that the usable spectrum for wireless communications is rigorously di-

vided into frequency bands, which are assigned to different user groups for specific usage. The UMTS

spectrum auctions followed this concept. Despite the fixed frequency allocations, a UMTS operator needs

to manage various transmission bands and other related radio resources, such as transmission power.

The coexistence of radio standards in B3G leverages the flexibility of choosing a RAT while introduc-

ing new RRM challenges. The major challenge consists in introducing advanced RRM strategies or algo-

rithms that operate from a common rather than technology or operator-driven perspective. The sporadic

and geographically varying use of spectrum, with some frequency bands being more heavily used than

others [142], further argues for inter-frequency and inter-operator RRM.

CRRM or JRRM refers to the management of radio resources of various RATs of a single operator.

The CRRM entity therefore coordinates the use of radio resources of different RATs (Fig. 1.5). The 3GPP

suggests dividing the radio resources that pertain to an operator into radio resource pools. A radio resource

pool contains the available radio resources that pertain to a single RAT within a set of cells. An RRM

entity of Fig. 1.5 manages the radio resources of one radio resource pool, whereas the CRRM entity coor-

dinates the management of several resource pools [132].

Radio

environment

(outside world)

Channel-state

estimation and

predictive

modeling

RF

stimuli

Action:

transmitted

signal

Spectrum holes

Noise f loor statistics

Traf f ic statistics
Radio-

scene

analysis

Interference

temperature

Quantized

channel capacity

Transmit-power

control and

spectrum

management

Outside world

Reason

& decide

Learn

Observe Act

(a) (b)

CHAPTER 1: INTRODUCTION

6

Fig. 1.5. CRRM functional model [132].

B) Dynamic Spectrum Access

Dynamic spectrum access stands for the opposite of the current spectrum regulation and management pol-

icies. Zhao and Sadler [133] try to capture its broad significance, providing a taxonomy of dynamic spec-

trum access, which Fig. 1.6 reproduces. The dynamic exclusive use model assumes the fixed spectrum

regulation structure that we have today. It though allows to sell and trade spectrum and to freely choose

technology (spectrum property rights [134]) or to dynamically assign spectrum by exploiting the spatial

and temporal traffic statistics of different services (dynamic spectrum allocation [135]). The open sharing

or spectrum commons model refers to sharing spectral regions among peer users [136]. The hierarchical

access model adopts a hierarchical access structure with primary and secondary users. It allows secondary

users to access licensed spectrum while not affecting primary user communications. Secondary users can

either transmit below the noise floor of primary users (spectrum underlay) or occupy temporally unoccu-

pied spectrum (spectrum overlay).

Despite these differentiations, the above concepts are closely related. The dynamic spectrum allocation

(DSA) and spectrum overlay techniques, for example, try to assign spectrum portions that are momentarily

unused (spectrum holes or white spaces) to primary and secondary users, respectively. These methods are

appropriate for cognitive radios and are briefly discusses in continuation.

Dynamic Spectrum Allocation

While a static spectrum allocation, which is simple to regulate and manage, was appropriate for wireless

communications in the past, it is inefficient for modern wireless communications: The traditionally inde-

pendent RANs are merging into composite radio networks, basic communication services are replaced by

advanced and personalized multimedia services, and a steadily increasing number of users desire an any-

where and anytime wireless connectivity. The time and regional variations of the service and traffic de-

mands reflect another shortcoming of a fixed spectrum allocation. DSA was introduced to overcome these

and other inefficiencies and to exploit the potentials of wireless technology [126].

DSA covers a range of research fields, such as dynamic channel allocation (DCA), frequency assign-

ment, unlicensed spectrum access, and spectrum coexistence. DCA refers to sharing the radio resources of

a single RAN [127], whereas frequency assignments are mostly related to assigning frequencies to base

stations as a function of the interference and coexistence constrains [128]. The unlicensed spectrum access

approach treats spectrum as an open source that any conforming equipment can use [129]. Spectrum coex-

istence finally implies different networks using the same frequency bands, such as digital and analog TV.

Fig. 1.6. A taxonomy of dynamic spectrum access [133].

CRRM

entity

CRRM

entity

RRM

entity

RRM

entity

RRM

entity

RRM

entity

- Information reporting

- Information reporting
- RRM decision support

- Information reporting
- RRM decision support

Spectrum Overlay
(Opportunistic Spectrum Access)

Dynamic Spectrum Access

Dynamic Exclusive Use Model
Open Sharing Model

(Spectrum Commons Model)
Hierarchical Access Model

Spectrum Underlay
(Ultra Wide Band)

Spectrum Property Rights Dynamic Spectrum Allocation

RESOURCE MANAGEMENT IN SDR AND COGNITIVE RADIO

7

Table 1.1 Mobile spectrum pools [137].

Band RFmin (MHz) RFmax (MHz) Wc Remarks

Very Low 26.9 399.9 315.21 Long range vehicular traffic

Low 404 960 533.5 Cellular

Mid 1390 2483 930 Personal communication services

High 2483 5900 1068.5 Indoor and RF LANs

DSA is more general than DCA and frequency planning but more organized than the unlicensed

access or coexistence methods. It aims at a dynamic spectrum allocation across RANs, facilitating spec-

trum sharing over space and time. More precisely, the DSA establishes that spectrum is locally and exclu-

sively allocated to services for a limited time. Spectrum can then be allocated as needed, increasing the

overall spectral efficiency.

Contiguous and fragmented DSA are studied as two practical implementations of DSA, where guard

bands separate the spectrum blocks allocated to different RANs [126]. Contiguous DSA implies that, to

allocate more bandwidth to one RAN, its spectral neighbors need to release bandwidth. In the fragmented

DSA scenario, on the other hand, RANs can occupy any available spectrum hole.

Spectrum Pooling

An opportunistic spectrum access (OSA) includes the opportunity identification, its exploitation and regu-

lation. The opportunity identification process recognizes underused spectrum bands. The opportunity ex-

ploitation process then decides if and how the transmission should occur in these bands following some

regulation policy, which defines the basic etiquette for secondary users to ensure compatibility with legacy

systems. The radio etiquette would, for example, specify that secondary users change bands when primary

users enter the bands. The overall objective is exploiting spectrum silent times (in which spectrum por-

tions are underexplored or idle) for secondary usage while protecting primary users and their privilege to

access radio resource whenever desired [133].

Spectrum pooling is an OSA technique that was introduced by Mitola [137] and explored by Weiss

and Jondral [131]. It refers to short-time spectrum leases that are managed by the cognitive radio itself and

priced by the market. Therefore, spectral ranges from different owners are merged into a common pool.

Mitola [137] suggested the four spectrum pools of Table 1.1, where Wc is the total bandwidth that could

participate in the spectrum pool excluding those bands that are not suitable for pooling, such as satellite,

aircraft, and radio navigation bands.

Weiss and Jondral [131] identify OFDM as a candidate modulation for spectrum pooling, because it

eases the realization of spectral coexistence between primary and secondary users. In OFDM, a high-rate

data stream is divided into multiple low-rate substreams, each modulated on a single subcarrier. Through

proper subcarrier spacing, precise synchronization, and rectangular pulse shaping, subcarriers are ortho-

gonal to one another [139]. This facilitates flexible and dynamic allocations of spectrum holes of different

bandwidths.

Spectrum pooling as well as other dynamic spectrum access techniques pragmatically approaches a

more efficient use of spectrum. The corresponding research results show the advantages of a dynamic

spectrum regulation, which is currently evaluated by the regulation authorities. In the long term, this may

lead to an open spectrum access [140].

1.4.2 Computing Resource Management

Computing resource management is not a traditional radio communications issue. Traditional radios are

designed for accessing a single or a few air interfaces or channels. During the design time of a hardware-

defined radio, computing resources are assigned to perform specific tasks. During operation, there is little

or no need for computing resource management. This is different in SDR, where some computing re-

sources can be reconfigured. The reconfiguration process frees and reassigns computing resources, de-

mapping one software piece and mapping another. This implicitly calls for computing resource manage-

ment.

SDR facilitates the independent design of software and hardware for wireless communications. So-

phisticated real-time services, high data rates, and complex signal processing algorithms entail elevated

computing requirements. Software-defined UMTS transceiver implementations, in particular, require high

CHAPTER 1: INTRODUCTION

8

amounts of memory and processing resources [11], [17]. Multiprocessor execution environments are

therefore envisaged for executing even a single-user SDR transceiver [9], [17].

Multiprocessing is a timely research topic and several recent industry success examples, such as the

picoArray [31] and the Cell multiprocessor [32], indicate the trend in processing technology for, but not

limited to, wireless communications. The modules of an SDR application─essentially the digital signal

processing blocks and the data flows between them─then need to be mapped to the distributed and limited

computing resources of heterogeneous multiprocessor platforms (Fig. 1.7).

A) Related Work

Several radio standards have been at least partly implemented in software and executed on general-

purpose hardware. SDR research has also addressed the partitioning of waveforms for their distributed

execution on multiprocessor platforms. Most of these efforts address the mapping of a specific waveform

to a particular platform, including the mapping of

 an OFDM baseband processing implementation to a multiprocessor platform [98],

 an OFDM receiver to a MP-SoC [99],

 a WCDMA receiver to a DSP with attached reconfigurable logic [100],

 a HIPERLAN/2 implementation to the MONTIUM processor tile [101],

 a UMTS base station to four PC101 picoArrays using 740 processors [25], and

 the H.264 encoding algorithm to the Cell multiprocessor [102].

Rhiemeier’s dissertation [54], on the other hand, studies the processor allocation problem from a rather

general perspective. He applies operational research techniques to partition task graphs, which represent

waveforms, for their scheduling on a multiprocessor platform. He considers a platform that consists of two

identical DSPs connected through a bidirectional bus for studying the implications of bus bandwidth and

partitioning algorithm on the execution time of waveforms [53], [54].

Current cognitive radio research focuses on RRM. Computing resource management has not been ad-

dressed in this context. Mitola [115], though, talks about self-awareness and introduces a high-level com-

putational model that the system has of itself. The model provides the means for representing the types of

processors and their capacities, among others. This information is used for controlling the execution time

of the cognition cycle and for detecting software-software and software-hardware incompatibilities [115],

although it could be used for computing resource management. Jondral [119] considers the “awareness of

processing capabilities for the partitioning or the scheduling of processes” as a technology centric property

of cognitive radios. Chapters 2 and 7 examine further related work on computing resource management in

SDR and cognitive radio, respectively.

Fig. 1.7. Mapping versus computing resource management.

mapping

f1 f4

f3

f2
fM…

computing

resource allocation

A/DA /D

FPGA

DSP

DSP

FPGA

μProc

FPGA

FPGA

DSP

RESOURCE MANAGEMENT IN SDR AND COGNITIVE RADIO

9

B) Outlook

The hard real-time computing constraints of SDR applications have implications on the design of SDR

platforms and applications as well as on SDR middleware, abstraction layers, and computing resource

management solutions. The first generation of SDR mobile terminals (SDR-MTs) will be limited in com-

puting resources, including battery power, and will probably not be capable of supporting more than one

RAT implementation at a time. The flexibility of these terminals will then be function of the capabilities

of their reconfiguration managers. The computing resources of SDR base stations (SDR-BSs), on the other

hand, will be less limited. Nevertheless, an optimization of computing resources would be highly desirable

for reducing the operational cost of SDR-BSs. The potentially large number of users and the platforms’

high degrees of flexibility, modularity, and reconfigurability make the computing resource management at

SDR-BSs equally important though more complex than that at SDR-MTs.

The software challenges include designing efficient implementations of complex signal processing al-

gorithms [8]. Furthermore, software needs to be portable, which has implications on the software design

tools. If SDR software needs to be specifically tailored for each hardware platform, software-hardware but

also software-software interoperability issues may arise, compromising flexibility. Many SDR solutions

are proprietary and hardware or tool-specific software implementations, such as picoChip’s SDR tran-

sceiver implementations [25], although open source software for programmable processors exist; GNU

Radio [97] being the most popular example.

SDR research addresses these (software and hardware) issues and a few practical SDR execution envi-

ronments have emerged throughout this decade. Theoretical SDR research has gained less attention. We

understand an SDR application as a set of concurrent processes that continuously process and propagate

real-time data. Such a processing chain is not specifically tailored, but, rather, executable on any general-

purpose platform with sufficient computing capacity. Because of the similarities between future SDR ap-

plications and platforms and today’s general-purpose computing applications and platforms, we consider

general-purpose computing methods practical for SDR systems. We particularly think that the introduction

of appropriate mapping and scheduling techniques will leverage the design of SDR platforms and applica-

tions. Mapping (matching in heterogeneous computing literature [43]) describes the process of assigning

software modules to hardware resources, whereas scheduling determines the execution times of these

modules. We consider them as two complementary computing resource management methods.

Wireless or SDR systems, however, reveal specific aspects─essentially regarding flexibility and effi-

ciency─which have not been jointly considered so far:

1. time slot based division of the transmission medium (radio time slot),

2. continuous data transmission and reception [34],

3. RAT-specific QoS targets,

4. real-time computing requirements and limited computing resources,

5. different computing constraints and loads for different RATs or radio conditions,

6. dynamic reconfigurations of the protocol stack, either partial or total, and

7. heterogeneous multiprocessor platforms.

These characteristics have implications on the design of the radio infrastructure, the interface between

SDR applications and platforms. The system’s reconfiguration flexibility and efficiency particularly de-

pends on the computing resource management module. This module is the central part of the radio infra-

structure, comparable to the central processing unit (CPU) scheduler within an OS. Its capability to dy-

namically assign computing resources to computing requirements facilitates the introduction of new

(communications) services, the spread of advanced signal processing techniques, the incorporation of

hardware extensions, and so forth. We therefore think that computing resource management is essential

for the breakthrough of SDRs.

The possibility of dynamically reconfiguring an SDR platform provides full flexibility for adapting an

SDR application to the momentary radio environment and QoS demands. SDR can thus be considered as a

platform for cognitive radio and advanced RRM [124]. This requires extending current computing re-

sources management approaches toward a framework that links the computing with the radio resources. A

cognitive radio system that observes (momentarily) low radio traffic may then give a higher importance to

CHAPTER 1: INTRODUCTION

10

the efficient use of computing resources, reducing the computing complexity and, consequently, power

consumption. Similarly, if a non-real-time service would momentarily exhaust a platform’s computing

capacity, the cognitive radio system could schedule this service at some later time when the limiting con-

ditions change, such as in the event of a battery recharge.

From the above discussion follows that radio resource monitoring and management are not the only is-

sues in cognitive radio. Without the support of computing resources, many advanced RRM techniques

cannot be realized. More computing resources are generally required to increase the spectral and transmis-

sion power efficiency, in particular. Moreover, future radio communications systems will consider ex-

tended models of the entire system and more complex algorithms for reaching higher levels of intelligent

management. This evolution calls for more computing resources.

Instead of viewing computing resources and their management as an enabler for cognitive radio, we

argue for a cooperative radio and computing resource management. We, therefore, extend the cognitive

cycle of Fig. 1.4b, adding another cycle, which monitors and manages the computing resources (Fig. 1.8).

This facilitates a synchronized management of the limited radio and computing resources.

Wireless communications is nowadays an integral part of computer engineering (sensor networks and

pervasive computing, for example) and computing issues become the more important the further advanced

the wireless communications. Our research therefore promotes a higher integration of computing issues in

wireless communications and tries to establish the basis for flexible tradeoffs between computing and

radio resources.

1.5 Contribution and Outline

Our research aims at contributing to the evolution of modern wireless communications and to the devel-

opment of SDR and cognitive radio, in particular. It promotes a general resource management framework

that facilitates the integration of computing and radio resource management. This dissertation discusses

the need for computing resource management in software-defined and cognitive radios and introduces an

SDR computing resource management framework with cognitive capabilities. The hard real-time compu-

ting requirements of SDR applications, the associated radio propagation and QoS implications, and hete-

rogeneous multiprocessor platforms with limited computing resources define the context of these studies.

We examine heterogeneous computing techniques, multiprocessor mapping and scheduling in particu-

lar, and elaborate a flexible framework for the dynamic allocation and reallocation of computing resources

for wireless communications. The framework should facilitate partial reconfigurations of SDR platforms,

dynamic switches between RATs, and service and QoS level adjustments as a function of environmental

conditions.

The context of this dissertation is the platform and hardware abstraction layer operating environment

(P-HAL-OE), a specific SDR framework. An SDR framework behaves like an OS for radio communica-

tions. It has access to physical hardware resources and software repositories and provides an execution

Fig. 1.8. Extended cognitive cycle.

Action:

reconf iguration

Computing resource

occupation & availability,

Analog circuitry

Hardware

& Software

information

Supported

RATs
Computing

resource

management

Computing

environment

Computing-

scene

analysis

Radio

environment

Channel-state

estimation and

predictive

modeling

RF

stimuli

Action:

transmitted

signal

Spectrum holes

Noise f loor statistics

Traf f ic statistics
Radio-

scene

analysis

Interference

temperature

Quantized

channel capacity

Radio

resource

management

CONTRIBUTION AND OUTLINE

11

environment for SDR applications (Fig. 1.9). We review some important SDR frameworks and present the

main features of the P-HAL-OE. Chapter 2 also specifies the computing resource management problem

and examines the related work.

We suggest a modular framework and distinguish between the computing system modeling and the

computing resource management. Fig. 1.10 indicates this modular design approach. The SDR computing

system modeling is presented in Chapter 3. It models the computing resources and requirements based on

two computing resource management techniques, which facilitate meeting the strict timing constraints of

real-time systems. The modeling is scalable and can account for many different hardware architectures

and computing resource types. This work focuses on processing and interprocessor bandwidth resources

and processing and data flow requirements. Section 3 also introduces several modeling parameters for

capturing specific platform and application features.

Chapter 4 presents our computing resource management approach, which consists of a general-

purpose mapping algorithm and a cost function. The independence between the algorithm and the cost

function facilitates implementing many different computing resource management policies. We introduce

a dynamic programming based algorithm, the tw-mapping, where w controls the decision window. A gen-

eral and parametric cost function guides the mapping process under the given resource constraints, whe-

reas an instance of it facilitates finding a mapping that meets all processing and data flow requirements of

SDR applications with the available processing and bandwidth resources of SDR platforms. This cost

function assumes the SDR computing system models of Chapter 3. Chapters 5 and 6 simulate several SDR

reconfiguration scenarios and analyze the suitability of our framework and its potentials for a flexible

computing resource management.

We extend our SDR computing resource management concepts to the cognitive radio context. The two

primary objectives of cognitive radio are highly reliable communications whenever and wherever needed

and the efficient use of the radio spectrum [116]. We formulate a third objective as the efficient use of

Fig. 1.9. SDR computing resource management context: dynamic mapping of waveforms for a flexible service

provisioning.

Fig. 1.10. Modular SDR computing resource management framework.

e.g. UMTS-RAT

SDR Computing Resource Management

Voice,
Short Messages

Video,
Streaming

Multimedia,
Interactive

?-RAT
e.g. GPRS-RAT

SDR Application 1
SDR Application 2

SDR Application X

SDR Framework

SDR Computing

System Modeling

(Chapter 3)

SDR Computing

Resource Management

(Chapter 4)

CHAPTER 1: INTRODUCTION

12

computing resources. The cognitive computing resource management then correspondingly extends the

currently investigated scope of cognitive radio. Chapter 7 examines the cognitive capabilities of our

framework─the cognitive radio’s interface to SDR platforms─and indicates the potentials of our proposal.

The cognitive computing resource management needs to be coordinated with the RRM. Chapter 8,

therefore, introduces the joint resource management concept for cognitive radios. It proposes three cogni-

tive cycles and discusses several interrelations between the radio, computing, and application resources,

where application resources refer to the available SDR and user applications. Our approach potentiates

flexibility and facilitates radio against computing resource tradeoffs. It promotes cognition at all layers of

the wireless system for a cooperative or integrated resource management that may increase the perfor-

mance and efficiency of wireless communications. Chapter 9 concludes the dissertation with a summary

of its main contributions and a brief outlook on future research possibilities.

2
SDR Computing Resource Management

Context

2.1 Introduction

This chapter presents the context of our SDR computing resource management framework of Chapters 3

and 4. We first review some important SDR frameworks (Section 2.2). These frameworks abstract the

hardware details of SDR platform and constitute the operating environment for SDR applications. We

specify the SDR computing environment, formulate the problem, and discuss the scope and assumptions

of our solution in Section 2.3. Section 2.4 examines the related work in the general context of heterogene-

ous computing. We can then concretize the main features that an SDR computing resource management

framework should satisfy, while taking into account prior achievements (Section 2.5).

2.2 SDR Frameworks

An execution environment provides a platform for the execution of applications. It basically abstracts

hardware resources and provides several functionalities to applications for a controlled use of these re-

sources. Execution environments for general purpose computing platforms and applications include com-

mon OSs, such as UNIX or POSIX (portable operating system interface) [20], higher level abstractions or

virtual machines (VMs) [20], object oriented architectures, such as the common object request broker

architecture (CORBA) [21], and grid computing environments [23]. While conceptually appropriate for

the SDR computing context, these environments do not specifically address digital signal processing is-

sues and introduce timing, memory, and power overheads that make it difficult to meet the hard real-time

computing constraints of SDRs. Therefore, general-purpose computing knowledge and experience has

been adapted to the digital signal processing world and SDR frameworks emerged.

Several SDR frameworks exist. The Joint Tactical Radio System’s (JTRS’s) software communications

architecture (SCA) [87], for example, is an SDR framework specification that is based on CORBA. Since

SCA is the most widespread SDR research project, we may classify SDR frameworks as SCA and non-

SCA based. This Section briefly reviews the SCA, the QoS-enabled SCA (Q-SCA), and the P-HAL-OE.

We discuss the frameworks’ principal characteristics and evaluate their computing resource management

capabilities. Section 2.2.4 finally summarizes a few additional SDR frameworks; many more exist.

2.2.1 SCA

The JTRS is the US military software radio research program and the SCA is its baseline architecture [87].

The SDR Forum, industry, and academia are promoting, developing, and implementing the SCA. The

CHAPTER 2: SDR COMPUTING RESOURCE MANAGEMENT CONTEXT

14

SDR Forum is an independent and nonprofit organization [15]. It is attempting to fill the role of a software

radio standards body with the mission of fostering software radios in a flexible wireless market. Its mem-

bers are companies, universities, and other associations with experience or interest in SDRs. The SDR

Forum proposed its own SDR framework, which is based on the JTRS-SCA.

The Mobile and Portable Radio Research Group (MPRG) of Virginia Tech is developing the open

source SDR framework OSSIE (open source SCA implementation embedded) [89]. OSSIE is primarily

intended to enable research and education in SDR and wireless communications. The software package,

which is downloadable from [89], includes an SDR core framework based on the JTRS-SCA, tools for

rapid development of SDR components and waveforms, and an evolving library of pre-built applications.

Here we briefly present the SCA and its computing resource management capabilities, rather than ex-

amining the different SCA implementations. If not stated otherwise, we discuss the JTRS-SCA release 2.2

[88].

A) Objectives

The SCA was introduced to reduce software manufacturing costs by reducing the development time

through the reusability and portability of waveforms. The initial goals of the SCA were [14]:

1. function as a multiband multimode radio,

2. be interoperable with all JTRS domains (airborne, fixed/ maritime, vehicular, dismounted, and

hand-held),

3. be compatible with legacy systems,

4. support the insertion of new technologies,

5. support advanced networking features, and

6. use primarily commercial off-the-shelf (COTS) components.

These objectives were generalized by the SDR Forum’s approach, specifying

1. the domain independence across all commercial, civil, and military implementations, and

2. the support for commercial, civil, and military waveforms.

The SCA thus approaches a common architecture with clear interface definitions for easing the design

of flexible and interoperable SDR execution environments and portable waveforms. It encourages the

extensive use of object-oriented methodologies. It emphasizes on continuous validations, where the speci-

fications are validated and refined during the research, prototyping, and implementation processes.

B) Architecture

The basic architecture comprises a software and a hardware framework as well as rules that govern the

software and hardware implementations. The software framework defines the software structure and the

interactions between software components. The hardware framework describes the hardware classes and

subclasses and not individual and domain-specific hardware choices. The rules relate to specific imple-

mentations. They specify interfaces, form factors, software development languages, and so forth. They

particularly define specific software and hardware requirements that must be met for an implementation to

be SCA compliant.

The general software stack of the SCA consists of the core framework (CF), the CORBA object re-

quest broker (ORB), and the POSIX-based real-time operating system (RTOS) (Fig. 2.1). The CF de-

scribes the interfaces. It provides an abstraction of the software and hardware layers for waveform devel-

opers. The CORBA ORB facilitates the communication between software objects. Therefore, each object

must provide an interface written in the object management group (OMG) interface definition language

(IDL). This encapsulates the actual functionality of a CORBA object behind its interface.

All software and hardware layers of the SCA are independent and can be independently modified. In-

terfaces between these layers are created from specified and publicly maintained standards, applying ob-

ject-oriented methodologies: A waveform, for instance, is described as an object, consisting of several

functional objects (modules or components). Objects contain private data and public member functions.

These functions specify the methods for interactions between objects. Software objects can describe and

SDR FRAMEWORKS

15

control hardware devices. Fig. 2.2 illustrates a more detailed diagram of the SCA software framework. It

shows a generic framework with only a few objects being hardware-specific.

Resource stands for a software object that features a set of radio functionalities. It is the fundamental

software element of the SCA. All non-CF software structures are Resources. A Resource may provide

direct control over a hardware device or deliver some software service. Resources can communicate with

one another using ports─abstract accesses to communication channels─and establish complex and dynam-

ic interdependencies. Adapters are special Resources that are used to access a non-CORBA-compliant

interface of a nonstandard Resource. Adapters facilitate using a wide variety of devices as well as legacy

code.

The CF performs the allocation and management of the Resources. It consists of

 base application interfaces (Port, LifeCycle, TestableObject, PropertySet, PortSupplier, Resour-

ceFactory, and Resource),

 framework control interfaces (Application, ApplicationFactory, DomainManager, Device, Loa-

dableDevice, ExecutableDevice, AggregateDevice, and DeviceManager),

 framework services interfaces (File, FileSystem, FileManager, and Timer), and

 a DomainProfile.

Fig. 2.2. The SCA software framework [88].

Modem

Components

Modem

Adapter

Link, Network

Components

Security

Adapter

Security

Components

Security

Adapter

Link, Network

Components

I/O

Adapter

I/O

Components

Core Framework IDL (“Logical Software Bus” via CORBA

I/O APILLC/Network APISecurity APILLC/Network APIMAC API

Non-CORBA

Modem
Components

RF

Non-CORBA

Security
Components

Non-CORBA

I/O
Components

CF

Services &
Applications

CORBA ORB &

Services
(Middleware)

Operating System

Network Stacks & Serial Interface Service

Board Support Package (Bus Layer)

CF

Services &
Applications

CORBA ORB &

Services
(Middleware)

Operating System

Network Stacks & Serial Interface Service

Board Support Package (Bus Layer)

Black Hardware Bus Red Hardware Bus

Commercial Off-the-Shelf

(COTS)

Core Framework (CF)

Applications

OE

Physical

API

Fig. 2.1. The SCA software stack.

POSIX RTOS

CORBA ORB (Middleware)

SCA Core Framework

Wave-

form 1

Wave-

form 2

Wave-

form N···

CHAPTER 2: SDR COMPUTING RESOURCE MANAGEMENT CONTEXT

16

The base application interfaces are those that the CF internally uses for controlling the Resources that

compose an application. The control interfaces provide control facilities over the SDR system. The service

interfaces provide service support to core and non-core applications. The DomainProfile describes the

properties of hardware devices and software components [88].

C) Computing Resource Management Facilities

The SCA features some computing resource management facilities, including the DomainProfile, which

describes the hardware and software capabilities, and the releaseObject operation of the application inter-

face for releasing allocated computing resources [88]. The POSIX OS, however, confines the resource

management possibilities of the SCA. Since not supported by the POSIX, the SCA specification does not

define methods that facilitate the acquisition of the computing resource states, including the occupation of

processing resources and the momentary power consumption, or the communication status, such as the bit

error rate (BER) and noise power density.

The SCA, though managing the CPU resource time, relies on the best effort timing policy of the

POSIX RTOS. This implies that the framework cannot dynamically assign a certain amount of CPU time

to one or another process, complicating the application of software mapping algorithms targeting hard

real-time constrained applications. Other related difficulties include the delays suffered by the IDL inter-

faces [90], the large footprints of existing SCA implementations [91], [92], and the problem of dynami-

cally deploying application components [93].

2.2.2 Q-SCA

The Q-SCA is an SDR execution environment with QoS capabilities [86]. It introduces a resource model-

ing, which specifies the processing, data flow, and latency requirements of waveforms, and adds an ad-

mission controller and resource allocator to the SCA framework (Fig. 2.3).

A) Waveform Modeling and Mapping

The Q-SCA waveform model is based on the synchronous data flow (SDF) model, where the data flow

requirements are given at compile time [34]. It assumes that processes communicate through unidirection-

al first-in-first-out (FIFO) channels. The Q-SCA framework models a waveform as a directed acyclic

graph (DAG).

A process is characterized by its worst-case execution time Ci, its execution period Ti, and the maxi-

mum latency requirement Di. The unit of Ci is a function of the device type where the process will even-

tually execute. After determining the particular target processor, the worst-case execution time is con-

verted to actual time units. Ti is specific to input and Di to output processes.

The directed edge eij denotes a communication channel from process τi to process τj. A process cannot

start before having received all input data. Edges have two attributes: The number of tokens that τi produc-

es and τj consumes per invocation. The total number of produced and consumed tokens per invocation

needs to match.

Based on this model, application programmers can specify three types of QoS constraints: worst-case

execution time, execution period, and maximum latency. To satisfy a waveform’s maximum latency re-

quirement─the actual latency is computed as the sum of the processes’ response times─waveforms need

to receive enough CPU time and memory, among others. These resources are provided by the loadable and

executable devices, which map to a set of processing elements.

Each processing element is associated with some matching and allocatable properties. Examples of

matching properties are the name and version of the OS. Waveform software components need to comply

with the matching properties, or constraints, of the processing elements they deploy. Allocatable proper-

ties are the amount of resources that can be provided to a process. The worst-case number of floating point

operations per second or the maximum propagation delay would be an allocatable property [86].

B) Q-SCA Core Framework

The Q-SCA supports the modeling and mapping of QoS-constrained waveforms. It, therefore, extends

JTRS-SCA domain profiles to allow for QoS and resource specifications, adds services that provide ad-

mission control and resource allocation (Fig. 2.3), and extends the software communication bus.

SDR FRAMEWORKS

17

Fig. 2.3. Q-SCA components within the SCA software stack.

The SCA’s software assembly descriptor (SAD) is a dedicated XML descriptor that specifies the ap-

plication structure and components. The Q-SCA extends various fields in the SAD so that the application

developers can specify the QoS-related information. The software package descriptor (SPD) and the soft-

ware component descriptor (SCD) are XML files that specify the processing elements, matching proper-

ties, expected computing resource requirements, and the number of produced or consumed tokens for each

Port. Developers need to implement a predefined set of configurable property operations that the CF in-

vokes for the resource allocation.

The ResourceAllocator keeps track of the available resources through the deviceCapacities attribute.

Upon a request for creating an application, it checks the schedulability of the application and assigns a

loadable or executable device to each application’s component. The createAssignments and releaseAs-

signments operations specify the resource allocations and deallocations, which the ApplicationFactory

executes. The RT-CORBA scheduling service enforces these resource allocations.

C) Computing Resource Management Facilities

The Q-SCA waveform model and the corresponding CF facilitate meeting the QoS constraints of wave-

forms. Initial results indicate tolerable timing overheads of the SCA-based SDR framework [86].

Some of the Q-SCA concepts will also be found in this dissertation, which introduces a comprehensive

SDR computing resource management framework. The Q-SCA and the P-HAL-OE are two alternative

SDR frameworks with computing resource management capabilities. They were independently planned

and designed. Although not examined in this dissertation, their research results and conclusions may be of

mutual interests.

2.2.3 P-HAL-OE

The platform and hardware abstraction layer (PHAL) is the SDR framework proposed by the Radio

Communications Research Group of the Polytechnic University of Catalonia. PHAL evolved to the P-

HAL-OE [94], which we describe here.

A) Design Goals and Challenges

The process of defining a common framework for developing and deploying SDR applications requires

eliminating any platform (hardware and supporting software) dependencies. The framework needs to be

capable of allocating as many computing resources as required to the applications. This implies the capa-

bility for adding and removing hardware components from different providers. Different hardware topolo-

gies, configurations, and task assignments impose restrictions on the integration of heterogeneous hard-

ware for creating SDR platforms, requiring a multiplatform abstraction layer and execution environment.

The framework’s operational context also needs to be taken into account. Signal processing blocks, in

this case, receive input signals which they process to generate output signals. The first design step would

then be providing mechanisms for dealing with input and output signals; either as software or hardware

modules abstracted from the real implementation. The SDR applications are assembled at the execution

time, unifying the corresponding signal processing blocks or objects. The P-HAL-OE should, moreover,

support:

1. execution control,

POSIX RTOS

CORBA ORB (Middleware)

SCA Core Framework

Wave-

form 1

Wave-

form 2

Wave-

form N···

Resource

Allocator

Admission

Controller

CHAPTER 2: SDR COMPUTING RESOURCE MANAGEMENT CONTEXT

18

2. hide or abstract platform heterogeneities,

3. data packet instead of processor-specific messaging,

4. online monitoring of execution parameters,

5. computing resource management, and

6. auto-learning or cognitive capabilities for internal resource management.

The first four features in the list have already been implemented, whereas the remaining two are ad-

dressed in this dissertation, which provides the theoretical and practical framework for (a cognitive) com-

puting resource management.

B) Principal Characteristics

A hardware abstraction layer (HAL) hides the hardware peculiarities from the software. A HAL can be

understood as a software layer, which typically resides within an OS. It ensures that all hardware proce-

dures, such as interprocessor communication, input and output interfaces, memory ranges, and context

switches, are completely hidden from the software.

For practical purposes, a HAL eases the deployment of applications that require a direct hardware ac-

cess. For example, accessing a resource that is located outside a processor’s bus requires specific code that

deals with the bridging device. HAL routines provide this feature, making the real access to this resource

transparent to the applications. Applications can then be designed for any hardware.

The HAL concept is very useful for the execution of SDR applications on different platforms. Hard-

ware transparency is, particularly, desired for easing the design and deployment of SDR applications. On

the other hand, heavy signal processing routines with hard real-time constraints require minimal time and

processing overheads for maximum efficiency. Hence, P-HAL-OE features only one level of hardware

abstractions.

Fig. 2.4 shows a schematic diagram of the layered P-HAL-OE design. The topmost layer is the ab-

stract application layer. It specifies the data flows between the objects of an SDR application. These ob-

jects interact with the PHAL platform rather than directly with one another. The PHAL layer, consisting of

the middleware and the platform software layers, hides the peculiarities of the available PE and their

physical interconnections, exposing a single virtual processing platform (PHAL platform) to the applica-

tion layers.

Apart from providing a lightweight abstraction layer, the P-HAL-OE provides services that support the

execution control of SDR applications and the management of computing resources. These are:

1. real-time information exchange between platforms,

2. isochronisms of data and processes running on different platforms,

3. scheduling of processes on all PEs and execution control,

4. monitoring of state variables and computing resources for generating real-time statistics,

5. distributed management of real-time statistics,

6. parameter initializations and run-time adaptations,

7. homogenous procedure for loading and managing executable files, and

8. automatic network discovery and plug-and-play support.

The P-HAL-OE features a set of components and libraries that facilitate the execution on heterogene-

ous multiprocessor platforms. These components or libraries can be categorized as either hardware de-

pendent or hardware independent, implementing tasks that are platform-specific and those that are not.

The larger the number of hardware independent functions, the easier the portability. Therefore, the plat-

form-specific software provides only elementary services, which can often be implemented with a low

software depth.

Fig. 2.5 shows the implementation components of the P-HAL-OE. The application, represented by a

single object, can access several services provided by the PHAL software library, which is a platform in-

dependent library. The PHAL software daemons implement these services. They are a set of stand-alone

SDR FRAMEWORKS

19

entities, which execute only a few operations. They are equivalent to the DomainManager, DeviceMan-

ager, ApplicationFactory, and FileManager of the SCA. The following list sketches their principal func-

tions; reference [94] contains further details.

 CMD MAN: centralizes all interactions between the higher level control applications and the P-

HAL-OE.

 HW MAN: performs computing resource management tasks, assigning software requirements to

computing resources.

 SW MAN: administrates the application and component repositories and definitions.

 STATS MAN: provides the object initialization parameters and facilitates monitoring and modify-

ing application variables during execution.

 BRIDGE: provides the links for interprocessor data transfers.

 SYNC MAST: provides the time reference.

 FRONT END: routes the P-HAL-OE control packets between daemons and gathers hardware sta-

tus information.

 SW LOAD: assigns local resources for loading software components and defines the internal data

interfaces between them.

 EXEC CTRL: controls the real-time execution of software components.

 STATS: retrieves and modifies application variables.

 SYNC: synchronizes the local times with the time reference.

The platform independent software modules interact with the hardware using the platform-specific

PHAL hardware library. This library enables the previously stated portability of PHAL functions. The

implementation of the hardware library may, in some cases, require the use of an OS. The hardware and

software libraries and their application programming interfaces (APIs) are described in [94].

C) Resource Management Facilities

A major design goal for the P-HAL-OE was providing computing resource management facilities, such as

Fig. 2.4. The logical layers of the P-HAL-OE.

Object 1

Monitoring and control plane

Execution plane

Abstract

Application
Layer

PHAL PlatformMiddleware

Platform
Software

Layer

Hardware
Layer

Physical Interfaces

PE1 PE2 PE3

Real

Application
Layer

O1 O2 O3 O4 O5

Object 2 Object 4

Object 3

Object 5

STATS

EXEC CTRL

SYNC...

HW API

STATS

EXEC CTRL

SYNC...

HW API

STATS

EXEC CTRL

SYNC...

HW API

Algorithm kernel

CHAPTER 2: SDR COMPUTING RESOURCE MANAGEMENT CONTEXT

20

Fig. 2.5. Implementation components of the P-HAL-OE [94].

Fig. 2.6. The P-HAL-OE time slots.

 resource awareness (number of sub-platforms, their interconnectivity, etc.),

 time management,

 execution control,

 continuous monitoring of parameters, and

 coherent modeling of the available hardware and software modules.

This dissertation elaborates the corresponding computing resource management framework, which relies

on the time management approach described in continuation.

The P-HAL-OE splits the continuous computing time into discrete time slots. Objects are then exe-

cuted in a pipelined fashion, where data that are produced in one time slot are not consumed before the

beginning of the next time slot (Fig. 2.6). This facilitates synchronizing the distributed data processing and

ensuring deterministic computing delays through proper mapping and scheduling. The clock synchroniza-

tion errors, though, need to be within a certain limit, specified as a fraction of the time slot duration. The

PHAL platform therefore provides a unique and reliable virtual time. The periodic synchronization proc-

ess is described in [94].

2.2.4 Other SDR Frameworks

A) Tsao’s SDR Software Framework

Tsao et al. [95] introduce a non-CORBA based software framework for SDRs. They propose extending an

OS with features that permit the run-time reconfiguration of waveforms. Their SDR framework is divided

OBJECT

API

PHAL Software Library

PHAL Software Daemons

STATS
FRONT

END

CMD

MAN

SYNC

MAST

EXEC

CTRL

SW

LOAD

SW

MAN

STATS

MAN

BRIDGESYNC
SW

MAP

API

API

API

Operating system (optional)

PHAL Hardware Library

Application’s object

Data pathSLOT n–1 SLOT n

1 2 1 2

SLOT n–1 SLOT n

(PE 1)

(PE 2)

Synchronization error

3 5 4 3 5 4 3 5 4

···

···

···

···

SLOT n+2

SLOT n+2

1 2 1 2

3 5 4

Application model

1 2 4 5

3

SLOT n+1

SLOT n+1

SDR COMPUTING RESOURCE MANAGEMENT PROBLEM

21

into six logical components, including the SDR hardware abstraction layer (SDR_HAL) and the SDR

hardware manager (SDR_HM), that provide several functionalities, such as the boot-up and shutdown of

an SDR system and its configuration or mode switch. The SDR_HAL decouples the software from the

hardware; thus permitting their independent design. The SDR_HM manages the hardware modules, which

represent programs that run on hardware devices. The SDR_HM can insert, delete, modify, and configure

these modules. Reference [95] also presents several protocols for software and hardware configurations

and a prototype implementation, but does not discuss any computing resource management issues.

B) KUAR

The Kansas University Agile Radio (KUAR) is an SDR framework or platform designed for education

and research [96]. Its mission is to enable research on wireless networking, communication systems, and

spectrum management. KUAR operates within the 5-6 GHz band. It is capable of implementing various

modulation algorithms and media access protocols. The hardware architecture consists of a power supply,

a control processor (CP), a digital board, including an FPGA, ADCs, DACs, and external interfaces, an RF

transceiver, and antennas. The CP can run GNU radio software. KUAR is, except for the antennas, em-

bedded in a shielded box of portable size and can run on battery supply.

The KUAR software architecture consist of radio modules and libraries, control and management pro-

grams, drivers, signal processing modules, network protocol stacks, and user applications. This architec-

ture, once fully implemented, may facilitate the design and testing of new waveforms. An automatic or

dynamic computing resource management is currently not supported; tools that facilitate and automate

robust SDR design and implementation are neither available.

C) GNU Radio

GNU radio is not an SDR framework in the sense that it does provide an execution environment for SDR

applications. It is, rather, a free software development toolkit that provides signal processing blocks to

implement SDRs using readily-available and low-cost external RF hardware and commodity processors. It

supports wireless communications research and implementations [97].

Applications are primarily written using the Python programming language. The performance-critical

signal processing path is implemented in C++. The developer is able to implement real-time and high-

throughput radio systems using a simple application development environment.

GNU radio is hardware independent. The signal processing blocks are executable on GPPs, although

the preferred solution is the Universal Software Radio Peripheral (USRP). An USRP motherboard in-

cludes ADCs, DACs, an FPGA, and a programmable USB 2.0 controller. Each fully populated USRP

motherboard supports four daughterboards. RF front ends are implemented on the daughterboards. A va-

riety of daughterboards is available for different frequency bands. The USRP’s external connection is the

USB port, whereas the USRP2 comes with a gigabit Ethernet interface.

2.3 SDR Computing Resource Management Problem

2.3.1 SDR Computing Environment

Modern wireless communications present a hard real-time computing problem [17]. Many computing

resources, including processing powers [17] and memory capacities [11], are required for preparing data

for the transmission over the unpredictable and error-prone radio channel and even more computing re-

sources are needed for receiving the desired signals, correcting errors, and extracting the embedded infor-

mation. This explains the traditional, hardware-centric implementations of radio transceivers using

processing and power efficient ASICs.

ASICs are, however, inappropriate for SDRs, since providing limited reconfiguration capabilities at

most [18]. While a custom integrated circuit can implement entire digital signal processing chains, most

reconfigurable or reprogrammable devices do not provide enough processing capacities for implementing

more sophisticated radio standards [17], [18]. This explains the need for reconfigurable multiprocessor or

multicore platforms, such as clusters of GPPs, DSPs, FPGAs, or a mix of them.

CHAPTER 2: SDR COMPUTING RESOURCE MANAGEMENT CONTEXT

22

Fig. 2.7. The SDR computing environment.

SDR platforms and applications specify the SDR computing context of this dissertation. The SDR

computing environment thus consists of the application and the platform environment (Fig. 2.7). The ap-

plication environment specifies the computing requirements of SDR applications, whereas the platform

environment identifies the computing resources of SDR platforms. Fig. 2.7 indicates some computing

resources and the corresponding requirements; these are the processing, interprocessor bandwidth, energy,

and memory resources and requirements.

2.3.2 Problem Formulation

The problem consists of defining a flexible computing resource management framework that interfaces the

SDR computing resources on one side and the wireless system on the other. The framework should be able

to efficiently and dynamically map precedence-constrained SDR applications to SDR platforms while

meeting all SDR computing constraints. These constraints are, primarily, the SDR applications’ real-time

computing requirements, defined by the minimum bit rate and maximum latency demands, and the SDR

platforms’ limited computing resources. Additional constraints, such as energy limitations, are likely and

should be accounted for as necessary.

The SDR computing resource management framework should fully support the flexibility of SDR

communications. This implies providing support for adding or removing computing resources and facili-

tating different computing resource management policies with multiple objectives, among others. Compu-

ting resource management is required at single-user mobile terminals and multiuser base stations and

should, finally, be coordinated with the RRM.

2.3.3 Scope and Assumptions

Fig. 2.8 illustrates the scope of our SDR computing resource management framework. We assume the

availability of hardware and software abstractions that hide the details of SDR platforms and applications

while providing all relevant information on computing resources and requirements. Based on this informa-

tion, the framework creates software and hardware computing models, which are the basis for the compu-

ting resource management.

Opting for or against hardware abstractions is a tradeoff between programmability, or flexibility, and

efficiency. SDR requires a flexible usage of computing resources and, hence, the availability of hardware

abstractions. The difficulty lies in finding a unified characterization of computing resources and require-

ments for conceptually different hardware devices and software programs. In other words, translating de-

vice-specific computing resources and tool or software-specific computing requirements to unique metrics

requires a profound study, which is beyond the scope of this dissertation. The availability of suitable ab-

straction layers, though, restrains the applicability of our proposal. Without them, the framework still

works for equivalent types of processors and software design tools.

Platform environment

(Computing resources)

Application environment

(Computing requirements)

processing requirements

interprocessor bandwidth demands

energy requirements

memory demands

…

processing powers

interprocessor bandwidth capacities

energy resources

memory capacities

…

RELATED WORK

23

Our computing resource management framework assumes the availability of several P-HAL-OE fea-

tures, including the time management of Section 2.2.3C). Nevertheless, it is not specifically designed for

the P-HAL-OE but rather for general applicability. That is, it works within the P-HAL-OE, but could be

adapted to any other SDR framework that supports computing resource management.

The P-HAL-OE supplies a pseudo-homogeneous computing environment on top of a heterogeneous

computing platform. This includes the already mentioned abstractions of computing resources and re-

quirements. Software implementations and their computing demands for each one of the platform’s physi-

cal devices are assumed to be available to the P-HAL-OE.

Since our framework should be applicable at SDR-MTs and SDR-BSs and, in principle, be able to

handle many different platform and application architectures, we cannot initially assume important simpli-

fication. The SDR computing resource management problem of Section 2.3.2 is then essentially a general

mapping problem, which is NP-complete [47], [84]. Since finding an optimal solution to an NP-complete

problem is generally very time-consuming and computationally impractical [58], we strive for a suboptim-

al but efficient solution to the SDR computing resource management problem.

Although this dissertation focuses on the radio access or the physical layer of an SDR transceiver, the

proposed concepts are general enough for being applied to higher processing layers and network elements

as well. The flexibility of our proposal thus permits managing the computing resource of any part of the

radio system. It may, moreover, be practical for other (real-time) computing contexts.

2.4 Related Work

As opposed to the relatively few publications that address SDR computing resource management issues

(Section 1.4.2A)), heterogeneous computing literature contains a plentitude of contributions to multipro-

cessor mapping and scheduling. Heterogeneous computing refers to a coordinated use of distributed and

heterogeneous computing resources [33]; it is similar to the grid computing [22] or metacomputing [24]

concepts. SDR computing belongs to the heterogeneous computing context (Section 1.4.2B)). The SDR

computing resource management problem is then a particular heterogeneous computing problem.

Heterogeneous computing research has addressed a wide variety of problems in general and special-

purpose computing contexts. Many contributions jointly tackle the mapping and scheduling problems and

present optimal or suboptimal solutions following different objectives: [34], [35], [36], [38], [39], [40],

[41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [81], for example, aim at

minimizing the application’s execution time, [62], [63], [64], [65], [66], [67], [68], [69], [70], [71], among

others, focus on meeting real-time deadlines, whereas [37], [56], [57], [58], [59], [60], [61], [72], [73],

Fig. 2.8. The scope of our SDR computing resource management framework.

SDR Application (Software)

mapping

computing

resource allocation

Software Abstractions

Hardware Abstractions

SDR Platform (Hardware)

SDR Platform Modeling

SDR Application Modeling

CHAPTER 2: SDR COMPUTING RESOURCE MANAGEMENT CONTEXT

24

[74], [75], [76], [77], [78], [84] pursue additional or other objectives. The following subsections depict

some of these articles in more detail.

2.4.1 Maximizing Speedup

Many contributions on multiprocessor mapping and scheduling focus on minimizing the schedule length

or makespan. The schedule length or makespan refers to the execution time of an application or set of

applications and is usually measured from starting the execution of the first process until finishing the

execution of the last. This goal equivalently maximizes the application speedup, defined as the shortest

execution time on a single processor (sequential processing) divided by the schedule length on the multi-

processor platform (parallel processing).

Hu’s early work [35] assumes unit link costs for interprocessor communications, whereas Bondalapati

[52] addresses sequential applications. Other contributions, including [38], [39], [40], [41], assume appli-

cations with a certain degree of parallelism (parallel applications) and interprocessor communication

overheads. Lee and Aggarwal [38] present an efficient mapping scheme for different objective functions,

minimizing the communication overhead for increasing the application speedup. They suggest deriving

the mapping strategy as a function of the optimization goal. That is, before developing a suitable mapping

scheme, they formulate the objective function.

Selvakumar and Murthy [39] introduce a scheduling algorithm that maps and schedules precedence

constrained task graphs with nonnegligible communication requirements while considering contention for

the communication channels. Sih and Lee [40] introduce the dynamic level scheduling (DLS) for mapping

and scheduling precedence-constrained tasks and their data flows to heterogeneous processor architectures

with limited or irregular interconnection structures. The dynamic levels are obtained as a function of the

momentary state of the processing and communication resources and determine the next task-processor

pair to be scheduled.

The generalized mapping strategy of [41] applies graph theoretic, mathematical programming, and

heuristics approaches. It begins with a graphical representation of the parallel algorithm (problem graph)

and the parallel computer (host graph). The host graph is then extended (extended host graph consisting of

pseudo-processors) as a function of the problem graph, which is finally mapped to the extended host graph

using a two-step optimization scheme.

Lee and Messerschmitt [34] formalize the scheduling problem for digital signal processing. They dis-

cuss the suitability of SDF graphs─a subset of large grain data flow (LGDF) graphs with a priori informa-

tion about produced and consumed data at each node─for modeling digital signal processing chains. They

develop a theory for scheduling SDF programs on single and multiprocessors systems and introduce a

synchronous large grain compiler. This compiler converts a LGDF description of a signal processing sys-

tem into a set of sequential programs that run on one or several machines so that the throughput is max-

imized while using a finite memory amount.

The dynamic critical-path (DCP) scheduling algorithm [42] schedules critical nodes as soon as possi-

ble. It dynamically determines the critical path of the task graph, selects the next node on that path, and

schedules it. Each processor’s partial schedule may be dynamically rearranged; that is, the execution order

of nodes is not fixed until having scheduled all nodes. Based on the same principle, the dynamic priority

scheduling (DPS) heuristic [45] dynamically assigns task priorities to avoid scheduling less important

tasks before the more important.

Alhusaini et al. [48] present a unified resource scheduling framework for metacomputing systems. The

framework considers different types of resources─processing and communication resources as well as

data repositories─and permits advanced resource reservations. The system resources are collectively sche-

duled, minimizing the makespan while preserving advanced reservations. Similarly, [49], [50] address the

resource co-allocation problem, where multiple resources need to be allocated to concurrent tasks of vari-

ous applications. Tasks that share one or more resources cannot be simultaneously executed. Two graphs

are used to represent applications: a DAG, which indicates the precedence constraints and data flow re-

quirements, and a compatibility graph, which captures the resource sharing constraints. The solution is

based on dynamically finding maximal independent sets─the largest set of tasks with no resource sharing

constraints─among those tasks whose predecessors’ resource requirements have been completely satisfied

[49]. The initial, offline schedule plan can be adapted at run time, taking advantage of early releases of

allocated resources and runtime variations in computation and communication costs [50].

RELATED WORK

25

Kwok et al. [51] consider a scenario where some characteristics of subtasks are unknown a priori and

will change during execution. They implement and evaluate a semi-static mapping methodology, which

starts with an initial mapping and dynamically decides whether to perform a remapping between the itera-

tions of the application.

2.4.2 Meeting Real-Time Deadlines

Peng et al. [62] and Hou and Shin [63] address the problem of optimally allocating periodic tasks which

are subject to task precedence and timing constraints to processing nodes in a distributed real-time system.

The efficient local scheduling of tasks in a real-time multiprocessor system is the topic of [64], where the

objective is meeting all real-time deadlines and not minimizing the overall execution time. If a task’s

deadline cannot be met on a particular processing node, this task can be sent to another node [65]. The

task model in [64] or [65] accounts for worst case processing times, deadlines, and resource requirements;

no precedence constraints are assumed.

Instead of assuming worst-case application requirements, [66] proposes adapting the resource alloca-

tion to face the runtime changes in the application environment. It describes and evaluates models and

mechanisms for adaptive resource allocation in the context of embedded high performance applications

with real-time constraints. Based on the same principle, [67] presents a mathematical modeling for adap-

tive resource management. It precisely models fixed hardware─a network of processors─and dynamic,

real-time software. It also proposes a framework for allocation algorithms, supporting the three constraints

application-host validity, minimum security level, and real-time deadlines while maximizing the overall

utility of the system.

Gertphol et al. [69] also address dynamic real-time environments. Instead of relying on adaptive re-

source allocations, they discuss robust resource allocations for dynamic real-time systems. A robust re-

source allocation would avoid the need for dynamic reconfigurations due to run-time parameter variations

while still meeting the system constraints (deadlines). The paper introduces the maximum allowable in-

crease in load (MAIL) metric and proposes a method for determining an allocation that can tolerate a cer-

tain amount of load increase.

A list scheduling framework for the run-time stabilization of static tasks with hard real-time deadlines

and dynamic tasks with soft real-time deadlines is described in [70]. It allows for static and dynamic task-

to-processor allocations for increasing the processor utilization and response time of dynamic workloads.

Moreira et al. [71] address hard real-time streaming applications and assume a scenario where jobs enter

and leave a homogeneous multiprocessor system at any time during operation. The proposal combines

global resource allocation (admission control or mapping) with local resource provisioning (scheduling).

2.4.3 Following Other or Multiple Objectives

Stujik [72] addresses the mapping of streaming applications to multiprocessors, considering multi-rate and

cyclic dependencies between tasks and a NoC-based MP-SoC platform. He presents an SDF model for

memory accesses, discusses a strategy that binds multiple SDF graphs with throughput constraints to a

heterogeneous MP-SoC [73], analyzes the throughput versus storage tradeoff (minimizing the required

buffer space while meeting the throughput constraint) [74], and proposes several algorithms for a re-

source-efficient routing and scheduling of communication paths [75].

Radulescu and van Gemund [79] reduce the complexity of list scheduling algorithms with static and

dynamic priorities without sacrificing performance. Kim et al. [76] discuss a performance measurement

framework for distributed heterogeneous networks. They introduce the flexible integrated system capabili-

ty (FISC) measure, a multi-dimensional metric that combines a broad range of attributes, such as deadline,

security, and application specific QoS attributes. It quantifies the overall value of the performance re-

ceived by a set of applications in a distributed computing environment.

Darbha and Agrawal [57] propose a task duplication based scheduling (TDS) algorithm with low

complexity. TDS considers executing certain tasks on various processors for avoiding excessive interpro-

cessor data flows. Bajaj and Agrawal [58] propose the task duplication-based scheduling algorithm for

network of heterogeneous systems (TANH). Both algorithms are shown to be optimal under certain condi-

tions and each has a complexity of O(V
2
), where V captures the number of nodes in the DAG [57], [58].

Bansal et al. [61] propose a TDS algorithm that minimizes the makespan while avoiding redundant dupli-

CHAPTER 2: SDR COMPUTING RESOURCE MANAGEMENT CONTEXT

26

cations. Their selective duplication algorithm is suitable for multiprocessor systems with a limited number

of interconnection-constrained processors.

Dogan and Özgüner [60] propose the reliable dynamic level scheduling algorithm, which accounts for

the execution time as well as the reliability of applications. That is, apart from minimizing the scheduling

length, an application’s failure probability can also be minimized. Ahmad and Kwok [59] aim at minimiz-

ing the makespan while reducing the execution time of the scheduler. They suggest parallelizing the sche-

duling algorithm for its distributed execution on multiple machines. In [37] they propose a taxonomy for

classifying different multiprocessor scheduling solutions and analyze 27 algorithms that maximize the

application speedup.

Doulamis et al. [77] discuss the fair sharing of CPU rates for grid computing systems. They suggest al-

locating resources to users as a function of resource availabilities, user demands, and socioeconomic val-

ues. Seven different problems and their solutions are finally discussed in [78]. These include optimal job

scheduling techniques ([78], pp. 99-112) and a design methodology that minimizes contention with mini-

mum communication resources ([78], pp. 174-190).

2.5 Conclusions

Many multiprocessor mapping and scheduling problems have been addressed in the heterogeneous com-

puting context. SDR computing is just another heterogeneous computing challenge. The direct application

of existing computing resource management approaches is, however, difficult because of the specific SDR

computing characteristics and their radio implications. The SDR computing resource management context,

particularly, requires flexibility and efficient at the same time. It is not an optimization problem with a

fixed objective, unique platform, or predefined constraints. The constraints are a function of the dynamic

radio environment and just have to be met. Speeding up an SDR application is, specifically, not necessary.

SDR requires a (more) general computing resource management framework regarding platforms,

waveforms, algorithms, and policies. Nevertheless, concepts such as global mapping, followed by local

scheduling [71] as well as robust [69] and adaptive [66], [67] resource allocations, are practical in SDR.

The latter concepts facilitate partial reconfigurations, which can dynamically modify or exchange certain

signal processing blocks to face (runtime) changes in the application and radio environments. The re-

source co-allocation problem [49] is also relevant in SDR: All (types of) computing resource constraints

need to be satisfied for ensuring real-time execution and appropriate service delivery.

Lee and Messerschmitt [34] found that SDFG accurately model digital signal processing applications,

where the sampling rate specifies the data flow requirements at compile time. In the 80s they already ap-

plied general-purpose computing techniques for digital signal processing [34]. SDR extends the digital

domain of wireless communications; applying general-purpose computing techniques in SDR is then a

logical inference.

Most of the currently available SDR frameworks assume fixed or offline computing resource alloca-

tions. Only a few research efforts, such as the P-HAL-OE, provide dynamic computing resource manage-

ment capabilities. The Q-SCA, on the other hand, introduces computing resource management facilities to

the SCA. A flexible SDR framework with real-time computing resource management capabilities seems to

be the current trend (Fig. 2.9).

Fig. 2.9. Envisaged SDR framework.

Computing resource

management

SDR framework

Application environment

Platform environment

Radio environment

CONCLUSIONS

27

Fig. 2.10. Modular SDR computing resource management framework.

Flexibility is essential for future-proof SDR or cognitive radio execution environments in many

senses: platform and application support, parameter management, computing resource management strate-

gies, and so forth. Theoretically unlimited flexibility would facilitate optimally dealing with the dynamic

and unpredictable radio and computing environments, taking advantage of the radio and computing diver-

sities of B3G and SDR for offering personalized user services. This implies coordinating the radio with

the computing resource management.

The modularity of SDR provides maximum flexibility: Small software modules can easily be devel-

oped, updated, exchanged, and so on. Similarly, a modular hardware design permits a flexible system up-

grade. We adopt these concepts for designing a modular computing resource management framework. Our

framework consists of two principal modules: the SDR computing system modeling (Chapter 3) and the

SDR computing resource management (Chapter 4). We, furthermore, suggest a modular system modeling

and management (Fig. 2.10), which eases applying different policies for monitoring and managing all

relevant computing resources and requirements.

Cost

Function

Mapping

Algorithm

SDR

Platform

Modeling

SDR

Application

Modeling

Management

Policy

Management

Algorithm

Platform Models

(Computing Resources)

Application Models

(Computing Requirements)

3
SDR Computing System Modeling

3.1 Introduction

This chapter introduces a modeling that accounts for several SDR-specific system characteristics. Section

3.2 discusses the computing resource management facilities that constitute the basis for the system models

of Section 3.3. The platform and application models (Fig. 3.1) capture the relevant SDR platform and ap-

plication features, including computing resources and requirements. Section 3.4 explains how the SDR

computing constraints of Section 2.3 can eventually be met. We exemplify the modeling proposal (Section

3.5) before discussing additional modeling features and possible extensions (Section 3.6).

SDR application and SDR platform refer to the software and hardware part of an SDR system. The fol-

lowing definitions formally define the term SDR application and its components.

Definition 2 An SDR application is comprised of a chain of RAT-specific SDR functions which

characterize the software-defined processing layers of a transmitter or receiver or

both.

Definition 3 An SDR function is a signal processing block, such as a modulator or an equalizer.

It is not necessarily implemented as one monolithic piece of binary code but rather

as a composition of SDR processes.

Definition 4 An SDR process is the smallest manageable unit and symbolizes an indivisible bi-

nary code.

Although our computing resource management framework considers SDR applications and functions, it

may work as well on the basis of SDR processes or a mix of SDR functions and processes.

Fig. 3.1. Modular SDR computing system modeling.

SDR

Application

Modeling

SDR Computing

Resource Management

SDR

Platform

Modeling

CHAPTER 3: SDR COMPUTING SYSTEM MODELING

30

3.2 Computing Resource Management Facilities

3.2.1 Metrics

An SDR platform represents an SDR-MT or SDR-BS. These platforms are comprised of a few or many

heterogeneous processing devices, such as FPGAs, DSPs, and GPPs, which communicate with each other.

An FPGA’s prime resource is the logic area for parallel processing, which can be converted to multiply-

accumulate operations (MACs) per time unit when using well-defined benchmarks (filter, FFT, and so

forth). DSP, GPP, and MP-SoC performances are typically given in million instructions per second

(MIPS). Because of the differing resource and execution concepts of different types of processors (parallel

versus sequential processing), we generally consider the available silicon area and time as the fundamental

processing resources for executing SDR applications or parts of them.

Related work considers processing powers and interprocessor bandwidth capacities as the principal

computing resources (Section 2.4). Hence, the amount of processing and interprocessor bandwidth re-

sources abstracts an SDR platform here. Mitola [3] proposed characterizing all platform features, includ-

ing the processing powers and bandwidths, in equivalent million operations per second (MOPS). We adopt

this unit for characterizing the processing resources, assuming that abstraction layers facilitate a homoge-

neous characterization of heterogeneous devices (Section 2.3.3). Similarly, we quantify any interprocessor

communication facilities in megabits per second (Mbps).

The processing requirements are a function of the processor that finally executes the software module,

the module’s particular implementation, bit precision, optimization level (speed versus memory or area),

and performance demand. The data flow requirements are, basically, a function of the bit precision and the

sampling rate. Despite these dependencies, we use the same metrics for characterizing the computing re-

quirements of SDR applications. The implicit timing requirements need to be specified as a function of the

radio link timing constraints, as discussed in Sections 3.2.2 and 3.4.

3.2.2 Time Slots and Pipelining

We consider processing time as just another limited computing resource. MOPS and Mbps embed this

critical resource and thus permit an implicit time management. Here we discuss two mechanisms that ease

the SDR computing resource management. These mechanisms are supported by the P-HAL-OE.

Data that are transmitted or received over the wireless link need to be processed for as long as there

are data to transmit or receive. An SDR application will execute during the entire user session or part of it,

even though there might be periods where no user data are transmitted. The fact that an SDR application

may be replaced by another during a single user session does not affect this continuous data processing.

We thus propose breaking up the continuous execution into periodic executions by dividing the computing

Fig. 3.2. Illustration of the time slot division and pipelining.

O3

O1 O2O2O1(Processor 1)

(Internal Link)

Data T O1 to O2

O1 O2

O3 O4

(External Link)

Data T O1 to O2 Data T O1 to O2

Data T O2 to O4 Data T O2 to O4 Data T O2 to O4

(Processor 2) O5 O5 O4 O3 O5 O4

(time slot n-1) (time slot n) (time slot n+1)

Objects mapped to Processor 1

Objects mapped to Processor 2

O1 O2 O4 O5

O3

(stage 1) (stage 2) (stage 3) (stage 4)

MODELING

31

resource time in equidistant computing time slots and the SDR application in pipelining stages. Fig. 3.2

illustrates this.

The pipelined execution of an SDR application establishes that, in any computing time slot, all SDR

functions process and propagate some part of the data. That is, the same processing and data transfers re-

peat each time slot on a different data portion (Fig. 3.2). This introduces synchronization requirements,

which P-HAL-OE can satisfy. Pipelining also introduces latency, which must be maintained within the

radio service and QoS-dependent limits. Section 3.4 explains how to achieve this.

The introduction of the computing time slot, time slot from here on, allows identifying a processor’s

computing capacity on time slot basis. This provides the basic mechanism for an efficient computing re-

source management. We, therefore, introduce the new units million operations per time slot (MOPTS) and

megabits per time slot (MBPTS) as tTS ∙ MOPS and tTS ∙ Mbps, where tTS is the time slot duration, which is

specified in Section 3.4. MOPTS and MBPTS synchronize the available computing resources with the

time slot management and are the basic units of the modeling proposal that follows.

3.3 Modeling

Based on the above facilities, we introduce a modeling that consists of two parts, the platform modeling

and the application modeling (Fig. 3.1). The platform modeling characterizes SDR platforms and their

computing resources (Section 3.3.1), whereas the application modeling abstracts SDR applications and

their computing requirements (Section 3.3.2). Our proposal, particularly, features general platform and

application templates, instances of these templates─platform and application models─and a set of parame-

ters derived from these models. We use the symbols of Table 3.1, cursive symbols indicating numerical

variables and cursive and bold expressions identifying matrices.

3.3.1 Platform Modeling

A) Platform Templates

We model the platform features of SDR platform D through the general platform template

 (RP
t'

)
D
 =





















D

tYtX

tD

tX

tD

tX

t

D

tY

tDtDt

D

tY

tDtDt

DDDD

D

D

RRR

RRR

RRR

)|()|()|(

)|()|()|(

)|()|()|(

)'(,)'(

'
P2,)'(

'
P1,)'(

'
P

)'(,2

'
P22

'
P21

'
P

)'(,1

'
P12

'
P11

'
P









, (3.1)

where t' indicates the platform feature (Table 3.1). This template serves for capturing different platform

characteristics, including computing architecture and resources. It is therefore without unit. We also intro-

duce

 (R
t
)

D
 =





















Dt

tYtX

Dt

tX

Dt

tX

Dt

tY

DtDt

Dt

tY

DtDt

DDDD

D

D

RRR

RRR

RRR

)()()(

)()()(

)()()(

)(,)(2,)(1,)(

)(,22221

)(,11211









, (3.2)

which represents the specific template for modeling the computing resources of SDR platforms, where t ∈

1, 2, …, T specifies the computing resource type. A computing resource is a platform feature; that is, (R
t
)

D

⊆ (RP
t'

)
D
.

B) Platform Models

The processing and bandwidth resources can be modeled as instances of (3.1) and (3.2). The device model

 (RP
1
)

D
 = (R

1
)

D
 = C

D
 = ((C1)

D
, (C2)

D
, …, (CN(D))

D
) MOPTS (3.3)

CHAPTER 3: SDR COMPUTING SYSTEM MODELING

32

Table 3.1 Modeling symbols.

Symbol Range [unit] Description

D I, II, III, IV, … SDR platform index

d i
1
, ii, iii, iv, …

SDR application index

N(D) ℕ (natural numbers without 0) number of processors on SDR platform D

M(d) ℕ number of SDR functions of SDR application d

(Pj)
D

(P1)
D
, (P2)

D
, …, (PN(D))

D
 processor on SDR platform D

(fi)
d
 (f1)

d
, (f2)

d
, …, (fM(d))

d
 SDR function of SDR application d

T ℕ number of modeled computing resource types

t 1, 2, …, T computing resource type index

T' ℕ
number of modeled platform features (including

computing resources)

t' 1, 2, …, T' platform feature index

T'' ℕ
number of modeled application features (including

computing requirements)

t'' 1, 2, …, T'' application feature index

(RP
t'

)
D
 general platform template

(RA
t''

)
d
 general application template

(R
t
)

D
 computing resource template; (R

t
)

D
 ⊆ (RP

t'
)

D

(r
t
)

d
 computing requirement template; (r

t
)

D
 ⊆ (RA

t''
)

D

X(t)
D
 and X(t'

)

D
 ℕ number of rows in (R

t
)

D
 and (RP

t'
)

D

Y(t)
D
 and Y(t'

)

D
 ℕ number of columns in (R

t
)

D
 and (RP

t'
)

D

x(t)
d
 and x(t''

)

d
 ℕ number of rows in (r

t
)

d
 and (RA

t''
)

d

y(t)
d
 and y(t''

)

d
 ℕ number of columns in (r

t
)

d
 and (RA

t''
)

d

u, v ℕ unspecific indices

n ℕ unspecific natural number

tTS ℝ+
 (nonnegative real numbers) [s] time slot duration

(tTS)
d
 ℝ+

 [s] time slot duration for SDR application d

(nTS)
d
 ℕ number of pipelining stages of SDR application d

(LMAX)
d
 ℝ+

 [s] maximum allowed latency for SDR application d

1
 Descriptive labels are also used.

absorbs the processing powers of processors P1 to PN(D) of SDR platform D ((Cu)
D
 ∈ ℝ+

). Without loss of

generality, devices are labeled in order of decreasing processing capacities; that is (C1)
D
 ≥ (C2)

D
 ≥ (C3)

D
 ≥

… ≥ (CN(D))
D
.

Matrix

 (RP
2
)

D
 = (R

2
)

D
 = L

D
 =





















D
DNDN

D
DNDN

D
DN

DD

D
DN

DD

LLL

LLL

LLL

)()()(

)()()(

)()()(

)(),(2),(1),(

)(,22221

)(,11211









MBPTS (3.4)

describes the communication resources of platform D ((Luv)
D
 ∈ ℝ+

). (L32)
D
, for instance, specifies the

available bandwidth per time slot of the directed communication link between (P3)
D
 and (P2)

D
. In other

words, (L32)
D
 is the bandwidth capacity that is available for the directed data transfer from the local data

memory of processor (P3)
D
 to the local data memory of processor (P2)

D
. If there is more than one directed

physical link between (P3)
D
 and (P2)

D
, (L32)

D
 captures the accumulated bandwidth resources. (Luu)

D
 indi-

cates the available bandwidth for intra-processor data movements. Intra-processor bandwidth capacities

can be different for different devices.

L
D
 is based on the concept of the adjacency matrix, which holds a pair of 1s on each existing undi-

rected link and 0s, otherwise [106]. It informs about the communication topology (interconnectivity net-

work) and the communication resources (bandwidths), assuming a network that consists of unidirectional

MODELING

33

communication lines between each pair of processors. Additional information is needed for modeling

shared links. We therefore suggest a more general communication modeling that distinguishes between the

communication topology (3.5) and the communication resources (3.6).

 (RP
3
)

D
 = I

D
 =





















D
DNDN

D
DN

D
DN

D
DN

DD

D
DN

DD

III

III

III

)()()(

)()()(

)()()(

)(),(2),(1),(

)(,22221

)(,11211









 (3.5)

represents the logical interconnection model, where (Iuv)
D
 ∈ 1, 2, …, N(D) · N(D) can be viewed as the

numerical label of the logical link between (Pu)
D
 and (Pv)

D
. A logical link corresponds to a directed, or

unidirectional, communication line between a pair of processors. These logical links map to physical links.

I
D
 thus points to entries in

 (RP
4
)

D
 = (R

3
)

D
 = B

D
 =((B1)

D
, (B2)

D
, …, (BN(D)·N(D))

D
) MBPTS, (3.6)

which captures the physical link resources ((Bu)
D
 ∈ ℝ+

). (Bu)
D
, where u = (I32)

D
 for instance, is the maxi-

mum bandwidth that is available for the directed data transfer from the local data memory of processor

(P3)
D
 to the local data memory of processor (P2)

D
. It would be zero if the physical link is unavailable or

nonexistent. The first N(D) elements of B
D
, (B1)

D
 to (BN(D))

D
, capture the processor-internal communica-

tion resources of processor (P1)
D
 to (PN(D))

D
; hence, (Iuu)

D
 ∈ 1, 2, …, N(D). Since processor-internal data

movements are typically orders of magnitude faster than processor-external data transfers, we can label

logical links so that (B1)
D
 ≥ (B2)

D
 ≥ (B3)

D
 ≥ … ≥ (BN(D)·N(D))

D
. Unused elements in (3.6) are filled with 0s.

This document considers that a dedicated physical link establishes an exclusive connection for the (un-

idirectional or bidirectional) communication between a processor pair, whereas a shared physical link is

accessible by more than two processors. Full-duplex (FD) communication here refers to a dedicated com-

munication channel for each data flow direction between two or more processors (independent of the ac-

tual bandwidth, which may be zero in one data flow direction). Half-duplex (HD), on the other hand, indi-

cates a bidirectional link, which needs to be time-shared between the data flow in one and the other direc-

tion. That is, FD and HD distinguish between unidirectional and bidirectional physical links.

The communication models (3.5) and (3.6), as opposed to (3.4), facilitate modeling different types of

interprocessor communication links and networks: dedicated or shared and uni or bidirectional. For exam-

ple, all entries in I
D
 pointing to different entries in B

D
 would indicate an interconnection network that con-

sists of dedicated and unidirectional communication lines. (L
D
 is equivalently applicable in this case.) If

each of the N(D) · N(D) elements of B
D
 is, furthermore, greater than 0─fully connected platform─the logi-

cal interconnection model matches the physical interconnection network. At the other extreme, (Iuv)
D
 =

N(D) + 1 for all u ≠ v indicates a platform that connects all its processors through a bidirectional shared

bus of bandwidth (BN(D)+1)
D
. Section 3.5 illustrates some examples.

We assume direct memory access (DMA) or pointer transfers for processor-internal data flows. Since

these techniques facilitate very fast data transfers, processor-internal bandwidths can be modeled as if they

were infinite [81]; that is, (L11)
D
 = (L22)

D
 = … = (LN(D),N(D))

D
 = ∞ and B1 = B2 = … = BN(D) = ∞ . Neverthe-

less, the general computing resource modeling and management approaches of this dissertation permit

(processor-internal) bandwidth adjustments in later research stages.

Table 3.2 Platform parameters, part I: computation.

Expression Range & Unit

Denomination

(CT)
D
 = (C1)

D
 + (C2)

D
 + … + (CN(D))

D

[0, ∞) MOPTS
Total processing ca-

pacity

)(

)(
)(T

M
DN

C
C

D
D 

[0, ∞) MOPTS
Mean processing ca-

pacity










 



 otherwise0,

0)(if,))()((
)(

1

)(

2
)(T

)(

1

2
M

T
C

D
DN

u

DD
uD

D CCC
DNCH [0, 1]

Processing resource

heterogeneity

CHAPTER 3: SDR COMPUTING SYSTEM MODELING

34

Table 3.3 Platform parameters, part IIa: communication (based on L
D
).

Expression Range & Unit

Denomination

















 
 

 otherwise,0

1)(if,
)()(

}){(

2

)(

1

)(

,1
DN

DNDN

Lsign

CON

DN

u

DN

uvv

D
uv

D

[0, 1]

Platform’s connectivi-

ty

 
 



)(

1

)(

,1

T)()(

DN

u

DN

uvv

D
uv

D LB

[0, ∞) MBPTS
Total bandwidth ca-

pacity












 otherwise0,

0if,
))()((

)(

)(2

T

M

D

D

D

D CON
DNDNCON

B

B [0, ∞) MBPTS

Mean bandwidth ca-

pacity (over the links

of nonzero band-

widths)






















 






 otherwise,0

0if,
))()((

))()((

)(

2)(

2

)(

1

)(

0)(

,,1

2
M

T

B D

D

DN

u

DN

L

vuv

DD
uv

D

D

CON
DNDNCON

BL

B

H D
uv

 [0, 1)

Bandwidth resource

heterogeneity (over the

interprocessor links of

nonzero bandwidths)

(LFuv)
D
 =










 otherwise,0

0)(if,
)(

)(
T

T

D

D

D
uv B

B

L

 [0, ∞) Link flexibility

(LF)
D
 =





















D
DNDN

D
DN

D
DN

D
DN

DD

D
DN

DD

LFLFLF

LFLFLF

LFLFLF

)()()(

)()()(

)()()(

)(),(2),(1),(

)(,22221

)(,11211









 Link flexibility matrix

(LFM)
D
 =

)()(

)(

2

)(

1

)(

,1

DNDN

LF

DN

u

DN

uvv

D
uv



 
 

[0, 1] MBPTS Mean link flexibility

We can systematically add additional instance of (3.1) for capturing additional platform features. On

the other hand, matrices can be ignored or removed when the corresponding resource becomes unlimited

for practical issues and does not require its management (any more). Focusing on the most relevant com-

puting resources facilitates an efficient computing resource management.

C) Platform Parameters

It may not always be possible or practical to analyze a system based on its complete modeling. Defining

simple parameters that point out certain system characteristics may result useful for categorizing the sys-

tem and for analyzing and understanding its behavior. On the other hand, the SDR computing resource

management problem─a general mapping problem (Sections 2.3.3 and 4.1)─is too complex to be charac-

terized by simple parameters. Those parameters may, though, be useful for recognizing similar computing

resource management situations and predicting the outcomes. The parameters that we present in continua-

tion facilitate categorizing SDR platforms and analyzing the simulation results (Chapter 6). They are de-

rived from the above platform models.

Table 3.2 presents the computation parameters. The total processing power (CT)
D
 is the sum of the dis-

tributed processing capacities. An infinite processing power or resource, in general, has only theoretical

significance. It symbolizes that the corresponding resource is sufficiently available, just as if its capacity

were infinite. (Cu)
D
 = 0, on the other hand, indicates that all processing resources of processor (Pu)

D
 are

momentarily unavailable.

MODELING

35

Table 3.4 Platform parameters, part IIb: communication (based on I
D
 and B

D
).

Expression Range & Unit

Denomination

















 
 

 otherwise,0

1)(if,
)()(

}){(

2

)(

1

)(

,1
DN

DNDN

Bsign

CON

DN

u

DN

uvv

D
I

D
uv

 [0, 1]
Platform’s connectivi-

ty










 


 otherwise,0

1)(if,)(
)(

)()·(

1)(T

DNB
B

DNDN

DNu

D
uD

 [0, ∞) MBPTS

Total bandwidth ca-

pacity; accumulated

physical interprocessor

bandwidths














 


 otherwise,0

0if,

}){(

)(

)(
)()·(

1)(

T

M

D

DNDN

DNu

D
u

D

D

CON

Bsign

B

B [0, ∞) MBPTS

Mean bandwidth ca-

pacity (over the physi-

cal links of nonzero

bandwidths)

























 otherwise,0

0if,
)(/)(

))()((

)(

2)(

MT

)()(

0)(,1)(

2
M

T

B D

DD

DNDN

BDNu

DD
u

D

D

CON
BB

BB

B

H D
u

[0, 1)

Bandwidth resource

heterogeneity (over the

interprocessor physical

links of nonzero

bandwidths)

(LFuv)
D
 =










 otherwise,0

0)(if,
)(

)(
T

T

D

D

D
I

B
B

B
uv

 [0, ∞) Link flexibility

LF
D
 =





















D
DNDN

D
DN

D
DN

D
DN

DD

D
DN

DD

LFLFLF

LFLFLF

LFLFLF

)()()(

)()()(

)()()(

)(),(2),(1),(

)(,22221

)(,11211









 Link flexibility matrix

(LFM)
D
 =

)()(

)(

2

)(

1

)(

,1

DNDN

LF

DN

u

DN

uvv

D
uv



 
 

[0, 1] MBPTS Mean link flexibility

We derive the processing resource heterogeneity (HC)
D
 from the total and mean processing capacities

(CT)
D
 and (CM)

D
. It measures the variation in the processing powers through the standard deviation, where

the scaling factor 2 / (CT)
D
 ensures that (HC)

D
 ≤ 1 (Table 3.2). (HC)

D
 = 0 then indicates processors of equal

processing powers and 0 < (HC)
D
 ≤ 1 a certain processing resource heterogeneity. Although completely

different SDR platforms can happen to have the same processing resource heterogeneity, this parameter in

conjunction with others is useful for distinguishing certain SDR platforms (Section 3.5 and Chapter 6).

The parameters describing a platform’s communication features require two definitions, one assuming

L
D
 (Table 3.3) and one assuming I

D
 and B

D
 (Table 3.4). If L

D
 correctly characterizes the communication

network of SDR platform D, I
D
 and B

D
 can optionally be computed. Both definitions for any communica-

tion parameter are then equivalent. Otherwise, only the formulas of Table 3.4 are applicable. Some ex-

pressions use the sign function, which returns the sign of its argument:

















0if,1

0if,0

0if,1

}{

x

x

x

xsign . (3.7)

CHAPTER 3: SDR COMPUTING SYSTEM MODELING

36

Table 3.5 Platform parameters, part III: communication-to-computation.

Expression Range & Unit

Denomination












 otherwise,0

0)(if,
)(

)(
T

T

T D

D

D

D B
C

B

CCR MOPTS

MBPTS
),0[

Platform’s Communi-

cation-to-computation

ratio

D
uvX)(














 otherwise,0

0)()(if,
))()((

)()(D
vu

D
uvDD

v
D

u

D
vu

D
uv LL

CCRCC

LL

[0, ∞)

Communication-to-

computation correla-

tion between (Pu)
D
 and

(Pv)
D
 (L

D
 defined)














 otherwise,0

0)()(if,
))()((

)()(
D

I
D

IDD
v

D
u

D
Iuvvu

D
I

vuuv

vuuv BB
CCRCC

BIIsignB

[0, ∞)

Communication-to-

computation correla-

tion between (Pu)
D
 and

(Pv)
D
 (I

D
, B

D
 defined)

 X
D
 =





















D
DNDN

D
DN

D
DN

D
DN

DD

D
DN

DD

XXX

XXX

XXX

)()()(

)()()(

)()()(

)(),(2),(1),(

)(,22221

)(,11211









Communication-to-

computation correla-

tion matrix

















 



 

 otherwise,0

1)(if,
2 /))()((

)(

)(
2

1)(

1

)(

1
M DN

DNDN

X

X

DN

u

DN

uv

D
uv

D [0, ∞)

Auxiliary variable;

mean over (Xuv)
D
 ∀ u,

v > u



















 



 

 otherwise0,

1)(if,
2 /))()((

))()((

)(
2

1)(

1

)(

1

2
M

STD DN
DNDN

XX

X

DN

u

DN

uv

DD
uv

D [0, ∞)

Platform’s communi-

cation-to-computation

incoherence;

standard deviation of

(Xuv)
D
 ∀ u, v > u

CON is our connectivity definition for SDR platforms. It is different from the connectivity concept in

graph theory, where connectivity refers to the minimum number of edges (edge connectivity) or vertices

(vertex connectivity or, simply, connectivity) whose removal disconnects the graph [105], [106]. CON
D

relates the number of logical links that correspond or map to physical links of nonzero bandwidth capaci-

ties to the maximum number of not overlapping directional connections between N(D) processors (Table

3.3 and Table 3.4). CON
D
 will be presented for different platform examples in Section 3.5 and applied for

analyzing the mapping capabilities of SDR platforms in Chapter 6.

(BT)
D
 specifies the total bandwidth that is physically available between the processors of SDR platform

D. (BM)
D
 is the platform’s mean communication capacity, which is obtained averaging (BT)

D
 over the

physical links of nonzero bandwidths. The bandwidth resource heterogeneity (HB)
D
 indicates whether ra-

ther similar ((HB)
D
 closer to 0) or dissimilar ((HB)

D
 closer to 1) physical bandwidth capacities characterize

platform D. It is obtained as the scaled standard deviation of the physical link bandwidths. This parameter

facilitates distinguishing platforms with equivalent communication networks except for the distribution of

bandwidth resources (Chapter 6).

Table 3.3 and Table 3.4 also introduce the link flexibility (LFuv)
D
 (u, v ∈ 1, 2, …, N(D)). It divides the

maximum directional communication capacity of the logical link between a processor pair by the plat-

form’s total bandwidth capacity (BT)
D
. The link flexibility of a processor-internal link informs about the

processor’s internal data flow capacity with respect to (BT)
D
. The link flexibility matrix LF

D
 captures the

flexibilities of all logical links of SDR platform D, whereas the mean link flexibility (LFM)
D
 abstracts the

platform’s link flexibility. These parameters facilitate distinguishing and qualifying different types of in-

terprocessor communication lines and networks (Section 3.5 and Chapter 6).

MODELING

37

Heterogeneous computing literature defines the communication-to-computation ratio (CCR) as the ap-

plication’s average communication cost divided by the average computation cost on a given system [42].

This parameter is used for (randomly) generating a number of multiprocessor scheduling problems, con-

ducting simulations, and comparing scheduling algorithms [44], [46], [55], [61], [79], [81]. Our modular

system modeling, however, suggests defining the CCR separately for platforms and applications. We can

then use both parameters together for simulating different problems and analyzing the results.

CCR
D
 is the platform’s CCR. It relates platform D’s total communication resources to its total compu-

ting resources (Table 3.5).The communication-to-computation correlation (CCC) matrix X
D
 extends our

CCR concept. It captures the local communication-to-computation ratios: (Xuv)
D
 (u, v ∈ 1, 2, …, N(D))

relates the bidirectional communication link capacity between the processors pair (Pu)
D
 and (Pv)

D
 to the

scaled sum of their processing powers, where the scaling eliminates the units (Table 3.5). X
D
 is symmetric

to the main diagonal. The expression sign|x|, where |x| stands for the absolute value of x, is either 0 or 1

(3.7). It avoids considering HD links twice.

(XM)
D
 is an auxiliary variable that is used for computing the platform’s communication-to-computation

incoherence (XSTD)
D
. (XSTD)

D
 quantifies the platform’s resource distribution: the higher (XSTD)

D
 the less

coherent the distribution of the bandwidth capacities with respect to the processing resources. A low

(XSTD)
D
 indicates that the total bandwidth capacity is distributed in due proportion to the processing pow-

ers. The suitability of these parameters will also be demonstrated in Chapter 6.

3.3.2 Application Modeling

A) Application Templates

The x(t''

)

d
 times y(t''

)

d
 matrix (RA

t''
)

d
,

 (RA
t''

)
d
 =





















d

tytx

td

tx

td

tx

t

d

ty

tdtdt

d

ty

tdtdt

dddd

d

d

RRR

RRR

RRR

)|()|()|(

)|()|()|(

)|()|()|(

)''(,)''(

''
A2,)''(

''
A1,)''(

''
A

)''(,1

''
A22

''
A21

''
A

)''(,1

''
A12

''
A11

''
A









, (3.8)

models the application environment, where t'' ∈ 1, 2, …, T'' is the application feature index and d the SDR

application index (Table 3.1). It is the general template for modeling SDR applications’ computing charac-

teristics. Equivalently to the computing resource template (R
t
)

D
 (3.2), we define the subtemplate

 (r
t
)

d
 =





















dt

tytx

dt

tx

dt

tx

dt

ty

dtdt

dt

ty

dtdt

dddd

d

d

rrr

rrr

rrr

)()()(

)()()(

)()()(

)(,)(2,)(1,)(

)(,22221

)(,11211









 (3.9)

for capturing the computing resource requirements of SDR applications.

B) Application Models

A concise characterization of SDR applications requires several instances of (3.8). We consider processing

and data flow requirements as the principal computing requirements of SDR applications and introduce

the function model, several data flow models, and the stage model.

SDR application d consists of M(d) SDR functions: (f

1)

d
, (f2)

d
, …, (fM(d))

d
 (Table 3.1). The function

model

 (RA
1
)

d
 = (r

1
)

d
 = c

d
 = ((c1)

d
, (c2)

d
, …, (cM(d))

d
) MOPTS (3.10)

provides the processing requirements of (f

1)

d
, (f2)

d
, …, (fM(d))

d
.

The data flow model

CHAPTER 3: SDR COMPUTING SYSTEM MODELING

38

 (RA
2
)

d
 = (r

2
)

d
 = l

d
 =





















d
dMdM

d
dM

d
dM

d
dM

dd

d
dM

dd

lll

lll

lll

)()()(

)()()(

)()()(

)(),(2),(1),(

)(,22221

)(,11211









MBPTS (3.11)

corresponds to the communication model L

D
 (3.4). Element (luv)

d
 represents the minimum necessary

bandwidth for sending a certain data amount from (fu)
d
 to (fv)

d
 (u, v ∈ 1, 2, …, M(d); (luv)

d
 ∈ ℝ+

). It impli-

citly indicates the precedence constraints between SDR functions.

We assume that SDR processing chains represent DAGs. General-purpose as well as digital signal

processing chains are typically modeled as DAGs [40], [49], [53], [86]. Cycles and loops, which are

common in signal processing, are then either unrolled [52], embedded (inner loops – SDR function level),

or handled through a proper time management based on the principles of Section 3.2.2 (outer loops – SDR

application level). DAGs can be logically numbered: If (fu)
d
 sends data to (fv)

d
, then u < v [104]. The dataf-

low model then becomes a strictly upper diagonal matrix, where (luv)
d
 = 0 ∀ u ≥ v.

Although the above data flow model is appropriate for DAGs, we can define a pair of models that cor-

responds to the communication models (3.5) and (3.6):

 (RA
3
)

d
 = i

d
 =





















d
dMdM

d
dM

d
dM

d
dM

dd

d
dM

dd

iii

iii

iii

)()()(

)()()(

)()()(

)(),(2),(1),(

)(,22221

)(,11211









 (3.12)

and

 (RA
4
)

d
 = (r

3
)

d
 = b

d
 = ((b1)

d
, (b2)

d
, …, (bM(d)·M(d))

d
) MBPTS. (3.13)

These equations model the data flow requirements as follows: The minimum bandwidth that is necessary

for the real-time data transfer from (fu)
d
 to (fv)

d
 is (bn)

d
, where n = (iuv)

d
 ∈ 1, 2, …, M(d) · M(d) and (bn)

d

∈ ℝ+
. Then, (bn)

d

= 0 indicates that there is no data flow link from (fu)

d
 to (fv)

d
. We can organize i

d
 so that

(b1)
d
 ≥ (b2)

d
 ≥ … ≥ (bM(d)·M(d))

d
, where the last M(d) · (M(d) + 1) / 2 elements are 0 for M(d)-node DAGs.

The above distinction between precedence constraints and bandwidth demands facilitates distinguish-

ing between dependent and independent data flows: If process f1, for example, sends the same data to f3

and f4, i13 and i14 would point to the same entry in b
d
 (i13 = i14 – dependent data flows), whereas if f1 sends

two different data chunks, one to f3 and another to f4, i13 and i14 should point to the different entries in b
d

(i13 ≠ i14 – independent data flows). Despite this modeling capability, our computing resource manage-

ment proposal does not distinguish between dependent and independent data flows, but, rather, assumes

that all data flows are independent.

As indicated in Section 3.2.1, the above models depend on the assumed processor type, the optimiza-

tion level, and so forth. Therefore, c
d
, l

d
, i

d
, and b

d
 need to be available for each one of the platform’s pro-

cessors. Without loss of generality and to improve its readability, this dissertation treats each of these

models as if it were unique for a given SDR platform rather than processor-specific.

The direct predecessors of (fn)
d
 are all those SDR functions that correspond to nonzero entries in the n

th

column of l
d
 (n ∈ 1, 2, …, M(d)). Hence, columns of all 0s in (3.11) indicate source functions. Correspon-

dingly, the nonzero entries in the n
th
 row of l

d
 determine the direct successors of (fn)

d
. If the n

th
 row of l

d

contains only 0s, (fn)
d
 has no successor and is called a sink function [104]. These concepts are also valid

when using the data flow models i
d
 and b

d
 and lead to the stage model

 (RA
5
)

d
 = s

d
 = ((s1)

d
, (s2)

d
, ..., (sM(d))

d
). (3.14)

This model specifies the pipelining stages of SDR application d, where the pipelining stage of SDR func-

tion (fu)
d
 is (su)

d
 ((su)

d
 ∈ ℕ).

An SDR function (fu)
d
 is assigned to stage (su)

d
 = n if it receives data from no other SDR function than

from those in stages n–1, n–2, ..., 1, and if at least one of its direct predecessors is in stage n–1. All source

functions are first assigned to pipelining stage 1, their direct successors to stage 2, and so forth. The stage

model is useful for synchronizing the data processing through the execution pipeline.

MODELING

39

Our pipelining stages stem from the levels concept in graph theory. The level of a node in a DAG re-

flects the longest path of which it is the last point [104]. Pipelining stage n then corresponds to level n–1.

An SDR application has a unique stage model, whereas it can have many logical numberings.

C) Application Parameters

Several parameters can be derived from the above application models. Here we present those that corres-

pond to the platform parameters of Section 3.3.1C) but also others that are specific to SDR applications.

Most of these parameters will result practical for generating random DAGs and for analyzing the simula-

tion results of Chapter 6.

Table 3.6 summarizes the computation parameters of SDR applications. They correspond to the com-

putation parameters of SDR platforms due to Table 3.2: An SDR application’s total processing require-

ment (cT)
d
 is the sum of the processing requirements of its SDR functions. From the total and mean

processing requirements we can compute the processing demand heterogeneity (hC)
d
. It indicates whether

the processing demands (c1)
d
 through (cM(d))

d
 are rather similar or dissimilar. In particular, (hC)

d
 = 0, if (c1)

d

= (c2)
d
 = … = (cM(d))

d
 and 0 < (hC)

d
 ≤ 1, otherwise.

Table 3.7 and Table 3.8 present a few parameters derived from the data flow models (3.11), (3.12),

and (3.13). These parameters assume DAG representations of SDR applications and treat all data flows as

if they were independent. Since l
d
 can correctly characterize any DAG, Table 3.8 is optional and any defi-

nition based on i
d
 and b

d
 is equivalent to the corresponding one based on l

d
.

Table 3.6 Application parameters, part I: computation.

Expression Range & Unit

Denomination

(cT)
d
 = (c1)

d
 + (c2)

d
 + … + (cM(d))

d

[0, ∞) MOPTS
Total processing de-

mand

)(

)(
)(T

M
dM

c
c

d
d 

[0, ∞) MOPTS
Mean processing de-

mand










 



 otherwise,0

0)(if,))()((
)(

1

)(

2
)(

)(

1

2
M

T
C

d
T

dM

u

dd
ud

d ccc
dMch

[0, 1]
Processing demand

heterogeneity

Table 3.7 Application parameters, part IIa: communication (based on l

d
).

Expression Range & Unit

Denomination

















 



 

 otherwise,0

1)(if,
2 /))()((

}){(

2

1)(

1

)(

1 dM
dMdM

lsign

con

dM

u

dM

uv

d
uv

d

[0, 1]
Application’s connec-

tivity










  


 

 otherwise0,

1)(if,)(
)(

1)(

1

)(

1
T

dMl
b

dM

u

dM

uv

d
uvd

[0, ∞) MBPTS
Total bandwidth de-

mand












 otherwise,0

0if,
2 /))()((

)(

)(2

T

M

d

d

d

d con
dMdMcon

b

b

[0, ∞) MBPTS
Mean bandwidth de-

mand






















 








 otherwise0,

0if,
2 /))()((

))()((

)(

2)(

2

1)(

1

)(

0)(

,1

2
M

T

B d

d

dM

u

dM

l

uv

dd
uv

d

d

con
dMdMcon

bl

b

h d
uv

[0, 1)

Bandwidth demand

heterogeneity (Hetero-

geneity of the inde-

pendent and nonzero

bandwidth demands)

CHAPTER 3: SDR COMPUTING SYSTEM MODELING

40

Table 3.8 Application parameters, part IIb: communication (based on i
d
 and b

d
).

Expression Range & Unit

Denomination

















 



 

 otherwise,0

1)(if,
2 /))()((

}){(

2

1)(

1

)(

1 dM
dMdM

bsign

con

dM

u

dM

uv

d
i

d
uv

[0, 1]
Application’s connec-

tivity










  


 

 otherwise0,

1)(if,)(
)(

1)(

1

)(

1
T

dMb
b

dM

u

dM

uv

d
id
uv

[0, ∞) MBPTS
Total bandwidth de-

mand












 otherwise,0

0if,
2 /))()((

)(

)(2

T

M

d

d

d

d con
dMdMcon

b

b

[0, ∞) MBPTS
Mean bandwidth de-

mand























 








 otherwise,0

0if,
2 /))()((

))()((

)(

2)(

2

1)(

1

)(

0)(

,1

2
M

T

B d

d

dM

u

dM

b

uv

dd
i

d

d

con
dMdMcon

bb

b

h d

uvi

uv

[0, 1)

Bandwidth demand

heterogeneity (Hetero-

geneity over the non-

zero bandwidth de-

mands)

Table 3.9 Application parameters, part IIc: pipelining.

Expression Range & Unit

Denomination

 d
u

dMu

d sn)(max)(
)(,..,2,1

TS


 [1, M(d)]
Number of pipelining

stages

)(

)(TS

dM

n
g

d
d 

[M(d)
-1

, 1] Application length

The application’s connectivity con
d
 relates the number of dedicated directional connections of nonzero

bandwidth demands to the maximum number of logical links of M(d)-node DAGs. It captures the relative

number of data flow connections. The absolute number of data flow links with nonzero bandwidth re-

quirements is then con
d

· (M(d)
2

– M(d)) / 2. The total bandwidth demand (bT)
d
 is the sum of all data flow

requirements. The mean bandwidth demand (bM)
d
 then captures the application’s average data flow de-

mand. With these parameters we can compute the bandwidth demand heterogeneity (hB)
d
. It quantifies the

data flow dissimilarities of the existing data flow links normalized to [0, 1) (Table 3.7 and Table 3.8).

We could define a set of application parameters that correspond to the link flexibility (LFuv)
D
, the link

flexibility matrix LF
D
, and the mean link flexibility (LFM)

D
 of SDR platforms (Table 3.3 and Table 3.4).

Since assuming DAGs, where any data flow link is directional and connects exactly two SDR functions,

the link flexibility or, rather, data flow concentration of an SDR application’s data flow link would inform

about the link’s bandwidth demand with respect to the application’s total bandwidth requirement (bT)
d
.

The corresponding data flow concentration matrix would then be a scaled version of l
d
.

Table 3.9 defines two useful pipelining parameters. The first parameter specifies the number of pipe-

lining stages of SDR application d as a function of the stage vector s
d
. Except for DAGs with a single end

node, (nTS)
d
 ≠ (sM(d))

d
, in general. The length of application d relates (nTS)

d
 to M(d). A value of g

d
 close to

M(d)
-1

 indicates a high degree of parallelism, or a short SDR application, whereas a value closer to 1 im-

plies more sequential dependencies and, hence, a longer application. The task graph representation of an

SDR application visually reflects this (Section 3.5).

Table 3.10 defines the communication-to-computation parameters of SDR applications. With the ap-

plication’s CCR ccr
d
 we can compute the application’s CCC matrix x

d
, which contains the local CCRs. It

is symmetric to the main diagonal. Because of the acyclic data flow dependencies, the diagonal elements

are 0 and at most one summand in the numerator of (xuv)
d
 can be nonzero. The remaining two parame-

ters─(xM)
d
 and (xSTD)

d
─and their definitions correspond to (XM)

D
 and (XSTD)

D
 of Table 3.5.

MEETING THE SDR COMPUTING CONSTRAINTS

41

Table 3.10 Application parameters, part III: communication-to-computation.

Expression Range & Unit

Denomination












 otherwise,0

0)(if,
)(

)(
T

T

T d

d

d

d b
c

b

ccr MOPTS

MBPTS
),0[

Application’s commu-

nication-to-

computation ratio

d
uvx)(














 otherwise,0

0)()(if,
))()((

)()(d
vu

d
uvdd

v
d

u

d
vu

d
uv ll

ccrcc

ll

[0, ∞)

Communication-to-

computation correla-

tion between (fu)
d
 and

(fv)
d
 (l

d
 defined)














 otherwise,0

0)()(if,
))()((

)()(
d

i
d

idd
v

d
u

d
i

d
i

vuuv

vuuv bb
ccrcc

bb

[0, ∞)

Communication-to-

computation correla-

tion between (fu)
d
 and

(fv)
d
 (i

d
, b

d
 defined)

x
d
 =





















d
dMdM

d
dM

d
dM

d
dM

dd

d
dM

dd

xxx

xxx

xxx

)()()(

)()()(

)()()(

)(),(2),(1),(

)(,22221

)(,11211









Application’s commu-

nication-to-

computation correla-

tion matrix

















 



 

 otherwise0,

0)(if,
2 /))()((

)(

)(
2

1)(

1

)(

1
M dM

dMdM

x

x

dM

u

dM

uv

d
uv

d

[0, ∞)

Auxiliary variable;

mean over (xuv)
d
 ∀ u, v

> u



















 



 

 otherwise,0

0)(if,
2 /))()((

))()((

)(
2

1)(

1

)(

1

2
M

STD dM
dMdM

xx

x

dM

u

dM

uv

dd
uv

d

[0, ∞)

Application’s

communication-to-

computation incohe-

rence;

standard deviation of

(xuv)
d
 ∀ u, v > u

3.4 Meeting the SDR Computing Constraints

The computing resource management facilities of Section 3.2 and the system modeling of Section 3.3

permit mapping an SDR application to an SDR platform on the basis of a single time slot. A feasible map-

ping reserves no more than 100 % of any available computing resource.

We assume that coprocessors facilitate the concurrent data processing and data propagation on all pro-

cessor’s inputs and outputs. Many related contributions, such as [40], [41], [42], [43], [44], make this as-

sumption. Since repetitive operations on data samples and continuous outputs, often one per execution

cycle, characterize digital signal processing, we may further assume that the software and hardware facili-

tate the immediate propagation of processed data samples. The SDR framework finally needs to manage

the synchronized execution on all processors and provide pipelining and buffering mechanisms, among

others, for the proper and timely data delivery. The P-HAL-OE provides all these mechanisms (Section

2.2.3).

The usually complex scheduling process can, on the basis of a feasible mapping and under the above

assumptions, be simplified to N(D) independent local scheduling tasks. A processor’s local scheduler is

then capable of organizing the execution sequence of the corresponding SDR functions’ portions and their

data transfers within the given time slot boundaries (feasible schedule, see Fig. 3.2). This ensures that the

input data of any SDR application’s module or set of modules are processed according to the arrival rate

so that no data are accumulated anywhere in the processing chain, meeting the minimum bit rate require-

ment (Section 2.3.2).

CHAPTER 3: SDR COMPUTING SYSTEM MODELING

42

The application-specific time slot duration (tTS)
d
 times the number of pipelining stages (nTS)

d
 is the pi-

pelining latency in case of a feasible schedule on each processor. We specify (tTS)
d
 as

 (tTS)
d
 =

d

d

n

L

)(

)(

TS

MAX
SPTS (3.15)

to meet the application’s tolerable latency (LMAX)
d
, where SPTS stands for seconds per time slot. This la-

tency is a function of the tolerable end-to-end delay of a radio communication link due to the service and

QoS agreements between the radio service provider and the end user.

When more than one SDR application needs to be executed on SDR platform D, the common time slot

duration tTS must satisfy all latency demands. Hence, the minimum (tTS)
d
 of all applications that need to be

concurrently executed on SDR platform D specifies tTS. We assume that tTS is large enough for the (effi-

cient) execution of any SDR function in the processing chain or chains.

On another management level, access to any shared resource requires its temporal management or

scheduling. Each shared link, for example, requires a bus scheduler. Assuming the availability of data

buffers, a bus scheduler can use a simple policy to ensure timely data transfers: Transfer data from the

output data buffer of the origin processor to the input buffer of the destination processor as soon as the bus

becomes available, gaining access to the different data transfers in a round-robin fashion, for instance.

We summarize that N(D) processor-local schedulers need to schedule processes, data transfers, and

possibly other resource allocations for guaranteeing that real-time constraints will eventually be met. On

the basis of a feasible mapping, finding such schedules is possible and simple if we assume that processing

chains can be pipelined, that data processing and data transfers can overlap, and that partial results can be

immediately forwarded to the next processing block. Our SDR computing resource management frame-

work, though, facilitates elaborating more sophisticated scheduling approaches or different execution pat-

terns for reducing the pipelining latency.

3.5 Modeling Examples

Fig. 3.3 shows four processing platforms. Three (pseudo-)homogeneous processors and a homogeneous

communication network characterize SDR platform I (Fig. 3.3a). Platform II differs from I in that its in-

terprocessor bandwidths are heterogeneous (Fig. 3.3b). Platforms III and IV are equivalent to platforms I

and II except for the heterogeneous processors (Fig. 3.3c and d).

The three processors of SDR platform I, II, III, or IV may stand for three individual processing ele-

ments or three tightly coupled clusters of processors. The picoArray PC101, for example, embeds 430

heterogeneous processors with a total processing power of 206 000 MIPS [25].

Fig. 3.4 depicts the functional diagram of the digital signal processing chain at the physical layer of a

software-defined UMTS downlink receiver. It is comprised of 24 SDR functions from the digital down

conversion to the cyclic redundancy check (CRC) [107]. The computing requirements are estimates from

[107], [108], [110] and available implementations using the TMS320C6416 DSP and the Code Composer

Studio from Texas Instruments [111]. The processing requirements have been obtained from the number

of MACs times the sampling rate fS. The product between fS and the bit precision of 2 · 16 bits for the real

and the imaginary components correspondingly specifies a data flow demands.

We compute the stage model (3.14) of the processing chain of Fig. 3.4 and obtain the number of pipe-

lining stages as (nTS)
UMTS

 = 17. We consider LMAX = 10 ms (the UMTS radio link uses 10 ms long frames

to synchronize the data transmission and reception) and obtain a time slot duration of (tTS)
UMTS

 = 0.01 / 17

= 0.588 · 10
-3

 SPTS due to (3.15). Fig. 3.5 presents the platform models of SDR platform IV (Fig. 3.3d)

and Fig. 3.7 the application models of the UMTS downlink receiver of Fig. 3.4. Index UMTS here refers to

the specific UMTS downlink receiver implementation.

Since SDR platform IV contains only dedicated directional communication lines (Fig. 3.5a), L
IV

 is

suitable for modeling the communication network and contains the same information as I
IV

 and B
IV

 to-

gether (Fig. 3.5b). The corresponding platform parameters are given in Table 3.11. The mean link flexibil-

ity of such an interconnection network is 1/6, because the total bandwidth is distributed among six physi-

cal links. It then follows that (LFM)
I
 = (LFM)

II
 = (LFM)

III
 = (LFM)

IV
 = 1/6.

MODELING EXAMPLES

43

Fig. 3.3. Processing and bandwidth resources in MOPS and Mbps of SDR platforms I-IV (a)-(d).

The four SDR platforms I, II, III, and IV are distinguishable through the processing and bandwidth re-

source heterogeneities (Fig. 3.6). Besides, the CCR matrices and their parameters are platform specific;

that is, X
I
 ≠ X

II
 ≠ X

III
 ≠ X

IV
. Chapters 5 and 6 will analyze the implications of these platform differences.

The UMTS task graph and its mathematical modeling are shown in Fig. 3.7. The data flow model

l
UMTS

 indicates the data flows between SDR functions and the corresponding bandwidth requirements:

(luv)
UMTS

 is the minimum bandwidth demand for the data flow from (fu)
UMTS

 to (fv)
UMTS

. A zero bandwidth

requirement then symbolizes a not existing data flow link.

As opposed to l
UMTS

, i
UMTS

 and b
UMTS

 distinguish between dependent and independent data flows. The

two data flows between SDR functions f1, f2, and f3, for example, are independent and are labeled as link 1

and link 2: (i12)
UMTS

 = 1 and (i13)
UMTS

 = 2. SDR function f4, on the other hand, sends the same data to f6, f7,

f8, f9, and f11. The five corresponding entries in i
UMTS

 then point to the same element in b
UMTS

 (Fig. 3.7b).

Fig. 3.4. Functional diagram and requirements of a UMTS downlink receiver.

Fig. 3.5. Platform models of SDR platform IV: graphical (a) and mathematical (b) representations.

(P2)
I

10000

(P1)
I

10000

(P3)
I

10000

1000

1000

(a) (c)

(P2)
III

10000

(P1)
III

15000

(P3)
III

5000

1000

1000

(d)

(P2)
IV

10000

(P1)
IV

15000

(P3)
IV

5000

1500

1500

(b)

(P2)
II

10000

(P1)
II

10000

(P3)
II

10000

1500

1500

DDS

Sampling
Rate

Frequency
Adjust

Ray
Search

2450 MOPS492 MOPS

120 MOPS

130 MOPS

1 MOPS

Interpolator
Decimator

46 MOPS

492 MOPS 2450 MOPS

160 MOPS

4-Finger
RAKE MRC

Channel
Estimation

92 MOPS

DPCH

1 KHz

fS = 61.44 MHz

4
·4

0
0
0
 M

O
P

S

M
a
x
im

u
m

 S
e
a
rc

h

Sync1
Sync2

Sync1

Sync1
Sync4

Sync3

fS = 65 MHz

2nd

Deinter-
leaving

CRC

Physical
Channel

De-
Mapping

Physical
Channel
Deseg-

mentation

10 MOPS

Radio
Frame
Deseg-

mentation

62.9 MOPS

1st

Deinter-
leaving

116 MOPS

Rate
Match-

ing

141 MOPS

Turbo
De-

coding

342 MOPS

TrBk
Concat./
CodeBk
Deseg.

11.7 MOPS0.2 MOPS

0.384 MBPS 1.15 MBPS

1
0
 M

O
P

S
1
0
5
 M

O
P

S

4

Matched
Filter

3.84 MHz

1
5
.3

6
 M

O
P

S

4

Chip Sync

Sampling
Rate

Matched
Filter

fS = 15.36 MHz fS = 3.84 MHz 7.68 MBPS

(a)

(P2)
IV

5.882

(P1)
IV

8.823

(P3)
IV

2.941

0.882

0.882

(b)

C IV = (8.823, 5.882, 2.941) MOPTS























588.0294.0

588.0882.0

294.0882.0

L IV = MBPTS

















379

625

841

I IV =

B IV = (∞ , ∞ , ∞ , 0.882, 0.882, 0.588, 0.588, 0.294, 0.294) MBPTS

Device model

Communication models

CHAPTER 3: SDR COMPUTING SYSTEM MODELING

44

Table 3.11 Modeling parameters of SDR platform IV (Fig. 3.5).

Computation Communication Communication-to-computation

N(IV) = 3 CON
IV

 = 1 CCR
IV

 = 0.2 MBPTS / MOPTS

(CT)
IV

 = 17.647 MOPTS (BT)
IV

 = 3.529 MBPTS

X
IV

 =






















666.025.0

666.06.0

25.06.0

 (XM)
IV

 = 0.506

(XSTD)
IV

 = 0.183

(CM)
IV

 = 5.882 MOPTS (BM)
IV

 = 0.588 MBPTS

(HC)
 IV

 = 0.272 (HB)
IV

 = 0.136

 LF
IV

 =






















6/112/1

6/14/1

12/14/1

 (LFM)
IV

 = 1/6

Fig. 3.6. Resource heterogeneity parameters of SDR platforms I-IV (a)-(d).

Out of the 34 existing data flows, 24 are independent. Then, only 24 entries in b
UMTS

 are nonzero;

these are the first 24 entries, since b
UMTS

 is ordered by decreasing bandwidth demands. The elements of

i
UMTS

 that correspond to not existing data flow links could point to any element in b
UMTS

 between (b25)
UMTS

and (b576)
UMTS

. (The additional information of i
UMTS

 and b
UMTS

 with respect to l
UMTS

 is not processed in

this dissertation.)

Table 3.12 and Fig. 3.8 present the application parameters of the UMTS receiver models. They com-

plete the SDR application example here, whereas their utility will be discussed in later chapters. Note,

however, that g
UMTS

 ≈ 0.7 indicates a rather sequential than parallel processing chain (Section 3.3.2C));

the task graph of Fig. 3.7a visually reflects this.

Fig. 3.9 illustrates another SDR platform modeling example. Here all processors share two unidirec-

tional buses (Fig. 3.9a). Two unidirectional buses equivalently connect each cluster of four processors

with the rest of the processing array of picoChips’s picoArray PC101 [25].

Fig. 3.9b and c show the communication models and parameters of Fig. 3.9a. Since links are shared

here, the communication models I
V
 and B

V
 need to be used instead of L

V
. A set of four logical interpro-

cessor links map to one unidirectional physical link. Since both physical links offer the same bandwidth,

the bandwidth resource heterogeneity (HB)
V
 is 0. The link flexibility of each logical link is 0.5, because the

maximal directional bandwidth between each pair of processor is 0.5 · (BT)
V
. Hence, the mean link flex-

ibility of such an SDR platform is 0.5.

SDR platform VI connects each pair of processors through bidirectional HD links (Fig. 3.10a). Fig.

3.10b and c capture the communication models and parameters of this platform. The pair of logical links

between any two processors maps to a single bidirectional physical link. The mean link flexibility of such

a processor platform is 1/3, irrespective of the actual bandwidths Bx, By, and Bz. Even if the capacity of one

or two HD links were zero, LF
VI

 and CON
VI

 would change but not (LFM)
VI

.

Fig. 3.11a finally shows a communication network that cannot be characterized by the communication

models I
D
 and B

D
. One unidirectional and one bidirectional link connects the two processors (P1)

VII
 and

(P2)
VII

 (Fig. 3.11a). The total bandwidth capacity from (P2)
VII

 to (P1)
VII

 is Bbus + Blink, part of which is

shared. (I12)
VII

 and (I21)
VII

 then both need to point to the bidirectional bus bandwidth Bbus, while (I21)
VII

 also

needs to point to the unidirectional link bandwidth Blink. I
D
 would need a third dimension for modeling

such a communication network.

(a) (b)

(HB)I = 0

(HC)I = 0 Homogeneous processing powers

Homogeneous bandwidth capacities (HB)II = 0.136

(HC)II = 0 Homogeneous processing powers

Heterogeneous bandwidth capacities

(c) (d)

(HB)III = 0

(HC)III = 0.272 Heterogeneous processing powers

Homogeneous bandwidth capacities (HB)IV = 0.136

(HC)IV = 0.272 Heterogeneous processing powers

Heterogeneous bandwidth capacities

MODELING EXAMPLES

45

Fig. 3.7. UMTS task graph: graphical (a) and mathematical (b) modeling.

bUMTS = (612, 612, 578, 578, 144.6, 144.6, 72.3, 72.3, 36.1, 36.1, 36.1, 36.1, 4.52, 4.52,

4.52, 4.52, 0.677, 0.677, 0.677, 0.226, 0.226, 0.0094, 0.0094, 0.0094, 0, 0, …, 0) · 10-3 MBPTS

cUMTS = (76.5, 289, 289, 1440, 1440, 2350, 2350, 2350, 2350, 9.04, 27, 0.588,

70.6, 54.1, 94.1, 5.88, 61.8, 5.88, 37, 68.2, 82.9, 201, 6.88, 0.118) · 10-3 MOPTS

Function model

Dataflow models

iUMTS =

(a)











































































252525252525252525252525

252525252525252525252525

222225252525252525252525

252512252525252525252525

252511252525252525252525

252510252525252525252525

25259252525252525252525

2562566662525252525

2552555552525252525

25252525252525425252525

25252525252525253252525

2525252525252525252125

(b)

sUMTS = (1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 6, 6, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17)

Stage model











































































000000000000

000000000000

0094.00094.00000000000

001.36000000000

001.36000000000

001.36000000000

001.36000000000

06.14406.1446.1446.1446.14400000

06.14406.1446.1446.1446.14400000

00000005780000

00000000578000

0000000006126120

lUMTS = · 10-3 MBPTS

289·10-3

76.5·10-3
578·10-3

578·10-3

72.3·10-3

0.677·10-30.226·10-3 0.677·10-30.677·10-3

27·10-3

0.588·10-3 54.1·10-3 5.88·10-3

5.88·10-337·10-368.2·10-382.9·10-3201·10-36.88·10-30.118·10-3

4.52·10-3

94.1·10-3

61.8·10-3

0.226·10-3

9.4·10-6

70.6·10-3

4.52·10-3

9.04·10-3

72.3·10-3

289·10-3

2350·10-3

2350·10-3

2350·10-3

f9

f8

f7

f6

f3

f2

f1 f11 f13

f12 f14

f15

f16

f17f18f19f20f21f22f23f24

f10

f4

f5
9.4·10-6

36.1·10-3

144.6·10-3

1440·10-3

1440·10-3

2350·10-3

CHAPTER 3: SDR COMPUTING SYSTEM MODELING

46

Table 3.12 Modeling parameters of the UMTS task graph of Fig. 3.7.

Computation Communication Communication-to-computation

M(UMTS) = 24 con
UMTS

 = 0.123 ccr
UMTS

 = 0.302 MBPTS / MOPTS

(cT)
UMTS

 = 13.675 MOPTS (bT)
UMTS

 = 4.135 MBPTS x
UMTS

 (see Fig. 3.8)

(cM)
UMTS

 = 0.570 MOPTS (bM)
UMTS

 = 0.122 MBPTS (xM)
UMTS

 = 0.0729

(hC)
UMTS

 = 0.129 (hB)
UMTS

 = 0.0885 (xSTD)
UMTS

 = 0.507

 (nTS)
UMTS

 = 17

 g
UMTS

 = 17 / 24 = 0.708













































































00003.0000000000

00001.00000326.0326.0000

003.0001.00051.0051.0051.0051.000000

00051.00000126.0126.0000

00051.00000126.0126.0000

00051.00000126.0126.0000

00051.00000126.0126.0000

0326.00126.0126.0126.0126.000105.100

0326.00126.0126.0126.0126.0000105.10

0000000105.1000529.5

00000000105.100529.5

000000000529.5529.50

UMTS
x

Fig. 3.8. x
UMTS

.

Fig. 3.9. SDR platforms V (a), its communications models (b) and parameters (c).

Fig. 3.10. SDR platforms VI (a), its communications models (b) and parameters (c).

Fig. 3.11. A communication network (a) that cannot be captured by the proposed communication models (b).

(a) (b)





















4666

5366

5526

5551

IV =

BV = (∞ , ∞ , ∞ , ∞ , Bbus,

Bbus, 0, …, 0) MBPTS

(c)





























5.05.05.0

5.05.05.0

5.05.05.0

5.05.05.0

LFV =

CONV = 1 (BT)V = 2 · Bbus

(BM)V = Bbus(HB)V = 0

(LFM)V= 0.5

(P3)
V(P2)

V(P1)
V

Bbus

Bbus

(P4)
V

(a) (b)

















365

624

541

IVI =

BVI = (∞ , ∞ , ∞ , Bx, By,

Bz, 0, 0, 0) MBPTS

Bx

(P1)
VI(P2)

VI

(P3)
VI

By Bz

(c)

CON VI = 1 (BT)VI = Bx + By + Bz

(BM)VI = (Bx + By + Bz) / 3(HB)VI = 0

(LFM)VI = 1/3























TT

TT

TT

//

//

//

BBBB

BBBB

BBBB

yz

yx

zx

LFVI =

(a) (b)










2?

?1
IVII =

BVII = (∞ , ∞ , ?, ?) MBPTS

Blink
(P1)

VII(P2)
VII

Bbus

ADDITIONAL MODELING FEATURES AND EXTENSIONS

47

3.6 Additional Modeling Features and Extensions

3.6.1 Dividing and Merging of Platforms or Applications

The simplicity and modularity of our modeling approach facilitates an easy introduction of additional

models and parameters. The mathematical and graphical models facilitate applying matrix processing and

graph theoretic techniques, as will be shown in later chapters. A particular feature of the proposed models

is that it eases the dividing and merging of platforms or applications.

The dividing of SDR applications is illustrated in Fig. 3.12 for the UMTS task graph of Fig. 3.7a and

the data flow model l
UMTS

. This approach generates two subgraphs, the first representing the chip-rate

processing part of the UMTS receiver (f1, f2, …, f15) and the second containing the bit-rate processing

modules (f16, f17, …, f24). The chip and bit-rate data flow requirements are then captured by a 15 x 15 and a

9 x 9 matrix. The two new matrices are joined through the data flow requirement between the Rake Re-

ceiver (f15) and the Physical Channel Demapping (f16). (The model i
UMTS

 would be correspondingly split

into two matrices of 15 x 15 and 9 x 9 elements, whereas b
UMTS

 would be divided into two vectors of 225

and 81 elements.)

From Fig. 3.12 we infer that merging two SDR applications is the reverse process of the dividing pro-

cedure. Since computing resources and requirements are symmetrically modeled, SDR platforms can be

equivalently merged or divided. When dividing an SDR platform or application, the connecting points, if

any, need to be correctly managed. This means that the data flow between f15 and f16 in the example of Fig.

3.12 requires the allocation of 4.52 · 10
-3

 MBPTS. Adding nodes with zero processing requirements (pseu-

donodes) could therefore be useful.

Fig. 3.12. Exemplifying the division of the UMTS task graph: graphically (a) and mathematically (b).

00000000000

102260000000000

0000

000000000

00105.4000000

000105.400000

0000104.90000

000010720000

0000

0000000578.0000

000000000612.00

6

3

3

6

3



































(b)

l UMTS =

Chip-rate

data flow

demands

Bit-rate

data flow

demands

(15 x 15)

(9 x 9)

(24)

(24)

1

2

13

14

15

16

17

23

24

···
···

1 2 13 14 15 16 17 ······ 23 24

4.52·10 –3

(a)

289·10-3

76.5·10-3
578·10-3

578·10-3

72.3·10-3

0.677·10-30.226·10-3 0.677·10-30.677·10-3

27·10-3

0.588·10-3 54.1·10-3 5.88·10-3

5.88·10-337·10-368.2·10-382.9·10-3201·10-36.88·10-30.118·10-3

4.52·10-3

94.1·10-3

61.8·10-3

0.226·10-3

9.4·10-6

70.6·10-3

4.52·10-3

9.04·10-3

72.3·10-3

289·10-3

2350·10-3

2350·10-3

2350·10-3

f9

f8

f7

f6

f3

f2

f1 f11 f13

f12 f14

f15

f16

f17f18f19f20f21f22f23f24

f10

f4

f5
9.4·10-6

36.1·10-3

144.6·10-3

1440·10-3

1440·10-3

2350·10-3

CHAPTER 3: SDR COMPUTING SYSTEM MODELING

48

Fig. 3.13. Illustration of the hierarchical platform modeling: Three hierarchy levels (a) and the corresponding plat-

form models (b-d).

These techniques may be practical for solving problems of different dimensions. It may, particularly,

be inefficient or impossible to directly solve complex computing resource management problems. In case

of multiuser base station, for instance, SDR applications could be individually mapped to the computing

resources of distinct sub-cluster of the processing array. As sessions are dynamically initiated and termi-

nated, this would ease the reuse of computing freed resources, being rather concentrated than widely dis-

tributed. From Fig. 3.12 finally follows that splitting an SDR application into two parts, approximately

halves the memory requirement for storing the data flow demands.

3.6.2 Hierarchical Modeling

Clustering is a common technique for managing large arrays of processors, computational grids, or super-

computers. We consider it as another computing resource management facility. A hierarchical clustering

is, particularly, useful in the context of this dissertation. We, therefore, discuss it briefly here while pre-

senting the hierarchical modeling extension.

SDR platforms can be modeled at different hierarchy levels. The topmost level may be represented

through a single processing unit (Fig. 3.13a), which abstracts an array of processors. The processing pow-

er at this level may then be the sum of processing powers of the underlying physical processors. The

communication models would then be two 1 x 1 matrices I
D'

 and B
D'

 (Fig. 3.13b), indicating the total in-

terprocessor communication capacity at another hierarchy level, for instance. At the next level we may

have N(D'') processors interconnected through some network (Fig. 3.13a and c). At the third level we

(a)

CD' = ((C1)
D') MOPTS

BD' = ((B1)
D') MBPTS

ID' = ((I11)
D')(P1)

D'

(P2)
D'''

5.882

(P1)
D'''

8.823

(P3)
D'''

2.941

0.882

0.882

(P3)
D''

(P3)
D''

(P2)
D''

(P1)
D''

CD'' = ((C1)
D'', (C2)

D'', …, (CN(D''))
D'') MOPTS

BD'' = ((B1)
D'', (B2)

D'', …, (BN(D'')·N(D''))
D'') MBPTS





















''
)''(),''(

''
2),''(

''
1),''(

''
)''(,2

''
22

''
21

''
)''(,1

''
12

''
11

)()()(

)()()(

)()()(

D
DNDN

D
DN

D
DN

D
DN

DD

D
DN

DD

III

III

III









ID'' =

(P1)
D'

(d)

CD''' = CIV = (8.823, 5.882, 2.941) MOPTS

















379

625

841

I D''' = IIV =

BD''' = BIV = (∞ , ∞ , ∞ , 0.882, 0.882, 0.588,

0.588, 0.294, 0.294) MBPTS

(c)

(b)

Net-

work
(PN(D''))

D''

SUMMARY

49

could find clusters of N(D''') = 3 processors (Fig. 3.13a and d). We consider clusters of three processors as

the basic computing units in this dissertation.

We can correspondingly extend the application modeling to account for the three application levels of

definitions 2, 3, and 4: SDR application level, SDR function level, and SDR process level. Another level

on top of the SDR application level could join several SDR applications that need to be executed on a

single SDR platform, such as an SDR-BS.

Hierarchical clustering may be useful for efficiently managing large arrays of processors. SDR-BSs, in

particular, execute several SDR applications, typically one or more per user. Applying a hierarchical com-

puting resource management based on the hierarchical modeling could then be as follows: The set of SDR

applications assigned to (P1)
D'

 are distributed among the N(D'') clusters, managing the processing re-

sources (C1)
D''

 through (CN(D''))
D''

 and the available interprocessor bandwidths at hierarchy level 2. After

finding a feasible allocation of computing resources to computing requirements, we can proceed with as-

signing computing resources to computing requirements at hierarchy level 3. At this level, SDR functions

are distributed on the available processors.

The hierarchical modeling extension shows the flexibility of our modeling proposal. It, moreover, in-

dicates how the particular study of this dissertation should be viewed within the overall SDR computing

resource management context, consisting of SDR mobile terminals, base stations, and networks. This doc-

ument does, though, not further discuss hierarchical modeling and its computing resource management

implications.

3.7 Summary

We have presented a modular and flexible SDR computing system modeling, which consist of the plat-

form and application modeling. Through instantiations of modeling templates, we can systematically cap-

ture all relevant platform and application characteristics, including the available computing resources and

the corresponding requirements. Several parameters complement our modeling proposal. Each parameter

points out some specific platform or application feature based on the introduced models. Chapters 5 and 6

will demonstrate the suitability of our modeling contribution.

This concludes the first part of our SDR computing resource management framework. The computing

system modeling supports the computing resource management of Chapter 4. Nevertheless, the computing

system modeling is independent of the computing resource management and has a specific function within

the framework. The computing resource management algorithm does, for instance, not assume any partic-

ular interconnection network; it is the modeling that takes care of this. Hence, our framework can be ap-

plied to a wide variety of platforms and applications, a variety that characterizes SDR.

4
SDR Computing Resource Management

4.1 Introduction

Heterogeneous computing research has addressed many different mapping and scheduling problems and

proposed a wide variety of specific solutions (Section 2.4). The SDR computing resource management

problem, however, requires a more flexible approach (Section 2.5). We, therefore, suggest a more general

computing resource management framework for the dynamic SDR computing and radio environments.

Although our solution addresses the SDR computing resource management problem of Section 2.3 and

assumes the SDR-specific system models of Chapter 3, it is also applicable to other real-time computing

contexts [144].

This chapter presents a modular and open computing resource management approach. It distinguishes

between the algorithm and the objective or cost function. This modularity (Fig. 4.1) increases the flexibili-

ty of applying different cost functions, facilitating a dynamic adjustment or exchange of the computing

resource management policy as a function of the momentary environmental conditions. One policy would

be meeting real-time computing constraints in hard to meet conditions and another, optimizing the energy

consumption. Different environmental conditions represent different computing resource management

scenarios or problems, which possibly require specific solutions. This is in line with Lee and Aggarwal

[38], who concluded that “different objective functions and mapping algorithms are to be adopted for dif-

ferent applications”, where application in the context of the citation refers to scenario or problem.

The computing resource management problem that this dissertation tackles can be formulated as a

general mapping problem: A precedence-constrained task graph (with computing requirements) is to be

mapped to a heterogeneous multiprocessor platform (with limited computing resources). With N proces-

sors and M tasks, there are N
M

 different mapping options. Not all solutions are necessarily feasible and

only one or a few are optimal in some sense, whether minimizing the makespan or pursuing another objec-

Fig. 4.1. Modular SDR computing resource management.

Mapping

Algorithm

SDR Computing

System Modeling

Cost

Function

CHAPTER 4: SDR COMPUTING RESOURCE MANAGEMENT

52

tive. An optimal and even a feasible solution to nontrivial multiprocessor mapping or scheduling problems

is generally hard to find and may require an exhaustive search [58], [64]. It has been shown that many

related (optimization) problems are NP-complete [37], [47], [82], [83], [84], [85]. This means that the

execution time for finding an optimal solution can become extremely long and impractical for any realistic

problem size.

Under the above assumptions, we suggest a heuristic approach that systematically maps computing re-

quirements to computing resources. It should permit dynamic parameter or algorithm adjustments as well

as facilitate the application of pre and postprocessing add-ons. The tw- and gw-mapping (Section 4.2) are

two such approaches. They are dynamically adjustable through parameter w─the window size─which

controls the performance versus complexity tradeoff. Both algorithms permit the application of different

cost functions, which guide the mapping process. We introduce a cost function that manages the limited

computing resources as a function of the hard real-time computing requirements (Section 4.3). We analyt-

ically analyze the algorithms’ processing complexities (Section 4.4) and conclude this chapter with an

SDR computing resource management example (Section 4.5).

The mapping algorithms can, in principle, handle any SDR platform or application. The cost function,

which actually manages the computing resources and requirements, assumes the modeling of Chapter 3.

Except for Section 4.5, this chapter uses the modeling expressions of Chapter 3 without SDR platform

index D and SDR application index d for improving the readability.

4.2 Mapping Algorithms

It is not feasible to adapt previously introduced algorithms to the SDR computing resource management

context and to evaluate their performance within our framework [49]. These algorithms principally lack

the flexibility that the highly dynamic SDR environment requires. We therefore introduce the tw-mapping

(Section 4.2.1), a flexible mapping algorithm based on the dynamic programming principles [146]. We

also implement an extended greedy approach, the gw-mapping (Section 4.2.2), which constitutes the refer-

ence mapping algorithm for performance evaluations (Chapter 5).

The following concepts facilitate a formal algorithm description. The tw-mapping diagram contains a

matrix of N x M (row x column) t-nodes (Fig. 4.2). A t-node is identified as {Pk(l), fi} and absorbs the

mapping of SDR function fi to processor Pk(l). Any t-node at step i connects to all t-nodes at step i+1. The

sequence of processors, [Pk(0) Pk(1) ··· Pk(w)]i, identifies the w-path, a path of length w, that is associated

with t-node {Pk(1), fi}. Pk(0) is the w-path’s origin processor at step i–1 and Pk(w) the destination processor at

step i+w–1. Hence, [P1 P1 PN P1]2 depicts the bold 3-path in Fig. 4.2. It is associated with t-node {P1, f2}.

Table 4.1 summarizes the most important variables and expressions that facilitate formal algorithm pres-

entations.

Since both algorithms are cost function independent, their formal descriptions (Sections 4.2.1 through

4.2.2) do not assume a particular cost function. Section 4.2.3, on the other hand, provides an introduction

to the tw- and gw-mapping by means of a simple mapping problem and a specific cost function.

Fig. 4.2. The tw-mapping diagram.

P1

PN

f1 f2

.

.

.

.

.

.

.

.

.

.

{P1, f1}

{PN, f1}

{P1, f2}

{PN, f2}

[P1 P1]2

[PN PN]2

.

.

.

.

P2

PN–1

.

.

f3

{P1, f3}

{PN, f3}

[P1 P1]3

[PN PN]3

.

.

fM

{P1, fM}

{PN, fM}

.

.

f5 fM–1· ·

{P1, f4}

{PN, f4}

[P1 P1]4

[PN PN]4

.

.

f4

MAPPING ALGORITHMS

53

Table 4.1 Algorithm-specific parameters and expressions.

Parameter or

expression
Range (argument range) Description

N ℕ number of processors

M ℕ number of SDR functions

w 1, 2, …, M–1 widow size

k(l) 1, 2, …, N; (l ∈ 0, 1, …, w)
processor index k(l) with its relative position l in the w-

path

Pk(l) P1, P2, …, PN processor

i, j 1, 2, …, M step indexes (SDR function indexes)

fi f1, f2, …, fM SDR function

{Pk(l), fi} t-node indicating the mapping of fi to Pk(l)

h = i + (l – 1) (l ≠ 0; i ∈ 2, 3, …, M–w+1)
step index h; auxiliary variable that substitutes i + (l –

1)

[Pk(0) Pk(1) ... Pk(w)]i (i ∈ 2, 3, …, M–w+1) w-path associated with t-node {Pk(1), fi}

[Pk(l–1) Pk(l)]h (l ≠ 0; h ∈ 2, 3, …, M)
edge, or 1-path, between t-nodes {Pk(l–1), fh–1} and

{Pk(l), fh}

WT[Pk(l–1) Pk(l)]h (l ≠ 0; h ∈ 2, 3, …, M) edge weight

CT[Pk(0) Pk(1) ... Pk(w)]i (i ∈ 2, 3, …, M–w+1)
accumulated cost up to t-node {Pk(w), fi+w–1} on w-path

[Pk(0) Pk(1) ... Pk(w)]i

CT{Pk(l) fi} (l ∈ 1, 2; i ∈ 1, 2 , …, M–w+1) accumulated cost at t-node {Pk(l) fi}

P(fj) P1, P2, …, PN ; (f1, f2, …, fM) processor allocated to SDR function fj

4.2.1 The tw-mapping

The tw-mapping algorithm (Fig. 4.3) can be divided into three parts: processing at step 1 (lines 1 and 2 in

Fig. 4.3), processing at steps i = 2, 3, …, M–w+1 (lines 3-18), and postprocessing (lines 19 and 20).

A) Part I: Processing at Step 1

The first part of the algorithm addresses SDR function f1. For any processor Pk(0), the tw-mapping (w ≥ 1)

premaps f1 to Pk(0) and stores the premapping cost CT{Pk(0), f1} at t-node {Pk(0), f1} (lines 1 and 2). The

term premapping indicates that the final SDR application mapping is not known until all M SDR functions

have been processed, or premapped.

B) Part II: Processing at Steps i = 2, 3, …, M–w+1

The t1-mapping analyzes the N ingoing edges, or 1-paths, of t-node {Pk(1), fi}. These are [P1 P k(1)]i, [P2

Pk(1)]i, …, and [PN Pk(1)]i (line 5). Edge [Pk(0) Pk(1)]i is assigned the weight WT[Pk(0) Pk(1)]i (line 6). This

weight represents the cost of premapping SDR function fi to processor Pk(1) while considering the preced-

ing decisions, which are provided by the edge’s origin t-node {Pk(0), fi–1}. The t1-mapping computes the

accumulated costs as

 CT[Pk(0) Pk(1)]i = CT{Pk(0), fi–1} + WT[Pk(0) Pk(1)]i (4.1)

(line 12, bold). Edge [Pk(0)* Pk(1)]i is obtained from

 k(0)* =  ikk
Nk

PP][CT minarg)1()0(
,...,2,1)0(

 (4.2)

and represents the premapping decision at t-node {Pk(1), fi}. (The function argmin{x} returns the argu-

ment(s) that leads to the minimum value of x.) The algorithm finally highlights edge [Pk(0)* Pk(1)]i (line 14,

bold) and stores its accumulated cost at t-node {Pk(1), fi} (line 15).

The tw-mapping (w > 1) analyzes the N
 w

 w-paths that are associated with t-node {Pk(1), fi}. Any of

these w-paths originates at a t-node at step i–1, runs through {Pk(1), fi}, and terminates at a t-node at step

i+w–1. The algorithm computes the corresponding accumulated costs due to lines 5-12. It then solves

CHAPTER 4: SDR COMPUTING RESOURCE MANAGEMENT

54

 {k(0)*, k(2)*, k(3)*, ..., k(w)*} =  iwkkkk
lNlk

PPPP]···[CT minarg)()2()1()0(
1;,...,2,1)(

, (4.3)

which returns the indices of the w-path that has the minimum accumulated cost. In case where i < M–w+1,

the tw-mapping (w > 1) highlights edge [Pk(0)* Pk(1)]i and stores the corresponding accumulated cost at t-

node {Pk(1), fi} (lines 13-15). Otherwise, it highlights the entire w-path [Pk(0)* Pk(1) Pk(2)* ··· Pk(w)*]M–w+1 and

stores its accumulated cost at t-node {Pk(1), fM–w+1} (lines 16-18).

All N t-nodes at step i (line 4) can be processed in parallel. Once finished with their processing, the tw-

mapping (w ≥ 1) proceeds with step i+1 in the case where i < M–w+1 and with part III otherwise (line 3).

C) Part III: Postprocessing

Part III of the algorithm postprocesses the premapping decisions of parts I and II. The tw-mapping (w ≥ 1)

first highlights the t-node at step M–w+1 that holds the minimum cost (line 19). Starting at this t-node, it

then backtracks (forward and backtracks in the case where of w > 1) the tw-mapping diagram along the

highlighted edges while highlighting all t-nodes that are traversed (line 20). This results in M highlighted

t-nodes which specify the mapping proposal due to the particular problem, cost function, and window size.

D) Parameter w

The window size w can take any integer value between 1 and M–1 (Table 4.1). It controls the level of lo-

cality (local versus global scope) of the premapping decisions: The t1-mapping is based on local decisions.

It however maintains N premappings at each step, one per t-node, which may results in N (partially) dif-

ferent mapping options (bold expressions in Fig. 4.3).

Fig. 4.3. tw-mapping─pseudocode (the bold expressions describe the t1-mapping).

01 for processor Pk(0) = P1, P2, …, PN

02 store {CT{Pk(0), f1} = cost of pre-mapping f1 to Pk(0)} at t-node {Pk(0), f1}

03 for step i = 2, 3, …, M–w+1

04 for t-node {Pk(1), fi} = {P1, fi}, {P2, fi}, ..., {PN, fi}

05 for edge [Pk(0) Pk(1)]i = [P1 Pk(1)]i , [P2 Pk(1)]i , ..., [PN Pk(1)]i

06 WT[Pk(0) Pk(1)]i = cost of pre-mapping fi to Pk(1) as a function of previous decisions

07 for edge [Pk(1) Pk(2)]i+1 = [Pk(1) P1]i+1, [Pk(1) P2]i+1, ..., [Pk(1) PN]i+1

08 WT[Pk(1) Pk(2)]i+1 = cost of pre-mapping fi+1 to Pk(2) as a function of previous decisions

09 · · ·

10 for edge [Pk(w–1) Pk(w)]i+w–1 = [Pk(w–1) P1]i+w–1, [Pk(w–1) P2]i+w–1, ..., [Pk(w–1) PN]i+w–1

11 WT[Pk(w–1) Pk(w)]i+w–1 = cost of pre-mapping fi+w–1 to Pk(w) as a function of previous decisions

12 CT[Pk(0) Pk(1) Pk(2) ··· Pk(w)]i = CT{Pk(0), fi–1} + WT[Pk(0) Pk(1)]i + WT[Pk(1) Pk(2)]i+1 + ...

+ WT[Pk(w–1) Pk(w)]i+w–1

13 if (i < M–w+1)

14 highlight edge {[Pk(0)* Pk(1)]i | CT[Pk(0)* Pk(1) Pk(2)* ··· Pk(w)*]i ≤ CT[Pk(0) Pk(1) Pk(2) ··· Pk(w)]i (k(0)

k(2) k(3) ··· k(w))}

15 store {CT{Pk(1), fi} = CT{Pk(0)*, fi–1} + WT[Pk(0)* Pk(1)]i} at t-node {Pk(1), fi}

16 else

17 highlight w-path {[Pk(0)* Pk(1) Pk(2)* ··· Pk(w)*]M–w+1 |CT[Pk(0)* Pk(1) Pk(2)* ··· Pk(w)*]M–w+1 ≤ CT[Pk(0)

Pk(1) Pk(2) ··· Pk(w)]M–w+1 (k(0) k(2) k(3) ··· k(w))}

18 store {CT{Pk(1), fM–w+1} = CT[Pk(0)* Pk(1) Pk(2)* ··· Pk(w)*]M–w+1}at t-node {Pk(1), fM–w+1}

19 highlight t-node {{Pk(1)*, fM–w+1} | CT{Pk(1)*, fM–w+1} ≤ CT{Pk(1), fM–w+1} k(1)}

20 forward- & backtrack from {Pk(1)*, fM–w+1} along the highlighted edges and highlight the traversed t-nodes







MAPPING ALGORITHMS

55

At the other extreme, the tM–1-mapping examines all N
M

 possible mappings of M functions to N proces-

sors. More precisely, it computes the accumulated (M–1)-path costs of all N
M–1

 different (M–1)-paths that

traverse t-node {Pk(1), f2} (lines 5-12) before selecting the path of minimum cost (lines 17 and 18). After

processing all N t-nodes at step 2 (line 4), the algorithm highlights t-node {Pk(1)*, f2} (line 19) and forwards

and backtracks the tw-mapping diagram, obtaining the final mapping (line 20). It finds an optimal solution

for the given problem and cost function.

The window size also controls the tradeoff between computing efficiency and mapping performance:

The higher the window size, the higher the algorithm’s complexity (Section 4.4), but the better the map-

ping results (Section 4.5 and Chapters 5 and 6).

4.2.2 The gw-mapping

The gw-mapping algorithm (Fig. 4.4) consists of two parts, the processing at step 1 (lines 1-3 in Fig. 4.4)

and the processing at steps i = 2, 3, …, M–w+1 (lines 4-18). It is a forward processing algorithm. That is,

P(fi) = P1, P2, …, or PN is firmly specified as the processor to be allocated to SDR function fi at processing

step i. The algorithm therefore proceeds as follows.

A) Part I: Processing at Step 1

The gw-mapping’s part I computes the costs of mapping f1 to each one of the N processor (lines 1 and 2). It

then selects the processor to be allocated to f1 as

 P(f1) = {Pk(0)* | CT{Pk(0)*, f1} ≤ CT{Pk(0), f1} ∀ k(0)}, (4.4)

while discarding all but the active t-node at step 1, t-node {P(f1), f1} (line 3).

B) Part II: Processing at Steps i = 2, 3, …, M–w+1

In part II, the g1-mapping analyzes the N outgoing edges from the active t-node at step i–1 (lines 5, 6, and

12 bold). It solves

 k(1)* =  ik
Nk

PfP])([CT minarg)1(1
,...,2,1)1(

 (4.5)

for finding the minimum-cost edge [P(fi–1) Pk(1)*]i and, thus, the processor to be allocated to fi , P(fi) =

Pk(1)*. The active t-node at step i becomes {P(fi), fi} (line 14). It retains the accumulated mapping cost (line

15). If i < M, the g1-mapping proceeds with step i+1 (line 4).

The gw-mapping (w > 1) examines N
w
 w-paths (lines 5-12). Each of these w-paths originates at t-node

{P(fi–1), fi–1}, runs through a t-node at step i, through a t-node at step i+1, …, and terminates at a t-node at

step i+w–1. The algorithm then solves

 {k(1)*, k(2)*, k(3)*, ..., k(w)*} =  iwkkki
lNlk

PPPfP]···)([CT minarg)()2()1(1
0;,...,2,1)(




, (4.6)

obtaining the indices of the minimum-cost w-path [P(fi–1) Pk(1)* Pk(2)* ··· Pk(w)*]i.

If i < M–w+1, the gw-mapping identifies P(fi) = Pk(1)* as the processor to be allocated to SDR function

fi, highlighting the corresponding t-node and storing the accumulated mapping cost up to this node (lines

13-15). Step i+1 then follows (line 4). If i = M–w+1, w-path [P(fi–1) Pk(1)* Pk(2)* ··· Pk(w)*]i specifies the re-

maining processor allocations: P(fM–w+1) = Pk(1)*, P(fM–w+2) = Pk(2)*, …, P(fM) = Pk(w)* (lines 16 and 17). The

total mapping cost,

 CT{P(fM–w+1), fM–w+1} = CT[P(fM–w) P(fM–w+1) P(fM–w+2) ··· P(fM)]M–w+1, (4.7)

is finally stored at t-node {P(fM–w+1), fM–w+1} (line 18).

C) Parameter w

Parameter w here establishes the decision window for part II of the gw-mapping: To allocate a processor to

SDR function fi, the gw-mapping computes all N
w
 different mapping combinations of the set of SDR func-

tions between fi and fi+w–1 to the N processors P1 to PN. The g1-mapping thus chooses the best immediate

allocation for each SDR function (as a function of the previous decisions); it is a greedy algorithm [145].

CHAPTER 4: SDR COMPUTING RESOURCE MANAGEMENT

56

The gM–1-mapping, on the other hand, optimally solves the mapping of SDR functions f2 to fM with respect

to the mapping of f1. More precisely, after finding the local best match for SDR function f1, the gM–1-

mapping performs an extensive search through the complete solution space for mapping the remaining M–

1 SDR function to the N processors.

4.2.3 Exemplifying the tw- and gw-mapping

We consider a simple mapping problem for exemplifying the two mapping algorithms: The task graph of

Fig. 4.5a is to be mapped to the platform model of Fig. 4.5b. The following figures illustrate how the tw-

and gw-mapping solve this mapping problem for different window sizes. Part I is independent of w and is

illustrated once for the tw-mapping (Section 4.2.3A)) and once for the gw-mapping (Section 4.2.3E)).

The tables, which are embedded within the figures, contain the premapping costs. These costs are due

to cost function (4.9), which will be presented in Section 4.3.2. It is irrelevant here how the cost figures

are actually obtained. It is, though, important to understand which paths need to be evaluated and how the

decisions are made given the costs of these paths. Section 4.5 will discuss another mapping example, fo-

cusing on the cost calculations and resource updates.

Fig. 4.5. A simple mapping problem: task graph (a) and platform model (b).

4 3

1.5

1.5

P1 P2

1

0.5

f1

f2 f3

f4

2

1.5 0.5

0.5

(a) (b)

Fig. 4.4. gw-mapping─pseudocode (the bold expressions describe the g1-mapping).

01 for processor Pk(0) = P1, P2, …, PN

02 CT{Pk(0), f1} = cost of pre-mapping f1 to Pk(0)

03 highlight t-node {{P(f1), f1} | CT{P(f1), f1} ≤ CT{Pk(0), f1} k(0)} and discard the others at step 1

04 for step i = 2, 3, …, M–w+1

05 for edge [P(fi–1) Pk(1)]i = [P(fi–1) P1]i , [P(fi–1) P2]i , ..., [P(fi–1) PN]i

06 WT[P(fi–1) Pk(1)]i = cost of pre-mapping fi to Pk(1) as a function of previous decisions

07 for edge [Pk(1) Pk(2)]i+1 = [Pk(1) P1]i+1, [Pk(1) P2]i+1, ..., [Pk(1) PN]i+1

08 WT[Pk(1) Pk(2)]i+1 = cost of pre-mapping fi+1 to Pk(2) as a function of previous decisions

09 · · ·

10 for edge [Pk(w–1) Pk(w)]i+w–1 = [Pk(w–1) P1]i+w–1, [Pk(w–1) P2]i+w–1, ..., [Pk(w–1) PN]i+w–1

11 WT[Pk(w–1) Pk(w)]i+w–1 = cost of pre-mapping fi+w–1 to Pk(w) as a function of previous decisions

12 CT[P(fi–1) Pk(1) Pk(2) ··· Pk(w)]i = CT{P(fi–1), fi–1} + WT[P(fi–1) Pk(1)]i + WT[Pk(1) Pk(2)]i+1 + ...

... + WT[Pk(w–1) Pk(w)]i+w–1

13 if (i < M–w+1)

14 highlight t-node {{P(fi), fi} | CT[P(fi–1) P(fi) Pk(2)* ··· Pk(w)*]i ≤ CT[P(fi–1) Pk(1) Pk(2) ··· Pk(w)]i (k(1)

k(2) k(3) ··· k(w))} and discard the others at step i

15 store {CT{P(fi), fi} = CT{P(fi–1), fi–1} + WT[P(fi–1) P(fi)]i} at t-node {P(fi), fi}

16 else

17 highlight t-nodes {{P(fM–w+1), fM–w+1}, {P(fM–w+2), fM–w+2}, …, {P(fM), fM} |CT[P(fM–w) P(fM–w+1)

P(fM–w+2) ··· P(fM)]i ≤ CT[P(fM–w) Pk(1) Pk(2) ··· Pk(w)] M–w+1 (k(1) k(2) k(3) ··· k(w))}

and discard the others at step M–w+1 to step M

18 store {CT{P(fM–w+1), fM–w+1} = CT[P(fM–w) P(fM–w+1) P(fM–w+2) ··· P(fM)]M–w+1} at t-node {P(fM–w+1), fM–w+1}







MAPPING ALGORITHMS

57

A) tw-mapping, Part I

The tw-mapping, part I premaps SDR function f1 to each one of the N processors. It examines the N =

2 t-nodes {P1, f1} and {P2, f1} (Fig. 4.6a) and computes the two premapping costs (Fig. 4.6b), which up-

date the tw-mapping diagram (Fig. 4.6c). Fig. 4.6c is the basis for part II of the t1-, t2-, …, and tM–1-

mapping. Since M = 4, the maximum window size is w = M–1 = 3 (Section 4.2).

B) t1-mapping, Parts II and III

Part II of the t1-mapping sequentially processes the t-nodes between step 2 and step M. At step 2, the in-

going edges associated with t-nodes {P1, f2} and {P2, f2} are examined, as Fig. 4.7a and Fig. 4.8a illustrate.

The costs of the N = 2 edges per t-node are computed (Fig. 4.7b and Fig. 4.8b) and compared for deciding

on the surviving edge (Fig. 4.7c and Fig. 4.8c). These decisions, [P1 P1]2 and [P1 P2]2, are the basis for the

corresponding processing at step 3 (Fig. 4.9 and Fig. 4.10) and step 4 (Fig. 4.11 and Fig. 4.12).

Once finished with the forward processing, or part II of the algorithm, the t1-mapping selects the min-

imum-cost t-node at step M = 4 (Fig. 4.13a) and backtracks the tw-mapping diagram along the highlighted

edges (Fig. 4.13b). The traversed t-nodes specify the complete mapping solution (Fig. 4.13c). The cost of

this mapping is CT{P1, f4} = 2.75.

Fig. 4.6. tw-mapping, part I: examined t-nodes (a), their costs (b), and the tw-mapping diagram update (c).

Fig. 4.7. t1-mapping, part II: examined edges at t-node {P1, f2} (a), their costs (b), and the decision (c).

Fig. 4.8. t1-mapping, part II: examined edges at t-node {P2, f2} (a), their costs (b), and the decision (c).

Fig. 4.9. t1-mapping, part II: examined edges at t-node {P1, f3} (a), their costs (b), and the decision (c).

(a) (b)

P1

P2

f1 f2 f3 f4

t-node CT{Pk(0), f1}

{P1, f1}

{P2, f1}

0.5

0.66

(c)

f1 f2 f3 f4

0.5

0.66

(a) (b)

1-path CT[Pk(0) P1]2

[P1 P1]2

[P2 P1]2

0.5 + 0.75 = 1.25

0.66+ 0.875 = 1.54

(c)

f1 f2 f3 f4

0.5

0.66

1.25P1

P2

f1 f2 f3 f4

0.5

0.66

(a) (b)

1-path CT[Pk(0) P2]2

[P1 P2]2

[P2 P2]2

0.5 + 1 = 1.5

1 + ∞ = ∞

(c)

f1 f2 f3 f4

0.5

0.66 1.5

P1

P2

f1 f2 f3 f4

0.5

0.66

(a) (b)

1-path CT[Pk(0) P1]3

[P1 P1]3

[P2 P1]3

1.25 + 1 = 2.25

1.5 + 0.58 = 2.083

(c)

P1

P2

f1 f2 f3 f4

0.5

0.66

1.25

1.5

f1 f2 f3 f4

0.5

0.66

1.25

1.5

2.08

CHAPTER 4: SDR COMPUTING RESOURCE MANAGEMENT

58

Fig. 4.10. t1-mapping, part II: examined edges at t-node {P2, f3} (a), their costs (b), and the decision (c).

Fig. 4.11. t1-mapping, part II: examined edges at t-node {P1, f4} (a), their costs (b), and the decision (c).

Fig. 4.12. t1-mapping, part II: examined edges at t-node {P2, f4} (a), their costs (b), and the decision (c).

Fig. 4.13. t1-mapping, part III: minimum-cost t-node selection (a), backtracking (b), and the final mapping solution

(c).

C) t2-mapping, Parts II and III

The t2-mapping, part II examines N
w
 = 4 w-paths at each t-node of step 2 (Fig. 4.14a and Fig. 4.15a). Indi-

vidually for each t-node, the accumulated costs of the corresponding 2-paths are computed and compared

for t-node {P1, f2} (Fig. 4.14b) and t-node {P2, f2} (Fig. 4.15b). The minimum-cost 2-path specifies the

single edge to be highlightes. Edges [P2 P1]2 and [P1 P2]2 are highlighted here (Fig. 4.14c and Fig. 4.15c)

since pertaining to the minimum-cost 2-paths [P2 P1 P1]2 and [P1 P2 P1]2 (Fig. 4.14b and Fig. 4.15b), re-

spectively.

The t-nodes at step 3 are correspondingly processed except for highlighting the minimum-cost w-paths

entirely. These are the w-paths [P1 P1 P2]3 (Fig. 4.16b) and [P2 P2 P1]3 (Fig. 4.17b). The associated accu-

mulated costs are finally stored at t-nodes {P1, f3} (Fig. 4.16c) and {P2, f3} (Fig. 4.17c).

Part III of the t2-mapping then chooses the t-node of minimum cost at step 3, t-node {P2, f3} in this

case (Fig. 4.18a). The forward and backtracking process thus starts at t-node {P2, f3} (Fig. 4.18b) and finds

the final mapping (Fig. 4.18c). The cost of this mapping is CT{P2, f3} = 2.416.

(a) (b)

1-path CT[Pk(0) P2]3

[P1 P2]3

[P2 P2]3

1.25 + 0.5 = 1.75

1.5 + 0.33 = 1.83

(c)

P1

P2

f1 f2 f3 f4

0.5

0.66

1.25

1.5

f1 f2 f3 f4

0.5

0.66 1.5

1.25

1.75

(a) (b)

1-path CT[Pk(0) P1]4

[P1 P1]4

[P2 P1]4

2.08 + 0.83 = 2.916

1.75 + 1 = 2.75

(c)

P1

P2

f1 f2 f3 f4

0.5

0.66

1.25

1.5

2.08

1.75

f1 f2 f3 f4

0.5

0.66

1.25

1.5

2.08

1.75

2.75

(a) (b)

1-path CT[Pk(0) P2]4

[P1 P2]4

[P2 P2]4

2.08 + ∞ = ∞

1.75 + ∞ = ∞

(c)

P1

P2

f1 f2 f3 f4

0.5

0.66

1.25

1.5

2.08

1.75

f1 f2 f3 f4

0.5

0.66 1.5

1.25

1.75

2.08

∞

P(f1) = P(f2) = P(f4) = P1

P(f3) = P2

(a) (b) (c)

f1 f2 f3 f4

0.5

0.66 1.5

1.25

1.75

P1

P2

2.08 2.75

∞

f1 f2 f3 f4

0.5

0.66 1.5

1.25

1.75

2.08 2.75

∞

MAPPING ALGORITHMS

59

Fig. 4.14. t2-mapping, part II: examined 2-paths at t-node {P1, f2} (a), their costs (b), and the decision (c).

Fig. 4.15. t2-mapping, part II: examined 2-paths at t-node {P2, f2} (a), their costs (b), and the decision (c).

Fig. 4.16. t2-mapping, part II: examined 2-paths at t-node {P1, f3} (a), their costs (b), and the decision (c).

Fig. 4.17. t2-mapping, part II: examined 2-paths at t-node {P2, f3} (a), their costs (b), and the decision (c).

Fig. 4.18. t2-mapping, part III: minimum-cost t-node selection (a), forward and backtracking (b), and the final

mapping solution (c).

D) t3-mapping, Parts II and III

The t3-mapping, part II examines N
w
 = 8 w-paths at each t-node of step 2 (Fig. 4.19a and Fig. 4.20a). For

each of these t-nodes, the costs of the eight corresponding 3-paths are computed and compared (Fig. 4.19b

and Fig. 4.20b). The 3-paths of minimum costs─[P2 P1 P1 P2]2 (Fig. 4.19b) and [P1 P2 P2 P1]2 (Fig.

4.20b)─are then highlighted (Fig. 4.19c and Fig. 4.20c).

(a) (b) (c)

f1 f2 f3 f4

0.5

0.66

1.54P1

P2

f1 f2 f3 f4

0.5

0.66

0.5 + 0.75+1 =2.25

0.5 +0.75+0.5 =1.75

2-path CT[Pk(0) P1 Pk(2)]2

[P1 P1 P1]2

[P1 P1 P2]2

[P2 P1 P1]2

[P2 P1 P2]2 0.66+0.875+0.58=2.13

0.66+0.875+0.2 =1.74

(a) (b) (c)

f1 f2 f3 f4

0.5

0.66 1.5

P1

P2

f1 f2 f3 f4

0.5

0.66

0.5 + 1 + 0.33 = 2.75

2-path CT[Pk(0) P2 Pk(2)]2

[P1 P2 P1]2

[P1 P2 P2]2

0.5 + 1 + 0.58 = 2.08

[P2 P2 P1]2 0.66 + ∞ = ∞

[P2 P2 P2]2 0.66 + ∞ = ∞

(a) (b)

2-path CT[Pk(0) P1 Pk(2)]3

[P1 P1 P1]3

[P1 P1 P2]3

1.54 + 0.2 + ∞ = ∞

1.54+0.2+0.83=2.575

[P2 P1 P1]3 1.5+0.58+0.83=2.916

[P2 P1 P2]3 1.5+0.58+ ∞ = ∞

P1

P2

f1 f2 f3 f4

0.5

0.66

1.54

1.5

(c)

f1 f2 f3 f4

0.5

1

1.54 2.58

1.5

(a) (b) (c)

2-path CT[Pk(0) P2 Pk(2)]3

[P1 P2 P1]3

[P1 P2 P2]3

1.54+0.58+ ∞ = ∞

1.54+0.58+1.5=3.625

[P2 P2 P1]3 1.5+0.33+0.58=2.416

[P2 P2 P2]3 1.5+0.33 + ∞ = ∞

f1 f2 f3 f4

0.5

1 1.5

1.54

2.42

P1

P2

f1 f2 f3 f4

0.5

0.66 1.5

1.54

f1 f2 f3 f4

0.5

0.66 1.5

1.54

2.42

2.58

P(f1) = P(f4) = P1

P(f2) = P(f3) = P2

P1

P2

f1 f2 f3 f4

0.5

0.66 1.5

1.54

2.42

2.58

(a) (b) (c)

CHAPTER 4: SDR COMPUTING RESOURCE MANAGEMENT

60

Fig. 4.19. t3-mapping, part II: examined 3-paths at t-node {P1, f2} (a), their costs (b), and the decision (c).

Fig. 4.20. t3-mapping, part II: examined 3-paths at t-node {P2, f2} (a), their costs (b), and the decision (c).

Fig. 4.21. t3-mapping, part III: minimum-cost t-node selection (a), forward and backtracking (b), and the final

mapping solution (c).

Part III finally finds the minimum-cost t-node at step 2, which is {P2, f2} due to Fig. 4.21a, and tra-

verses the trellis forward and backward (Fig. 4.21b) for obtaining the final mapping (Fig. 4.21c). The

mapping cost is CT{P2, f2} = 2.416 (Fig. 4.21b), which is optimal for the given problem and cost function

since testing all N
M

 = 16 mapping combinations of M = 4 SDR functions to N = 2 processors.

E) gw-mapping, Part I

The gw-mapping, part I examines the N = 2 t-nodes {P1, f1} and {P2, f1} (Fig. 4.22a). It computes the cost

of mapping f1 to P1 and that of mapping f1 to P2 (Fig. 4.22b) before deciding which t-node to maintain and

which to discard (Fig. 4.22c). The processor allocation P(f1) = P1 is the basis for part II of the gw-mapping

process.

(a)

(b)

(c)

P1

P2

f1 f2 f3 f4

0.5

0.66

3-path CT[Pk(0) P1 Pk(2) Pk(3)]2

[P1 P1 P1 P1]2

[P1 P1 P1 P2]2

0.5 + 0.75 + 1 + ∞ = ∞

0.5 + 0.75 + 1 + 1.833 = 4.083

[P1 P1 P2 P1]2 0.5 + 0.75 + 0.5 + 1 = 2.75

[P1 P1 P2 P2]2 0.5 + 0.75 + 0.5 + ∞ = ∞

[P2 P1 P1 P1]2

[P2 P1 P1 P2]2

0.66 + 0.875 + 0.2 + ∞ = ∞

0.66 + 0.875 + 0.2 + 0.833 = 2.575

[P2 P1 P2 P1]2 0.66 + 0.875 + 0.833 + ∞ = ∞

[P2 P1 P2 P2]2 0.66 + 0.875 + 0.833 + 1.5 = 3.875

0.5

0.66

2.58P1

P2

(a)

(b)

(c)

P1

P2

f1 f2 f3 f4

0.5

0.66

3-path CT[Pk(0) P2 Pk(2) Pk(3)]2

[P1 P2 P1 P1]2

[P1 P2 P1 P2]2

0.5 + 1 + 0.583 + 0.833 = 2.916

0.5 + 1 + 0.583 + ∞ = ∞

[P1 P2 P2 P1]2 0.5 + 1 + 0.33 + 0.583 = 2.416

[P1 P2 P2 P2]2 0.5 + 1 + 0.33 + ∞ = ∞

[P2 P2 P1 P1]2

[P2 P2 P1 P2]2

0.66 + ∞ = ∞

0.66 + ∞ = ∞

[P2 P2 P2 P1]2 0.66 + ∞ = ∞

[P2 P2 P2 P2]2 0.66 + ∞ = ∞

0.5

0.66 2.42

P1

P2

f1 f2 f3 f4

0.5

0.66 2.42

2.58P1

P2

(a) (b) (c)

f1 f2 f3 f4

0.5

0.66 2.42

2.58

P(f1) = P(f4) = P1

P(f2) = P(f3) = P2

MAPPING ALGORITHMS

61

F) g1-mapping, Part II

At step 2, the g1-mapping examines the N
w
 = 2 edges [P1 P1]2 and [P1 P2]2, which originate at the active t-

node at step 1 (Fig. 4.23a). The corresponding accumulated costs are computed and compared (Fig. 4.23b)

before the decision is made (Fig. 4.23c). The decision, t-node {P1, f2}, is the basis for the processing that

follows, which is illustrated in Fig. 4.24 and Fig. 4.25. The decisions are t-node {P2, f3} at step 3 (Fig.

4.24c) and t-node {P1, f4} at step 4 (Fig. 4.25c). The complete mapping solution is then P(f1) = P(f2) =

P(f4) = P1 and P(f3) = P2. The cost of this mapping is CT{P1, f4} = 2.75 (Fig. 4.25c).

G) g2-mapping, Part II

Part II of the g2-mapping proceeds as follows: N
w
 = 4 w-paths are examined at step 2 (Fig. 4.26a). Any of

these w-paths originate at t-node {P1, f1}, the active t-node at step 1 due to Fig. 4.22c. The accumulated

costs associated with these w-paths are computed and compared (Fig. 4.26b). Based on these costs, t-node

{P1, f2} becomes the active t-node at step 2, whereas t-node {P2, f2} is discarded (Fig. 4.26c). CT{P1, f2} =

1.25 is stored at t-node {P1, f2} (Fig. 4.26c). It corresponds to the mapping cost of allocating f1 and f2 to P1.

The processing at step 3 then follows.

Fig. 4.22. gw-mapping, part I: examined t-nodes (a), their costs (b), and the decision (c).

Fig. 4.23. g1-mapping, part II: examined edges at step 2 (a), their costs (b), and the decision (c).

Fig. 4.24. g1-mapping, part II: examined edges at step 3 (a), their costs (b), and the decision (c).

Fig. 4.25. g1-mapping, part II: examined edges at step 4 (a), their costs (b), and the decision (c).

(a) (b)

P1

P2

f1 f2 f3 f4

t-node CT{Pk(0), f1}

{P1, f1}

{P2, f1}

0.5

0.66

(c)

f1 f2 f3 f4

0.5

(a) (b)

1-path CT[P(f1) Pk(1)]2

[P1 P1]2

[P1 P2]2

0.5 + 0.75 = 1.25

0.5 + 1 = 1.5

(c)

P1

P2

f1 f2 f3 f4

0.5

f1 f2 f3 f4

0.5 1.25

(a) (b)

1-path CT[P(f2) Pk(1)]3

[P1 P1]3

[P1 P2]3

1.25 + 1 = 2.25

1.25 + 0.5 = 1.75

(c)

P1

P2

f1 f2 f3 f4

0.5 1.25

f1 f2 f3 f4

0.5 1.25

1.75

(a) (b)

1-path CT[P(f3) Pk(1)]4

[P2 P1]4

[P2 P2]4

1.75 + 1 = 2.75

1.75 + ∞ = ∞

(c)

P1

P2

f1 f2 f3 f4

0.5 1.25

1.75

f1 f2 f3 f4

0.5 1.25

1.75

2.75

CHAPTER 4: SDR COMPUTING RESOURCE MANAGEMENT

62

Fig. 4.26. g2-mapping, part II: examined 2-paths at step 2, their costs (b), and the decision (c).

Fig. 4.27. g2-mapping, part II: examined 2-paths at step 3 (a), their costs (b), and the decision (c).

Fig. 4.28. g3-mapping, part II: examined 3-paths at step 2 (a), their costs (b), and the decision (c).

Four 2-paths are examined at step 3 (Fig. 4.27a). Their costs (Fig. 4.27b) facilitate finding the remain-

ing processor allocations. The minimum-cost w-path [P1 P2 P1]3 (Fig. 4.27b) then indicates that t-nodes

{P2, f3} and {P1, f4} remain active, whereas {P1, f3} and {P2, f4} are discarded (Fig. 4.27c). The g2-

mapping solution─P(f1) = P(f2) = P(f4) = P1 and P(f3) = P2─is identical to the g1-mapping proposal. The

cost of this mapping is provided by t-node {P2, f3}, though (Fig. 4.27c).

H) g3-mapping, Part II

The g3-mapping evaluates all N
w
 = 8 w-paths between the active t-node at step 1 and a t-node at step 4

(Fig. 4.28a). Fig. 4.28b captures the costs of these 4-paths. The algorithm then selects w-path [P1 P2 P2

P1]2, which indicates the remaining processor allocations P(f2) = P2, P(f3) = P2, and P(f4) = P1 (Fig. 4.28c).

The mapping cost is provided by t-node {P2, f2} as CT{P2, f2} = 2.416 (Fig. 4.28c).

4.3 Cost Function

The tw-mapping selects edges and w-paths as a function of the premapping costs. Similarly, the gw-

mapping selects and discards t-nodes. These costs are obtained from some cost function. The cost function

thus guides the gw- and tw-mapping processes. It is responsible for ensuring appropriate resource alloca-

(a) (b) (c)

P1

P2

f1 f2 f3 f4

0.5

2-path CT[P(f1)Pk(1) Pk(2)]2

[P1 P1 P1]2

[P1 P1 P2]2

0.5+0.75 + 1 =2.25

0.5+0.75 +0.5 =1.75

[P1 P2 P1]2 0.5 + 1 +0.58 =2.08

[P1 P2 P2]2 0.5 + 1 +0.33 =1.83

f1 f2 f3 f4

0.5 1.25

(a) (b) (c)

2-path CT[P(f2)Pk(1) Pk(2)]3

[P1 P1 P1]3

[P1 P1 P2]3

1.25+1+ ∞ = ∞

1.25+1+1.83 = 4.08

[P1 P2 P1]3 1.25+0.5+1 = 2.75

[P1 P2 P2]3 1.25+0.5+ ∞ = ∞

P1

P2

f1 f2 f3 f4

0.5 1.25

f1 f2 f3 f4

0.5 1.25

2.75

(b)

(c)

(a)

P1

P2

f1 f2 f3 f4

0.5
3-path CT[P(f1) Pk(1) Pk(2) Pk(3)]2

[P1 P1 P1 P1]2

[P1 P1 P1 P2]2

0.5 + 0.75 + 1 + ∞ = ∞

0.5 + 0.75 + 1 + 1.833 = 4.083

[P1 P1 P2 P1]2 0.5 + 0.75 + 0.5 + 1 = 2.75

[P1 P1 P2 P2]2 0.5 + 0.75 + 0.5 + ∞ = ∞

[P1 P2 P1 P1]2

[P1 P2 P1 P2]2

0.5 + 1 + 0.583 + 0.833 = 2.916

0.5 + 1 + 0.583 + ∞ = ∞

[P1 P2 P2 P1]2 0.5 + 1 + 0.33 + 0.583 = 2.416

[P1 P2 P2 P2]2 0.5 + 1 + 0.33 + ∞ = ∞

0.5

2.42

P1

P2

COST FUNCTION

63

tions under the given system constraints. The cost function, particularly, manages the computing resource

availabilities and requirements and, therefore, takes advantage of the computing system modeling of

Chapter 3. Table 4.2 defines the parameters and expressions that facilitate a formal cost function presenta-

tion.

4.3.1 Cost Function Template

Following the principle of templates and their instances of Chapter 3, we first propose a cost function

template. We define it through edge weight WT[Pk(l–1) Pk(l)]h as

 WT[Pk(l–1) Pk(l)]h = 




T

t

hlk
tcostq t

1

}),(@{ . (4.8)

Edge [Pk(l–1) Pk(l)]h represents any edge in the tw-mapping diagram and is for w > 1 part of a w-path.

Ignoring qt for the moment, each summand in (4.8) represents the accumulated cost of all necessary re-

source allocations of type t at t-node {Pk(l), fh}. More precisely,
}),(@{ hlk

tcost accounts for the resource type t

specific costs of premapping SDR function fh to processor Pk(l).

The cost function parameter q contains the weights of the T cost terms (Table 4.2). These weights re-

flect the significance of each resource type: qt = 0, for example, means that the computing resources of

type t are either not needed or sufficiently available for the given computing resource management prob-

lem, whereas 0 < qt ≤ 1 indicates a certain resource constraint. Without loss of generality, we normalize

the sum of weights to 1; that is, q1 + q2 + … + qT = 1.

Equation (4.8) represents a template for many different cost functions. We introduce an instance of it

in continuation. This cost function instance or, simply, cost function is applied in the rest of this disserta-

tion.

4.3.2 Cost Function Instance

We propose a cost function that properly manages the limited computing resources of SDR platforms un-

der hard real-time conditions, where the computing resources constrain the SDR application mapping.

Since we consider the processing and interprocessor bandwidth capacities as the most critical SDR com-

puting resources, we introduce a two-term cost function as an instance of (4.8). WT[Pk(l–1) Pk(l)]h therefore

defines the cost function as a superposition between the computation (processing) and the communication

(data flow) costs:

 WT[Pk(l–1) Pk(l)]h = q · WTCOMP[P k(l–1) P k(l)]h + (1–q) · WTCOMM[Pk(l–1) P k(l)]h ; (4.9a)

Table 4.2 Cost-function-specific parameters and expressions.

Parameter or

expression
Range (argument range) Description

T ℕ number of different computing resource types

t 1, 2, …, T computing resource type

}),(@{ hlk
tcost

ℝ+
; (k(l) ∈ 1, 2, …, N;

h ∈ 1, 2, …, M)

cost term (cost for allocating the necessary computing

resources of type t at t-node {Pk(l), fh})

qt [0, 1] cost term weight

q = (q1, q2, …, qT) cost function parameter

C
@{k(l), h}

 remaining processing capacities at t-node {Pk(l), fh}

}),(@{
)(

hlk
lkC ℝ+

remaining processing capacity of processor Pk(l) at t-

node {Pk(l), fh}

B
@{k(l), h}

 remaining bandwidths at t-node {Pk(l), fh}

}),(@{

)()(

hlk

I
lkPufP

B ℝ+

remaining bandwidth between processors P(fu) and Pk(l)

at t-node {Pk(l), fh}

CHAPTER 4: SDR COMPUTING RESOURCE MANAGEMENT

64

 WTCOMP[Pk(l–1) P k(l)]h =










 otherwise ,

1/ if,/
}),(@{

)(
}),(@{

)(
hlk

lkh
hlk

lkh CcCc
; (4.9b)

 WTCOMM[Pk(l–1) P k(l)]h =















 otherwise ,

 1/ if,/
}),(@{

1

1

}),(@{

)()()()(
uBbBb

hlk

Ii

h

u

hlk

Ii
lkPufPuh

lkPufPuh . (4.9c)

The cost function first computes the premapping costs at t-nodes {P1, f1}, {P2, f1}, …, and {PN, f1} us-

ing the right hand side of (4.9b) and the initially available processing resources. For each t-node {Pk(0), f1},

the processing requirement c1 of SDR function f1 is then subtracted from the corresponding initial

processing power Ck(0). This updates the remaining processing powers at all t-nodes at step 1; the remain-

ing interprocessor bandwidths at each t-node of step 1 remain in their initial states.

Before processing edge [Pk(l–1) P k(l)]h (of w-path [Pk(0) Pk(1) ··· Pk(w)]i), C
@{k(l),h}

 and B
@{k(l),h}

 are initia-

lized with C
@{k(l–1),h–1}

 and B
@{k(l–1),h–1}

. The algorithm then calculates WT[Pk(l–1) Pk(l)]h before updating

C
@{k(l),h}

 and B
@{k(l),h}

. In particular, ch is subtracted from }),(@{
)(

hlk
lkC after computing WTCOMP[Pk(l–1) P k(l)]h

(4.9b). B
@{k(l),h}

, on the other hand, is dynamically updated, subtracting any required bandwidth
uhib from

the corresponding entry in B
@{k(l),h}

 just after adding
uhib /{·} to WTCOMM[Pk(l–1) P k(l)]h (4.9c). Fig. 4.29 illu-

strates this.

Each division in (4.9b) or (4.9c) is either less, equal, or greater than 1. If greater than 1, the value is

mapped to infinity, which indicates infeasibility. Finite costs thus indicate feasible premappings and infi-

nite costs infeasible solutions. This permits identifying and discarding infeasible premappings.

After a (pre)mapping decision─assuming feasibility─C
@{k(1),i}

 and B
@{k(1),i}

 remain in the states that

correspond to this decision. For i < M–w+1, t-node {Pk(1), fi} thus informs about the remaining computing

resources of all types as a function of the (pre)mappings of SDR functions f1, f2, …, and fi corresponding

to the highlighted path reaching {Pk(1), fi}. For i = M–w+1, it contains the remaining resources after

(pre)mapping all M SDR functions.

Since normalizing the sum of the cost term weights qt (Section 4.3.1), we can write q = (q1, q2) = (q,

(1–q)) here and consider a single parameter in equation (4.9a). Parameter q may take any real value be-

tween 0 and 1, including both extremes. The cost function minimizes the data flow or communication

overhead for q = 0 and balances the processing load for q = 1. We choose q = 0.5 by default to equally

account for the limited processing and bandwidth resources.

Fig. 4.29. Cost calculations and resource updates.

Cost calculations

···

Resource updates











 otherwise ,

1/ if,/
}),(@{

)(
}),(@{

)(
hlk

lkh
hlk

lkh CcCc
WTCOMP[Pk(l–1) P k(l)]h = h

hlk
lk

hlk
lk cCC 

}),(@{
)(

}),(@{
)(











 otherwise ,

1/ if,/
}),(@{}),(@{

)()1(1)()1(1

hlk
Ii

hlk
Ii

lkPfPhlkPfPh
BbBb

WTCOMM[Pk(l–1) P k(l)]h =












 otherwise ,

1/ if,/
}),(@{}),(@{

)()2(2)()2(2

hlk
Ii

hlk
Ii

lkPfPhlkPfPh
BbBb










 

 otherwise ,

1/ if,/
}),(@{}),(@{

)()1(,1)()1(,1

hlk
Ii

hlk
Ii

lkPhfPhhlkPhfPhh
BbBb

hlkPfPlkPfP
i

hlk
I

hlk
I

bBB
1)()1()()1(

}),(@{}),(@{


hlkPfPlkPfP
i

hlk
I

hlk
I

bBB
2)()2()()2(

}),(@{}),(@{


hhlkPhfPlkPhfP
i

hlk
I

hlk
I

bBB
,1)()1()()1(

}),(@{}),(@{





···

C@{k(l), h} = C@{k(l–1), h–1}

B@{k(l), h} = B@{k(l–1), h–1}

COMPLEXITY ANALYSIS

65

4.4 Complexity Analysis

4.4.1 General Complexity Formulation

The processing complexities of the tw- and gw-mapping algorithms depend on the applied cost function.

For a general formulation, we assume that the complexity of calculating the cost of premapping fi to Pk(l) is

constant and not a function of i or k(l). Let this complexity be the complexity of the cost function (ccf).

The processing complexity at t-node {Pk(l), fi}, i ∈ 2, 3, …, M–w+1, can then be given as the geometric

sum

 ccf
N

N
NccfNNN

w
w 






1

1
)(2  , (4.10)

which indicates the processing effort associated with lines 5-11 in the pseudocodes of Fig. 4.3 and Fig.

4.4, respectively.

The tw-mapping processes N t-nodes per step (line 4 in Fig. 4.3) and M–w steps in total (line 3). Its

processing complexity then follows as

 complexity(tw-mapping) ccf
N

N
NwM

w







1

1
)(2

. (4.11)

The gw-mapping processes only one t-node per step and M–w steps in total (line 4 in Fig. 4.4). Hence,

 complexity(gw-mapping) ccf
N

N
NwM

w







1

1
)(. (4.12)

These two equations do not consider the processing overheads of part I (lines 1-2 in Fig. 4.3 and lines

1-3 in Fig. 4.4) and the add-compare-store operations (lines 12-18 in Fig. 4.3 and Fig. 4.4). Equation

(4.11), furthermore, ignores the tw-mapping’s postprocessing complexity (lines 19-20 in Fig. 4.3).

Part I premaps f1 to all N processors (Sections 4.2.1A) and 4.2.2A)), whereas part III, if applicable, re-

quires N–1 compares and following a linked list of length M for any w and cost function (Section 4.2.1C)).

Equations (4.11) and (4.12) thus account for the algorithms’ bulk processing overheads for typical prob-

lem sizes (M > N). Fig. 4.30 provides a qualitative illustration of these equations.

Since the tw-mapping examines N times the number of w-paths that the gw-mapping evaluates, the

complexity of the tw-mapping under some cost function is about N times the complexity of the gw-mapping

under the same cost function. That is,

 complexity(tw-mapping) ≈ N · complexity(gw-mapping). (4.13)

The complexity order of the tw-mapping then approximately equals the complexity order of the gw+1-

mapping:

 complexity(tw-mapping) ≈ complexity(gw+1-mapping). (4.14)

Assuming ccf = 1, the tw-mapping’s complexity order becomes

 complexity-order(tw-mapping) = O(M · N
 w+1

). (4.15)

Fig. 4.30. The approximate tw- and gw-mapping complexities due to (4.11) and (4.12).

complexity
tw-mapping

···

ccf
N

N
N

w







1

12

step i
21 3 4 ··· (M–w+1)

ccf
N

N
N

w







1

1

complexity
gw-mapping

CHAPTER 4: SDR COMPUTING RESOURCE MANAGEMENT

66

It indicates that the tw-mapping algorithm is not computing efficient for large N. We therefore suggest

(dynamically) dividing a large array of processors into smaller clusters of N' processors and applying the

algorithm on each cluster. We have shown how processing chains and platforms can be divided into sub-

chains and sub-platforms (Section 3.6.1). A hierarchical modeling (Section 3.6.2) and management may

then ensure the scalability of our contribution. Without loss of generality, this dissertation assumes a small

N.

4.4.2 Specific Complexity Formulation

The processing complexities associated with cost function (4.9) are not constant throughout the mapping

process. Here we measure processing complexities in MAC units and present two ways for deriving the

complexity of the tw-mapping under cost function (4.9).

We assume no code optimizations and write out the number of multiplications at each forward

processing step (parts I and II), for the moment ignoring the multiplications with q and 1–q due to (4.9a).

Fig. 4.31a illustrates this.

Fig. 4.31a reveals that the number of MACs is a function of w. Fig. 4.32 illustrates this for different

window sizes. A factor of type (1 + x) there represents the complexity for calculating a single edge cost

along a w-path. More precisely, the computation and communication cost terms (4.9b) and (4.9c) compute

1 and x MACs, respectively, for obtaining the cost increase, where x is a function of window size w, step i,

and position l of the edge within the w-path (Fig. 4.32).

Ignoring the complexity of premapping f1 (part I), we directly obtain

 complexity(tw-mapping(4.9)) ≈
2

)1·2(
 ·)(

1

12 
 



 lwM
NNwM

w

l

l
 (4.16)

from Fig. 4.31a and b. Equation (4.16) thus considers the forward processing of steps 2 to M–w+1 (lines 3-

18 in Fig. 4.3). Being the most significant part of the tw-mapping, we may consider (4.16) representative

for the algorithm’s complexity under cost function (4.9).

An alternative complexity derivation approach is based on writing out the complexity at step i (i ∈ 2,

3, …, M–w+1).

 complexity(tw-mapping(4.9)@step i) = [i + (i+1)·N + (i+2)·N
 2
 + … + (i+w–1)·N

 w–1
] · N

 2
 (4.17)

then directly follows from Fig. 4.33. It captures the complexity at step i of the tw-mapping, part II. We

reorganize (4.17) and obtain

complexity(tw-mapping(4.9)@step i) =

 N
 2

· (1 + N + N
 2
 + … + N

 w–1
) · i + N

 2
· (N + 2N

 2
 + … + (w–1) · N

 w–1
). (4.18)

Fig. 4.31. Complexity derivation I for the tw-mapping: summation (a) and factorization of MAC terms (b).

Number of summands : M–w

Minimum value, 1st summand : l+1

Maximum value, (M–w)th summand : M–w+l

(l+1) + (l+1+1) + (l+1+2) + … + (M–w+l) = (M–w) ·
(M–w+l) + (l+1)

2

f1 f2 f3 f4 … fM–w+1

N + N 2 · N 0 · (2 + 3 + 4 + … + (M–w+1))

+ N 1 · (3 + 4 + 5 + … + (M–w+2))

+ N w–1 · ((w+1) + (w+2) + (w+3) + … + M)

···
···

+ N l–1 · ((l+1) + (l+2) + (l+3) + … + (M–w+l))

1

2

l

···

w

···

(a)

(b)

COMPLEXITY ANALYSIS

67

Fig. 4.32. The tw-mapping, part II complexities for different window sizes.

From (4.18) follows the compact formulation

 complexity(tw-mapping(4.9)@step i) = a · i + b, (4.19a)

where

 a =
1

12






N

N
N

w

 (4.19b)

and

 b = 






1

0

2
w

l

lNlN (4.19c)

are constant for specific w and N (w ∈ 1, 2, …, M–1; N, M ∈ ℕ).

Since (4.19) is a linear function of i (Fig. 4.34), the number of steps times the complexity at the middle

step, which could be an imaginary step between two real steps, characterizes the algorithm’s approximate

complexity. Formally,

 complexity(tw-mapping(4.9)) ≈ (M – w) · complexity(tw-mapping(4.9)@step
2

3wM
). (4.20)

Note that Fig. 4.33, which led to (4.20), is merely another presentation of Fig. 4.31, from which (4.16)

followed. It suffices to write out the sums in (4.16) and (4.20) and to compare terms for recognizing that

both equations are equivalent.

Fig. 4.33. Complexity derivation II for the tw-mapping.

1

2

M – 1

w step i

2

3

M – 1

+ (1 + (M–1)) · N 2

+ (1 + 2) · N 2

(1 + 1) · N 2

MACs for processing edge [Pk(l–1) Pk(l)]i+l–1 of w-path [Pk(0) ··· Pk(w)]i (l = 1, 2, …, w)

···

2

3

M – 1 + (1 + (M–2)) · N 2 + (1 + (M–1)) · N 3

+ (1 + 2) · N 2 + (1 + 3) · N 3

(1 + 1) · N 2 + (1 + 2) · N 3

···

2

···
···

[Pk(0) Pk(1)]i [Pk(1) Pk(2)]i+1 [Pk(2) Pk(3)]i+2 ··· [Pk(w–1) Pk(w)]i+w–1

(1 + 1) · N 2 + (1 + 2) · N 3 + (1 + 3) · N 4 + … + (1 + (M–1)) · N M

M – 2

M

+ (1 + (M–2)) · N 2

+ (1 + (M–3)) · N 2

M – 2 + (1 + (M–3)) · N 2 + (1 + (M–2)) · N 3

3 2

3 + (1 + 2) · N 2 + (1 + 3) · N 3 + (1 + 4) · N 4

(1 + 1) · N 2 + (1 + 2) · N 3 + (1 + 3) · N 4

···

···

M – 2 + (1 + (M–3)) · N 2 + (1 + (M–2)) · N 3 + (1 + (M–1)) · N 4

f1 f2 f3 … fi … fM

N + N 2 · N 0 · (2 + 3 + … + i + … + (M–w+1))

+ N 1 · (3 + 4 + … + (i+1) + … + (M–w+2))

+ N w–1 · ((w+1) + (w+2) + … + (i+w–1) + … + M)

···

+ N 2 · (4 + 5 + … + (i+2) + … + (M–w+3))

1

2

3

w

···

CHAPTER 4: SDR COMPUTING RESOURCE MANAGEMENT

68

Fig. 4.34. Graphical illustration of (4.19) and (4.20).

The approximate complexities of the gw-mapping under cost function (4.9) can be equivalently de-

rived. The results are

 complexity(gw-mapping(4.9)) ≈
2

)1·2(
 · ·)(

1

1 
 



 lwM
NNwM

w

l

l
, (4.21)

on the one hand, and

 complexity(gw-mapping(4.9)@step i) = a · i + b (4.22a)

with

 a =
1

1






N

N
N

w

 (4.22b)

and

 b = 






1

0

w

l

lNlN , (4.22c)

on the other.

We now analyze the implications of cost function parameter q = (q, (1–q)). If q = (1–q) = 0.5, the two

cost terms (4.9b) and (4.9c) are equally weighted. Since weighting with q = (1–q) = 0.5 merely halves any

partial as well as the total mapping cost without affecting any premapping decision or the final mapping

outcome, we can omit the weighting. If q ≠ 0.5, however, ignoring the multiplications with q and 1–q may

have an effect on some premapping decisions and, thus, the mapping result. Hence, for the general case,

where q may take any value in [0, 1], these multiplications cannot be neglected.

The number of additional MACs for multiplying the cost of computation (4.9b) with q and the cost of

communication (4.9c) with 1–q depends on the implementation. Although (4.9a) suggests applying the

weighting on edge basis, we consider another implementation, where the computation and the communi-

cation costs are individually calculate for the entire w-path, before weighting the cost terms while sum-

ming them up. Such an implementation would require only two extra MACs per w-path and, thus,

 2 · (M – w) · N
w+1

 (4.23)

and

 2 · (M – w) · N
 w

 (4.24)

additional MACs for the entire tw- and gw-mapping procedures. Equations (4.16) and (4.21) then become

 complexity(tw-mapping(4.9)) ≈










 

 




2

)12(
 · 2)(

1

112 lwM
NNNwM

w

l

lw
 (4.25)

and

complexity

···

i21 3 4 ··· (M–w+1)

b

M–w+3

2
···

b
wM

a 



2

3

···

a · i + b

SDR COMPUTING RESOURCE MANAGEMENT EXAMPLE

69

 complexity(gw-mapping(4.9)) ≈










 

 




2

)12(
 · 2)(

1

11 lwM
NNNwM

w

l

lw
, (4.26)

whereas

 b =












 





1

0

12 2

w

l

lw NlNN (4.27)

and

 b =












 





1

0

12

w

l

lw NlNN (4.28)

substitute (4.19c) and (4.22c).

4.4.3 General versus Specific Complexity Formulation

Here we validate the general complexity formulations (4.11) and (4.12) using the cost function specific

results of Section 4.4.2. Assuming q = 1–q = 0.5, we equate the right-hand side of (4.11) with the right-

hand side of (4.16) or, equivalently, the right-hand side of (4.12) with the right-hand side of (4.21) and

obtain

 


 





w

l

l
w lwM

Nccf
N

N

1

1

2

12

1

1
. (4.29)

Writing out the sums on each side of (4.29) we find that, if we substitute ccf for (M+w+1) / 2, (4.11)

and (4.12) become upper bound formulations for complexity(tw-mapping(4.9)) and complexity(gw-

mapping(4.9)), respectively. That is,

 upper-bound(tw-mapping(4.9))
2

1

1

1
)(2 







wM

N

N
NwM

w

 (4.30)

and

 upper-bound(gw-mapping(4.9))
2

1

1

1
)(









wM

N

N
NwM

w

. (4.31)

For w = 1, these upper bound formulations coincide with the approximate complexity equations (4.16)

and (4.21). For w > 1, the smaller N and M the higher the deviation of an upper bound from the corres-

ponding reference value: The deviation is up to a 9 % for N = 2 and M = 15. For N ≥ 3 and M ≥ 15, the

maximum deviation of 4.8 % is obtained for M = 15 and w = 5. The practical values N = 3 and M = 24

(Section 3.5), lead to a maximum deviation of 3.3 %. Hence, (4.30) and (4.31) are relatively good approx-

imations of the tw- and gw-mapping complexities under cost function (4.9).

4.5 SDR Computing Resource Management Example

Our computing resource management approach relies on an appropriate computing system modeling,

which provides the information about the available and required computing resources. The computing

resource management module manages these resources and dynamically updates their states after each

resource allocations or deallocation (Fig. 4.35).

Fig. 4.36 illustrates part II of the t1- and t2-mapping algorithms. It shows the processing at t-node {P2,

f2} while mapping the UMTS task graph of Fig. 3.7a to SDR platform IV (Fig. 3.5a) using cost function

(4.9). Hence, P1, P2, and P3 correspond to (P1)
IV

, (P2)
IV

, and (P3)
IV

 and f1, f2, …, f24 to (f1)
UMTS

, (f2)
UMTS

, …,

(f24)
UMTS

 here. The processing and data flow requirements are then c
UMTS

 and b
UMTS

 (Fig. 3.7b) and the

initial processing and bandwidth resources C
IV

 and B
IV

 (Fig. 3.5b). Previously, and corresponding to part I

of the tw-mapping, the costs of premapping f1 to each one of the three processors were obtained as

CHAPTER 4: SDR COMPUTING RESOURCE MANAGEMENT

70

Fig. 4.35. Interactions between management and modeling.

 (c1)
UMTS

 / (C1)
IV

 = 0.0765 / 8.823 = 8.67 · 10
-3

,

 (c1)
UMTS

 / (C2)
IV

 = 0.0765 / 5.882 = 13 · 10
-3

, and

 (c1)
UMTS

 / (C3)
IV

 = 0.0765 / 2.941 = 26.01 · 10
-3

and stored at t-nodes {P1, f1}, {P2, f1}, and {P3, f1}, respectively. These t-nodes also provide the remaining

processing powers C
IV@{k(l), 1}

 and bandwidths B
IV@{k(l), 1}

:

 C
IV@{1, 1}

 = ((C1)
IV

 – (c1)
UMTS

, (C2)
IV

, (C3)
IV

) = (8.746, 5.882, 2.941) MOPTS,

 C
IV@{2, 1}

 = ((C1)
IV

, (C2)
IV

 – (c1)
UMTS

, (C3)
IV

) = (8.823, 5.805, 2.941) MOPTS,

 C
IV@{3, 1}

 = ((C1)
IV

, (C2)
IV

, (C3)
IV

 – (c1)
UMTS

) = (8.823, 5.882, 2.864) MOPTS, and

 B
IV@{1, 1}

 = B
IV@{2, 1}

 = B
IV@{3, 1}

 = B
IV

.

As explained in Section 4.2.1B), the tw-mapping evaluates N
w
 w-paths. The tables in Fig. 4.36 contain

the accumulated w-path costs CT[·]2 due to Fig. 4.3, line 12. Both algorithm instances highlight edge [P2

P2]2, which results from the minimum-cost w-paths [P2 P2]2 and [P2 P2 P2]2, respectively. The accumulated

cost,

 CT{P2, f2} = CT{P2, f1} + CT[P2 P2]2 = 0.013 + 0.0499 = 0.0629,

and the remaining resources,

 C
IV@{2, 2}

 = ((C1)
IV@{2, 1}

, (C2)
IV@{2, 1}

 – (c2)
UMTS

, (C3)
IV@{2, 1}

) = (8.823, 5.516, 2.941) MOPTS and

 B
IV@{2, 2}

 = B
IV@{2, 1}

 = B
IV

,

are then stored at t-node {P2, f2}.

The remaining t-nodes up to those at step M–w+1 are correspondingly processed. This finishes part II

of the algorithm. Due to Section 4.2.1C), we obtain the final tw-mapping by traversing the t-nodes along

the highlighted edges starting at the minimum-cost t-node at step M–w+1. The minimum-cost t-node is

obtained from cost comparisons: For the t1-mapping example, the accumulated costs at t-nodes {P1, f24},

{P2, f24}, and {P3, f24} are 4.3902, 4.3896, and 4.3891. Hence, t-node {P3, f24} is the starting point of the

backtracking process, which Fig. 4.37a illustrates. Eventually, f1, f2, …, f5, f7, f9, f10, f11, f13, and f15 are

mapped to P1, f6 and f8 to P2, and f12, f14, f16, f17, …, f24 to P3. The cost of this mapping is CT{P3, f24} =

4.3891. The remaining computing resources are also provided by t-node {P3, f24}. These are

 C
IV@{3, 24}

 = (0.3792, 1.1765, 2.4166) MOPTS and

 B
IV@{3, 24}

 =























5882.02941.0

5882.08101.0

2896.03041.0

MBPTS.

Fig. 4.37b illustrates part III of the t2-mapping example. The minimum cost t-node at step M–1 is {P3,

f23}, being 4.3706, 4.3633, and 4.3601 the costs stored at t-nodes {P1, f23}, {P2, f23}, and {P3, f23}. After

finishing the postprocessing phase, P1 is assigned to f1, f2, …, f6, f8, f10, and f11, P2 to f7 and f9, and P3 to f12,

f13, …, f24. The computing resources remain in the following states:

 C
IV@{3, 23}

 = (0.5439, 1.1765, 2.2519) MOPTS and

SDR Computing

System Modeling

SDR Computing

Resource Management

informs updates

SDR COMPUTING RESOURCE MANAGEMENT EXAMPLE

71

 B
IV@{3, 23}

 =























5882.02941.0

5882.08101.0

2218.03041.0

MBPTS.

Fig. 4.36. Part II of the tw-mapping example: processing at t-node {P2, f2} for w = 1 (a) and w = 2 (b).

Fig. 4.37. Part III of the tw-mapping example for w = 1 (a) and w = 2 (b).

(a)

(b)

P1

P2

P3

f1 f2 f3

f1 f2

P1

P2

P3

CT[Pk(0) P2 Pk(2)]22-path

[P1 P2 P1]2

[P1 P2 P2]2

[P1 P2 P3]2

[P2 P2 P1]2

[P2 P2 P2]2

[P2 P2 P3]2

[P3 P2 P1]2

[P3 P2 P2]2

[P3 P2 P3]2

0.0087 + 0.7425 + 0.0331 = 0.7843

0.0087 + 0.7425 + = ∞ ∞

0.0087 + 0.7425 + = ∞ ∞

0.0130 + 0.0499 + 0.7261 = 0.7890

0.0130 + 0.0499 + 0.0525 = 0.1153

0.0130 + 0.0499 + = ∞ ∞

0.0260 + = ∞ ∞

0.0260 + = ∞ ∞

0.0260 + = ∞ ∞

0.0087 + 0.7425 = 0.7512[P1 P2]2

[P2 P2]2

1-path CT[Pk(0) P2]2

[P3 P2]2

0.0130 + 0.0499 = 0.0629

0.0260 + = ∞∞

· · · · ·

P1

P2

P3

· · · · ·

· · · · ·

· · · · ·

P1

P2

P3

(a)

(b)

f4
f1 f2 f3 f7 f8 f9 f10 f21 f22 f23 f24

f21 f22 f23 f24

f12 f13 f14 f15

f4
f1 f2 f3

CHAPTER 4: SDR COMPUTING RESOURCE MANAGEMENT

72

Table 4.3 tw-mapping solutions and costs for different window sizes.

 Mapping solution
Cost

w P1 P2 P3

1 f1, …, f5, f7, f9, f10, f11, f13, f15 f6, f8 f12, f14, f16, …, f24 4.3891

2, …, 5 f1, …, f6, f8, f10, f11 f7, f9 f12, …, f24 4.3601

The cost of the t2-mapping solution, CT{P3, f23} = 4.3601, is slightly lower than that of the t1-mapping

result (Table 4.3). The t3-, t4-, and t5-mapping outcomes are identical to the t2-mapping proposal. These

mappings, moreover, coincide with an optimal solution for the given problem and cost function.

4.6 Summary

This chapter has presented the second part of our SDR computing resource management framework. We

have introduced a general-purpose mapping algorithm, the tw-mapping, and a multi-objective cost func-

tion, which guides the mapping processes and implements the mapping policy. We have also formally

described an extended greedy algorithm, the gw-mapping, which will be applied for the performance eval-

uations of Chapter 5. The theoretical complexity analyzes have shown that the processing complexity of

the tw-mapping is N times the processing complexity of the gw-mapping, where N stands for the number of

processors. We have furthermore shown that the complexity order of the tw-mapping matches that of the

gw+1-mapping. These theoretical results are the basis for the analyses that follow.

5
SDR Scenarios and Simulations

5.1 Introduction

We have presented an SDR computing resource management framework that consists of an SDR compu-

ting system modeling (Chapter 3) and a computing resource management (Chapter 4). The entire frame-

work needs to be evaluated in realistic SDR scenarios. This chapter therefore simulates possible SDR

computing resource management problems and evaluates the framework’s dynamic reconfiguration capa-

bilities. It analyzes the mapping results in terms of performance versus complexity for two simulations

scenarios (Sections 5.2 and 5.3).

We already mentioned that it is not feasible to adapt previously introduced algorithms to the SDR

computing resource management context and to evaluate their performance within our framework. Be-

cause using these algorithms is impractical [49], we consider the tw-mapping─our algorithm proposal─and

the gw-mapping─the baseline reference algorithm. The simplicity of the gw-mapping makes it applicable to

realistic scenarios, which are often very complex. Its parametric design, on the other hand, permits a flexi-

ble adjustment to the particular problem and facilitates the comparison with the tw-mapping. Each baseline

result is complemented with the optimal solution, obtained from an exhaustive search.

5.2 UMTS Task Graph

5.2.1 Scenario – Simulation Setup

A future SDR platform will be subject to dynamic reconfigurations of the different layers in the protocol

stack that define the radio functionality. Hence, the amount of available computing resources may signifi-

cantly differ from one configuration to another. To simulate this, we propose scaling a platform’s compu-

ting resources as follows: sfC scales the processing capacities and sfB the interprocessor communication

bandwidths. We obtain sfC and sfB from

 (c-load, b-load) =







 D

d

Csf

c

)(

)(

TC

T ,







 D

d

Bsf

b

)(

)(

TB

T , (5.1)

where c-load ∈ 0.2, 0.35, …, 0.95, and b-load ∈ 0.75, 1.25, …, 3. c-load specifies the relation between the

total processing requirement of SDR application d and the total processing power of SDR platform D after

scaling. b-load relates the application’s total bandwidth demand (bT)
d
 to a platform’s bandwidth capacity

sfB ∙ (BT)
D
.

The SDR application corresponds to the UMTS downlink receiver of Fig. 3.7. The scenario considers

the four SDR platforms I-IV of Fig. 3.3; Fig. 3.5 illustrates the system models of platform IV.

CHAPTER 5: SDR SCENARIOS AND SIMULATIONS

74

We assume that the SDR platforms contain the analog parts and enough computing resources for ex-

ecuting the corresponding uplink transmitter and the other processing layers of the UMTS transceiver.

Hence, we consider the mapping of the processing chain of Fig. 3.7a as the critical computing resource

management task here. We apply cost function (4.9) with q = (1–q) = 0.5 and the tw- and gw-mapping algo-

rithms with different window sizes.

5.2.2 Simulation Results

Fig. 5.1 shows the gw- and Fig. 5.2 the tw-mapping results. A square in each subfigure represents a particu-

lar (c-load, b-load) tuple, which specifies the mapping problem. Its shading indicates whether the corres-

ponding gw- or tw-mapping result is optimal, suboptimal, or infeasible. A mapping is optimal for a particu-

lar problem and cost function if there exists no other mapping with an inferior mapping cost. An optimal,

suboptimal, or infeasible result indicates that the cost of an optimal mapping is x percent of the algo-

rithm’s mapping cost, where x = 100, 0 < x < 100, and x = 0 describe the three cases. A cross marks a situ-

ation where none of the 3
24

 different mappings is feasible. We call this an impossible mapping situation.

From Fig. 5.1 we derive a platform’s flexibility: SDR platform III is the most flexible because of the

relatively few impossible mapping situations. Platforms I and II are much less flexible, because more

processing or bandwidth resources are needed to feasibly solve many of the considered mapping prob-

lems.

We find that the tw-mapping (w ∈ 1, 2, ..., 5) is more robust against c-load and b-load variations than

the gw-mapping. The most critical difference between the algorithms is observed for SDR platform II:

While the t1-mapping achieves feasible results for all possible mapping situations, the gw-mapping fails in

nine cases for w ≤ 3, in five for w = 4, and in four for w = 5 (black squares in Fig. 5.1b, f, j, n, and r). Al-

so, the number of optimal tw-mapping results is considerably higher than the number of optimal gw-

mappings (white squares in Fig. 5.1 and Fig. 5.2).

In Section 4.4.1 we found that the tw- and gw+1-mapping processing complexities. (This is further ana-

lyzed in Section 5.2.3.) We therefore compare the tw-mapping with the gw+1-mapping results and observe

that the tw-mappings are closer to the optimal solutions for most states of any SDR platform. For example,

30 out of 43 possible mappings at SDR platform IV are optimal when applying the t1-mapping algorithm,

whereas only 17 are optimal with the g2-mapping. The t2-mapping is capable of optimally solving all poss-

ible mapping situations at platform III; the gw-mapping achieves this for w = 5. The g5-mapping is, howev-

er, two orders of magnitude more complex than the t2-mapping due to (4.14) and (4.15). The t1-mapping,

moreover, feasibly solves all but one solvable mapping problem, whereas the g3-mapping, which is N

times more complex then the t1-mapping, fails in ten cases.

Fig. 5.1 and Fig. 5.2 also indicate that a higher w does not necessarily lead to a better result. The tM–1-

mapping implementation guarantees finding an optimal mapping, whereas the gw-mapping for any w and

the tw-mapping for w < M–1 are suboptimal for the general mapping problem. A higher window size

promises a better mapping solution on average, as the following simulations will show, rather than ensur-

ing a better result for a particular mapping problem.

Neither the t4- nor the t5-mapping achieves optimal results for all resource conditions of architectures

II and IV. The t2-mapping, on the other hand, achieves optimal results for (almost) all conditions of archi-

tectures I and III. The significant complexity difference between the t2-mapping and the optimal t23-

mapping is essential in dynamic reconfiguration scenarios. The frequent initializations and terminations of

sessions we currently find in base stations, for example, require a computing efficient mapping approach

that provides the necessary performance. A feasible solution may be sufficient here, whereas an optimal

solution may be desirable in another scenario. This leads to the following two conclusions:

1. There is a relation between the platform architecture and the tw-mapping performance.

2. The tw-mapping with small w is able to solve any possible mapping situation of this scenario.

5.2.3 Practical versus Theoretical Complexities

We consider the algorithm execution times as the practical complexity indicators. Equations (4.16) and

(4.21) specify the corresponding theoretical complexities. We have implemented the gw- and tw-mapping

algorithms in C. In order to make code optimizations less significant, we measure the execution times for

UMTS TASK GRAPH

75

(c-load, b-load) = (0.2, 0.75) and platform I. This scenario permits 1.08 · 10
11

 feasible mappings out of 3
24

= 2.82 · 10
11

 different mapping solutions.

Table 5.1 contains the approximate execution times (ETs) of the entire t1-, t2-, t3-, t4-, and t5-mapping

processes (parts I, II, and III) on a 3 GHz GPP. Table 5.2 shows the corresponding execution times of the

gw-mapping implementation. The tables also show the theoretical complexities due to (4.16) and (4.21),

respectively. The last two columns provide the execution times and MACs scaled by the execution time

and MAC for w = 1.

The scaled ETs and the scaled MACs of Table 5.1 do not match very well. One reason could be the

overhead associated with the relatively large number of array declarations and conditional updates, which

permit an embedded implementation of the tw-mapping for different window sizes (w ∈ 1, 2, ..., 5) while

increasing the execution time of the t1-mapping. Another reason would be the code optimizations, which

are the more effective the larger w: Once identifying infeasibility, the algorithm immediately stops compu-

ting the costs of the associated w-paths.

The practical and theoretical complexity approximations for the gw-mapping, on the other hand, match

very well (Table 5.2). Despite the same implementation principle, the gw-mapping needs fewer matrix

declarations and updates because of the straightforward mapping procedure. The decreasing ratio between

the scaled ETs and the scaled MACs for increasing w is in line with the above mentioned code optimiza-

tions.

Table 5.1 Execution times and theoretical complexities of the tw-mapping.

w

Execution time

(ET) [µs]
MACs (4.16) Scaled ET Scaled MACs

1 46.9 2 691 1.0 1.0

2 139.0 10 494 3.0 3.9

3 393.8 33 453 8.4 12.4

4 1 114.1 101 160 23.8 37.6

5 3 196.8 300 447 68.2 111.6

Table 5.2 Execution times and theoretical complexities of the gw-mapping.

w

Execution times

(ETs) [µs]
MACs (4.21) Scaled ET Scaled MACs

1 10.9 897 1.0 1.0

2 43.7 3 498 4.0 3.9

3 132.9 11 151 12.2 12.4

4 384.3 33 720 35.3 37.6

5 1 109.4 100 149 101.8 111.6

Table 5.3 tw- versus gw+1-mapping, execution times.

w
tw-mapping (*) [µs] gw+1-mapping [µs]

Absolute and relative

differences relative to (*)

1 46.9 43.7 -3.2 -6.8 %

2 139.0 132.9 -6.1 -4.4 %

3 393.8 384.3 -9.5 -2.4 %

4 1 114.1 1 109.4 -4.7 -0.4 %

Table 5.4 tw- versus gw+1-mapping, theoretical complexities.

w
MACs tw-mapping (*) MACs gw+1-mapping

Absolute and relative

differences relative to (*)

1 2 691 3 498 +807 +30.0 %

2 10 494 11 151 +657 +6.3 %

3 33 453 33 720 +267 +0.8 %

4 101 160 100 149 -1 011 -1.0 %

5 300 447 295 002 -5 445 -1.8 %

7 2 592 585 2 519 232 -73 353 -2.8 %

9 21 921 435 21 080 346 -841 089 -3.8 %

CHAPTER 5: SDR SCENARIOS AND SIMULATIONS

76

Fig. 5.1. g1- (a-d), g2- (e-h), g3- (i-l), g4- (m-p), and g5-mapping results (q-t) for SDR platforms I-IV.

Platform II Platform III Platform IVPlatform I

optimal

suboptimal, > 95 %

suboptimal, 90 - 95 %

suboptimal, < 90 %

infeasible

impossible

(n)

0.2 0.5 0.8
0.75

1.25

1.75

2.25

2.75

c-load

(j)

c-load
0.2 0.5 0.8

0.75

1.25

1.75

2.25

2.75

(f)

0.2 0.5 0.8
0.75

1.25

1.75

2.25

2.75

c-load

(o)

0.2 0.5 0.8
0.75

1.25

1.75

2.25

2.75

c-load

(k)

c-load
0.2 0.5 0.8

0.75

1.25

1.75

2.25

2.75

(g)

0.2 0.5 0.8
0.75

1.25

1.75

2.25

2.75

c-load

(p)

0.2 0.5 0.8
0.75

1.25

1.75

2.25

2.75

c-load

(l)

c-load
0.2 0.5 0.8

0.75

1.25

1.75

2.25

2.75

(h)

0.2 0.5 0.8
0.75

1.25

1.75

2.25

2.75

c-load

(m)

c-load
0.2 0.5 0.8

0.75

1.25

1.75

2.25

2.75

b
-l
o
a
d

(i)

c-load
0.2 0.5 0.8

0.75

1.25

1.75

2.25

2.75

b
-l
o
a
d

(e)

c-load
0.2 0.5 0.8

0.75

1.25

1.75

2.25

2.75

b
-l
o
a
d

(b)

c-load
0.2 0.5 0.8

0.75

1.25

1.75

2.25

2.75

(c)

c-load
0.2 0.5 0.8

0.75

1.25

1.75

2.25

2.75

(d)

c-load
0.2 0.5 0.8

0.75

1.25

1.75

2.25

2.75

g
1
-m

a
p
p
in

g
g

2
-m

a
p
p
in

g
g

3
-m

a
p
p
in

g
g

4
-m

a
p
p
in

g

(r)

0.2 0.5 0.8
0.75

1.25

1.75

2.25

2.75

c-load
(s)

0.2 0.5 0.8
0.75

1.25

1.75

2.25

2.75

c-load
(t)

0.2 0.5 0.8
0.75

1.25

1.75

2.25

2.75

c-load
(q)

c-load
0.2 0.5 0.8

0.75

1.25

1.75

2.25

2.75

b
-l
o
a
d

g
5
-m

a
p
p
in

g

(a)

c-load
0.2 0.5 0.8

0.75

1.25

1.75

2.25

2.75

b
-l
o
a
d

UMTS TASK GRAPH

77

Fig. 5.2. t1- (a-d), t2- (e-h), t3- (i-l), t4- (m-p), and t5-mapping results (q-t) for SDR platforms I-IV.

Platform II Platform III Platform IVPlatform I

optimal

suboptimal, > 95 %

suboptimal, 90 - 95 %

suboptimal, < 90 %

infeasible

impossible

(j)

c-load
0.2 0.5 0.8

0.75

1.25

1.75

2.25

2.75

(f)

0.2 0.5 0.8
0.75

1.25

1.75

2.25

2.75

c-load

(o)

0.2 0.5 0.8
0.75

1.25

1.75

2.25

2.75

c-load

(k)

c-load
0.2 0.5 0.8

0.75

1.25

1.75

2.25

2.75

(g)

0.2 0.5 0.8
0.75

1.25

1.75

2.25

2.75

c-load

(p)

0.2 0.5 0.8
0.75

1.25

1.75

2.25

2.75

c-load

(l)

c-load
0.2 0.5 0.8

0.75

1.25

1.75

2.25

2.75

(h)

0.2 0.5 0.8
0.75

1.25

1.75

2.25

2.75

c-load

(m)

c-load
0.2 0.5 0.8

0.75

1.25

1.75

2.25

2.75

b
-l
o
a
d

(i)

c-load
0.2 0.5 0.8

0.75

1.25

1.75

2.25

2.75

b
-l
o
a
d

(e)

c-load
0.2 0.5 0.8

0.75

1.25

1.75

2.25

2.75

b
-l
o
a
d

(b)

c-load
0.2 0.5 0.8

0.75

1.25

1.75

2.25

2.75

(c)

c-load
0.2 0.5 0.8

0.75

1.25

1.75

2.25

2.75

(d)

c-load
0.2 0.5 0.8

0.75

1.25

1.75

2.25

2.75

(a)

c-load
0.2 0.5 0.8

0.75

1.25

1.75

2.25

2.75

b
-l
o
a
d

t 1
-m

a
p
p
in

g
t 2

-m
a
p
p
in

g
t 3

-m
a
p
p
in

g
t 4

-m
a
p
p
in

g

(r)

0.2 0.5 0.8
0.75

1.25

1.75

2.25

2.75

c-load
(s)

0.2 0.5 0.8
0.75

1.25

1.75

2.25

2.75

c-load
(t)

0.2 0.5 0.8
0.75

1.25

1.75

2.25

2.75

c-load
(q)

c-load
0.2 0.5 0.8

0.75

1.25

1.75

2.25

2.75

b
-l
o
a
d

t 5
-m

a
p
p
in

g

(n)

0.2 0.5 0.8
0.75

1.25

1.75

2.25

2.75

c-load

CHAPTER 5: SDR SCENARIOS AND SIMULATIONS

78

We finally compare the tw-mapping and gw+1-mapping complexities based on the figures of Table 5.1

and Table 5.2. Table 5.3 captures the execution times. We observe relatively good matches, especially for

higher w: The g2-mapping computes the mapping of the UMTS task graph to SDR platform I in 3.2 µs or

6.8 % less time than the t1-mapping, whereas the g5-mapping finishes 4.7 µs or only 0.4 % earlier than the

t4-mapping. The more complex execution control of the tw-mapping implementation explains the faster

execution time of the gw+1-mapping process for any w ∈ 1, 2, 3, 4.

Table 5.4 provides the MACs of the tw- and gw+1-mapping algorithms. We observe a relatively large

difference for w = 1: The g2-mapping executes 807 or 30 % more MACs than the t1-mapping. The absolute

and relative differences are much lower for w = 2 and practically negligible for w = 3. The deviations for

w = 1 and 2 further support the tw-mapping, which achieves better mapping results than the gw+1-mapping

(Section 5.2.2) at lower computing costs (Table 5.4).

In the theoretical analysis of Section 4.4 we found that the processing complexities of the tw- and gw+1-

mapping approximately match. The practical SDR scenario and different complexity indicators confirm

this result here.

5.3 Random Task Graphs

5.3.1 Scenario – Simulation Setup

An SDR platform will be dynamically reconfigured from one RAT or RAT implementation to another.

This dynamism may even affect a single user session. An infeasible reconfiguration (infeasible mapping)

would then mean a lost session.

The scenario considers four SDR-MTs; Fig. 3.3 shows their computing architectures and resources.

Each terminal is reconfigured one million times. A reconfiguration of an SDR platform consists of de-

mapping the old SDR application and mapping the new (total reconfiguration).

We randomly generate 1 000 000 DAGs based on the following parameters:

 the number of nodes per DAG is M(d) = 18,

 the data flow connection probability is con
d
 = 0.15,

 the processing demands (cu)
d
 (u ∈ 1, 2, …, M(d)) are uniformly distributed in {1, 2, ..., 2500}

MOPS, and

 the bandwidth demands (luv)
d
 (u, v ∈ 1, 2, …, M(d)) of existing data flow connections are uniform-

ly distributed in {1, 2, ..., 500} Mbps.

These DAGs should be understood as different SDR applications that represent different RATs or

RAT variations. In the mean they require 75 % of a platform’s total processing resources. The connectivi-

ty parameter con
d
 here indicates the probability of connecting, or drawing an arc between, any two nodes

in the DAG while following the logical numbering rule. That is, the probability of connecting (fu)
d
 to (fv)

d

is 0.15, if v > u and 0, otherwise. We allow disconnected graphs (a graph consisting of two or more con-

nected subgraphs or components [104]), which model parallel function chains, but connect any isolated

node (fu)
d
 to its next neighbor. A two-component DAG could then, for example, represent an SDR tran-

sceiver model with independent function chains for the transmit and receive paths. Irrespective of the par-

ticular DAG, we specify the time slot duration tTS as 0.5 · 10
-3

 SPTS. The latency will then be M(d) · tTS =

9 ms (3.15) at most.

5.3.2 Simulation Results

The performance metric is the percentage of infeasible mappings. Associated with lost or interrupted user

sessions, the objective is minimizing the number of infeasible reconfigurations. We again apply cost func-

tion (4.9) with q = (1–q) = 0.5 and consider the window sizes 1 to 5.

Fig. 5.3 illustrates the percentage of infeasible gw- and tw-mappings. These results exclude the 6608

DAGs (0.7 %) that require more processing resources than available. Additional simulations revealed that

practically all considered DAGs, more than 99.99 %, can be feasibly mapped to any of the four SDR plat-

forms.

RANDOM TASK GRAPHS

79

We observe that the number of infeasible gw- or tw-mappings decreases with increasing window sizes.

Fig. 5.4 shows that this decrease is exponential. (The solid lines in Fig. 5.4 are exponential tendencies.) As

w increases from 1 to 5, the number of infeasible mappings decreases more significantly for SDR platform

III or IV (Fig. 5.4b) than for platform I or II (Fig. 5.4a). Comparing the tw- with the gw-mapping results we

find that the number of unfeasibly tw-mapped DAGs is about half the number of unfeasibly gw-mapped

DAGs for any platform and window size (Table 5.5).

Fig. 5.3. Percentage of infeasible gw- (a) and tw-mappings (b) for SDR platforms I-IV.

Fig. 5.4. Percentage of infeasible gw- and tw-mappings for SDR platforms I and II (a) and III and IV (b).

(a)

(b)

0

2,5

5

7,5

10

12,5

15

17,5

20

22,5

25

I II III IV

In
fe

a
s
ib

le
 M

a
p

p
in

g
s
 [
%

]

Platform

g1-mapping

g2-mapping

g3-mapping

g4-mapping

g5-mapping

2.5

7.5

12.5

17.5

22.5

0

2,5

5

7,5

10

12,5

15

17,5

20

22,5

25

I II III IV

In
fe

a
s
ib

le
 M

a
p

p
in

g
s
 [
%

]

Platform

t1-mapping

t2-mapping

t3-mapping

t4-mapping

t5-mapping

2.5

7.5

12.5

17.5

22.5

(a) (b)

0

5

10

15

20

25

1 2 3 4 5

In
fe

a
s
ib

le
 M

a
p

p
in

g
s
 [
%

]

w

Platform I; gw

Platform II; gw

Platform I; tw

Platform II; tw

0

5

10

15

20

25

1 2 3 4 5

In
fe

a
s
ib

le
 M

a
p

p
in

g
s
 [
%

]

w

Platform III; gw

Platform IV; gw

Platform III; tw

Platform IV; tw

CHAPTER 5: SDR SCENARIOS AND SIMULATIONS

80

Fig. 5.5. Percentage of infeasible tw- versus gw+1-mappings for w = 1 (a), w = 2 (b), w = 3 (c), and w = 4 (d).

Because of the equivalency between the tw- and gw+1-mapping complexities (Sections 4.4 and 5.2.3),

we compare the tw- with the gw+1-mapping results. Fig. 5.5a-d therefore illustrate the infeasible tw-

mappings side by side with the infeasible gw+1-mappings for w = 1, 2, 3, and 4. These results show that the

tw-mapping feasibly maps more random DAGs for any window size and SDR platform. Its absolute gain

ranges from 5222 (w = 4, platform I) to 34 182 (w = 1, platform II) additionally mapped DAGs. The rela-

tive gain over the infeasible gw+1-mappings varies from 15.2 % (w = 1, platform III) to 36 % (w = 4, plat-

form II) as Table 5.6 indicates.

We finally analyze the necessary window sizes for different performance limits. If, for example, we

set the limit to 7.5 % infeasible mappings, we observe that the t1-mapping is appropriate for SDR platform

I, the t2-mapping for platforms II and IV, whereas w = 3 is necessary for platform III (Fig. 5.3b). If the

limit is 5 %, the t3-mapping is appropriate for all platforms, whereas a limit of 2.5 % requires the t4-

mapping for platform IV and the t5-mapping otherwise.

Table 5.5 Percentage of infeasible tw-mappings with respect to the infeasible gw-mappings.

Platform \ w 1 2 3 4 5

I 55.3 55.2 55.9 56.5 56.6

II 52.3 50.6 46.2 42.5 39.7

III 58.1 51.8 48.6 45.9 43.8

IV 56.2 50.2 47.4 45.6 44.5

Table 5.6 Percentage of infeasible tw-mappings with respect to the infeasible gw+1-mappings.

Platform \ w 1 2 3 4

I 77.1 78.1 80.5 83.0

II 75.3 70.7 66.2 64.0

III 84.8 82.7 80.3 77.7

IV 84.5 82.8 80.2 78.1

0

2,5

5

7,5

10

12,5

15

17,5

20

I II III IV

In
fe

a
s
ib

le
 M

a
p

p
in

g
s
 [
%

]

Platform

g5-mapping t4-mapping

0

2,5

5

7,5

10

12,5

15

17,5

20

I II III IV

In
fe

a
s
ib

le
 M

a
p

p
in

g
s
 [
%

]

Platform

g4-mapping t3-mapping

0

2,5

5

7,5

10

12,5

15

17,5

20

I II III IV

In
fe

a
s
ib

le
 M

a
p

p
in

g
s
 [
%

]

Platform

g2-mapping t1-mapping

(c) (d)

0

2,5

5

7,5

10

12,5

15

17,5

20

I II III IV

In
fe

a
s
ib

le
 M

a
p

p
in

g
s
 [
%

]

Platform

g3-mapping t2-mapping

(a) (b)

2.5

7.5

12.5

17.5

2.5

7.5

12.5

17.5

2.5

7.5

12.5

17.5

2.5

7.5

12.5

17.5

SUMMARY

81

The gw-mapping can meet the 7.5 % performance limit with practical window sizes: w = 3 for platform

I and w = 4 for platforms II-IV (Fig. 5.3a). Larger windows are, however, necessary for the 5 % and 2.5 %

boundaries. These results qualify the algorithms’ performances. Despite the more general simulation se-

tup, we can make similar conclusions as for the first SDR scenario.

5.4 Summary

In this chapter we have applied the SDR computing resource management framework of Chapters 3 and 4

for solving different SDR reconfiguration scenarios. The simulation results have demonstrated that our

contribution is suitable for solving different computing resource management problems. Optimal results

are often achieved for window sizes as small as 1, 2, or 3.

We have compared the tw-mapping with the gw-mapping outcomes and have observed that the tw-

mapping algorithm achieves considerably better mappings. We have confirmed the theoretical result of

Section 4.4, where we found that the processing efforts associated with the tw-mapping and gw+1-mapping

approximately correspond. Nevertheless, the tw-mapping has outperformed the gw+1-mapping for different

performance criteria.

The simulation results have also indicated a dependency between the SDR platform and the applica-

tion mapping. We have, particularly, observed that the choice of an appropriate window size is a function

of the SDR platform. Since the processing complexity of the tw-mapping algorithm is proportional to N
w+1

(4.15), w should not be overdimensioned, but, rather, just as high as necessary. Chapter 6 analyzes this

further.

6
 Computing Resource Management

Analyses

6.1 Introduction

Chapter 5 has demonstrated the framework’s general suitability for solving different SDR computing re-

source management problems. The objective of this Chapter is further analyzing the capabilities of our

proposal for a flexible computing resource management. We discuss the framework’s diversity and ex-

amine its behavior while solving different reconfiguration problems. We, particularly, consider additional

simulations and discuss the significance of the mapping order (Section 6.2), the implications of the hard-

ware architecture (Section 6.3), and the relevance of the window size w and the cost function parameter q

(Section 6.4).

6.2 Mapping Order

6.2.1 Motivation and Scope

In heterogeneous computing contexts, some tasks may have a higher importance or priority than others.

The precedence constraints between the tasks of an application and the heterogeneous processing and data

flow requirements furthermore indicate that the mapping or scheduling order may affect the result. Related

work already demonstrated the relevance of the mapping and scheduling orders [79]. The highest levels

first with estimated times (HLFET) algorithm [36], for instance, schedules tasks in the order of their pre-

viously computed, static priorities. These priorities, or levels, are defined as the largest sum of execution

times along the directed path from the given node to an end node of the task graph. Reference [40], on the

other hand, uses dynamic levels to determine the next process for mapping and scheduling. The levels of

the remaining processes are thus dynamically recalculated during the task allocation process. DCP [42] or

DPS [45], discussed in Section 2.4.1, follow a similar approach; many more exist [79].

Here we study static ordering techniques, where the premapping order is specified before executing

the tw-mapping algorithm. We consider the reordering of SDR functions by decreasing processing or

bandwidth requirements (c-ordering or b-ordering) and analyze the mapping success as a function of the

mapping order. The SDR computing system modeling of Chapter 3 facilitates such a reordering (Section

6.2.2). Simulation results show that the premapping order is relevant and indicate that the mapping order

should be specified as a function of the given problem (Sections 6.2.3 and 6.2.4). A dynamic reordering of

the remaining functions and data flows to be premapped (as a function of the remaining computing re-

sources, for instance) will be examined in future work.

CHAPTER 6: COMPUTING RESOURCE MANAGEMENT ANALYSES

84

6.2.2 Modeling Support

We maintain the tw-mapping process, which premaps (fi)
d
 before (fi+1)

d
 (Section 4.2.1), and change the

premapping order through relabeling: The original SDR function labels comply with the logical number-

ing principle (Section 3.3.2). After relabeling, 1, 2, …, M(d) index SDR functions in the desired order.

Reordering through relabeling is, hence, a preprocessing mapping operation.

The c- and b-ordering algorithms relabel SDR functions as a function of the processing and data flow

requirements. That is, the c-ordering leads to (c1)
d
 ≥ (c2)

d
 ≥ … ≥ (cM(d))

d
, whereas the b-ordering results

in the pair of functions with the heaviest data flow demand becoming (f1)
d
 and (f2)

d
 and those with the

lowest demand (fM(d)–1)
d
 and (fM(d))

d
.

The application models of Section 3.3.2B) facilitates the reordering or relabeling of SDR functions

through basic matrix operations: To exchange SDR function labels (fu)
d
 and (fv)

d
, exchange (cu)

d
 and (cv)

d

in (3.10) and switch rows and columns u and v in (3.11) or (3.12). Switching rows u and v in (3.11) or

(3.12) changes the successors of (fu)
d
 for those of (fv)

d
 and vice versa, whereas switching columns u and v

changes the predecessors of (fu)
d
 for those of (fv)

d
 and vice versa. This maintains the same DAG with

another labeling of functions.

Fig. 6.1 illustrates the above relabeling process for a four-node DAG example, where SDR application

ii corresponds to a new presentation of SDR application i. The new application models, c
ii
, l

ii
, i

ii
, and b

ii

(Fig. 6.1d), mathematically capture the task graph of Fig. 6.1c, whereas the original models, c
i
, l

i
, i

i
, and b

i

(Fig. 6.1b), describe the processing chain of Fig. 6.1a. Ignoring the labels, Fig. 6.1a and Fig. 6.1c show

identical graphs. Hence, merely the computing resource management labels have changed: If (f2)
i

represents a filter, for example, (f4)
ii
 symbolizes the same filter.

SDR platforms can be equivalent relabeled. The processor labels (P1)
D
, (P2)

D
, …, (PN(D))

D
 and the SDR

function labels (f1)
d
, (f2)

d
, …, (fM(d))

d
 are thus the basis for our SDR computing system models. Any labe-

ling and the corresponding modeling correctly characterize a given SDR platform or application. The labe-

ling rules of Section 3.3 are appropriate for the general modeling, whereas other rules may be more appro-

priate for specific applications of the modeling. We analyze this in continuation.

Fig. 6.1. SDR function relabeling example: example task graph (a) and its modeling (b); the resulting task graph

(c) and its modeling (d) after exchanging the labels of two SDR functions.

cii = (2, 0.5, 0.5, 1.5) MOPTS

lii = MBPTS





















5345

5555

5555

2515

iii =

bii = (1, 0.75, 0.5, 0.5, 0, …, 0) MBPTS





















05.05.00

0000

0000

75.0010

1

0.5

(f1)
i

(f2)
i (f3)

i

(f4)
i

2

1.5 0.5

0.5

(b) (d)

1

0.5

(f1)
ii

(f4)
ii (f3)

ii

(f2)
ii

2

1.5 0.5

0.5

(a) (c)

ci = (2, 1.5, 0.5, 0.5) MOPTS





















0000

0000

5.05.000

1075.00

li = MBPTS





















5555

5555

4355

1525

ii =

bi = (1, 0.75, 0.5, 0.5, 0, …, 0) MBPTS

MAPPING ORDER

85

6.2.3 Scenarios and Results, Part I

We assume the two SDR scenarios of Chapter 5. First we consider SDR scenario II (Section 5.3.1), which

is based on 1 000 000 random DAGs that are individually mapped to each one of the four SDR platforms

I-IV of Fig. 3.3. We compute and analyze the tw-mapping results without reordering (no-ORD-tw-mapping

or, simply, tw-mapping), after c-ordering (c-ORD-tw-mapping), and after b-ordering (b-ORD-tw-mapping).

The performance metric is the percentage of infeasible mappings. Fig. 6.2a and b show the results for w =

1 and 3.

Both ordering approaches facilitate the feasible tw-mapping of many DAGs. The c- or b-ordering,

more precisely, decreases the number of infeasible mappings by a factor between two and six. The c-

ordering performs better for SDR platform I, whereas the b-ordering results more suitable for platform II.

For small w, platforms III and IV take advantage of the b-ORD-tw-mapping, whereas for w ≥ 3, the c- and

b-ORD-tw-mapping results are nearly identical (Fig. 6.2).

The bottleneck of platform II is the scarce bandwidth between (P1)
II
 and (P3)

II
 (Fig. 3.3b). The cost

function’s costCOMP term (4.9b) balances the processing load, tending to distribute the SDR functions.

Since the c-ORD-tw-mapping prioritizes the premapping of heavy processing demands, it is possible that

heavy data flows may not be feasibly allocatable later on during the mapping process. The heterogeneous

processing capacities of SDR platform IV (Fig. 3.3c), on the other hand, generally lead to premapping

more SDR functions to (P1)
IV

, fewer to (P2)
IV

, and even fewer to (P3)
IV

; this decreases the probability of

(heavy) communication demands between (P1)
IV

 to (P3)
IV

 throughout the course of the mapping and ex-

plains the results.

Fig. 6.2. Percentage of infeasible no-ORD-, c-ORD- and b-ORD-tw-mappings for w = 1 (a) and w = 3 (b).

Fig. 6.3. Percentage of infeasible c-ORD-, b-ORD-, and c-b-ORD-tw-mappings for w = 1 (a) and w = 3 (b).

0

2

4

6

8

10

12

14

I II III IV

Platform

no-ORD

c-ORD

b-ORD

0

2

4

6

8

10

12

14

I II III IV

In
fe

a
s
ib

le
 M

a
p

p
in

g
s
 [
%

]

Platform

no-ORD

c-ORD

b-ORD

(b)(a)

0

1

2

3

4

5

6

I II III IV
Platform

c-ORD

b-ORD

c-b-ORD

0

1

2

3

4

5

6

I II III IV

In
fe

a
s
ib

le
 M

a
p

p
in

g
s
[%

]

Platform

c-ORD

b-ORD

c-b-ORD

(b)(a)

CHAPTER 6: COMPUTING RESOURCE MANAGEMENT ANALYSES

86

We now apply the c-ORD-tw-mapping first and, in case of an infeasible result, try the b-ORD-tw-

mapping thereafter. We call this the c-b-ORD-tw-mapping. Fig. 6.3 shows its outcomes together with the

c- and b-ORD-tw-mapping results. We observe that the c-b-ORD-tw-mapping can feasibly map many more

DAGs than the c- or the b-ORD-tw-mapping. Hence, the DAGs that are unfeasibly mapped with the c-

ORD-tw-mapping only partially overlap with those that are unfeasibly mapped with the b-ORD-tw-

mapping. We try to find a rule for choosing the most appropriate premapping order and, therefore, analyze

some DAG statistics.

Since infeasible mappings are less frequent here than feasible mappings, the statistics of the unfeasibly

mapped DAGs are probably more informative than the statistics of the feasibly mapped graphs. These

statistics may reveal certain features that explain the infeasible mappings. First we compute and analyze

the application’s communication-to-computation ratio, defined in Table 3.10, averaged over the unfeasibly

mapped DAGs. We call this parameter ccrinf.

Table 6.1 and Table 6.2 provide ccrinf of the c- and b-ORD-t1-mapping results; the corresponding val-

ues for other window sizes are slightly lower. Notice that, since more than 94.5 % of the considered DAGs

are feasibly mapped with the c- or b-ORD-t1-mapping to any of the four platforms (Fig. 6.3), the CCR

averaged over the feasibly mapped DAGs would approximate 0.27, the mean CCR of the random DAGs.

We observe that ccrinf of the b-ORD-t1-mappings is, for any platform, lower than that of the c-ORD-t1-

mappings. This can be explained as follows: The c-ORD-tw-mapping premaps SDR functions in the order

of decreasing processing requirements. It thus better handles high processing loads than heavy data flow

requirements. Accordingly, the b-ORD-tw-mapping, which gives priority to SDR functions with high data

flow demands, can easier solve high bandwidth requirements than elevated processing loads. The

processing and bandwidth loads averaged over of the unfeasibly mapped DAGs─c-loadinf and b-loadinf,

which are computed according to (5.1) with sfC = sfB = 1─confirm this (Table 6.1 and Table 6.2).

We applied different CCR-thresholds, derived from Table 6.1 and Table 6.2, for choosing one or the

other ordering. None of these thresholds, however, led to results close to those of the c-b-ORD-tw-mapping

and not even improved the numbers of the c- or b-ORD-tw-mapping. The reason for this could be that the

application’s communication-to-computation ratio masks the significant computing constraint: A high

(ccr)
d
 = (bT)

d
/

(cT)

d
 (Table 3.10) indicates a high bandwidth demand (bT)

d
 of SDR application or DAG d,

although the processing resources could be more critical when the application’s processing requirement

(cT)
d
 approaches the platform’s processing power (CT)

D
. We, therefore, consider the one-dimensional re-

source parameter c-load.

Since the total processing capacity is fixed─(CT)
D
 = 30 000 MOPS for any D ∈ I, II, III, IV (Fig.

3.3)─a DAG’s total processing requirement specifies the processing load of the corresponding mapping

problem as c-load
 d

 = (cT)
d

/ (CT)
D
. The b-ordering is applied if c-load

 d
 falls below the c-load-threshold

and the c-ordering, otherwise. We call this approach the c|b-ORD-tw-mapping. It takes advantage of the

mapping flexibility of SDR functions with low processing requirements, considering them last when

processing loads are elevated. An empirical analysis led to the following c-load-thresholds: 90 % for plat-

form I, 91.7 % for platforms II and III, and 95 % for platform IV. Fig. 6.4 shows the results.

We compare the results of Fig. 6.4 with those of Fig. 6.3 and observe that the c|b-ORD-tw-mapping

leads to fewer infeasible mappings than the c- or the b-ORD-tw-mapping, although not reaching the num-

bers of the c-b-ORD-tw-mapping. The c-b-ORD-tw-mapping is, however, impractical as it runs twice as

Table 6.1 DAG statistics of the infeasible c-ORD-t1-mappings.

Platform ccrinf c-loadinf [%] b-loadinf [%]

I 0.33 82.7 129.8

II 0.32 80.9 125.4

III 0.32 83.1 128.2

IV 0.29 88.3 124.0

Table 6.2 DAG statistics of the infeasible b-ORD-t1-mappings.

Platform ccrinf c-loadinf [%] b-loadinf [%]

I 0.27 89.1 115.2

II 0.25 91.7 113.5

III 0.24 92.8 110.7

IV 0.23 94.0 108.0

MAPPING ORDER

87

long for certain DAGs. The c|b-ORD-tw-mapping is, thus, an interesting solution here and motivates for

further studies (Section 6.2.4).

We finally apply the ORD3-tw-mapping, which tries up to three mapping intents per DAG: If the tw-

mapping applied on the initial DAG model does not find a feasible solution, the c-ORD-tw-mapping is

executed and, if its outcome is also infeasible, the b-ORD-tw-mapping is finally applied. These results,

when compared with those of the c-b-ORD-tw-mapping (Table 6.3), again confirm that the premapping

order matters and that, opposed to previous conclusions, no reordering can be the better option than the c-

or b-ordering.

SDR scenario I, characterized by the UMTS task graph and the four SDR platforms of varying compu-

ting resources (Section 5.2.1), leads to similar tw-mapping results with or without a prior b-ordering, but

worse results after the c-ordering. More precisely, the b-ORD-tw-mapping results are very similar to those

of Fig. 5.2, whereas many more mappings are infeasible when applying the c-ORD-tw-mapping.

The sampling rate and, thus, the bandwidth requirements of the UMTS task graph by and large de-

crease with the data flow through the processing chain (Fig. 3.4 and Fig. 3.7a). Hence, the original labe-

ling of SDR functions (Fig. 3.7a) only slightly differs from that after the b-ordering. This explains the

similar results with or without b-ordering. The worse performance of the c-ORD-tw-mapping can be ex-

plained as follows: The heavy data flows between some SDR functions in comparison with the interpro-

cessor bandwidth capacities of any SDR platform make it important to execute these functions on a single

processor. Considering them at a later stage of the c-ORD-tw-mapping process, may result in the remaining

processing resources per processor being insufficient for joining heavily communicating functions.

We summarize that both ordering technique considerably improve the mapping results of SDR scena-

rio II, whereas the c-ordering is not suitable for scenario I. Hence, the selection of the appropriate ordering

is case dependent. Motivated by the above results, the second part of this study statistically examines the

relations between the processing and bandwidth loads and the ordering selection.

6.2.4 Scenario and Results, Part II

Here we reconsider the scenario of Section 5.3.1 but vary the DAG generation parameters. We generate

four times one million DAGs of M(d) = 18 and con
d
 = 0.15 (Section 5.3.1), while considering the follow-

ing variations of the processing and bandwidth requirements:

Fig. 6.4. Percentage of infeasible c|b-ORD-tw-mappings for w = 1 (a) and w = 3 (b).

Table 6.3 ORD3- versus c-b-ORD-tw-mapping: infeasible percentages.

Platform

w = 1 w = 3

c-b-ORD ORD3 c-b-ORD ORD3

I 0.84 0.67 0.42 0.34

II 1.09 0.88 0.50 0.42

III 0.77 0.68 0.34 0.30

IV 0.87 0.76 0.37 0.33

0

1

2

3

4

5

6

I II III IV
Platform

c|b-ORD

0

1

2

3

4

5

6

I II III IV

In
fe

a
s
ib

le
 M

a
p

p
in

g
s
 [
%

]

Platform

c|b-ORD

(b)(a)

CHAPTER 6: COMPUTING RESOURCE MANAGEMENT ANALYSES

88

(A) (cu)
d
 ∈ {1, 2, ..., 2100} MOPS and (luv)

d
 ∈ {1, 2, ..., 400} Mbps,

(B) (cu)
d
 ∈ {1, 2, ..., 2100} MOPS and (luv)

d
 ∈ {1, 2, ..., 600} Mbps,

(C) (cu)
d
 ∈ {1, 2, ..., 2700} MOPS and (luv)

d
 ∈ {1, 2, ..., 400} Mbps, and

(D) (cu)
d
 ∈ {1, 2, ..., 2700} MOPS and (luv)

d
 ∈ {1, 2, ..., 600} Mbps.

These four setups can be characterized by the mean processing and bandwidth loads c-loadM and b-

loadM, which correspond to c-load and b-load of (5.1) with sfC = sfB = 1 averaged over all considered

DAGs. (We discard those DAGs that require more processing resources than available.) We empirically

obtain c-loadM and b-loadM and qualify the four scenarios as

(A) (c-loadM, b-loadM) = (0.63, 0.80) – low processing and bandwidth loads,

(B) (c-loadM, b-loadM) = (0.63, 1.20) – low processing and high bandwidth loads,

(C) (c-loadM, b-loadM) = (0.80, 0.80) – high processing and low bandwidth loads, and

(D) (c-loadM, b-loadM) = (0.80, 1.20) – high processing and bandwidth loads.

Fig. 6.5 to Fig. 6.8 show the infeasible tw-mapping, c-ORD-tw-mapping, and b-ORD-tw-mapping per-

centages for the four scenarios (A) to (D). The first conclusion is that the mapping challenge is a function

of (c-loadM, b-loadM): Relatively low mean processing and bandwidth loads (A) are easily solvable.

Hence, the c-ordering and the b-ordering are both appropriate, although directly applying the t1-mapping

already leads to acceptable results with more than 98.3 % feasibly mapped DAGs (Fig. 6.5). A high b-

loadM and a low c-loadM (B) suggest the b-ordering (Fig. 6.6), whereas the c-ordering should be consi-

dered for the opposite case (C) due to Fig. 6.7. When the c-loadM and the b-loadM are both elevated (D),

Fig. 6.5. no-ORD-, c-ORD-, and b-ORD-tw-mapping results for w = 1 (a) and w = 3 (b) for scenario (A).

Fig. 6.6. no-ORD-, c-ORD-, and b-ORD-tw-mapping results for w = 1 (a) and w = 3 (b) for scenario (B).

0

0,25

0,5

0,75

1

1,25

1,5

1,75

I II III IV
Platform

no-ORD

c-ORD

b-ORD

1.75

1.5

1.25

0.25

1

0.75

0.5

0

0,25

0,5

0,75

1

1,25

1,5

1,75

I II III IV

In
fe

a
s
ib

le
 M

a
p

p
in

g
s
 [
%

]

Platform

no-ORD

c-ORD

b-ORD

(b)(a)

1.75

1.5

1.25

0.25

1

0.75

0.5

0

2

4

6

8

10

12

14

I II III IV
Platform

no-ORD

c-ORD

b-ORD

0

2

4

6

8

10

12

14

I II III IV

In
fe

a
s
ib

le
 M

a
p

p
in

g
s
 [
%

]

Platform

no-ORD

c-ORD

b-ORD

(b)(a)

HARDWARE ARCHITECTURE

89

the ordering decision depends on the particular problem. Here, the c-ORD- and the b-ORD-tw-mapping

perform well for SDR platform I, whereas the b-ORD-tw-mapping is more suitable for platforms II, III,

and IV (Fig. 6.8). Both ordering approaches improve the no-ORD-tw-mapping results for any scenario

(Fig. 6.5-Fig. 6.8).

These results indicate the suitability of the four simple parameters (cT)
d
, (bT)

d
, (CT)

D
, and (BT)

D
. De-

spite the specific simulation setup, they provide some general tendencies or indications, which we sum-

marize as

 low c-load and low b-load: apply the c-ordering or the b-ordering,

 low c-load and high b-load: apply the b-ordering,

 high c-load and low b-load: apply the c-ordering, and

 high c-load and high b-load: apply the c-ordering or the b-ordering (case dependent).

6.3 Hardware Architecture

6.3.1 Motivation and Scope

Reconfigurability is the key concept of SDR. It indicates that one and the same computing platform can, in

different configurations, be used for transmitting and receiving data over different air interfaces (frequen-

Fig. 6.7. no-ORD-, c-ORD-, and b-ORD-tw-mapping results for w = 1 (a) and w = 3 (b) for scenario (C).

Fig. 6.8. no-ORD-, c-ORD-, and b-ORD-tw-mapping results for w = 1 (a) and w = 3 (b) for scenario (D).

0

2

4

6

8

10

12

14

I II III IV
Platform

no-ORD

c-ORD

b-ORD

0

2

4

6

8

10

12

14

I II III IV

In
fe

a
s
ib

le
 M

a
p

p
in

g
s
 [
%

]

Platform

no-ORD

c-ORD

b-ORD

(b)(a)

0

5

10

15

20

25

30

35

I II III IV
Platform

no-ORD

c-ORD

b-ORD

0

5

10

15

20

25

30

35

I II III IV

In
fe

a
s
ib

le
 M

a
p

p
in

g
s
 [
%

]

Platform

no-ORD

c-ORD

b-ORD

(b)(a)

CHAPTER 6: COMPUTING RESOURCE MANAGEMENT ANALYSES

90

cy bands and modulation schemes). The radio transceiver software (waveform or SDR application) that

runs on an SDR platform thus specifies the momentarily adopted radio standard.

The reconfiguration of SDR platforms may be partial or total: A total reconfiguration deinstalls the en-

tire software, freeing all computing resource, before installing the new one. A partial reconfiguration, on

the other hand, may deinstall part of the software while installing new software pieces. Hence, the availa-

ble computing resources of SDR platforms may vary from configuration to configuration. Furthermore,

some platforms may facilitate the integration of plug-and-play hardware. Most SDR-BS will be designed

with such an upgradability feature; SDR-MT may eventually follow.

SDR platforms will differ in computing architectures and capabilities. Platforms may be distinguisha-

ble by the number of processors, the processing capacities, the interprocessor communication network,

and the communication bandwidths, among others. A platform’s initial computing capabilities may change

over time so that, before initiating a partial reconfiguration, the available computing architecture and re-

sources (platform state) may not match the architecture and resources of the platform in its initial state

(platform architecture). Regarding the computing resource management, there is no difference between

platform architecture (initial computing architecture and resources) and platform state (momentary availa-

ble computing architecture and resources).

The vast amount of possible platform architectures and states motivates analyzing the interrelation be-

tween platform architecture and application mapping. Here we consider a very limited set of SDR plat-

form architectures or states while examining the implications of the interprocessor communication net-

work (Section 6.3.2) and the distribution of computing resources (Section 6.3.3).

6.3.2 Connectivity and Communication Flexibility

A) Scenario – Simulation Setup

This scenario considers five SDR platforms. Fig. 6.9 illustrates their architectures and computing re-

sources. Dedicated FD links characterize SDR platforms IX (Fig. 6.9a) and XII (Fig. 6.9d), dedicated HD

buses describe the interprocessor communication networks of platforms X (Fig. 6.9b) and XIII (Fig. 6.9e),

whereas a shared HD bus characterizes platform XI (Fig. 6.9c). The total processing and bandwidth re-

sources per platform are 9000 MOPS and 9000 Mbps. Fig. 6.10 contains the relevant parameters for dis-

tinguishing these platforms from one another.

For avoiding a particular implementation and providing statistically representative results, we generate

1 000 000 random DAGs (Section 5.3.1) based on the following parameters:

 M(d) = 25,

 con
d
 = 0.2,

 (cu)
d
 (u ∈ 1, 2, …, M(d)) uniformly distributed in {1, 2, ..., 500} MOPS, and

 (luv)
d
 (u, v ∈ 1, 2, …, M(d)) of existing data flow connections uniformly distributed in {1, 2, ...,

500} Mbps.

These DAGs represent different SDR application models that require

 (cT)
d
 = 25 · (1 MOPS + 500 MOPS) / 2 = 6262.5 MOPS (6.1)

in the mean, which is about 70 % of the available processing capacity. ((cT)
d
, the sum of 25 uniformly

distributed independent random variables, approximately follows the Gaussian probability density func-

tion of 6262.5 mean and 720 standard deviation.) The total processing requirement is higher than 4500 and

9000 MOPS with a probability of 0.99 and 5

∙

10

-5
, respectively. Those 51 DAGs that require more

processing resource than available are discarded.

Almost all DAGs require more bandwidth than the 9000 Mbps that are available for interprocessor da-

ta flows. (This requires solving some data flows processor-internally by allocating the same processor to

the corresponding SDR functions.) Moreover, the statistically expected value of the total bandwidth de-

mand is approximately

 E[(bT)
d
] ≈ (con

d
 ∙ (M(d)

2
 – M(d)) / 2) ∙ (500 Mbps + 1 Mbps) / 2 = 15 030 Mbps, (6.2)

which is 167 % of the available 9000 Mbps, indicating a significant bandwidth resource constraint.

HARDWARE ARCHITECTURE

91

Fig. 6.9. SDR platforms IX-XIII (a)-(e) and their computing resources in MOPS and Mbps.

Again we directly specify the time slot duration tTS as 0.5 · 10
-3

 SPTS. M(d) · tTS = 12.5 ms will then be

the maximum latency of any of these SDR applications due to (3.15) and Table 3.9. The mapping order is

not significant for this and the following analyses. We apply the c-ordering in the rest of this chapter be-

cause of its simple implementation and good performance (Section 6.2).

B) Simulation Results

The performance metric is the percentage of infeasible mappings. Fig. 6.11a shows the results for SDR

platforms IX, X, and XI. We observe that SDR platform XI leads to considerably fewer infeasible map-

pings than platform X, which behaves better than platform IX. Fig. 6.10 indicates that the number of in-

feasible mappings decreases as the communication flexibility, represented through the mean link flexibili-

ty LFM, increases. Fig. 6.11b illustrates this for the c-ORD-t1-mapping.

SDR platforms XII and XIII, which have a lower connectivity than platforms IX and X (Fig. 6.10),

have a low c-ORD-tw-mapping success (Fig. 6.12a and b). Fig. 6.12c presents the c-ORD-t1-mapping re-

sults as a function of the connectivity CON and the mean link flexibility LFM. We observe that the higher

CON or LFM the better the mapping performance. We conclude that the mapping success is a function of

CON and LFM and that highly and flexibly interconnected SDR platforms, such as XI, ease the allocation

of distributed computing resources.

Fig. 6.10. Selected communication parameters of SDR platforms IX-XIII (a)-(e).

IX X XI

P2

3000

P1

3000

P3

3000

1500

1500

(a)

P2

3000

P1

3000

P3

3000

3000

(b)

P2

3000

P1

3000

P3

3000

9000

(c)

P2

3000

P1

3000

P3

3000

2250

2250

(d)

P2

3000

P1

3000

P3

3000

4500

(e)

XII XIII

2250

2250

4500

(a) (b) (c)

(d) (e)

(CON)IX = 1

(LFM)IX = 1/6























6161

6161

6161

(LF)IX =

(CON)X = 1

(LFM)X = 1/3























3131

3131

3131

(LF)X =

(CON)XI = 1

(LFM)XI = 1























11

11

11

(LF)XI =

(CON)XII = 2/3

(LFM)XII = 1/6























041

041

4141

(LF)XII =

(CON)XIII = 2/3

(LFM)XIII = 1/3























021

021

2121

(LF)XIII =

CHAPTER 6: COMPUTING RESOURCE MANAGEMENT ANALYSES

92

Fig. 6.11. Percentage of infeasible c-ORD-tw-mappings for SDR platforms IX, X, and XI as a function of w (a) and

as a function of LFM for w = 1 (b).

Fig. 6.12. Percentage of infeasible c-ORD-tw-mappings for SDR platforms IX, XII, X, and XIII as a function of w

(a), (b) and as a function of LFM and CON for w = 1 (c).

6.3.3 Distribution of Computing Resources

A) Scenario – Simulation Setup

This scenario assumes that the partial deallocation of resources immediately before their reallocation

leaves the SDR platform in one of the nine states of Fig. 6.13. A platform state, or architecture, here

represents the momentarily available computing resources of a given SDR platform.

Homogeneous processing and bandwidth capacities characterize platform state XIV, heterogeneous

processing capacities state XV, heterogeneous bandwidth capacities state XVI, and heterogeneous

processing and bandwidth capacities states XVII-XXII (Fig. 6.14). Any platform state D (D ∈ XIV, XV,

…, XXII) provides a total processing capacity of 9000 MOPS and a total interprocessor bandwidth of 12

000 Mbps. A platform’s communication-to-computation ratio CCR
D
 is 1.333. Fig. 6.14 resumes the cha-

racteristic platform parameters.

Since analyzing the implications of the hardware architecture, we cannot assume a specific SDR appli-

cation. We, therefore, reconsider the 1 000 000 random DAGs of Section 6.3.2A). The SDR scenario is

the following: The nine platform states of Fig. 6.13 represent the available computing resources at some

instant, be it the initial states of nine SDR-MTs, after several partial reconfigurations, or after a recent

hardware upgrade. Each one of these states is reconfigured 1 000 000 times, mapping and completely de-

mapping a random DAG. These reconfigurations could correspond to dynamic mode switches of different

SDR-MTs.

0

5

10

15

20

25

30

IX X XI

In
fe

a
s
ib

le
 M

a
p

p
in

g
s
 [
%

]

LFM1/6 1/3 1

(IX) (X) (XI)(b)

0

5

10

15

20

25

30

IX X XI

In
fe

a
s
ib

le
 M

a
p

p
in

g
s
 [
%

]

Platform

t1-mapping

t2-mapping

t3-mapping

t4-mapping

t5-mapping

(a)

0

10

20

30

40

50

60

70

X XIII

In
fe

a
s
ib

le
 M

a
p

p
in

g
s
 [
%

]

Platform

t1-mapping

t2-mapping

t3-mapping

t4-mapping

t5-mapping

0

10

20

30

40

50

60

70

IX XII

In
fe

a
s
ib

le
 M

a
p

p
in

g
s
 [
%

]

Platform

t1-mapping

t2-mapping

t3-mapping

t4-mapping

t5-mapping

(a) (b) (c)

LFM

CON

1/6

2/3

1

1/3

(XIII)

(X)

(XII)

(IX)

71 %

32 % 5.5 %

42 %

HARDWARE ARCHITECTURE

93

Fig. 6.13. SDR platform (states) XIV-XXII (a)-(i).

B) Simulation Results

We apply the c-ORD-tw-mapping with cost function (4.9) and, again, directly specify the time slot dura-

tion tTS as 0.5 · 10
-3

 SPTS. The cost function is a superposition of the computation cost costCOMP and the

communication cost costCOMM, where parameter q = (q1, q2) = (q, 1–q) weights the two cost terms (Section

4.3.2). This analysis consists of repeating the mapping procedure for each platform and a set of applica-

tions (1 000 000 random DAGs) with different q instances. Fig. 6.15 shows the percentage of unfeasibly

mapped DAGs as a function of platform state D and cost function parameter q (q ∈ 0, 0.05, 0.1, …, 1) for

the c-ORD-t1-mapping (Fig. 6.15a) and the c-ORD-t3-mapping (Fig. 6.15b).

First of all we observe a relation between the number of infeasible allocations and the platform state:

Platform state XIV performs well because the homogeneous processors and communication links facilitate

the distribution of the SDR application components. State XVI lacks the homogeneous communication

network, complicating such a distribution.

Most of the processing load is likely to be distributed between (P1)
D
 and (P2)

D
 (D ∈ XV, XVII, XVIII,

…, XXII). States XVII and XVIII are favorable, because (B12)
XVII

 = (B21)
XVII

 = (B12)
XVIII

 = (B21)
XVIII

 = 3000

Mbps, whereas the corresponding bandwidths of XV, XIX, and XXI (XXII and XX) are merely 2000

(1000) Mbps. (P1)
XXI

 and (P1)
XXII

 have inferior communication capabilities (quantified as the sum of the

processor’s input and output resources) than (P1)
D
 of any other platform state. The fact that (P1)

D
 generally

executes more SDR functions than (P2)
D
 or (P3)

D
 explains the poor mapping performance of platform

states XXI and XXII. We should therefore try to avoid these two platform states in practice.

Parameter (XSTD)
D
, the platform’s communication-to-computation incoherence, formally explains the

above observations. It represents the standard deviation of the upper-diagonal elements of the communica-

tion-to-computation correlation matrix X
D
 (Table 3.5). Fig. 6.14 provides X

D
 and (XSTD)

D
 for the nine plat-

form states.

The six platform architectures XVII-XXII (Fig. 6.13d-i) are equivalent except for the distribution of

the bandwidth capacities (Fig. 6.14d-i). The corresponding mapping results indicate that the mapping suc-

cess is a function of XSTD: the lower XSTD the fewer the number of infeasible mappings. (XSTD)
D
 then quali-

fies the distribution of the platform’s available processing and bandwidth resources.

P2

3000

P1

3000

P3

3000

2000

2000

P2

3000

P1

4000

P3

2000

2000

2000

P2

3000

P1

3000

P3

3000

3000

3000

P2

3000

P1

4000

P3

2000

2000

2000

P2

3000

P1

4000

P3

2000

2000

2000

P2

3000

P1

4000

P3

2000

1000

1000

P2

3000

P1

4000

P3

2000

1000

1000

P2

3000

P1

4000

P3

2000

3000

3000

P2

3000

P1

4000

P3

2000

3000

3000

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

XIV XV XVI

XVII XVIII XIX

XX XXI XXII

CHAPTER 6: COMPUTING RESOURCE MANAGEMENT ANALYSES

94

Fig. 6.14. Characteristic platform parameters of SDR platforms XIV-XXII (a)-(i).

Fig. 6.15 shows that the curves that correspond to platform states XXI and XXII are close to one

another and notably separated from the other curves. Correspondingly, (XSTD)
XXI

 and (XSTD)
XXII

 are similar

and higher than the communication-to-computation incoherence of any other platform state (Fig. 6.14).

Architectures XVI, XIX, and XX form another group, and XIV, XV, XVII, and XVIII a third (Fig. 6.14

and Fig. 6.15).

Fig. 6.15 also indicates that the optimal q instance is a function of the SDR platform but practically in-

dependent of w (Table 6.4). Taking into account that the higher q the more decisive costCOMP and the lower

q the more decisive costCOMM, we can explain Table 6.4 as follows.

The processing power distribution distinguishes platform state XV from XIV (Fig. 6.13a and b). Com-

paring the corresponding mapping results (Fig. 6.15), we conclude that the distribution of MOPS of plat-

form state XV makes it harder to find a feasible mapping. This explains (qOPT)
XV

 > (qOPT)
XIV

. Similarly,

platform state XVI, which differs from XIV in the distribution of bandwidths (Fig. 6.13a and c), shows

worse mapping behavior than platform state XIV; therefore, (qOPT)
XVI

 < (qOPT)
XIV

. Platforms states XVII to

XXII are a combination of XV and XVI (Fig. 6.13). Hence, their optimal q instances are approximately

between (qOPT)
XVI

 ≈ 0.45 and (qOPT)
XV

 ≈ 0.65 (Table 6.4).

Table 6.4 Optimal q instances (qOPT)

D
.

w XIV XV XVI XVII XVIII XIX XX XXI XXII

1 0.60 0.65 0.45 0.60 0.65 0.45 0.55 0.65 0.60

2 0.60 0.65 0.45 0.60 0.65 0.45 0.55 0.65 0.60

3 0.60 0.65 0.45 0.55 0.60 0.40 0.50 0.60 0.60

4 0.55 0.60 0.40 0.60 0.60 0.40 0.50 0.60 0.55

5 0.55 0.65 0.40 0.55 0.60 0.40 0.50 0.60 0.55

(HC)XIV = 0

(HB)XIV = 0

(XSTD)XIV = 0

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)























5.05.0

5.05.0

5.05.0

XXIV =

(HC)XV = 0.181

(HB)XV = 0

(XSTD)XV = 0.070























6.05.0

6.0429.0

5.0429.0

XXV =

(HC)XVI = 0

(HB)XVI = 0.136

(XSTD)XVI = 0.204























0.250.5

0.250.75

0.50.75

XXVI =

(HC)XVII = 0.181

(HB)XVII = 0.136

(XSTD)XVII = 0.141























3.05.0

3.0643.0

5.0643.0

XXVII =

(HC)XVIII = 0.181

(HB)XVIII = 0.136

(XSTD)XVIII = 0.176























6.025.0

6.0643.0

25.0643.0

XXVIII =

(HC)XIX = 0.181

(HB)XIX = 0.136

(XSTD)XIX = 0.189























3.075.0

3.0429.0

75.0429.0

XXIX =

(HC)XX = 0.181

(HB)XX = 0.136

(XSTD)XX = 0.226























6.075.0

6.0214.0

75.0214.0

XXX =

(HC)XXI = 0.181

(HB)XXI = 0.136

(XSTD)XXI = 0.274























9.025.0

9.0429.0

25.0429.0

XXXI =

(HC)XXII = 0.181

(HB)XXII = 0.136

(XSTD)XXII = 0.281























9.05.0

9.0214.0

5.0214.0

XXXII =

HARDWARE ARCHITECTURE

95

Fig. 6.15. c-ORD-t1-mapping (a) and c-ORD-t3-mapping results (b) for SDR platforms XIV-XXII.

The two local maxima of the 18 curves in Fig. 6.15a and b confirm that the limited processing and

bandwidth capacities require a composite load balancing; that is, 0 < q < 1. The global maximum is at q =

1. For q = 1, the cost function balances the processing load without trying to minimize (excessive) inter-

processor data flows. Hence, interprocessor bandwidths are the major bottleneck of this study. Additional

measurement points between q = 0.95 and q = 1 (Fig. 6.16) reveal smooth curve progressions throughout

the entire q range.

We finally study the robustness of the tw-mapping against variations of q and, therefore, compute the

range of q instances (q-range) with no more than 10 000 additional infeasible mappings with respect to the

optimal result. That is, if the optimal result for platform state D is x %, then all instances of q with less

than (x + 1) % infeasible allocations specify the platform’s q-range.

Fig. 6.17 illustrates the different q-ranges. It indicates that that q-range is a function of platform state

D and window size w and that all q-ranges are contiguous. We observe that the higher w the more robust

the mapping algorithm against variations of q. In other words, the importance of q decreases with increas-

ing w.

Since the results for q = 0.6 are within 1 % of the minimum number of infeasible mappings for any

platform state (Fig. 6.17), the information about the optimal q instances of Table 6.4 is not very relevant

here. Finding the optimal q instance could, though, be very relevant in computing resource management

(a) (b)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

In
fe

a
s
ib

le
 M

a
p

p
in

g
s
 [
%

]

q

XIV XV XVI

XVII XVIII XIX

XX XXI XXII

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
q

XIV XV XVI

XVII XVIII XIX

XX XXI XXII

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CHAPTER 6: COMPUTING RESOURCE MANAGEMENT ANALYSES

96

scenarios that present a higher dependency on q. We do not study this further, but, rather, analyze the sig-

nificance of parameters w and q on application basis.

6.4 Window Size versus Cost Function Parameter

6.4.1 Motivation and Scope

So far we have analyzed the importance of the mapping order, the significance of the window size w, and

the relationship between the cost function parameter q and the platform architecture or state D. We have

observed that the tw-mapping performance is a function of the mapping order. All simulations have shown

Fig. 6.16. c-ORD-t1-mapping results for q = 0.95, 0.952, ..., 1.

Fig. 6.17. The q-ranges of the c-ORD-tw-mapping results.

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

0,95 0,96 0,97 0,98 0,99 1

In
fe

a
s
ib

le
 M

a
p

p
in

g
s
 [
%

]

q

XIV XV XVI

XVII XVIII XIX

XX XXI XXII

0.95 0.96 0.97 0.98 0.99

XIV

Platform

q

0.4

0.3

0.2

0

0.1

0.5

0.6

0.7

0.8

0.9

1

XV XVI XVII XVIII XIX XX XXI XXII

t1-mapping t2-mapping t3-mapping t4-mapping t5-mapping

WINDOW SIZE VERSUS COST FUNCTION PARAMETER

97

that the higher w the fewer the number of infeasible mappings. We have also demonstrated the suitability

of the two-term cost function (4.9) and concluded that an optimal q instance exists for any SDR platform

(state).

It remains to study the significance of q on SDR application basis as well as its importance relative to

w. In order to find these implications, this section applies two computing resource management methods,

one considering a single and the other several q values per reconfiguration (Section 6.4.2). We examine

the performances of these methods (Section 6.4.3) and analyze their complexities (Section 6.4.4).

6.4.2 Scenario and Methods

The scenario is the same as in Section 6.3.3A): 1 000 000 random DAGs are mapped to each one of the

nine platform states of Fig. 6.13. We apply the c-ORD-tw-mapping for facilitating the comparison with

previous results, but, first, introduce two mapping methods.

Method A applies the c-ORD-tw-mapping for a fixed q = (q, 1–q). In Section 6.3.3B) we have observed

that q = 0.6 leads to (close to) optimal results for any of the nine platform states and, therefore, consider q

= (0.6, 0.4) for method A. This method corresponds to the mapping approach of Section 6.3.3 with q = 0.6.

Method B, on the other hand, dynamically selects q on application basis. It repeatedly executes the tw-

mapping with different q instances until either finding a feasible result for a given DAG or having tried the

entire set of instance. A set of nine instances are considered in the following order: 0.5, 0.6, 0.4, 0.7, 0.3,

0.8, 0.2, 0.9, 0.1. The extreme values q = 0 and q = 1 are discarded because of the results of Fig. 6.15.

Method B thus examines up to nine different q values per DAG, starting with q = 0.5 and finishing with q

= 0.1, if necessary. A feasible mapping immediately stops the mapping process for the corresponding

DAG, whereas an infeasible mapping repeats the tw-mapping process with another q instance. The mean

number of mapping iterations per DAG (m-iter) is then between 1 and 9.

6.4.3 Simulation Results

Fig. 6.18 shows the simulation results as a function of D and w for both computing resource management

approaches. Each subfigure corresponds to one of the nine platform states of Fig. 6.13. Since the objective

here is comparing the performances between method A and method B (for each platform state individual-

ly), each subfigure may have another scale.

We observe that method B is capable of considerably decreasing the number of infeasible mappings.

More precisely, the numbers of infeasible mappings due to method A, which examines a single and fixed q

for all 1 000 000 reconfiguration tasks, more than doubles the corresponding results of method B, which

tries up to nine different q instances per reconfiguration task. The particular gain is a function of the plat-

form state and window size. The ratio between the amount of unfeasibly mapped DAGs of method A and

method B is as low as 2.3 (D = XXII, w = 1; Fig. 6.18i) and as high as 20.3 (D = XVI, w = 5; Fig. 6.18c).

These results indicate that parameter q is very relevant and that it should be adjusted as a function of the

SDR platform and application.

Additional simulations have revealed that there is often more than one q instance that leads to a feasi-

ble tw-mapping solution for a given problem, ordering, and window size. The problem complexity, howev-

er, makes it hard to find general rules for selecting an appropriate q as a function of the SDR application

and platform (state). We, rather, analyze the processing complexities of method A and method B and intro-

duce a metric that relates mapping performance to algorithm complexity for evaluating the importance of

q relative to w.

6.4.4 Performance versus Complexity Analysis

This section evaluates the methods in terms of performance versus complexity. We therefore relate the

quality of the computing resource management approach to its processing complexity:

 metric-I = quality / complexity . (6.3)

The above metric may be considered an efficiency indicator, because efficiency indicates good results

with low processing efforts.

CHAPTER 6: COMPUTING RESOURCE MANAGEMENT ANALYSES

98

Here we define quality as follows: If the algorithm fails in mapping x % of the applications, its quality

is 1/x. We measure the complexity in two ways, theoretically and practically. In both cases we consider

the number of MACs as the complexity indicator. The theoretical complexity of method A is given by

(4.25). The theoretical complexity of method B is obtained as (4.25) multiplied by the mean number of

mapping iterations m-iter.

Fig. 6.18. Infeasible c-ORD-tw-mappings due to method A and method B for platform states XIV-XXII (a)-(i).

(g) (h) (i)

(a) (b) (c)

(d) (e) (f)

0,0

0,5

1,0

1,5

2,0

2,5

1 2 3 4 5

In
fe

a
s
ib

le
 m

a
p
p
in

g
s
 [

%
]

w

Method A

Method B

0

1

2

3

4

5

1 2 3 4 5
w

Method A

Method B

0

2

4

6

8

10

1 2 3 4 5
w

Method A

Method B

0,0

0,5

1,0

1,5

2,0

2,5

1 2 3 4 5

In
fe

a
s
ib

le
 m

a
p
p
in

g
s
 [

%
]

w

Method A

Method B

0

1

2

3

4

5

1 2 3 4 5
w

Method A

Method B

0

2

4

6

8

10

1 2 3 4 5
w

Method A

Method B

0

2

4

6

8

10

1 2 3 4 5

In
fe

a
s
ib

le
 m

a
p
p
in

g
s
 [

%
]

w

Method A

Method B

0

6

12

18

24

30

1 2 3 4 5
w

Method A

Method B

0

6

12

18

24

30

1 2 3 4 5
w

Method A

Method B

2.5

2

1.5

1

0.5

0

2.5

2

1.5

1

0.5

0

WINDOW SIZE VERSUS COST FUNCTION PARAMETER

99

Table 6.5 Theoretical and practical complexities of method A for platform state XIV.

w Theoretical

complexities (TC)

Mean practical

complexities (PC)

PC / TC [%]

1 3 348 991 29.6

2 12 627 3 752 29.7

3 39 897 11 557 29.0

4 120 204 33 562 27.9

5 356 310 95 246 26.7

Table 6.6 Theoretical and practical complexities of method B for platform state XIV.

w Theoretical

complexities (TC)

Mean practical

complexities (PC)

PC / TC [%]

1 3 581 1 056 29.5

2 13 092 3 873 29.6

3 40 706 11 739 28.8

4 121 567 33 788 27.8

5 358 591 95 399 26.6

The practical complexities are obtained from C-code implementations, counting the MACs that are ac-

tually carried out (without distinguishing between multiplication and division). Hence, the practical com-

plexities account for code optimizations. We discard the complexity of the c-ordering process, executed

once for each DAG.

The practical complexity numbers are between 25 and 30 % of the theoretical results, as Table 6.5 and

Table 6.6 indicate for platform state XIV. The other platform states are characterized by similar numbers.

The relation between the practical and theoretical complexities decreases with increasing w, because the

code optimizations (break statements) have a higher effect for longer w-paths (Section 5.2.3).

Table 6.7 presents m-iter as a function of w and D. We observe that m-iter decreases with increasing w

and that it takes the lowest values for SDR platforms XIV, XV, XVII, and XVIII. It is a function of the

number of infeasible mappings (cp. Fig. 6.15 and Table 6.7).

Fig. 6.19 shows metric-I for platform state XIV and both methods based on the theoretical (Fig. 6.19a)

and practical complexity figures (Fig. 6.19b). The different scales in the two subfigures facilitate observ-

ing that metric-I is qualitatively equivalent for both approaches. This fosters the theoretical complexity

analysis of Section 4.4.2. We have made the same observations for the other eight platform states. Fig.

6.20 shows the results for platform states XV to XXII based on the practical complexity numbers.

Except for platform architecture XXII, method B has a higher metric-I than method A for any w; the

relative difference is a function of w and D, but is, mostly, significant. This difference augments with in-

creasing w, although metric-I decreases. This means that the complexity increase that is associated with

augmenting w is higher than the corresponding performance gain due to metric-I. It is, thus, more efficient

to search for a suitable q (method B) than to increase w (Fig. 6.19 and Fig. 6.20).

Fig. 6.19. metric-I for platform state XIV based on the theoretical (a) and practical (b) complexities.

(a)

0,00E+00

2,10E-04

4,20E-04

6,30E-04

8,40E-04

1,05E-03

1 2 3 4 5

m
e
tr

ic
-I

w

Method A

Method B

(b)

0,00E+00

7,20E-04

1,44E-03

2,16E-03

2,88E-03

3,60E-03

1 2 3 4 5

m
e
tr

ic
-I

w

Method A

Method B

10.5E-04

8.4E-04

6.3E-04

4.2E-04

2.1E-04

0

2.88E-03

2.16E-03

1.44E-03

0.72E-03

0

3.6E-03

CHAPTER 6: COMPUTING RESOURCE MANAGEMENT ANALYSES

100

Fig. 6.20. metric-I for platform states XV-XXII (a)-(h) based on the practical complexities.

0,00E+00

5,20E-04

1,04E-03

1,56E-03

2,08E-03

2,60E-03

1 2 3 4 5

m
e
tr

ic
-I

w

Method A

Method B

(a) (b)

(c) (d)

(g) (h)

(e) (f)

0,00E+00

3,60E-04

7,20E-04

1,08E-03

1,44E-03

1,80E-03

1 2 3 4 5

m
e
tr

ic
-I

w

Method A

Method B

0,00E+00

1,32E-04

2,64E-04

3,96E-04

5,28E-04

6,60E-04

1 2 3 4 5

m
e
tr

ic
-I

w

Method A

Method B

0,00E+00

1,76E-03

3,52E-03

5,28E-03

7,04E-03

8,80E-03

1 2 3 4 5

m
e
tr

ic
-I

w

Method A

Method B

0,00E+00

9,40E-05

1,88E-04

2,82E-04

3,76E-04

4,70E-04

1 2 3 4 5

m
e
tr

ic
-I

w

Method A

Method B

0,00E+00

6,80E-05

1,36E-04

2,04E-04

2,72E-04

3,40E-04

1 2 3 4 5

m
e
tr

ic
-I

w

Method A

Method B

0,00E+00

9,60E-06

1,92E-05

2,88E-05

3,84E-05

4,80E-05

1 2 3 4 5

m
e
tr

ic
-I

w

Method A

Method B

0,0E+00

8,0E-06

1,6E-05

2,4E-05

3,2E-05

4,0E-05

1 2 3 4 5

m
e
tr

ic
-I

w

Method A

Method B

6.6E-04

5.28E-04

3.96E-04

2.64E-04

1.32E-04

0

18E-04

14.4E-04

10.8E-04

7.2E-04

3.6E-04

0

3.4E-04

2.72E-04

2.04E-04

1.36E-04

0.68E-04

0

4.7E-04

3.76E-04

2.82E-04

0.94E-04

0

1.88E.04

8.8E-03

7.04E-03

5.28E-03

3.52E-03

1.76E-03

0

2.6E-03

2.08E-03

1.56E-03

1.04E-03

0.52E-03

0

4.8E-05

3.84E-05

2.88E-05

1.92E-05

0.96E-05

0

4E-05

3.2E-05

2.4E-05

1.6E-05

0.8E-05

0

SUMMARY

101

Table 6.7 Mean number of iterations (m-iter) of method B.

w \ D XIV XV XVI XVII XVIII XIX XX XXI XXII

1 1.069 1.127 1.284 1.040 1.095 1.356 1.394 2.360 2.518

2 1.037 1.067 1.168 1.019 1.048 1.226 1.246 1.985 2.120

3 1.020 1.033 1.099 1.008 1.024 1.139 1.154 1.693 1.802

4 1.011 1.017 1.057 1.004 1.012 1.083 1.094 1.478 1.560

5 1.006 1.008 1.033 1.002 1.006 1.046 1.052 1.326 1.391

Fig. 6.20g and h show relatively small differences between method A and method B regarding metric-I.

The relatively high numbers of infeasible reconfigurations for platform states XXI and XXII (Fig. 6.15)

and the correspondingly high m-iter (Table 6.7) explain this. More sophisticated q-selection algorithms

should be considered for cases like these. A simple approach would be limiting the set of q instances (for

certain SDR applications or platforms).

6.5 Summary

This chapter has analyzed three major computing resource management issues. First we have demonstrat-

ed the relevance of the premapping order and the facilities of our framework for applying different reor-

dering approaches. We have introduced the c- and b-ordering algorithms, which reorder SDR functions

from high to low processing and from high to low bandwidth demands. We have compared the mapping

results and concluded that the selection of an appropriate mapping order depends on many problem para-

meters. Based on several simulation results we could, though, derive some general rules, which may be

valid for other reconfiguration scenarios as well. These rules should, however, be refined, taking into ac-

count additional platform and application parameters.

A better ordering approach would probably be a mix of the c- and b-ordering as a function of the ap-

plication characteristics and the platform features. A set of thresholds accounting for several modeling

parameters may also be meaningful to approach the multidimensional mapping problem. Dynamic reor-

dering during the tw-mapping process as well as other (preprocessing) techniques may also be practical.

These options require more profound analyses, which are scheduled for future research.

The second analysis has studied the implications of the hardware architecture on the application map-

ping. We have observed that the interprocessor communication network and the distribution of computing

resources affect the mapping results. More precisely, the availability and distribution of computing re-

sources significantly condition the application mapping. The modeling parameters of Chapter 3 have faci-

litated the analysis of the results here. They may, moreover, be useful for predicting the outcomes of simi-

lar reconfiguration situations and making appropriate computing resource management decisions. More

theoretical work is, however, necessary for making reliable and widely applicable predictions and deci-

sions.

We have, finally, evaluated the importance of the tw-mapping parameter w and the cost function para-

meter q. The simulation results have shown that both parameters are very relevant. A metric that relates

performance to complexity has demonstrated that searching for a suitable q is more efficient than aug-

menting w. Deriving more sophisticated q-selection algorithms for our two-term cost function proposal as

well as for other multi-objective cost functions remains for future studies.

We conclude that our SDR computing resource management framework is flexible. Its modular design

facilitates a situation-dependent computing resource management. We have indicated how to adjust the

computing resource management parameters to different reconfiguration scenarios. Nevertheless, other

problems may behave differently and may require additional analyses for finding the most appropriate

parameter sets.

7
 Computing Resource Management in

Cognitive Radio

7.1 Introduction

So far we have argued for computing resource management in SDR. Cognitive radio, the next step toward

flexible wireless communications, is generally considered as the application of SDR: SDR allows for flex-

ible reconfigurations of radio equipment and facilitates a situation dependent use of resources. Cognitive

radio can take advantage of these reconfiguration capabilities to achieve better resource efficiencies by

means of intelligent allocations. We, therefore, assume a cognitive radio system that is based on SDR

technology.

As we have argued throughout this document, resources for SDR communications include, apart from

the radio resources, also the computing resources. Computing resources are essential for running (soft-

ware-defined) signal processing algorithms, among others. Computing resource management is, hence,

important in SDR and, consequently, in SDR-based cognitive radio contexts as well. This chapter ex-

amines the possibilities of computing resource management in cognitive radio and extends the scope of

our SDR computing resource management framework of Chapters 3 and 4. We review some related work

(Section 7.2) before introducing the cognitive computing resource management (Section 7.3) and indicat-

ing its suitability and relevance in cognitive radio scenarios (Section 7.4).

7.2 Related Work

Cognitive radio is primarily associated with RRM and dynamic spectrum access (Section 1.4.1B)). These

are timely topics, but are not the only issues of today‟s radio communications research. Consequently, the

scope of cognitive radio cannot be limited to radio resource or spectrum management. This section points

out some cognitive radio research incentives regarding computing resources management as well as a few

general contributions.

Mitola‟s dissertation formally identifies radio resource management, network management, service

delivery, and download certification as the four areas of influence of cognitive radio [115]. It, moreover,

introduces the notion of self-awareness, which refers to a computational model the system has of itself.

The Radio Knowledge Representation Language (RKRL), particularly, provides the means for

representing the types of processors, their number, and their processing capacities. It specifies mechanisms

for characterizing the time that is allocated to programs, modules, and hardware execution. This informa-

tion is used for controlling the execution time of the cognition cycle (Fig. 1.4a) and for detecting software-

software and software-hardware incompatibilities, rather than for managing the available computing re-

sources.

CHAPTER 7: COMPUTING RESOURCE MANAGEMENT IN COGNITIVE RADIO

104

Reference [114] essentially summarizes [115]. The following two citations from [114] are especially

interesting here:

 A GSM radio’s equalizer taps reflect the channel multipath structure. A network might want to ask

a handset “How many distinguishable multipath components are you seeing?” Knowledge of the

internal states of the equalizer could be useful because in some reception areas, there may be little

or no multipath and 20 dB of extra Signal-to-Noise Ratio (SNR). Software radio processing capac-

ity is wasted running a computationally intensive equalizer algorithm when no equalizer is neces-

sary. That processing capacity could be diverted to better use, or part of the processor might be

put to sleep, saving battery life. In addition, the radio and network could agree to put data bits in

the superfluous embedded training sequence, enhancing the payload data rate accordingly.

 The Act step consists of allocating computational and radio resources to subordinate (conven-

tional radio) software and initiating tasks for specified amounts of time.

The first quotation basically says that adjusting a GSM equalizer as a function of the channel characte-

ristics for using just the necessary processing power could save processing resources and enhance the bat-

tery life. Saving battery is of high importance in the era of power-hungry multimedia applications and

lightweight portable devices and motivates for computing resources management in modern wireless

communications. The second statement indicates the potential of cognitive radio for an intelligent alloca-

tion of radio and computing resources. This potential is, however, not further explored in the paper.

Haykin [116] provides a tutorial-like introduction to cognitive radio. He first resumes the main charac-

teristics of cognitive radio and the related RRM terminology. He then introduces the space-time

processing considerations for the radio-scene analysis (I) and indicates the possibilities and difficulties of

obtaining the channel-state estimation (II) using a predictive modeling. The paper presents different strat-

egies concerning the transmit-power control (IIIa), including game theoretic and water filling approaches,

and discusses some dynamic spectrum management issues (IIIb). It finally provides an outlook on some

relevant research topics for the evolution of cognitive radios. Therein, the computing requirements are

discussed in the sense of supporting the threes cognitive tasks I-III. This chapter, on the other hand, argues

for computing resource management being another cognitive task.

Reference [117] summarizes a set of platform parameters that characterize the capabilities of SDR

platforms and, specifically, the capabilities of dedicated components for the RF and IF processing and the

amount of computing resources for the digital baseband processing. Computing resource management,

which could take advantage of this hardware information, is, however, not mentioned.

Apart from spectrum management issues, [119] mentions the awareness of processing capabilities for

the partitioning or the scheduling of processes as a technology centric property of cognitive radios. This

concept is, however, not further addressed in the paper, which presents cognitive radio as an evolution of

SDR, hence considering SDR as an enabling technology for the intelligent spectrum management. Other

cognitive radio contributions introduce concepts, algorithms, and implementations related to dynamic

spectrum access, a topic that is beyond the scope of this dissertation.

7.3 Cognitive Computing Resource Management

This section introduces the cognitive computing resource management concept. We specify the extended

computing environment (Section 7.3.1), present our vision of a future cognitive radio system (Section

7.3.2), introduce the cognitive computing cycle (Section 7.3.3), and discuss a suitable computing system

modeling (Section 7.3.4).

7.3.1 Extended Computing Environment

The SDR computing environment of Section 2.3.1 consists of the platform and application environments.

These environments specify the computing resources and requirements. Here we consider a more general

approach: The platform resources of the extended computing environment encompass all computing and

computing-related resources of SDR equipment, ranging from the analog RF part to the digital data

processing resources for higher OSI layer implementations and including software mapping and control

mechanisms. The platform resources thus include

COGNITIVE COMPUTING RESOURCE MANAGEMENT

105

Fig. 7.1. Extended computing environment.

 the analog circuitry or resources (for the RF and IF signal processing),

 digital processing powers and interprocessor bandwidths,

 memory resources,

 energy resources,

 software mapping mechanisms, and

 execution control and management entities.

The software availabilities and their constraints correspondingly define the application resources. The

extended computing environment then also captures the available software downloads─SDR applications

and functions─and their computing requirements. Fig. 7.1 illustrates this. It indicates the computing envi-

ronment that this chapter assumes.

Some SDR platform resources offer limited flexibility or no flexibility at all, such as a single RF front

end, and require only minimal management. Considering different types of platform resources, however,

ensures a general approach, which may be valid for SDRs with different degrees of flexibility, from para-

meter-controlled [16] to ideal software radios [4].

The evolution of hardware capabilities facilitates the introduction of more sophisticated communica-

tions technologies (application resources) and services. Even though the processing power may once grow

faster than its requirement, related issues, such as energy consumption, will not become obsolete soon.

Hence, it is and will remain necessary to optimize the usage of the limited platform resources. As commu-

nications evolve from SDR to cognitive radio [119], so must also the computing resource management.

7.3.2 Extended Cognitive Radio System

We argue for an extension of the cognitive radio concept and suggest a cognitive radio system that also

accounts for the computing environment and its implications on wireless communications. Such a system

would behave according to the available platform and application resources. Despite the additional con-

straints, the computing constraints, the system could eventually take advantage of the information about

the computing environment. We analyze this throughout the chapter.

This section presents our view of a future cognitive radio system. We introduce a high-level architec-

ture that implicitly addresses the computing resource management. We, therefore, assume the layered

software radio architecture of Fig. 1.2 and build the cognitive functionalities around this architecture. Fig.

7.2 illustrates this.

The intelligent subsystem at the top of Fig. 7.2 and the two interfaces on the left and right provide the

cognitive functionalities. These interfaces offer sensing and monitoring facilities, on the one hand, and

adaptive mechanisms, on the other.

The layered software radio architecture was introduced by Mitola [5] and discussed in Section 1.2. It

distinguishes between the communications services, the radio applications, the radio infrastructure, and

the hardware platform. Each of these logical layers is, to a certain degree, individually adaptable. Com-

munications services can be dynamically adapted to the momentary radio conditions (interference, propa-

gation loss, and so forth). If, for instance, the radio channel suddenly worsens, a real-time video service

may be adapted from high resolution to low resolution, or even exchanged for a pure audio service if ne-

cessary and accepted by the user.

Application resources

Application availabilities and
computing constraints

Platform resources

Hardware capabilities and
computing resources

CHAPTER 7: COMPUTING RESOURCE MANAGEMENT IN COGNITIVE RADIO

106

Fig. 7.2. Functional blocks of the extended cognitive radio system.

Communications services are facilitated through radio applications. Radio applications represent the

(digital) signal processing chains of radio standards. They define the transmission and reception modes for

correct service delivery over the wireless link. The wireless channel conditions the applicability of radio

applications: Following the previous example, certain channel states may require exchanging a high-

resolution video communications service for a low-resolution video or audio transmission and reception

and may require using another radio application. Also, application‟s modules, such as the coding or error

correction mechanisms, may be individual adaptable as a function of the signal-to-noise ratio (SNR) (Sec-

tion 7.2).

The resource management block of the radio infrastructure is, among others, responsible for mapping

radio applications to the available hardware platform. It generally tries to optimize the usage of the availa-

ble computing resources and, thus, aims at computing efficient implementations of radio applications. The

hardware platform or its current state, though, constrains the applicability of radio applications and, even-

tually, the delivery of communications services. The radio infrastructure needs to deal with these issues

and support the proper selection of radio applications.

The sensing and monitoring interface scans the different layers of the software radio architecture,

processes their states and provides any changes to the intelligent subsystem. This process needs to run

continuously, although its periodicity may vary. The sensing and monitoring cycle could be dynamically

adjusted by the intelligent subsystem as a function of several internal and external system parameters.

The intelligent subsystem processes the environmental information provided by the sensing and moni-

toring interface. The first phase consists of analyzing the system‟s current conditions. In the next phase,

these results would be compared with previous states to evaluate whether the previous decisions have po-

sitively or negatively affected the overall system performance. This way the system could learn how to

correctly face repeating situations and would have a better base for solving new problems. The decision

phase finally follows a set of rules for deriving the most appropriate decisions as a function of the envi-

ronmental analysis and the acquired knowledge.

The adaptive mechanisms or information exchange interface between the intelligent subsystem and the

layered software radio architecture provides two functionalities: adapting the decisions of the intelligent

Communications Services
Robustness, Isochronisms, Multiple Services, Bridging, Applets/

Scripts, Low-Cost Upgrades (Over-The-Air Downloads)

Radio Applications

Source

Coding &
Decoding

Service &

Network
Support

Modem
IF

Processing

RF/

Channel
Access

INFO-

SEC

Joint Control

Specific Waveform Personalities

Radio Infrastructure

Soft Radio Interface Layer Java Layer Conflict Resolution

Middleware

Open Architecture

Hardware Platform

FPGA Hardware

ADCs

DACs

Conflict Detection

Demod Filter
ASICs Multiple DSPs & GPPs

Multiple OS

Resource Management

INTELLIGENT SUBSYSTEM

Analysis Learning Decision

S
E

N
S

IN
G

 &
 M

O
N

IT
O

R
IN

G

A
D

A
P

T
IV

E
 M

E
C

H
A

N
IS

M
S

COGNITIVE COMPUTING RESOURCE MANAGEMENT

107

subsystem to the particular software radio architecture implementation and triggering the different internal

management layers for executing the corresponding actions. The second task is important because some

decisions may affect only one system layer, whereas others may require adjustments of various layers.

The above discussion indicates several interdependencies between communications services, radio ap-

plications, and computing resources. If we assume that future cognitive radio systems will be build around

the above or similar software radio architectures, cognitive computing resource management will become

an essential part of the overall resource management in cognitive radio. We, therefore, introduce the cog-

nitive computing cycle.

7.3.3 Cognitive Computing Cycle

Mitola [114] presented the cognition cycle, which consists of the observe, orient, plan, decide, and act

phases (Fig. 1.4a). These phases coordinately process the information from the outside world, the nonsta-

tionary radio environment, for responding with the appropriate reactions [115]. On the basis of this cycle,

Haykin [116] derived the basic cognitive cycle, which features the radio scene analysis, the channel-state

estimation and predictive modeling, and the transmit-power control and spectrum management (Fig.

1.4b).

The SDR computing environment is nonstationary as well: SDR platforms will be upgraded and new

ones introduced, SDR applications and functions will be updated and new ones created, and computing

resources will be dynamically allocated and released. Fig. 7.3, therefore, introduces the cognitive compu-

ting cycle.

The computing scene analysis entity of the cognitive computing cycle continuously scans the compu-

ting environment. It collects the hardware and software state information of radio equipment (mobile ter-

minals and network elements) and software repositories and provides any changes to the computing re-

source management (CRM) entity. The CRM entity is the brain of the system: it reacts with the most suit-

able actions as a function of its inputs and the available knowledge. This knowledge is accumulated during

the learning process of the system, which observes the effects of its decisions (learning-by-observing).

Hence, the cognitive computing cycle runs continuously.

A cognitive radio system should be able to select the appropriate radio equipment for reconfiguration.

The limited computing resources may then be more efficiently allocated, either locally or globally, in-

creasing the system‟s computing efficiency. This, in turn, facilitates the distribution of radio resources: If,

for example, the radio resources of RAT A are overused, while those of RAT B are not (radio scene analy-

sis) and if the network infrastructure and mobile terminals facilitate a switch to RAT B (computing scene

analysis), the action could be reconfiguring some SDR-MTs to use RAT B instead of RAT A. Such a co-

operative radio and computing resource management will be discussed in Chapter 8.

The computing cycle of Fig. 7.3 is valid SDR-MTs as well as for SDR network elements. Although

the computing resources of the network infrastructure are less limited, an intelligent management may

Fig. 7.3. The cognitive computing cycle.

Action:

reconfiguration

Computing resource

occupation & availability,
analog circuitry

Hardware

& software
information

Available

software
downloads

Computing

scene analysis

Computing

resource

management

Extended computing

environment

CHAPTER 7: COMPUTING RESOURCE MANAGEMENT IN COGNITIVE RADIO

108

reduce the operational costs. Radio operators can then expect a more efficient usage of computing re-

sources and focus on offering a higher variety of transmission modes, services, and QoS levels.

A reconfiguration of an SDR-MT, either partial or total, may require an end-to-end coordination of

several communication layers. The reconfiguration of an SDR-MT may, particularly, invoke the reconfi-

guration of some network elements and vice versa. An example would be dynamically adjusting the down-

link transmission data rate as a function of the terminal‟s momentary processing capabilities. Certain

computing states, such as energy shortage, could then be a reason for reconfiguring SDR-MTs, network

elements, or both.

A cognitive computing resource management would also facilitate the anywhere, anytime, and any-

how wireless access, where the wireless subscriber could be unaware of the RATs that provide the servic-

es. Therefore, the globally distributed cognitive radio systems would need to be coordinated for coopera-

tively managing the distributed platform and application resources.

7.3.4 Computing System Modeling

The cognitive computing resource management implies the continuous monitoring of computing resources

and requirements (computing scene analysis). This requires a computing system modeling that can dynam-

ically be updated and modified. We have presented an SDR computing system modeling in Chapter 3. It

consists of two general modeling templates (RP
t'

)
D
 (3.1) and (RA

t''
)

d
 (3.8) for modeling the platform and

the application features, where t' and t'' (t', t'' ∈ ℕ) index the platform and application features of SDR

platform D and SDR application d, respectively. The two special modeling templates (R
t
)

D
 ⊆ (RP

t'
)

D
 (3.2)

and (r
t
)

d
 ⊆ (RA

t''
)

d
 (3.9) capture the computing resources and requirements for any computing resource

type t (t ∈ ℕ) (Section 3.3).

The above templates can be instantiated as often as necessary for capturing all relevant platform and

application features, including computing resources and requirements. The modeling approach of Chapter

3 thus permits a dynamic and flexible resource monitoring (platforms and applications), because modeling

matrices can be easily added, updated, redimensioned, discarded, or substituted. The cognitive computing

cycle can then continuously monitor and instantly update the information about computing resources and

requirements, facilitating the cognitive computing resource management.

Several modeling instances, including different models for capturing the processing and interprocessor

bandwidth resources and requirements, have already been exposed in Chapter 3. Processing and band-

width resources are the principal computing resources for SDR communications. Additional resources are,

though, required. To illustrate the suitability of the modeling approach for tracking the states of those re-

sources and requirements that present (significant) computing constraints, we introduce additional plat-

form models as instances of (RP
t'

)
D
 and (R

t
)

D
 and the corresponding application models as instance of

(RA
t''

)
d
 and (r

t
)

d
. We, therefore, continue the numbering of platform features (t'), application features (t''),

and computing resources (t) from Section 3.3.

A) Additional Platform Models

SDR platform D may have a global memory for storing the downloaded SDR application of the new radio

mode. The application mapping process then distributes the SDR functions among the processors‟ local

memories. The memory availability for program and data can then be modeled as

 (RP
5
)

D
 = (R

4
)

D
 = MEM

D
 = ((MEM1)

D
, (MEM2)

D
, …, (MEMN(D))

D
, (MEMN(D)+1)

D
) MB, (7.1)

where (MEM1)
D
 through (MEMN(D))

D
 represent the processors‟ local and (MEMN(D)+1)

D
 the platform‟s

global memory resources in megabytes (MB). The energy resources can be modeled as

 (RP
6
)

D
 = (R

5
)

D
 = E

D
 mWPS, (7.2)

if we assume that a single energy resource of E
D
 in milliwatts per second (mWPS) is shared among all

computing resources of SDR platform D or as

 (RP
7
)

D
 = (R

6
)

D
 = E

D
 = ((E1)

D
, (E2)

D
, …, (EN(D))

D
) mWPS, (7.3)

if energy resources are manageable on processor basis.

PROOF OF CONCEPT

109

B) Additional Application Models

SDR application d will require a certain memory space for its execution. Therefore,

 (RA
6
)

d
 = (r

4
)

d
 = mem

d
 = ((mem1)

d
, (mem2)

d
, …, (memM(d))

d
, (memM(d)+1)

d
) MB (7.4)

informs about the memory requirements of application d, where (mem1)
d
 through (memM(d))

d
 represent the

SDR functions‟ program and data memory requirements and (memM(d)+1)
d
 the memory demand of the ap-

plication‟s software download file.

The SDR applications‟ energy demands also need to be met. They may be given on SDR application

basis,

 (RA
7
)

d
 = (r

5
)

d
 = e

d
 mWPS, (7.5)

or on SDR function basis,

 (RA
8
)

d
 = (r

6
)

d
 = e

d
 = ((e1)

d
, (e2)

d
, …, (eM(d))

d
) mWPS. (7.6)

These three application models are symmetric to the platform models (7.1), (7.2), and (7.3). The com-

puting resources and requirements generally correspond, although the platform and application features

may not. (There may be features that are specific to either platforms or applications.) This facilitates allo-

cating computing resources of a certain type t to the corresponding computing requirements, as the pre-

vious chapters have demonstrated for processing and bandwidth resources and requirements.

7.4 Proof of Concept

It is difficult to fairly compare our proposal against typical cognitive radio system implementations that

assume no restriction on the availability of computing resources. Such an assumption may be appropriate

when dealing with multimode radio terminals, but is not suitable for SDR-based cognitive radio systems,

where computing resources are flexibly assigned and released. Since considering these systems, we eva-

luate our cognitive computing resource management proposal in scenarios where computing resources are

limited (SDR scenarios). We discuss two basic scenarios (Section 7.4.1) and analyze simulation results

(Section 7.4.2) for justifying our approach and indicating its potentials.

7.4.1 Basic Scenarios

A) Scenario I

We first consider a basic scenario where SDR-MTs of classes 1, 2, and 3 are reconfigured to different

modes. The three terminal classes are distinguished by their computing capacities, which are specified in

computing units (CU). This metric abstracts a certain computing resource, such as processing power, in-

terprocessor bandwidth, memory availability, or a combination of resources.

The SDR-MTs are dynamically reconfigured from some radio transmission mode to mode A, B, or C.

Mode switches during user sessions are assumed here so that an unsuccessful reconfiguration would cor-

respond to a lost user session. The amounts of required CU characterize the three radio modes. Fig. 7.4a

indicates the computing requirements and capacities of the radio modes and terminal classes, respectively.

It presents the compatibility matrix between the modes and classes, where „+‟ indicates compatibility and

„–‟ incompatibility. We assume that modes A and B facilitate delivering equivalent services and QoSs,

whereas mode C cannot provide the same QoS as the other two modes for all services.

The baseline algorithm, Alg-0, tries to reconfigure an SDR-MT to the desired mode from the RRM

and QoS perspective. Alg-1, on the other hand, also processes the information about the computing envi-

ronment, captured by the compatibility matrix. The scenario assumes that enough radio resources are

available for reconfiguring each terminal to any of the three modes. Later on we will justify this assump-

tion.

In cases where a user desires a higher QoS than mode C can provide, the SDR-MT needs to be recon-

figured to either mode A or B. Alg-1 chooses mode A, mode B, or no reconfiguration as a function of the

terminal‟s computing resources: If the terminal (momentarily) neither supports mode A nor mode B, the

service is maintained at the lower QoS of mode C. Alg-0, on the other hand, initiates the reconfiguration

in any case.

CHAPTER 7: COMPUTING RESOURCE MANAGEMENT IN COGNITIVE RADIO

110

Fig. 7.4b shows the statistically expected results. Despite the basic scenario, these results indicate

some advantages of a cognitive radio system that implements our cognitive computing resource manage-

ment: Being constantly aware of the terminals computing capabilities (Alg-1), it can avoid infeasible re-

configuration requests while sacrificing QoS only for the sake of connectivity.

A) Scenario II

Scenario II demonstrates the most basic way of knowledge acquisition. It accounts for the difficulty of

allocating distributing computing resources. The corresponding compatibility matrix (Fig. 7.5a) indicates

that theoretically enough computing resources do not necessarily guarantee a feasible mode. Alg-1 needs

to acquire this knowledge, starting from its initial knowledge of Fig. 7.4a. It can obtain it through expe-

rience: By making a wrong decision and losing a user session, the system learns to avoid this decision,

excluding this class-mode pair. This way the system eventually gains the necessary knowledge for avoid-

ing infeasible reconfiguration requests.

The statistical results (Fig. 7.5b) show that Alg-1 loses sessions in this scenario, but only during its

learning phase. The percentage of QoS degradations of Alg-1 is, again, lower than the percentage of lost

sessions of Alg-0. This is so because QoS degradations are only accepted if necessary for maintaining the

connection.

The B3G context is characterized by several overlapping RATs, in this case three. The limited availa-

bility of radio resources in practice will usually not allow such a flexible selection of modes. But even in

the extreme case with only one momentarily available mode, the cognitive computing resource manage-

ment would make sense as a support for the redistribution of radio resources. If, for example, mode B,

which is interesting because of its low computing resource demands and high QoS capabilities, is momen-

tarily overused, the system may initiate the reconfiguration of some SDR-MTs that run in mode B to use

mode A or C, whichever available, according to the terminals‟ computing capabilities and the users‟ QoS

demands.

7.4.2 Simulations

We consider a typical case study and a simple simulation setup for evaluating two basic CRM algorithms

or policies. Without loss of generality, we focus on the reconfiguration of SDR-MTs.

A) Case Study

The spectrum scanning at a certain time and area with 2G and 3G coverage shows that the number of

GPRS sessions is elevated. The cognitive radio system thus decides to reconfigure some SDR-MTs that

run in the GPRS mode to operate in another mode. This way the network capacity could be increased and

more users satisfied. We assume that the UMTS radio resources are underused. A reconfiguration of some

SDR-MTs that run in the GPRS mode to access the UMTS RAT would then balance the traffic loads be-

tween the two wireless standards so that penetrating 2G mobile terminals, as opposed to SDR-MTs, could

maintain or initiate their GPRS sessions.

Mode

Class 1

100 CU

Class 2

80 CU

Class 3

60 CU

 Uninterrup-

ted sessions

Lost ses-

sions

QoS de-

gradations

A (90 CU) + – – Alg-0 66.6 % 33.3 % 0 %

B (70 CU) + + – Alg-1 100 % 0 % 22.2 %

C (50 CU) + + +
 (a) (b)

Fig. 7.4. Compatibility matrix (a) and statistical results (b) for scenario I.

Mode

Class 1

100 CU

Class 2

80 CU

Class 3

60 CU

 Uninterrup-

ted sessions

Lost ses-

sions

QoS de-

gradations

A (90 CU) – – – Alg-0 44.4 % 55.5 % 0 %

B (70 CU) + – – Alg-1 All but 2 2 ~44.4 %

C (50 CU) + + +
 (a) (b)

Fig. 7.5. Compatibility matrix (a) and statistical results (b) for scenario II.

PROOF OF CONCEPT

111

Fig. 7.6. SDR platform types XXIII-XXV (a)-(c).

Fig. 7.7. SDR applications: chip- (a) and bit-rate (b) computing requirements of the 64, 128, and 384 kbps UMTS

downlink receivers.

Table 7.1 Some implementation details.

SDR function Implementation details

Digital down converter @ 65 MHz

Sampling rate adjustment output @ 61.44 MHz = 16 · chip rate

Filter channelization and matched filters

Chip & slot synchronization 2 matched hierarchical real correlators,

each @ 4

·

3.84 MHz [107], [109]

Frame synchronization 32 256-chip real correlators @ 1.5 kHz

[107], [109]

Cell ID detection descrambling and correlation [107]

RAKE receiver 4 fingers, SF = 4 & 8 [107], [110]

Turbo decoder 4 iterations [107], [108]

Our simulation time span is specified by 15 000 SDR-MTs of different computing architectures and

resources. All of these terminals initially run in the GPRS mode. The objective is to reconfigure as many

SDR-MTs as possible to access the WCDMA air interface. We assume that additional applications may

concurrently run on an SDR-MT. Hence, part of a platform‟s total computing resources may not be avail-

able for implementing the new radio mode.

B) SDR Platforms

Fig. 7.6 shows three types of SDR-MTs. Fig. 7.6a illustrates a dedicated FD communication network,

where the three processors are completely interconnected through dedicated and unidirectional communi-

(P2)
D

C

(P1)
D

C

(P3)
D

C

B

B

(a)

(P2)
D

C

(P1)
D

C

(P3)
D

C

2·B

(b)

(P2)
D

C

(P1)
D

C

(P2)
D

C

6·B

(c)

10 / 21 /
63 Mops

156 / 311 /
1368 Mops

2nd

Deinter-
leaving

Physical
Channel

De-
Mapping

Physical
Channel
Deseg-

mentation

10 Mops

Radio
Frame
Deseg-

mentation

1st

Deinter-
leaving

116 Mops

Rate
Match-

ing

141 Mops

Turbo
De-

coding

TrBk
Concat./
CodeBk
Deseg.

11.7 Mops 0.2 Mops

64 / 128 / 384 kbps3.09 / 6.14 / 18. 4 Mbps

10 Mops 105 Mops

CRC
Detach-

ment

3.84 / 7.68 / 23.04 Mbps

DPCH

fS = 15.36 MHz fS = 3.84 MHz

0.016 Mbps

fS = 61.44 MHz

DDS

Sampling
Rate

2458 Mops492 Mops123 Mops

492 Mops 2458 Mops

140 Mops

4 RAKE
Fingers

DPCH

983.04 Mbps

245.76 Mbps

1040 Mbps

4

4

Sampling
Rate

ADC

16 bit

Q

I

MRC

fS = 65 MHz

16 bit

16 bit

Filtering

Filtering

61.44 Mbps

184.4 Mops

Frame

Sync.

Cell ID

Detect.

12.3 Mops

0.016 Mbps

Frequency
Adjust

120 Mops

Interpolator
Decimator

46 Mops

Chip & slot

sync.

1045 Mops

(a)

(b)

CHAPTER 7: COMPUTING RESOURCE MANAGEMENT IN COGNITIVE RADIO

112

cation lines. The HD architecture of platform XXIV permits a more flexible bandwidth assignment be-

tween any processor pair. The bus system of Fig. 7.6c permits a fully flexible bandwidth distribution. The

mean link flexibilities (Table 3.4) of the three architectures are (LFM)
XXIII

 = 1/6, (LFM)
XXIV

 = 1/3, and

(LFM)
XXV

 = 1. We assume that each platform runs the P-HAL-OE (Section 2.2.3) and that it features the t1-

mapping algorithm with cost function (4.9) (Sections 4.2.1 and 4.3.2).

These platform types represent a small though representative excerpt of the numerous possible SDR

platform architectures. (CT)
D
 = 3 · C [MOPS] and (BT)

D
 = 6 · B [Mbps] quantify a platform‟s total

processing and bandwidth resources for executing the SDR applications of Section 7.4.2C).

This case study addresses 5000 SDR-MTs of each type. Their reconfigurable computing resources C

and B are simulated as independent random variables, which are uniformly distributed in {2700, 2750, …,

4200} MOPS and {200, 250…, 1500} Mbps, respectively. This way we simulate SDR platforms of differ-

ent architectures and resources.

C) SDR Applications

The SDR applications are three partial UMTS downlink receiver implementations, providing data rates of

up to 64, 128, and 384 kbps. Each of these SDR applications comprises 20 SDR functions. Fig. 7.7 illu-

strates the three processing chains and their computing requirements. The computing requirements were

obtained from [107], [108], [109], [110] and available implementations. An SDR function‟s processing

requirement was calculated as the number of MACs times the required processing frequency, which is a

function of the sampling rate fS. Likewise, a bandwidth demand represents the product of the data rate and

the bit precision of 16 bits per sample. Table 7.1 provides further implementation details.

Note that some SDR functions are implemented in another way than the corresponding functions of

the UMTS receiver of Fig. 3.4. The chip and slot synchronization, in particular, is more efficiently imple-

mented here, taking advantage of the hierarchical properties of the P-SCH sequence of the UMTS stan-

dard, among others [107], [109]. This indicates the flexibility of SDRs regarding the introduction of more

efficient software implementations, a topic that is further discussed in Chapter 8.

The total processing requirements of the three SDR applications are approximately (cT)
64kbps

 = 8130

MOPS, (cT)
128kbps

 = 8300 MOPS, and (cT)
384kbps

 = 9400 MOPS. The total processing requirement of the

GPRS receiver is roughly an order of magnitude lower than that of an UMTS receiver [19], [141]. The

GPRS receiver is thus feasibly mappable to (a single processor of) any SDR-MT. The time slot duration

and the other modeling parameters of Chapter 3 are irrelevant here.

The processing and bandwidth resources of Section 7.4.2B) correspond to the available computing re-

sources after the (projected) deallocation of the GPRS receiver functions. They are dedicated to the partial

receiver implementations illustrated in Fig. 7.7. We assume that additional computing resources are avail-

able for implementing the higher OSI layers and the UMTS and GPRS uplink transmitters. We also as-

sume that other types of computing resources, such as memory and energy, though required, do not con-

strain the applicability of these SDR applications.

D) Baseline and CRM Algorithms

Baseline Algorithm (Alg-0)

The baseline algorithm is not aware of the SDR-MTs‟ computing capabilities and, thus, initiates the recon-

figuration of any candidate SDR terminal. A terminal with insufficient computing capacity for executing

the UMTS signal processing chain fails in switching from GPRS to UMTS, interrupting the currently run-

ning session. The system chooses the 384 kbps UMTS realization because it can provide the highest QoS.

CRM Algorithm (Alg-1)

Alg-1 uses the supplied hardware and software information. It reconfigures an SDR-MT as a function the

platform‟s computing resources, the applications‟ computing requirements, and the available reconfigura-

tion information. This information is successively accumulated during the cognitive learning process: If a

session is lost because of an unsuccessful reconfiguration intent (infeasible mapping, which means that the

computing or timing constraints cannot be met), terminals with equivalent computing characteristics are

not considered again for reconfiguration.

The system dynamically chooses the UMTS realization as a function of the total processing capacity

(CT)
D
 of SDR-MT or platform D:

PROOF OF CONCEPT

113

 384 kbps UMTS if (CT)
D
 ≥ (cT)

384kbps
,

 128 kbps UMTS if (cT)
384kbps

 > (CT)
D
 ≥ (cT)

128kbps
,

 64 kbps UMTS if (cT)
128kbps

 > (CT)
D
 ≥ (cT)

64kbps
, and

 no reconfiguration if (cT)
64kbps

 > (CT)
D
.

The granularity of (CT)
D
 and the total processing requirements (cT)

384kbps
, (cT)

128kbps
, and (cT)

64kbps
 lead

to the three processing thresholds 9450, 8400, and 8250 MOPS. T384 = 9450 / 3 MOPS, T128 = 8400 / 3

MOPS, and T64 = 8250 / 3 MOPS are then the processing thresholds on processor basis.

Some services may not be maintained at the same quality with the 64 kbps or 128 kbps as opposed to

the 384 kbps UMTS transceiver. We assume that the users are willing to accept a possible quality degrada-

tion for the sake of a ubiquitous wireless access. Users generally prefer a lower QoS than no service at all.

CRM Algorithm 2 (Alg-2)

Alg-2 is an extension of Alg-1. It initially chooses the same thresholds for selecting one of the three

UMTS realizations. The learning process is, though, slightly different: If a reconfiguration to the 384 kbps

realization fails, the next SDR-MT of the same type and equivalent computing resources will be reconfi-

gured to the 128 kbps UMTS mode. If the 128 kbps UMTS receiver cannot be feasibly mapped, the 64

kbps implementation will be considered the next time, whereas an infeasible mapping of the 64 kbps

processing chain leads to discarding equivalent terminals from being reconfigured.

E) Simulation Results

The cognitive radio system, executing one or the other CRM algorithm, sequentially evaluates the reconfi-

guration of SDR-MTs, processing one terminal per cognitive cycle of Fig. 7.2 and Fig. 7.3, respectively.

Fig. 7.8 presents the evolution of the number of lost sessions. It shows that the curves corresponding to

Alg-1 and Alg-2 saturate, reflecting the cognitive learning process: Alg-1 and Alg-2 learn which terminals

can be feasibly reconfigured and which cannot. Alg-0, on the other hand, constantly loses user sessions,

because not processing any information about the computing environment. Hence, Alg-1 and Alg-2 drop

fewer sessions than Alg-0.

Fig. 7.9 shows the evolution of successful reconfigurations and Fig. 7.10 the operational modes of the

SDR-MTs after the simulation time span. The number of SDR-MTs that remain using the GPRS mode

plus those that are successfully reconfigured to any UMTS mode plus the number of lost sessions due to

Fig. 7.8 is then 5000 for each platform type. These figures indicate that the cognitive computing resource

management, represented through Alg-1 and Alg-2, facilitates distributing radio resource and, thus, satis-

fying more users in a heterogeneous radio and computing scenario.

Alg-2 loses more sessions than Alg-1 (Fig. 7.8) but also feasibly reconfigures more terminals (Fig.

7.9). The shapes of the corresponding curves in Fig. 7.8 and Fig. 7.9 indicate that Alg-1 is more suitable

than Alg-2 for a low number of reconfiguration intents, whereas Alg-2 becomes the more efficient the

higher the number of SDR-MTs. The algorithm selection finally depends on the system‟s particular objec-

tive. It is a tradeoff between losing fewer sessions and reconfiguring more terminals.

Fig. 7.11, Fig. 7.12, and Fig. 7.13 illustrate the accumulated mapping information, which is acquired

during the learning process of Alg-1 and Alg-2. The complete mapping information, as shown in these

figures, is only partially obtained with the 15 000 SDR-MTs. The topmost level in any figure indicates

that the corresponding processing and interprocessor bandwidth resources facilitate a feasible mode switch

to 384, 128, or 64 kbps UMTS. The second level indicates that the corresponding terminals can be feasibly

reconfigured to the 128 or the 64 kbps realizations, whereas the first level means a maximum achievable

bit rate of 64 kbps. Any C-B crossing at the bottom level of Fig. 7.11a, Fig. 7.12a, or Fig. 7.13a symboliz-

es insufficient computing resources (processing or bandwidth resources, or both) for operating in the cor-

responding UMTS mode. A bottom-level C-B crossing in Fig. 7.11b, Fig. 7.12b, or Fig. 7.13b, on the oth-

er hand, indicates that none of the three UMTS modes is feasible for the corresponding SDR-MT.

The three thresholds T64, T128, and T384 are also shown in Fig. 7.11, Fig. 7.12, and Fig. 7.13. These in-

dicate a processor‟s minimum processing power C for considering the corresponding UMTS mode. For

example, processing powers of C ≥ T384 indicate that Alg-1 and Alg-2 will initially choose 384 kbps

UMTS as the target mode. If the reconfiguration fails, Alg-1 will not try to reconfigure equivalent termin-

als at all, whereas Alg-2 will consider the lower bit rate, or 128 kbps, UMTS mode (Section 7.4.2D)). The

holes and steps in the figures reflect these algorithmic differences.

CHAPTER 7: COMPUTING RESOURCE MANAGEMENT IN COGNITIVE RADIO

114

Fig. 7.8. Number of lost sessions for SDR platform types XXIII (a), XXIV (b), and XXV (c).

Fig. 7.9. Number of feasible reconfigurations for SDR platform types XXIII (a), XXIV (b), and XXV (c).

Fig. 7.10. Not reconfigured and feasibly reconfigured SDR-MTs of types XXIII (a), XXIV (b), and XXV (c).

The holes in le left subfigures and the steps not coinciding with the thresholds in the right reveal that

theoretically enough processing resources do not guarantee a feasible mapping. The main reasons for this

are the complexity of the mapping problem and the rather simple, though computationally practical, t1-

mapping heuristic (Chapter 4). The six subfigures of Fig. 7.11, Fig. 7.12, and Fig. 7.13 clarify the results

of Fig. 7.8, Fig. 7.9, and Fig. 7.10, and vice versa. We discuss some architectural implications below.

Fig. 7.8 shows that the number of lost sessions is the highest for the SDR-MTs of type XXIII and the

lowest for those of type XXV. Correspondingly, the number of feasible reconfigurations is the lowest for

the terminals of type XXIII and the highest for those of type XXV (Fig. 7.9). The platforms‟ mean link

flexibilities (LFM)
XXIII

 = 1/6, (LFM)
XXIV

 = 1/3, and (LFM)
XXV

 = 1 explain this (Section 6.3.2).

From Fig. 7.11, Fig. 7.12, and Fig. 7.13 we, moreover, conclude that the mean link flexibility parame-

ter provides a relative indication of a platform‟s necessary interprocessor bandwidth capacity (BT)
D
 for

facilitating a feasible mapping. For C = 3000, for example, SDR-MTs of type XXV need merely 6 · 500 =

3000 Mbps for feasibly mapping the 128 kbps chip and bit-rate receiver processing chain, whereas those

of types XXIV and XXIII require at least 3900 and 6000 Mbps, respectively, for solving the same problem

(a) (b) (c)

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000 4000 5000

L
o
s
t

s
e
s
s
io

n
s

SDR-MT

Alg_0

Alg_1

Alg_2

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000 4000 5000

SDR-MT

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000 4000 5000

SDR-MT

0

250

500

750

1000

1250

1500

1750

2000

0 1000 2000 3000 4000 5000

SDR-MT(a) (b) (c)

0

250

500

750

1000

1250

1500

1750

2000

0 1000 2000 3000 4000 5000

F
e
a
s
ib

e
 r

e
c
o
n
fi
g

u
ra

ti
o
n
s

SDR-MT

384 kbps

128 kbps, Alg_1

128 kbps, Alg_2

64 kbps, Alg_1

64 kbps, Alg_2

0

250

500

750

1000

1250

1500

1750

2000

0 1000 2000 3000 4000 5000

SDR-MT

0

500

1000

1500

2000

2500

3000

3500

GPRS 64 kbps 128 kbps 384 kbps

Operational mode

0

500

1000

1500

2000

2500

3000

3500

GPRS 64 kbps 128 kbps 384 kbps

Operational mode

0

500

1000

1500

2000

2500

3000

3500

GPRS 64 kbps 128 kbps 384 kbps

O
p

e
ra

ti
n

g
 S

D
R

-M
Ts

Operational mode

Alg_0

Alg_1

Alg_2

64 128 384

kbps UMTS
GPRS

64 128 384

kbps UMTS
GPRS GPRS

(a) (b) (c)

64 128 384

kbps UMTS

PROOF OF CONCEPT

115

with the available computing resource management tools (t1-mapping with cost function (4.9)). Converse-

ly, if (BT)
D
 = 3900 Mbps are enough for feasibly solving a computing resource management problem at

SDR-MT D of type XXIV, a feasible mapping can be predicted for the corresponding SDR-MTs of type

XXV, but not for those of type XXIII.

Fig. 7.11. Accumulated mapping information due to the learning process of Alg-1 (a) and Alg-2 (b) for SDR plat-

form type XXIII.

Fig. 7.12. Accumulated mapping information due to the learning process of Alg-1 (a) and Alg-2 (b) for SDR plat-

form type XXIV.

2700

2850

3000

3150

3300

3450

3600

3750

3900

4050

4200

2
0
04

0
06
0
08

0
0

1
0
0
01
2
0
01
4
0
0

(a)

B

C

T384

T128
T64

2700

2850

3000

3150

3300

3450

3600

3750

3900

4050

4200

2
0
04
0
06

0
08
0
01
0
0
01
2
0
01
4
0
0

(b)

B

C

T384

T128

T64

2700

2850

3000

3150

3300

3450

3600

3750

3900

4050

4200

2
0
04
0
06

0
08
0
01
0
0
01
2
0
01
4
0
0

(a)

B

C

T128

T64

2700

2850

3000

3150

3300

3450

3600

3750

3900

4050

4200

2
0
04
0
06

0
08
0
01
0
0
01
2
0
01
4
0
0

(b)

B

C

T384

T128

T64

T384

CHAPTER 7: COMPUTING RESOURCE MANAGEMENT IN COGNITIVE RADIO

116

Fig. 7.13. Accumulated mapping information due to the learning process of Alg-1 (a) and Alg-2 (b) for SDR plat-

form type XXV.

7.5 Summary

Cognitive radio is commonly considered as a tool for advanced RRM. Computing resource management

has not been addressed so far in this context. We have argued for considering computing resource man-

agement as a cognitive task and correspondingly extended the scope of our SDR computing resource man-

agement framework.

There are many advantages of efficiently using the limited computing resource of SDR platforms,

such as prolonging the battery lives of SDR-MTs. The awareness and learning capabilities of cognitive

radio, moreover, facilitate a situation-dependent allocation and reallocation of computing resources.

Knowledge may be locally obtained but should be globally distributed, accelerating the learning process

through information sharing between cognitive radio entities or systems.

A cognitive computing resource management can increase the efficiency of individual computing

equipment (selfish computing resource management) or maximize the utility of the overall computing

system or environment (coordinated computing resource management). If computing resources are not

shared, a selfish computing resource management may be appropriate. The need for resource sharing, on

the other hand, calls for a coordinated computing resource management. Despite a few specific situations,

such as emergency scenarios, a coordinated computing resource management should therefore be the ulti-

mate goal. The following chapter deals with this from a more general perspective, proposing a joint man-

agement of the different resource types that facilitate SDR communications.

2700

2850

3000

3150

3300

3450

3600

3750

3900

4050

4200

2
0
04
0
06

0
08
0
01
0
0
01
2
0
01
4
0
0

(a)

B

C

T384

T128

T64

2700

2850

3000

3150

3300

3450

3600

3750

3900

4050

4200

20
040

060
080

010
0012

0014
00

(b)

B

C

T384

T128

T64

8
 Joint Resource Management for

Cognitive Radios

8.1 Introduction

The radio communications spectrum is commonly considered as a very scarce resource. Nevertheless,

measurements have revealed that spectral resources are actually underused [142]. Technology advances

and new RRM techniques facilitate a more efficient use of radio resources. More sophisticated digital

signal processing techniques, though increasing the spectral efficiency, require more computing power.

This has several implications on the computing resource management. Instead of merely enabling the im-

plementation of advanced RRM methods, the cognitive computing resource management facilitates the

efficient and situation-dependent use of the limited computing resources (Chapter 7). Trading radio

against computing resources is then possible and may become the major achievement of cognitive radio.

We envisage cognitive radio systems that jointly manage all those resources that are required for SDR

communications. We identify the radio, computing, and application resources as the three major resource

types (Fig. 8.1). Radio, computing, and application resources basically refer to spectral resources, hard-

ware capabilities, and the available software implementations of digital data processing algorithms (Sec-

tion 8.2). Neither of these resource types can be directly quantified, although the underlying physical re-

sources, such as processing powers and radio transmission bandwidth, can. Fig. 8.1 indicates orthogonality

or independence between the three types of resources. Nevertheless, a reliable radio link requires a certain

mix of radio, computing, and application resources.

Section 7.1 has indicated that cognitive radio research lacks computing resource management contri-

butions. We therefore consider our cognitive computing resource management proposal of Chapter 7 as

the basis for the computing and application resource management to be joined with the RRM. We intro-

Fig. 8.1. Logical SDR resource space.

Radio Resources

Computing Resources Application Resources

CHAPTER 8: JOINT RESOURCE MANAGEMENT FOR COGNITIVE RADIOS

118

duce the cooperative and integrated resource management for jointly managing the radio, computing, and

application resources (Section 8.3).

The computing resource management has so far implicitly managed the application resources. An ex-

plicit application resource management makes sense, though, because SDR facilitates a dynamic and

modular SDR application design and update, the independent development of SDR applications and plat-

forms, and their independent launch and deployment. It may then be more efficient to independently man-

age the complex computing and application environments (Section 8.4). This may further leverage the

introduction of more sophisticated SDR platforms, more efficient SDR applications, and innovative user

services. Despite this separation, the many correlations between all three resource types call for a joint

management of the radio, computing, and application environments (Section 8.5).

8.2 Environments and Resources

We have already mentioned that different types of resource are necessary for modern radio communica-

tions. These include the available spectrum for radio communications, computing resources for processing

signals before transmission and after reception, algorithms that define the signal processing functions, and

applications that present the information to the wireless user. These resources are necessary for delivering

user services and guaranteeing QoS. We can group them into four logical environments:

 the radio environment (RE),

 the computing environment (CE),

 the radio application environment (RAE), and

 the user application environment (UAE).

A mix of resources from these four resource pools can provide a wireless service at a certain QoS.

From another viewpoint, the service environment (SE) represents a pool of services (and QoSs). Services

may then be considered as resources as well. Fig. 8.2 illustrates the five logical environments, indicating

some of their resources.

Fig. 8.2. Radio (a), computing (b), service (c), radio application (d), and user application (e) environments.

User applications’ functions

(processing blocks)

User applications
(processing chains)

Computing requirements

SDR functions

(processing blocks)

SDR applications
(processing chains)

Computing requirements

Analog circuitry (RF, IF)

Processing powers and

interprocessor bandwidths

Memory availability

Energy resources

Accessible spectrum and

spectrum holes

Traffic and noise floor statistics

Momentary channel capacity

and interference levels

(a) (b)

(d) (e)

Voice, Video, or Streaming

Multimedia

(bit rate)

(bit or block error rate)

(c)

… …

…

… …

COOPERATIVE VERSUS INTEGRATED RESOURCE MANAGEMENT

119

The CE here consists of the computing resources and hardware capabilities. It corresponds to the plat-

form resources of the extended computing environment of Section 7.3.1. We use radio application syn-

onymously to SDR application or waveform and group the RAE and UAE under the application environ-

ment (AE).

Radio applications contain the signal processing functions that facilitate the over-the-air delivery of

services, whereas user applications specify the service presentations. Radio resources are required for

over-the-air data transmissions and computing resource for the corresponding signal processing and the

information presentation. Therefore, resources from the four principal environments─RE, CE, RAE, and

UAE─are required for providing (communications) services over the wireless link. SDR and cognitive

radio facilitate the flexible and intelligent usage of these resources. An efficient allocation of radio and

computing resources through an intelligent selection of radio and user applications is then possible.

All five environments are highly dynamic because of the dynamic allocation and release of resources,

steady upgrades of SDR platforms, constant improvements of signal processing algorithms, and evolving

radio standards and user services, among others. Each environment, furthermore, consists of heterogene-

ous resources. This has several implications: Different transmission frequencies and bandwidths have

different physical features which facilitate or impede a certain service delivery. Heterogeneous computing

resources facilitate the execution of heterogeneous processing chains, but complicate the design of SDR

frameworks and abstraction layers (Chapter 2). Service differentiations and personalized service provi-

sioning, finally, require personalized agreements between service providers and end users and the man-

agement of many different user profiles.

Apart from the above issues, the limited amounts of resources constrain the capacity of the wireless

access: Quality requirements and interference mainly limit the availability of radio resources, whereas the

computing capabilities restrain the execution of applications and, thus, the service and QoS delivery. The

wireless subscriber becomes aware of these constraints through QoS degradations, service interruptions, or

the lack of service versatility, among others. One major task of the joint resource management is then

making these resource limitations transparent to the wireless user.

8.3 Cooperative versus Integrated Resource Management

A joint resource management can be implemented in many ways. We suggest either a distributed or cen-

tralized resource management and introduce the cooperative and integrated resource management con-

cepts. The following definitions point out the main differences.

Definition 5 Cooperative resource management: The separate resource management entities

interchange their individual objectives and decisions, which are then adjusted for

the system’s overall benefit.

Definition 6 Integrated resource management (IRM): One resource management entity processes

all environmental information for deriving the appropriate actions that maximize

the system’s overall benefit.

These definitions indicate the existence of distributed resource management entities that cooperate

with one another (Fig. 8.3a, Table 8.1) or a central entity, which implicitly processes the all environmental

information (Fig. 8.3b, Table 8.1). A cooperative resource management may be easier to develop and im-

plement, whereas an integrated resource management may provide better results. The selection of one or

another approach is a function of the environmental conditions, management policies, and so forth. Rather

than discussing these issues, we introduce general concepts for the joint resource management, be it coop-

erative or integrated.

Although we may logically group and independently model the different resource types, the corres-

ponding environments overlap in practice. Resources from different types are, moreover, correlated: A

radio or user application specifies the minimum amount of computing resources that it requires for execu-

tion. The computing requirements are, generally, a function of the service and QoS demands (AE ↔ SE)

and the given radio conditions (AE ↔ RE). The selection of the appropriate applications is, finally, a func-

tion of the available computing resources (AE ↔ CE).

CHAPTER 8: JOINT RESOURCE MANAGEMENT FOR COGNITIVE RADIOS

120

Table 8.1 Resource management abbreviations.

CRM(D) Computing resource management (for platform D)

JARM Joint application resource management

JCRM Joint computing resource management

JRARM Joint radio application resource management

JRRM Joint radio resource management

JUARM Joint user application resource management

RARM(d) Radio application resource management (for radio application d)

RRM(Z) Radio resource management (for RAT Z)

UARM(d) User application resource management (for user application d)

The joint resource management can account for these interrelations and take advantage of them. It,

particularly, facilitates selecting the radio and user applications for each SDR platform as a function of the

radio, computing, application, and service environments. We, therefore, argue for a cognitive radio system

that implements either a cooperative or an integrated resource management. For resources to be managed,

their status needs to be known at any time. This requires a suitable resource modeling and monitoring,

which is presented in continuation.

Fig. 8.3. Cooperative (a) and integrated (b) resource management concepts.

(a)

RRM2

RRM1

RRM3

···

JRRM

CRM2

CRM1

CRM3

···

JCRM

UARM1

···

JUARM

RARM1

···

JRARM

RE

UAE

RAE

CE

SE

(b)

CRM2

CRM1

CRM3

···

JCRM

UARM1

···

JUARM

RARM1

···

JRARM

UAE

CE

RAE

RE

SE

RRM2

RRM1

RRM3

···

JRRMIRM

COGNITIVE CYCLES

121

8.4 Cognitive Cycles

This section presents three cognitive cycles and establishes a simple modeling of the radio, computing,

and application environments. Sections 8.4.1 to 8.4.3 assume the cooperative resource management con-

text. Section 8.4.4 discusses the joint resource management implications.

8.4.1 Radio Cycle

Radio resource management is currently very important and the major research issue in the context of

cognitive radio [116]. Apart from the rising number of wireless subscribers and their constantly increasing

bandwidth demands, the observations that many radio frequency bands are underused [142] underlines the

importance and the potentials of the JRRM in heterogeneous radio environments [132]. Recent cognitive

radio research therefore tries to achieve a more efficient spectral usage and, particularly, evaluates differ-

ent dynamic spectrum access techniques (Section 1.4.1B)).

Cognitive radio facilitates a situation dependent management of spectral or radio resources. The radio

cycle (Fig. 8.4) therefore continuously monitors the radio environment and decides upon the most appro-

priate radio resource allocation at any time. The radio scene analysis module, particularly, updates infor-

mation about owned and leased radio frequencies and their occupations, whereas the JRRM entity uses

this information for evaluating and triggering radio resource allocations or reallocations. This way the

radio resources can be dynamically managed for increasing the overall system capacity, radio operator

revenues, or the like.

The basis for an efficient information processing is a suitable modeling. In this case, the modeling

needs to capture the channel characteristics. Xing et al. [130] illustrate how a frequency band can be di-

vided into channels. It shows two frequency grids, one for a narrowband and one for a wideband radio

system. Since the grids overlap, the frequency grid of the narrowband system specifies the channel granu-

larity. We adopt this approach, although we do not require that the entire spectrum be divided in channels

of equal bandwidths, but, rather, that a channel‟s bandwidth be a function of the radio systems that may

operate in the corresponding band. The channel granularity may, furthermore, be dynamically adjustable.

A channel may then be divided or adjacent channels merged, facilitating an efficient management: the

smaller the channels the more flexible the spectrum allocation, but the more complex the JRRM.

We assume that spectrum leasing is possible, whereas spectrum bands may or may not be preassigned

to certain RATs. A channel is described by several parameters, such as owner, leaser, and occupation. If a

channel is licensed, its owner is the license holder; otherwise, the owner is public. The occupation metric

could, for instance, relate the actual to the tolerable interference level of a channel. It may take discrete or

continuous values. In the former case we may specify a channel‟s occupation as free, low, medium, or high

and, in the latter, through the occupation percentage. The radio environment can then be modeled as

 (RR)
ch

 = (<start frequency [MHz]>, <end frequency [MHz]>, <owner>, <leaser>, <occupation [%]>), (8.1)

where ch ∈ ℤ (integers) specifies the channel number.

Fig. 8.4. The radio cycle.

Action:

Transmitted
signal

Spectrum holes,

noise floor & traffic
statistics, channel

capacity

RF stimuli

Radio scene

analysis

Radio

environment

JRRM

CHAPTER 8: JOINT RESOURCE MANAGEMENT FOR COGNITIVE RADIOS

122

The channel numbering could be arbitrary. A logical numbering, where channel n is adjacent to chan-

nels n–1 and n+1, would, however, simplify finding adjacent channels. We assume that the system knows

about the RAT suitability for a given channel and the number of (adjacent) channels required for transmis-

sion. These assumptions will be relaxed in future versions of (8.1). Based on the momentary radio re-

source states, primarily described by the fifth element of (RR)
ch

, the JRRM entity would then be able to

identify over and underused channels. This information could serve for distributing radio resources and

increasing the spectral efficiency.

The above model is simple and flexible. We can extend it vertically and horizontally for tracking addi-

tional channels and channel information. Channels can also be easily be split or merged. This is in line

with the modeling concept of Chapter 3. (RR)
ch

 could, particularly, be considered as an instance of a gen-

eral radio resource modeling template that facilitates accounting for any relevant radio resource informa-

tion.

8.4.2 Computing Cycle

SDR characterizes reconfigurable radio equipment that consists of general-purpose and software-

reconfigurable processors, such as DSPs and FPGAs. Any processing entity has a limited amount of com-

puting resources, including processing powers, interprocessor bandwidths, and energy capacities. Compu-

ting resource management is therefore necessary and facilitates dynamically switching the deployed radio

communications standard. The computing environment is therefore characterized by the available and

occupied computing resources, the RF circuitry, and so forth.

Cognitive radio automates the reconfiguration process of SDR platforms and is, moreover, capable of

dynamically managing the computing environment. We therefore suggest the computing cycle of Fig. 8.5,

which monitors the states of the reconfigurable computing resources and hardware capabilities (computing

scene analysis) for the joint computing resource management (JCRM). More precisely, the computing

scene analysis entity continuously observes the computing environment and provides any changes to the

JCRM module. The JCRM module processes this information before deciding which SDR platforms to

reconfigure, if any. This computing cycle differs from the cognitive computing cycle of Fig. 7.3 in that it

exclusively addresses the hardware resources.

Computing resource management is part of the radio infrastructure, the interface between radio appli-

cations and hardware platforms (Section 7.3.2). Although conceptually independent of the particular

hardware platform, we consider it efficient to provide computing resource management facilities locally,

that is, on SDR platform basis.

The computing scene analysis entity provides the model of the computing environment, which is

processed by the JCRM module. It should contain all relevant hardware information and be easily mana-

geable. A simple model would particularly ease the dynamic and efficient tracking of hardware capabili-

ties and computing resources, instantly informing about any state changes. Section 7.3.4 has discussed the

suitability of our SDR computing system modeling of Chapter 3. Since we distinguish between the com-

Fig. 8.5. The computing cycle.

Action:

Hardware
reconfiguration

Computing resource

availability/ occupation,
analog circuitry,

mapping algorithm

Hardware

information

Computing

scene analysis

Computing

environment

JCRM

COGNITIVE CYCLES

123

puting and application resource management here, only the platform modeling of Sections 3.3.1 and

7.3.4A) applies.

8.4.3 Application Cycle

Radio and user applications basically differ in their utility. Radio applications define the radio functionali-

ties of SDR platforms and, thus, the data transmission and reception modes. They consist of signal

processing functions (SDR functions) that specify the modulation scheme and the error correction algo-

rithms, among others. User applications, on the other hand, facilitate the use of services, providing (perso-

nalized) service or data presentations. A user application thus captures and presents information before

and after being processed by a radio application, respectively. User and radio applications together provide

the communications services.

Both application types will be modularly built out of precedence-constrained processing blocks that

receive, process, and propagate data. This facilitates the distributed execution and modifications of (indi-

vidual) processing blocks.

We expect that the radio application environment will contain a number of SDR applications, support-

ing many different (multimedia) services and QoS levels. The inherent modularity of SDRs augments the

number of possible SDR applications, resulting in a highly dynamic radio application environment. An

SDR function can often be implemented in several ways. Many functions, moreover, embody dynamic

algorithms with highly variable computing requirements. The processing requirement of the turbo decod-

er, for instance, is a function of the number of iterations, which is dynamically adjustable. The evolution

of RAT components, such as new coding techniques, increases the diversity, but, also, the complexity of

the radio application environment.

The user application environment will correspondingly consist of many user applications. An object-

oriented design permits offering many different and personalized service presentations, enriching the user

application environment and increasing the service values.

Software-defined signal processing chains for many RATs may be available on special application

servers. It is not envisaged that more than one SDR application, the active one, will be locally available on

an SDR-MT, because of the terminal‟s memory constraints and the dynamic radio application environ-

ment. Therefore, before the reconfiguration of an SDR-MT, the new RAT-software is downloaded from

the network using, for example, a radio link [125].

User applications will also be available for download from servers. Many radio-user application pairs

may be valid. The radio application is principally chosen as a function of the desired service and QoS. The

user application is chosen as a function of the service type and the user preferences. The preferred user

application may have implications on the selection of the radio application and vice versa. Therefore, a

valid combination between a radio and user application should be found before initiating any software

download.

The above discussion suggests that both application environments be continuously scanned for availa-

Fig. 8.6. The application cycle.

Action:

Software
download

Software availability,

modularity, computing
requirements

Software

information

Application

scene analysis

Application

environment

JARM

(Service

environment)

CHAPTER 8: JOINT RESOURCE MANAGEMENT FOR COGNITIVE RADIOS

124

ble applications and their modules. The application scene analysis entity collects this information,

processes it, and provides it to the joint application resource management (JARM) entity. The JARM

entity then specifies the necessary software downloads. This corresponds to the application cycle of Fig.

8.6, which is representative for the radio application and user application cycles.

The cognitive radio system may execute two application cycles, one for the radio and one for the user

applications. Although the radio and user applications have different functionalities and requirements, the

same modeling, presented in Section 3.3.2 and extended in Section 7.3.4B), may serve for both. The pre-

viously introduced models capture some application characteristics and computing requirements. The ap-

plication cycle, though, also needs to process information about the suitability of an application for a given

service. This may be modeled as another instance of (RA
t''

)
d
 (3.8):

 (RA
9
)

d
 = qos

d
 = ((qos1)

d
, (qos2)

d
, …, (qosK)

d
). (8.2)

(RA
9
)

d
 indicates the ninth instance of the general application template (RA

t''
)

d
 (Section 3.3.2A)). Element

(qosk)
d
 ∈ ℝ+

 specifies the relative QoS that application d can provide for service k as a function of the

achievable bit rate, BER, or the like.

For each service (type), we suggest defining a reference QoS value, for example, (qosvideo)
128kbps UMTS

 =

1. Since we do not scale (qosk)
d
, we can freely choose this reference, simplifying the definition and update

of qos
d
 due to future QoS enhancements, for example. If (qosk)

d
 = 0, however, service k is not supported

by application d. K stands for the number of user or radio applications. It will grow with each new applica-

tion that is introduced, requiring an according update of the QoS suitability model (8.2).

8.4.4 Joint Resource Management Implications

We have introduced three cognitive cycles that monitor the radio, computing, and application environ-

ments and manage the corresponding resources. The cycles create and update the environmental models,

which capture the states of all relevant resources and requirements. The management entities process this

information before specifying the most appropriate resource allocations or deallocations. The distributed

entities therefore cooperate with one another, coordinating their decisions rather than making individual

and selfish decisions. In other words, they cooperatively manage the different resource types.

Fig. 8.7. The cognitive cycles within the integrated resource management context.

IRM

CE

UAERAE

RE

(SE)(SE)

Radio

scene analysis

User application

scene analysis

Computing

scene analysis

Radio application

scene analysis

PROOF OF CONCEPT

125

Fig. 8.7 illustrates the four cognitive cycles within the integrated resource management context. Each

scene analysis entity collects and processes the information about the corresponding environment, before

providing it to the IRM entity. The IRM entity synchronizes and jointly processes the received environ-

mental information. Its resource management decisions will, generally, affect several environments and

lead to new resource management stimuli.

8.5 Proof of Concept

This section aims at demonstrating the suitability of the above concepts. It discusses several interrelations

between the different environments and resource types (Section 8.5.1) before providing the first simula-

tion results that indicate the utility of the joint resource management concept (Section 8.5.2).

8.5.1 Discussion

Cognitive radio facilitates maximizing the benefits or revenues of all parties involved in modern wireless

communications [112]. The wireless subscriber is one such party and his satisfaction may become other

parties‟ revenues. Radio operators are therefore eager for maximizing the number of users they can simul-

taneously serve. Each user that is not admitted due to network capacity limits is lost revenue because the

user session cannot be initiated and charged and because the user may switch to another operator in the

long term. Hence, radio resource management is essential in cognitive radio [138].

Service providers also compete for users. They need to introduce innovative user services that attract

as many users as possible as well as offer personalized services. The evolution of SDR technology will

lead to more sophisticated user applications while increasing the service diversity. The user application

resource management facilitates managing this increasing amount of user applications.

Once the first radio applications become available, there will be no limit in designing new and opti-

mized RAT implementations. Many parties may participate in the design of radio applications. The radio

application resource management will handle the growing amount of radio applications and assists in the

selection of the radio software downloads.

Table 8.2 Resources, optimization goals, and resource correlations.

 Resources Optimization goals
Inter-environmental

resource correlations

Radio

environment

Spectrum

Transmission power

Maximize the overall system

capacity (minimize or distri-

bute interference).

More wireless users = more

interference (RE)

=> better receivers required

(RAE) and more computing

power needed (CE)

Computing

environment

Analog circuitry

DSP modules: topology,

processing powers, band-

widths, memory, etc.

Energy resources

Application mapping

Efficient use of computing

resources. That is,

1. distribute the computing

loads to meet the RAT-

specific computing require-

ments (real-time processing

and latency),

2. minimize the power con-

sumption, and so forth.

1. Some applications may not

be feasibly mappable to the

available computing re-

sources (RE, AE, CE).

2. Less complex applications

are desired to minimize the

power consumption, among

others (AE, CE)

Application

environment

Applications

Applications‟ modules (func-

tions)

Computing requirements

Select the radio and user

applications that best meet

the user preferences and QoS

requests.

Although many applications

may be suitable (AE), the

radio conditions (RE) and

computing capabilities (CE)

constrain their selection.

CHAPTER 8: JOINT RESOURCE MANAGEMENT FOR COGNITIVE RADIOS

126

Computing resource management is essential for supporting service delivery whenever possible and as

long as desired. Each computing operation, however, consumes power and costs money. Hence, compu-

ting efficient mappings of user and radio applications are essential for direct and indirect revenues. Com-

puting operators or radio operators dealing with computing resource management issues will be responsi-

ble for that.

Table 8.2 summarizes the principal resources of the radio, computing, and application environments,

the optimization goals, and some inter-environmental resource correlations. It reveals that, although we

can formulate an optimization objective for each environment individually, there are many inter-

environmental resource dependencies and compatibility issues. Many parameters influence the selection of

radio, application, and computing resources. Therefore, instead of managing each environment separately,

we argue for the joint resource management across environmental boundaries.

We conclude that future wireless communications will offer a very wide variety of user services at dif-

ferent QoS levels. More than one RAT will, moreover, be capable of meeting most service and QoS re-

quests. Many wireless users are not interested in the specific air interface that provides the service, as long

as it is affordable and of the desired quality. RATs can then be flexibly chosen in this world of service-

driven wireless communications. A cognitive radio system with full resource control can, moreover, dis-

tribute the resource loads and trade off one resource type against another as a function of the radio, com-

puting, application, and service environments. A joint resource management potentiates such resource

tradeoffs.

8.5.2 Simulations

The context of this section could be the following scenario: User A has established a voice session with

user B using the GPRS RAT. During the course of the conversation a switch to a video conference is de-

sired without interrupting the session. The users thus notify the network of the desired service upgrade.

The system evaluates the applicability of the available SDR applications that support the desired video

service. It realizes that user A could be given the services at an adequate QoS using either UMTS or

WLAN. The WLAN implementation requires less computing resources than the available UMTS imple-

mentations. The WLAN implementation is therefore chosen. User B is not within the reach of a WLAN

hot spot. Hence, the system decides to use the WCDMA air interface. Since being mobile terminals with a

small display, the 128 kbps data rate would be enough.

The 128 kbps UMTS transceiver implementation is downloaded from a radio application server to the

mobile terminal of user B, whereas user A receives a WLAN processing chain. Each radio application is

then internally mapped to the available computing resources of the corresponding SDR platform in real-

time and without interrupting the voice session. Once both terminals operate in the new modes, they can

smoothly switch from voice conversation to videoconference.

Motivated by the above example, we simulate a basic heterogeneous radio scenario and apply a simple

IRM algorithm for proving the concepts of this chapter. The simulations analyze the effect of integrating

the three cognitive cycles of Section 8.4 on the intelligent reconfiguration of SDR-MTs.

A) Radio Scenario

We simulate a heterogeneous radio scenario, where the cognitive radio system controls an area with GPRS

and UMTS coverage (Fig. 8.8). SDR-MTs enter, remain, and exit the system. Each user initiates or runs a

session in the GPRS mode and observes up to three vertical handovers (from GPRS to UMTS or vice ver-

sa), horizontal handovers (between the two Node Bs), or QoS up or downgrades (through data rate ad-

justments) as a function of the service request and the terminal position. The mode probabilities are 0.4 for

GPRS, 0.3 for 64 kbps UMTS, 0.2 for 128 kbps UMTS, and 0.1 for 384 kbps UMTS. A vertical handover

or QoS up or downgrade requires a terminal reconfiguration. If this fails, the user session is lost. The sce-

nario assumes that the UMTS and GPRS radio resources are available.

Through random variables and the above mode probabilities we simulate different user positions (Fig.

8.8) and QoS requirements. More precisely, a random variable takes one out of four values based on the

given mode probabilities. It specifies the target mode of an SDR-MT. Three successive target modes per

terminal are assumed. A target mode that does not coincide with the terminal‟s running mode triggers a

horizontal handover, a vertical handover, or a QoS up or downgrade. A horizontal handover is assumed to

be always possible, whereas a vertical handover or QoS up or downgrade, requiring reconfiguration, is

PROOF OF CONCEPT

127

evaluated by resource management entity (Section 8.5.2C). This way each terminal is reconfigured zero,

one, two, or three times.

B) Computing and Application Characteristics

We consider 5000 SDR-MTs, which indicate the simulation time span. These terminals have the same

communication architecture but offer different amounts of computing resources (Fig. 8.9). (C1)
D
, (C2)

D
,

and (C3)
D
 are the processing capacities of processors (P1)

D
, (P2)

D
, and (P3)

D
 and are, for simulation pur-

pose, independent random variables that are uniformly distributed in {2700, 2800, …, 3800} MOPS. Bbus

= 3000 Mbps is the bus bandwidth that facilitates bidirectional data transfers between any two processors.

The 4-tupel {(C1)
D
, (C2)

D
, (C3)

D
, Bbus} describes platform D‟s computing capacities after the (projected)

demapping of the SDR functions of the currently running mode.

We assume that each terminal contains the analog RF circuitry that is necessary for accessing the dif-

ferent air interfaces and suppose full network support. The P-HAL-OE (Section 2.2.3) and the t1-mapping

algorithm with cost function (4.9) (Sections 4.2.1 and 4.3.2) facilitate the reconfiguration of these SDR

platforms.

The radio applications are the three software-defined UMTS receivers of Section 7.4.2C), supporting

the raw data rates of 64, 128, and 384 kbps. Their total processing requirements (cT)
64kbps

, (cT)
128kbps

, and

(cT)
384kbps

 are approximately 8130, 8300, and 9400 MOPS (Section 7.4.2C)). We assume that the

processing and bandwidth resources (C1)
D
, (C2)

D
, (C3)

D
, and Bbus are dedicated for executing these SDR

applications and that additional computing resources facilitate the mapping of the UMTS or GPRS uplink

transmitter, the remaining receiver functions, and the user application.

C) Resource Management Algorithms

We apply two resource management algorithms, a simple IRM algorithm (IRMA) and a baseline algo-

rithm (BSLA). As opposed to the IRMA, the BSLA considers only the radio cycle and is unaware of the

computing resource states and the application resource requirements.

Baseline Algorithm

The BSLA, implemented within the JRRM entity of the radio cycle, assumes the availability of radio ap-

plications and full computing resource support. It selects the radio application as a function of the radio

scene analysis. Despite ignoring the computing and application cycles, the BSLA could still implement a

Fig. 8.8. Radio scenario – the coverage area of a cognitive radio system.

Fig. 8.9. SDR platform architecture XXVI.

GPRS

128 kbps 128 kbps

Node B

384 kbps

Node B

384 kbps

64 kbps 64 kbps

UMTSUMTS

(P2)
D

(C2)
D

Bbus

(P1)
D

(C1)
D

(P3)
D

(C3)
D

CHAPTER 8: JOINT RESOURCE MANAGEMENT FOR COGNITIVE RADIOS

128

cognitive learning algorithm that processes the available information about the radio environment. These

algorithms are not considered here; we, rather, assume that enough radio resources are available.

Integrate Resource Management Algorithm

The IRMA reconfigures an SDR-MT as a function of the platform‟s computing capacity (CE), the availa-

ble SDR applications and their computing requirements (RAE), and the radio resource availability at the

user‟s current position (RE). The IRME initially defines the following reconfiguration rules as a function

of a platform‟s processing capacity (CT)
D
 and the SDR applications‟ processing requirements (cT)

64kbps
,

(cT)
128kbps

, and (cT)
384kbps

:

 384 kbps UMTS if (CT)
D
 ≥ (cT)

384kbps
,

 128 kbps UMTS if (cT)
384kbps

 > (CT)
D
 ≥ (cT)

128kbps

 64 kbps UMTS if (cT)
128kbps

 > (CT)
D
 ≥ (cT)

64kbps
, and

 GRPS if (cT)
64kbps

 > (CT)
D
.

The IMRA chooses the best possible solution as a function of the above rules, the radio scene analysis,

and the accumulated mapping information. The best possible solution is selecting the SDR application that

supports or nearly supports the desired QoS. We assume that the users are willing to accept a possible QoS

degradation whenever the desired radio mode is not computing feasible.

A mapping of an SDR application to an SDR platform is either feasible or infeasible. If a reconfigura-

tion is initiated but results in an infeasible mapping, the session is lost. The JCRM or IRM module will

then consider the SDR application with the next lower processing requirement for the following platform

with identical computing resource characteristics. Hence, the cognitive radio system continuously refines

its database of feasible and infeasible platform-application pairs. This algorithm corresponds to Alg-2 of

Section 7.4.2D).

Due to Section 3.3.1B), the internal SDR platform modeling assumes (C1)
D
 ≥ (C2)

D
 ≥ (C3)

D
. The

symmetry of the platform architecture of Fig. 8.9 then requires testing only about a sixth part of the differ-

ent SDR-MTs for compatibility with the SDR applications. This accelerates the cognitive learning process

and minimizes the memory demand for the knowledge acquisition.

D) Simulation Results

Fig. 8.10a shows the evolution of the number of lost sessions resulting from infeasible reconfigurations.

We observe that the curve corresponding to the BSLA continuously increases, whereas the learning capa-

bility of the IRMA leads to saturation, which begins around the 2000th SDR-MT. This specifies the cogni-

tive radio system‟s time for adapting to its environment. More sophisticated IRMAs or more initial infor-

mation could achieve faster adaptations. Fast adaptations are necessary for keeping pace with the steadily

increasing dynamism of the radio, computing, and application environments.

Fig. 8.10. Evolution of the number of lost sessions (a) and total number of feasible reconfigurations (b).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

GPRS 64 128 384

S
e
s
s
io

n
s

Mode

BSLA

IRMA

64 128 384

kbps UMTS

(b)(a)

0

100

200

300

400

500

600

700

800

900

1000

1100

0 1000 2000 3000 4000 5000

L
o

s
t
s
e
s
s
io

n
s

SDR-MT

BSLA

IRMA

SUMMARY

129

The total number of terminal reconfigurations is 11 006; 9907 and 10 847 are feasible with the BSLA

and IRMA. Fig. 8.10b shows the total number of sessions per mode that followed a feasible reconfigura-

tion. We observe that the number of feasible reconfigurations due to the IRMA is, for any mode, equal or

higher than that of the BSLA. This means that the IRMA sacrifices QoS only for the sake of connectivity.

In other words, whenever the new mode that the radio scene analysis suggests for a given SDR-MT is

computing feasible, the IRMA reconfigures the terminal to this mode.

The highest difference in the number of feasible reconfigurations is observed for the 128 kbps UMTS

mode (Fig. 8.10b). This is so because only 339 of the approximately 1500 reconfiguration requests to the

384 kbps UMTS mode are feasible. Since the IRMA loses a total of 159 sessions, at most 159 reconfigura-

tion intents to the 384 kbps UMTS mode are infeasible. Fig. 8.10a and b indicate that the IRMA accom-

plishes to feasibly reconfigure most of the SDT-MT that cannot operate in the 384 UMTS mode to the 128

kbps mode, which requires considerably less computing resources due to Sections 8.5.2B) and 7.4.2C).

The gap between the two resource management algorithms is relatively low for the 64 kbps UMTS

mode, because of the similar processing demands of the 128 and 64 kbps UMTS modes. The negligible

difference for the GRPS mode implies that most simulated SDR-MTs provide enough computing re-

sources for implementing the 64 kbps UMTS receiver. This, moreover, indicates that the majority of the

reconfigurations to the 128 kbps UMTS mode are feasible and that the lost sessions primarily stem from

the infeasible mappings of the 384 kbps UMTS receiver processing chain.

8.6 Summary

Motivated by the conclusions of Chapter 7, this chapter has discussed a new management approach for

cognitive radios. The joint resource management concept accounts for all types of resources that are ne-

cessary for SDR communications, including the radio, computing, and application resources. We have

discussed some cooperative and integrated resource management peculiarities and introduced three cogni-

tive cycles and the respective resource modeling.

Resources may be considered in common resource pools: radio resources in a radio resource pool,

computing resources in a computing resource pool, and application resources in an application resource

pool. These pools should be either cooperatively managed or considered as a single resource pool for

management purposes. This chapter pointed out several advantages of a joint resource management, be it

cooperative or integrated.

We conclude that the higher the resource diversity, the more important the resource management. The

possibility of resource sharing or trading further increases the management flexibility, but also its com-

plexity. Only a joint resource management can account for the correlations between resources of different

types and facilitate flexible allocations. A momentary increased consumption of computing resources

while decreasing the need for radio resources and vice versa may then be possible.

9
Conclusions

9.1 Contribution

The constant evolution of RATs, radio services, and computing devices, among others, make the wireless

environment highly dynamic and unpredictable. SDR introduces flexibility to wireless communications. It

requires a flexible computing resource management framework that can deal with real-time computing

constraints and changing QoS demands of wireless systems. The principal contribution of this dissertation

is an SDR computing resource management framework that facilitates dynamic reconfigurations of SDR

platforms (Fig. 9.1).

Our framework consists of two parts: an SDR computing system modeling that facilitates the SDR

computing resource management. The system modeling accounts for the distributed and limited compu-

ting resources of SDR platforms and the real-time computing requirements of SDR applications. Its mod-

ular design eases the monitoring of the relevant platform and application characteristics, including compu-

ting resources and requirements. Our computing resource management contribution distinguishes between

the mapping algorithm and the cost function. The tw-mapping is a windowed dynamic programming ap-

proach that is apt for many cost functions or mapping policies. The cost function proposal dynamically

manages the computing resources of SDR platforms for satisfying the computing requirements of SDR

applications.

Fig. 9.1. The evolution of this dissertation and its principal contributions.

Joint resource

management

• Computing system modeling

• tw-mapping algorithm

• Multiobjective cost function

SDR

Cognitive Radio
• Extended cognitive radio system

• Cognitive computing cycle

• Resource modeling

• Cooperative & integrated
resource management

• Cognitive cycles

• Resource modeling

Cognitive Radio

Cognitive computing

resource management

SDR computing resource

management framework

CHAPTER 9: CONCLUSIONS

132

We have simulated two SDR scenarios for demonstrating the appropriateness of the entire framework.

We have observed that the tw-mapping, as opposed to a baseline algorithm, achieves feasible and even

optimal results for window sizes as small as 1, 2, or 3. Further simulations have revealed some interrela-

tions between the hardware architecture and the application mapping as well as indicated the importance

of the mapping order, the cost function parameter, and the window size. We have shown that the tw-

mapping is fast enough for real implementations, predictable in terms of computing complexity and map-

ping result, and suitable for different waveforms and platforms. Our framework is, hence, flexibly adjusta-

ble for solving different reconfiguration scenarios in heterogeneous and nonstationary radio and compu-

ting environments.

After having demonstrated the suitability of our computing resource management proposal for SDRs,

we have analyzed its cognitive capabilities. We have introduced the cognitive computing cycle for moni-

toring and managing the computing environment of future cognitive radio systems. Our SDR computing

system modeling and computing resource management contributions facilitate continuously monitoring

and managing the hardware capabilities and the software processing requirements.

Cognitive radio facilitates a flexible management of all types of resources that are necessary for SDR

communications. These include the radio as well as the computing and application resources. We have,

therefore, presented the joint resource management concept and three cognitive cycles that cooperatively

manage the radio, computing, and application resources. Fig. 9.1 summarizes the evolution of the disserta-

tion and its main contributions.

9.2 Future Work

In the SDR computing context, it remains to analyze other cost functions and further examine how to ad-

just the computing resource management parameters to the particular reconfiguration scenario. Dynamic

adjustments of these parameters during the mapping process may also be conceivable and will be ex-

plored.

Furthermore, we need to simulate additional SDR scenarios and, specifically, analyze the management

of computing resources at multi-user base stations. A computing efficient management of large arrays of

processors may require a distributed tw-mapping implementation or clustering the processor array. We will

examine both techniques and their implications on real-time computing. Other heterogeneous computing

methods will also be explored in this context.

We will study the impact of hardware abstractions on the system performance and fully implement our

computing resource management framework within the P-HAL-OE. We can then test P-HAL-OE and its

computing resource management capabilities as a function of the hardware platform and software imple-

mentation. This requires multidisciplinary research efforts; we have, therefore, recently created a platform

for collaborative SDR and cognitive radio research under the FlexNets (flexible wireless systems and net-

works) initiative [143].

FlexNets is an open source initiative under the GNU license. Its objective is integrating the research

efforts on flexible wireless communications. Our understanding of flexibility is the ability to manage

whatever needs to be managed. The main focus of the initiative is identifying the necessary management

elements for future wireless communications and incorporating them within evolving wireless systems.

One important part of the FlexNets initiative is the flexible computing resource management project. It

stems from these studies and focuses on the development of a complete computing resource management

framework for modern wireless communications. Other projects address the operating environment, hard-

ware design, and waveform development [143].

The joint resource management concept of this dissertation will be concretized when merging ad-

vanced RRM concepts and contributions with the computing and application resource management of

SDR platforms and applications. The result may be a cognitive engine that implements the joint resource

management proposal of Chapter 8. This engine may initially manage those resources that facilitate the

wireless access, although it should be aimed at the management of the entire resource pool in an end-to-

end approach. The concepts of this dissertation may then also be practical for cognitive networks.

References

[1] R. Berezdivin, R. Breining, R. Topp, “Next-generation wireless communications concepts and tech-

nologies,” IEEE Commun. Mag., vol. 40, iss. 3, pp. 108-116, March 2002.

[2] 3
rd

 Generation Partnership Project (3GPP) Web Site, www.3gpp.com

[3] J. Mitola, “The software radio architecture,” IEEE Commun. Mag., vol. 33, no. 5, pp. 26–38, May

1995.

[4] J. Mitola III, “Software radios survey, critical evaluation and future directions,” IEEE AES Systems

Magazine, vol. 8, iss. 4, pp. 25-36, April 1993.

[5] J. Mitola III, “Cognitive radio: agent-based control of software radios”, Proc. 1
st
 Karlsruhe Work-

shop on Software Radio, Karlsruhe, Germany, March 2000.

[6] E. Buracchini, “The software radio concept,” IEEE Commun. Mag., vol. 38, iss. 9, pp. 138-143,

Sept. 2000.

[7] R. Baines, “The DSP bottleneck,” IEEE Commun. Mag., vol. 33, iss. 5, pp. 46-54, May 1995.

[8] J. Mitola III, “Technical Challenges in the globalization of software radio,” IEEE Commun. Mag.,

vol. 37, iss. 2, pp. 84-89, Feb. 1999.

[9] A. K. Salkintzis, Hong Nie, P. T. Mathiopoulos, “ADC and DSP challenges in the development of

software radio base stations,” IEEE Pers. Commun., vol. 6, iss. 4, pp. 47-55, Auf. 1999.

[10] W. H. W. Tuttlebee, “Software-defined radio: facets of a developing technology,” IEEE Pers.

Commun., vol. 6, iss. 2, pp. 38-44, April 1999.

[11] K. Lange, G. Blanke, R. Rifaat, “A software solution for chip rate processing in CDMA wireless

infrastructure,” IEEE Commun. Mag., vol. 40, iss. 2, pp. 163-167, Feb. 2002.

[12] J. Mitola III, V. Bose, B. M. Leiner, T. Turletti, D. Tennenhouse (Eds.), Software Radios, IEEE

JSAC, vol. 17, no. 4, pp. 509-747, April 1999.

[13] J. Mitola, Z. Zvonar, Software Radio Technologies: Selected Readings. IEEE Press, 2001.

[14] J. H. Reed, Software Radio – A Modern Approach To Radio Engineering, 2002 Prentice Hall PTR,

Upper Saddle River, NJ.

[15] Software-Defined Radio (SDR) Forum Web Site, www.sdrforum.org

[16] A. Wiesler, J. K. Jondral, “A software radio for second- and third-generation mobile systems,”

IEEE Trans. Vehic. Tech., vol. 51, iss. 4, pp. 738-748, July 2002.

[17] H. Lee et al., “Software defined radio – a high performance embedded challenge,” Proc. HiPEAC

2005, LNCS 3793, pp. 6-26, 2005, Springer-Verlag Berlin Heidelberg 2005.

[18] R. Baines, D. Pulley, “A total cost approach to evaluating different reconfigurable architectures for

baseband processing in wireless receivers,” IEEE Commun. Mag., vol. 41, iss. 1, pp. 105-113, Jan.

2003.

[19] R. Kokozinski, D. Greifendorf, J. Stammen, P. Jung, “The evolution of hardware platforms for mo-

bile „software defined radio‟ terminals,” Proc. 13
th
 IEEE Int. Symp. Personal, Indoor and Mobile

Radio Communications (PIMRC 2002), Lisbon, Portugal, 15-18 Sept. 2002, pp. 2389-2393 (vol. 5).

REFERENCES

134

[20] A. Silberschatz, P. B. Galvin, G. Gagne, Operating System Concepts. John Wiley & Sons, Inc. 6
th

Edition, 2003.

[21] S. Vinoski, “CORBA: integrating diverse applications within distributed heterogeneous environ-

ments,” IEEE Commun. Mag., vol. 35, iss. 2, pp. 45-55, Feb. 1997.

[22] I. Foster, C. Kesselman (Eds.), The Grid: Blueprint for a New Computing Infrastructure, Morgan

Kaufmann Publishers, San Mateo, CA, 1999.

[23] M. Parashar, C. A. Lee (Eds.), “Special issue on grid computing,” IEEE Proc., vol 93, iss. 3, March

2005.

[24] L. Smarr, C. E. Catlett, “Metacomputing,” Communications of the ACM, vol. 35, no. 6, pp. 45-52,

June 1992.

[25] A. Duller, G. Panesar, D. Towner, “Parallel Processing ─ the picoChip way!,” Proc. Communicat-

ing Process Architectures (CPA), 7-10 Sept. 2003, pp. 299-312.

[26] A. Jantsch, H. Tenhunen (Eds.), Networks on Chip. Kluwer Academic Publishers, 2003.

[27] T. Kogel, H. Meyr, “Heterogeneous MP-SoC - the solution to energy-efficient signal processing,”,

Proc. 41
st
 ACM IEEE Design Automation Conference (DAC'04), 7-11 June 2004, pp. 686-691.

[28] J. Villasenor, B. Hutchings, “The flexibility of configurable computing,” IEEE Signal Processing

Mag., pp. 67-84, Sept. 1998.

[29] A. Gathener et al., “DSP-based architectures for mobile communications: past, present and future,”

IEEE Commun. Mag., vol. 38, pp. 84-90, Jan. 2000.

[30] M. Cummings, S. Haruyama, “FPGA in the software radio,” IEEE Commun. Mag., vol. 37, pp. 108-

112, Feb. 1999.

[31] picoChip Web Site, http://www.picochip.com/

[32] M. Kistler, M. Perrone, F. Petrini, “Cell multiprocessor communication network: built for speed,”

IEEE Micro, vol. 26, iss. 3, pp. 10-23, May-June 2006.

[33] A. Khokhar, V. K. Prasanna, M. Shaaban, C. L. Wang, “Heterogeneous computing: challenges and

opportunities,” IEEE Computer, vol. 26, iss. 6, pp. 18-27, June 1993.

[34] E. A. Lee, D. G. Messerschmitt, “Static scheduling of synchronous data flow programs for digital

signal processing,” IEEE Trans. Comput., vol. C-36, No. 1, pp. 24-35, Jan. 1987.

[35] T. C. Hu, “Parallel sequencing and assembly line problem,” Oper. Res., vol. 9, pp. 841-848, Nov.

1961.

[36] T. L. Adam, K. M. Chandy, J. R. Dickson, “A comparison of list schedules for parallel processing

systems,” Comm. ACM, vol. 17, no. 12, pp. 685-690, Dec. 1974.

[37] Y.-K. Kwok, I. Ahmad, “Static scheduling algorithms for allocating directed task graphs to multi-

processors,” ACM Computing Surveys, vol. 31, no. 4, pp. 406-471, Dec. 1999.

[38] S.-Y. Lee, J. K. Aggarwal, “A mapping strategy for parallel processing,” IEEE Trans. Comput., vol.

C-36, no. 4, pp. 433-442, April 1987.

[39] S. Selvakumar, C. S. R. Murthy, “Scheduling precedence constrained task graphs with non-

negligible intertask communication onto multiprocessors,” IEEE Trans. Parallel Distrib. Syst., vol.

5, no. 3, pp. 328-336, March 1994.

[40] G. C. Sih, E. A. Lee, “A compile-time scheduling heuristic for interconnection-constrained hetero-

geneous processor architectures,” IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 2, pp. 175-187,

Feb. 1993.

[41] V. Chaudhary, J. K. Aggarwal, “A generalized scheme for mapping parallel algorithms,” IEEE

Trans. Parallel Distrib. Syst., vol. 4, iss. 3, pp. 328-346, March 1993.

[42] Y.-K. Kwok, I. Ahmad, “Dynamic critical-path scheduling: an effective technique for allocating

task graphs to multiprocessors, IEEE Trans. Parallel Distrib. Syst., vol. 7, no. 5, pp. 506-521, May

1995.

[43] M. Tan et al., “Minimizing the application execution time through scheduling of subtasks and

communication traffic in a heterogeneous computing system,” IEEE Trans. Parallel Distrib. Syst.,

vol. 8, iss. 8, pp. 857-871, Aug. 1997.

[44] I. Ahmad, Y.-K. Kwok, “On exploiting task duplication in parallel program scheduling,” IEEE

Trans. Parallel Distrib. Syst., vol. 9, no. 9, pp. 872-892, Sept. 1998.

[45] I. Ahmad, M. K. Dhodi, R. Ul-Mustafa, “DPS: dynamic priority scheduling heuristic for heteroge-

neous computing systems,” IEE Proc. Comput. Digit. Tech., vol. 145, no. 6, Nov. 1998.

REFERENCES

135

[46] T. Hagras, J. Janacek, “An approach to compile-time task scheduling in heterogeneous computing

systems,” Proc. 2004 Int. Conf. Parallel Processing Workshops (ICPPW’04), 15-18 Aug., Mon-

treal, Canada, pp. 182-189.

[47] C. Leangsuksun, J. Potter, “Design and experiments on heterogeneous mapping heuristics,” Proc.

IEEE Heterogeneous Computing Workshop (HCW), pp. 17–22, April 1994.

[48] A. H. Alhusaini, V. K. Prasanna, C. S. Raghavendra, “A unified resource scheduling framework for

heterogeneous computing environments,” Proc.8
th
 Heterogeneous Computing Workshop (HCW’99),

April 1999, pp. 156–165.

[49] A. H. Alhusaini, V. K. Prasanna, C. S. Raghavendra, “A framework for mapping with resource co-

allocation in heterogeneous computing systems,” Proc. 9
th
 Heterogeneous Computing Workshop

(HCW 2000), May 2000, pp. 273-286.

[50] A. H. Alhusaini, C. S. Raghavendra, V. K. Prasanna, “Run-time adaptation for grid environments,”

Proc. IPDPS-01, 23-27 April 2001, pp. 864-874.

[51] Y.-K. Kwok, A. A. Maciejewski, H. J. Siegel, A. Ghafoor, I. Ahmad, “Evaluation of a semi-static

approach to mapping dynamic iterative tasks onto heterogeneous computing systems,” Proc. Int.

Symp. Parallel Architectures, Algorithms and Networks (ISPAN '99), 1999.

[52] K. Bondalapati, “Modeling and mapping for dynamically reconfigurable hybrid architectures,”

Ph.D. dissertation, University of Southern California, Aug. 2001.

[53] A.-R. Rhiemeier, F. Jondral, “Mathematical modeling of the software radio design problem,” IEICE

Trans. Commun., vol. E86-B, no. 12, pp. 3456-3467, Dec. 2003.

[54] A.-R. Rhiemeier, “Modulares software defined radio,” Ph.D. dissertation, Forschungsberichte aus

dem Institut für Nachrichtentechnik der Universität Karlsruhe (TH), Band 9, Karlsruhe 2004.

[55] M.-Y. Wu, W. Shu, J. Gu, “Efficient local search for DAG scheduling,” IEEE Trans. Parallel Dis-

trib. Syst., vol. 12, no. 6, pp. 617-627, June 2001.

[56] H. Topcuoglu, S. Hariri, M.-Y. Wou, “Performance-effective and low-complexity task scheduling

for heterogeneous computing,” IEEE Trans. Parallel Distrib. Syst., vol. 13, iss. 3, pp. 260-274,

March 2002.

[57] S. Darbha, D. P. Agrawal, “Optimal scheduling algorithm for distributed-memory machines,” IEEE

Trans. Parallel Distrib. Syst., vol. 9, no. 1, pp. 87-95, Jan. 1998.

[58] R. Bajaj, D. P. Agrawal, “Improving scheduling of tasks in a heterogeneous environment,” IEEE

Trans. Parallel Distrib. Syst., vol. 15, no. 2, pp. 107-118, Feb. 2004.

[59] I. Ahmad, Y.-K. Kwok, “On parallelizing the multiprocessor scheduling problem,” IEEE Trans.

Parallel Distrib. Syst., vol. 10, no. 4, pp. 414-432, April 1999.

[60] A. Dogan, F. Özgüner, “Matching and scheduling algorithms for minimizing execution time and

failure probability of applications in heterogeneous computing,” IEEE Trans. Parallel Distrib. Syst.,

vol. 13, iss. 3, pp. 308-323, March 2002.

[61] S. Bansal. P. Kumar, K. Singh, “An improved duplication strategy for scheduling precedence con-

strained graphs in multiprocessor systems,” IEEE Trans. Parallel Distrib. Syst., vol. 14, no. 6, pp.

533-544, June 2003.

[62] D.-T. Peng, K. G. Shin, T. F. Abdelzaher, “Assignment and scheduling communicating periodic

tasks in distributed real-time systems,” IEEE Trans. Software Eng., vol. 23, no. 12, pp. 745-758,

Dec. 1997.

[63] C.-J. Hou, K. G. Shin, “Allocation of periodic task modules with precedence and deadline con-

straints in distributed real-time systems,” IEEE Trans. Comput., vol. 46., no. 12, pp. 1338-1356,

Dec. 1997.

[64] K. Ramamritham, J. A. Stankovic, P.-F. Shiah, “Efficient scheduling algorithms for real-time mul-

tiprocessor systems,” IEEE Trans. Parallel Distr. Syst., vol. 1, no. 2, pp. 184-194, April 1990.

[65] K. Ramamritham, J. A. Stankovic, W. Zhao, “Distributed scheduling of tasks with deadlines and

resource requirements,” IEEE Trans. Comput., vol. 38, no. 8, pp. 1110-1123, Aug. 1989.

[66] D. Rosu, K. Schwan, S. Yalamanchili, R. Jha, “On adaptive resource allocation for complex real-

time applications,” Proc. 18
th
 IEEE Int. Real-Time Systems Symp., 2-5 Dec. 1997, pp. 320-329.

[67] K. Ecker et al., “An optimization framework for dynamic, distributed real-time systems,” Proc. 17
th

Int. Parallel and Distributed Processing Symp. (IPDPS 2003), Nice, France, 22-26 April 2003,

IEEE CS Press.

REFERENCES

136

[68] T. Xie, X. Qin, “Security-aware resource allocation for real-time parallel jobs on homogeneous and

heterogeneous clusters,” IEEE Trans. Parallel Distrib. Syst., vol. 19, no. 5, pp. 682-697, May 2008.

[69] S. Gertphol, Y. Yu, A. Alhusaini, V. K. Prasanna, “A metric and mixed-integer-programming-based

approach for resource allocation in dynamic real-time systems,” Proc. IPDPS-02, 15-19 April 2002,

pp. 993-1000.

[70] A. W. Krings, M. H. Azadmanesh, “Resource reclaiming in hard real-time systems with static and

dynamic workloads” Proc. 30th IEEE Hawaii Int. Conf. System Sciences (HICSS), 7-10 Jan. 1997,

pp. 116-625.

[71] O. Moreira, J.-D. Mol, M. Beckooij, J. van Meerbergen, “Multiprocessor resource allocation for

hard-real-time streaming with a dynamic job-mix” Proc. 11
th
 IEEE Real Time Embedded Technolo-

gy and Applications Symp. (RTAS’05), 7-10 March 2005, pp. 332-341.

[72] S. Stuijk, “Predictable mapping of streaming applications on multiprocessors,” Ph.D. dissertation,

TU Eindhoven, 2007.

[73] S. Stuijk, T. Basten, M. C. W. Geilen, H. Corporaal, “Multiprocessor resource allocation for

throughput-constrained synchronous dataflow graphs” Proc. 44
th
 ACM IEEE Design Automation

Conf. (DAC 2007), 4-8 June 2007, pp. 777–782.

[74] S. Stuijk, M. Geilen, T. Basten, “Throughput-buffering trade-off exploration for cyclo-static and

synchronous dataflow graphs,” IEEE Trans. Comput., vol. 57, iss. 10, pp. 1331-1345, Oct. 2008.

[75] S. Stuijk, T. Basten, M. Geilen, A. H. Ghamarian, B. Theelen, “Resource-efficient routing and

scheduling of time-constrained streaming communication on networks-on-chip”, Journal of Sys-

tems Architecture, vol. 54, iss. 3-4, pp. 411-426, March-April 2008, Elsevier.

[76] J.-K. Kim et al., “Collective value of QoS: a performance measure framework for distributed hete-

rogeneous networks,” Proc. IPDPS-01, 23-27 April 2001, pp. 810–823.

[77] N. D. Doulamis, A. D. Doulamis, E. A. Varvarigos, T. A. Varvarigou, “Fair scheduling algorithms

in grids,” IEEE. Trans. Parallel Distr. Syst., vol. 18, no. 11, pp. 1630-1648, Nov. 2007.

[78] H. Casanova, Y. Robert, H. J. Siegel (Eds.), Algorithm design and scheduling techniques (realistic

platform models) for heterogeneous clusters, IEEE Trans. Parallel Distr. Syst., Special Section, vol.

17, no. 2, pp. 97-190, Feb. 2006.

[79] A. Radulescu, A. J. C. van Gemud, “Low-cost task scheduling for distributed-memory machines,”

IEEE Trans. Parallel Distrib. Syst., vol. 13, iss. 6, pp. 648–658, June 2002.

[80] M.-Y. Wu, D. D. Gajski, “Hypertool: a programming aid for message-passing systems,” IEEE

Trans. Parallel and Distrib. Syst., vol. 1, no. 7, pp. 330-343, July 1990.

[81] Y. C. Lee, A. Y. Zomaya, “A novel state transition method for metaheuristic-based scheduling in

heterogeneous computing systems,” IEEE Trans. Parallel Distr. Syst., vol. 19, no. 9, pp. 1215-

1223, Sept. 2008.

[82] J. D. Ullman, “NP-complete scheduling problems.” J. Comput. System Sciences, vol. 10, pp. 384-

393, 1975.

[83] R. Mehrotra, S. N. Talukdar, “Scheduling of tasks for distributed processors,” Proc. 11
th
 Int. Symp.

Computer Architecture (ISCA’84), Jan. 1984, pp. 263-270.

[84] S. H. Bokhari, “On the mapping problem,” IEEE Trans. Comput., vol. C-30, no. 3, pp. 207-214,

March 1981.

[85] J. A. Stankovic, M. Di Natale, G. C. Buttazzo, “Implications of classical scheduling results for real-

time systems,” IEEE Computer, vol. 28, iss. 6, pp. 16-25, June 1995.

[86] J. Lee, S. Kim, J. Park, “Q-SCA: Incorporating QoS support into software communications archi-

tecture for SDR waveform processing,” Real-Time Syst (2006), pp. 19-35, Springer Science + Busi-

ness Media, LLC 2006.

[87] JTRS Software Communications Architecture (SCA) Web Site, http://sca.jpeojtrs.mil/

[88] Modular Software-programmable Radio Consortium, “Software communications architecture speci-

fication,” Tech. Rep. MSRC-5000SCA, v.2.2, 17 Nov. 2001.

[89] Open Source SCA Implementation Embedded (OSSIE) Web Site, http://ossie.wireless.vt.edu/trac

[90] J. Bertrand, J. W. Cruz, B. Majkrzak, T. Rossano, “CORBA delays in a software-defined radio”,

IEEE Commun. Mag., vol. 40, iss. 2, pp. 152-155, Feb. 2002.

[91] D. Oldham, M. Scardelleti, “JTRS/SCA and custom/SDR waveform comparison”, Proc. 2007 Mili-

tary Communications Conf. (MILCOM 2007), Orlando, FL, 29-31 Oct. 2007.

REFERENCES

137

[92] I. Gomez, V. Marojevic, J. Salazar, A. Gelonch, “A lightweight operating environment for next

generation cognitive radios,” Proc. 11
th
 Euromicro Conf. Digital Systems Design (DSD 2008), Par-

ma, Italy, 3-5 Sept. 2008.

[93] S. Kim, J. Masse, S. Hong, “Dynamic deployment of software-defined radio components for mobile

wireless internet applications,” Proc. 2nd Int. Conf. Human Society@Internet, Seoul, Korea, June

18-20, LNCS 2713/2003, pp. 694-700, Springer Berlin / Heidelberg, 2003.

[94] Ismael Gomez, “A software framework for software radio,” Master Thesis, Dept. Signal Theory and

Communications, Polytechnic University of Catalonia (UPC), Jan. 2008.

[95] S.-L. Tsao, C.-C. Lin, C.-L. Chiu, H.-L. Chou, M.-C. Wang, “Design and implementation of soft-

ware framework for software defined radio system,” Proc. IEEE 56
th
 Vehicular Technology Conf.

(VTC 2002-Fall), 24-28 Sept. 2002, pp 2395-2399 (vol. 4).

[96] G. J. Minden et al., “An agile radio for wireless innovation,” IEEE Commun. Mag., vol. 45, iss. 5,

pp. 113-121, May 2007.

[97] The GNU software radio (GNU Radio) Web Site, http://gnuradio.org/trac

[98] M. Palkovic, H. Cappelle, M. Glassee, B. Bougard, L. Van der Perre, “Mapping of 40 MHz MIMO

SDM-OFDM baseband Processing on Multi-Processor SDR Platform,” Proc 11
th
 IEEE Workshop

Design and Diagnostics of Electronic Circuits and Systems (DDECS 2008), Bratislava, Slovakia,

16-18 April 2008.

[99] Q. Zhang, A. B. J. Kokkeler, G. J. M. Smit, “A system-level design method for cognitive radio on a

reconfigurable multi-processor architecture,” Proc. Int. Symp. System-on-Chip 2007 (SOC 2007),

Tampere, Finland, 20-21 Nov. 2007.

[100] B. Mohebbi, E. C. Filho, R. Maestre, M. Davies, F. J. Kurdahi, “A case study of mapping a soft-

ware-defined radio (SDR) application on a reconfigurable DSP core,” Proc. 1
st
 IEEE/ACM/IFIP Int.

Conf. Hardware/Software Codesign and System Synthesis (CODES+ISSS 2003), Newport Beach,

CA, 1-3 October 2003.

[101] G. K. Rauwerda, P. M. Heysters, G. J. M. Smit, “Mapping wireless communication algorithms onto

a reconfigurable architecture,” The J. of Supercomputing, vol. 30, pp. 263-282, 2004 Kluwer Aca-

demic Publishers.

[102] J. Park, S. Ha, “Performance analysis of parallel execution of H.264 encoder on the cell processor,”

Proc. IEEE/ACM/IFIP Workshop Embedded Systems for Real-Time Multimedia (ESTIMedia 2007),

4-5 Oct. 2007, pp. 27-32.

[103] X. Reves, A. Gelonch, V. Marojevic, R. Ferrus, “Software radios: unifying the reconfiguration

process over heterogeneous platforms,” EURASIP J. Applied Signal Processing, vol. 2005, no. 16,

pp. 2626-2640, Sept. 2005.

[104] D. F. Robinson, L. R. Foulds, Digraphs: Theory and Techniques. Gordon and Breach Science Pub-

lisher Inc., 1980.

[105] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications. Elsevier Science Publishing Co.,

Inc., New York, Fifth Printing, 1982.

[106] N. Deo, Graph Theory with Applications to Engineering and Computer Science. Prentice-Hall, Inc.,

Englewood Cliffs, NJ, 1974.

[107] R. Tanner, J. Woodard, WCDMA – Requirements and Practical Design. John Wiley and Sons Inc.,

2004.

[108] Technical Specification Group Radio Access Network (3GPP), “TS 25.212 V6.4.0 – multiplexing

and channel coding (FDD),” March 2005, www.3gpp.org

[109] Technical Specification Group Radio Access Network (3GPP), “TS 25.213 V5.5.0 – spreading and

modulation (FDD),” Dec. 2003, www.3gpp.org

[110] T. Faber, M. Schönle, “DSP-platform target report,” SLATS Consortium, Project no. 27016, Deli-

verable D23, Dec. 1999.

[111] Texas Instruments (TI) Web Site, www.ti.com

[112] J. M. Pereira, “Beyond software radio, towards reconfigurability across the whole system and across

networks,” Proc. IEEE 50
th
 Vehicular Technology Conf. (VTC 1999-Fall), pp. 2815-2818.

[113] R. W. Thomas, D. H. Friend, L. A. DaSilva, A. B. MacKenzie, “Cognitive networks: adaptation and

learning to achieve end-to-end performance objectives,” IEEE Commun. Mag., vol. 44, iss. 12, pp.

51-57, Dec. 2006.

REFERENCES

138

[114] J. Mitola, G. Q. Maguire, “Cognitive radio: making software radios more personal,” IEEE Pers.

Commun., vol. 6, no. 4, pp. 13-18, 1999.

[115] J. Mitola, “Cognitive radio: an integrated agent architecture for software defined radio,” Ph.D. dis-

sertation, Royal Institute of Technology (KTH), Stockholm, Sweden, May 2000.

[116] S. Haykin, “Cognitive radio: brain-empowered wireless communications,” IEEE JSAC, vol. 23, no.

2, pp. 201-220, Feb. 2005.

[117] J. Mitola III, “Software radio architecture evolution: foundations, technology tradeoffs, and archi-

tecture implications,” IEICE Trans. Commun., vol. E83-B, no. 6 (Special Issue on Software Defined

Radio and its Technologies), pp. 1165-1173, June 2000.

[118] D. Maldonado et al., “Cognitive radio applications to dynamic spectrum allocation,” Proc. 1
st
 IEEE

Int. Symp. New Frontiers in Dynamic Spectrum Access Networks (DYSPAN 2005), Baltimore, MD,

8-11 Nov. 2005, pp. 597-600.

[119] F. K. Jondral, “Software-defined radio–basics and evolution to cognitive radio,” EURASIP J. Wire-

less Communications and Networking, vol. 2005, no. 3, pp. 275-283, 2005.

[120] R. J. Mayher, F. Wentland, “Spectrum management structure and regulations in the US – Do we

need a change in the 21
st
 century?”, Proc. 1990 IEEE Int. Symp. Electromagnetic Compatibility,

21-23 Aug. 1990, pp. 380-385.

[121] G. Gerrard, “The regulation of mobile communications,” Proc. IEEE 6
th
 Int. Conf. Mobile Radio

and Personal Communications, 9-11 Dec. 1991, pp. 131-135.

[122] J. Pérez-Romero, O. Sallent, R. Agustí, M. A. Diaz-Guerra, Radio Resource Management Strategies

in UMTS. John Wiley & Sons, 2005.

[123] J. Nasreddine O. Sallent J. Pérez-Romero R. Agustí, “Advanced spectrum management in wideband

code division multiple access systems enabling cognitive radio usage,” IET Communications (Spe-

cial Issue on Cognitive Spectrum Access), vol. 2, iss. 6, pp. 794-805, July 2008.

[124] P. Demestichas, G. Vivier, K. El-Khazen, M. Theologou, “Evolution in wireless systems manage-

ment concepts: from composite radio environments to reconfigurability,” IEEE Commun. Mag., vol.

42, iss. 5, pp. 90-98, May 2004.

[125] J. Hoffmeyer, I.-P. Park, M. Majamundar, S. Blust, “Radio software download for commercial

wireless reconfigurable devices,” IEEE Commun. Mag., vol. 42, iss. 3, pp. 26-32, March 2004.

[126] P. Leaves et al., “Dynamic spectrum allocation in composite reconfigurable wireless networks,”

IEEE Commun. Mag., vol. 42, iss. 5, pp. 72-81, May 2004.

[127] I. Katzela, M. Naghshineh, “Channel assignment schemes for cellular mobile telecommunication

systems: a comprehensive survey,” IEEE Pers. Commun., vol. 3, iss. 3, pp. 10-31, June 1996.

[128] F. Box, “A heuristic technique for assigning frequencies to mobile radio nets,” IEEE Trans. Vehic.

Tech., vol. 27, iss. 2, pp. 57-64, May 1978.

[129] J. M. Peha, “Wireless communications and coexistence for smart environments,” IEEE Pers. Com-

mun., vol. 7, iss. 5, pp. 66-68, Oct. 2000.

[130] Y. Xing, R. Chandramouli, S. Manglold, S. Shanakar N, “Dynamic spectrum access in open spec-

trum wireless networks,” IEEE JSAC, vol. 24, no. 3, pp 626-637, March 2006.

[131] T. A. Weiss, F. K. Jondral, “Spectrum pooling: an innovative strategy for the enhancement of spec-

trum efficiency,” IEEE Commun. Mag., vol. 42, iss. 3, pp. S8-S14, March 2004.

[132] J. Perez-Romero et al., “Common radio resource management: functional models and implementa-

tion requirements,” Proc. PIMRC 2005, Berlin, 11-14 Sept. 2005, pp. 2067-2071.

[133] Q. Zhao, B. M. Sadler, “A survey of dynamic spectrum access,” IEEE Signal Processing Mag., vol.

24, iss. 3, pp. 79-89, May 2007.

[134] D. N. Hatfield, P. J. Weiser, “Property rights in spectrum: taking the next step,” Proc. 2005 1
st
 IEEE

Int. Symp. New Frontiers in Dynamic Spectrum Access Networks (DySPAN 2005), 8-11 Nov. 2005,

pp.43-55.

[135] L. Xu, “DRiVE-ing to the internet: dynamic radio for IP services in vehicular environments,” Proc.

25
th
 Annual IEEE Conf. Local Computer Networks (LCN 2000), 8-10 Nov. 2000, pp 281-289.

[136] W. Lehr, J. Crowcroft, “Managing shared access to a spectrum commons,” Proc. 2005 1
st
 IEEE Int.

Symp. New Frontiers in Dynamic Spectrum Access Networks (DySPAN 2005), 8-11 Nov. 2005,

pp.420-444.

[137] J. Mitola, “Cognitive radio for flexible mobile multimedia communications,” Proc. IEEE Int. Work-

shop Mobile Multimedia Communications (MoMuC’99), 15-17 Nov. 1999, pp. 3-10.

REFERENCES

139

[138] L. Giupponi et al., “Towards balancing user satisfaction and operator revenue in beyond 3G cogni-

tive networks,” Proc. 15
th
 IST Mobile and Wireless Summit, Myconos, 4-8 June 2006.

[139] R. van Nee, R. Prasad, “OFDM for Wireless Multimedia Communications,” Artech House, London,

2000.

[140] E. M. Noam, “Taking the next step beyond spectrum auctions: open spectrum access”, IEEE Com-

mun. Mag., vol. 33, iss. 12, pp. 66-73, Dec. 1995.

[141] D. Marsh, “Software-defined radio tunes in,” Electronic Design, Strategy, News (EDN), March 3,

2005, pp. 52-63, available at http://www.edn.com/article/CA505082.html.

[142] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, S. Mohanty, “NeXt generation/dynamic spectrum

access/cognitive radio wireless networks: a survey,” Elsevier Computer Networks 50 (2006), pp.

2127-2159.

[143] Flexible Wireless Communications Systems and Networks (FlexNets) Web Site,

http://flexnets.upc.edu/trac

[144] V. Marojevic, X. Revés, A. Gelonch, “An open computing resource management framework for

real-time computing,” Proc. 15
th
 Int. Conf. High Performance Computing (HiPC 2008), Bangalore,

India, 17-20 Dec. 2008, Lecture Notes in Computer Science 5374, pp. 169-182, Springer Berlin

Heidelberg.

[145] C. C. Ribeiro, S. L. Martins, I. Rosseti, “Metaheuristic for optimization problems in computer

communications,” Elsevier Computer Communications 30 (2007), pp. 656-669.

[146] D. E. Kirk, “An Introduction to dynamic programming,” IEEE Trans. Education, vol. 10, iss. 4, pp.

212-219, Dec. 1967.

