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Abstract: A Network Digital Twin (NDT) is a high-fidelity digital mirror of a real network. Given the
increasing complexity of 5G and beyond networks, the use of an NDT becomes useful as a platform
for testing configurations and algorithms prior to their application in the real network, as well as
for predicting the performance of such algorithms under different conditions. While an NDT can
be defined for the different subsystems of the network, this paper proposes an NDT architecture
focusing on the Radio Access Network (RAN), describing the components to represent and model the
operation of the different RAN elements, and to perform emulations. Different application use cases
are identified, and among them, the paper puts the focus on the training of Reinforcement Learning
(RL) solutions for the RAN. For this use case, the paper introduces a framework aligned with O-RAN
specifications and discusses the functionalities needed to integrate the NDT. This use case is illustrated
with the description of a RAN NDT implementation used for training an RL-based capacity-sharing
solution for network slicing. Presented results demonstrate that the implemented RAN NDT is a
suitable platform to successfully train the RL solution, achieving service-level agreement satisfaction
values above 85%.

Keywords: 5G; Network Digital Twin; Radio Access Network; reinforcement learning; training;
network slicing; capacity sharing

1. Introduction

The 5G mobile networks have been designed to provide a wide range of new services
and application scenarios (i.e., smart cities, virtual reality, public safety, industry, etc.)
with multiple and heterogeneous requirements (i.e., high data rate, low latency, high
reliability, etc.) [1]. To achieve this, 5G has incorporated several technological advances
covering radio access technologies (e.g., use of millimetre wave bands, the introduction
of flexible numerologies, massive Multiple Input Multiple Output (MIMO), etc.) and
architectural ones (e.g., network slicing, functional split for base station disaggregation, etc.).
The introduction of all these advancements has contributed to an unprecedented level of
complexity when it comes to the management of the 5G network. In addition, the vision of
future 6G networks as ultra-flexible suggests that the complexity of oncoming networks
will be even greater [2].

Given this expected high complexity, network operators require tools that allow
them to learn all possible outcomes when performing management operations on the
network (e.g., network deployment, configuration, optimization, etc.), and thus, find the
most appropriate strategies and reduce costs [3]. As a potential solution to address this,
the Network Digital Twin (NDT) is identified, which provides a virtual and updated
representation of the network that brings the possibility to analyse, diagnose, and emulate
the physical network in a zero-risk environment, and based on these, send control decisions
to the physical network [4]. Therefore, NDT can allow network operators to explore new
techniques and configurations on a safe platform, avoiding the need to perform risky
operations on the real network infrastructure.
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The development of NDTs for 5G and beyond 5G (B5G) networks is still in an early
stage. Some survey-like papers have provided initial visions on NDTs for B5G [3–9],
identifying the main challenges, potential technologies and use cases of NDTs. Moreover,
standardization bodies have also started working on the integration of NDTs. In this regard,
IETF has prepared a draft on the NDT concept and architecture in [10], 3GPP opened a
studio item on NDT for network management in [11], and ITU has identified the use of
NDT for “intent assurance” in [12], where the decisions to be made on the network are
validated on an NDT.

The NDT design needs to provide a high-fidelity mirror of the network, to be achieved
with an efficient execution time and an efficient use of computational resources, achieving a
balance between the NDT complexity and accuracy and providing a high level of flexibility
to update the NDT in step with the continuous changes in the physical network [5]. An
NDT can involve different subsystems of the network, including the core network and
the Radio Access Network (RAN), but also the cloud edge and the transport network that
includes fronthaul and backhaul subsystems or even the possibility of having satellite
connectivity, as discussed in [2]. At the same time, each subsystem might include different
components (e.g., for the case of the backhaul subsystem, node components and fiber
links components, etc.). About this, previous works on the use of NDT for 5G networks
in [5–9] have only proposed a high-level design of NDTs, mainly distinguishing the main
subsystems. Only the work in [3] identified some specific components to be included in an
NDT of the whole network. However, the particularities of each of the subsystems of an
NDT will require further effort from the research community to specify a proper design.

To the authors’ best knowledge, this paper is the first one to focus on the design of an
NDT for representing the RAN subsystem. The applications of NDT for the RAN embrace
different RAN management functions, including planning, operation and optimization [5,7].
For planning, NDTs can be used to assess different RAN deployment topologies and
configurations before the real deployment is held out, allowing their assessment under
different conditions (e.g., traffic load levels). In the case of network operation, NDTs can
contribute to real-time monitoring and anomaly detection by using the prediction features
of the NDT models. Network optimization processes can benefit from NDTs for tuning
different parameter configurations and for exploring new policies to be used by certain
optimization functions, such as load balancing, capacity sharing for network slicing, etc.

Another application of NDTs for the RAN is the training of Machine Learning (ML)
solutions [13], which can be used for dealing with multiple problems in different areas of
the RAN such as physical layer processing, Medium Access Control (MAC), Radio Resource
Management (RRM), Radio Network Management (RNM) or Self-Organizing Networks
(SON). Among the ML techniques, Reinforcement Learning (RL) solutions are of special
interest in the RAN because they are conceived for optimally solving decision-making
problems. As noted by [14], they have been used in the literature for problems such as cell
selection, channel selection, resource allocation (scheduling), power allocation, small cell
activation/deactivation for energy efficiency, adaptive modulation and coding, etc.

The use of NDT for training RL algorithms can be the key to the practical adoption of
RL solutions in real RANs. This is because RL learning is achieved from the interactions
with the environment based on exploitation (i.e., selecting the best actions according
to the current learnt policy) and exploration (i.e., selecting some actions randomly to
enhance the current learnt policy with the outcomes of new actions). This exploration
behaviour becomes one of the key challenges to applying RL algorithms in real RANs,
since the fundamentally online trial-and-error learning behaviour may lead to unacceptable
degradations in network performance during the learning. In this context, NDT brings the
opportunity to train RL algorithms for the RAN on a virtualized, updated and safe version
of the real RAN.

The use of NDTs for training RL solutions for the RAN has been proposed in [15],
where the training of a Distributed Deep Q-Network (DDQN) agent that learns the optimal
network slicing policy is performed on an NDT. Moreover, the work in [13] proposes a
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framework for training a RL agent online using an NDT, which is applied for a specific
RL-based solution for massive MIMO configuration. While the works in [13] and [15]
exemplify the use of NDT for the training of RL solutions, none of the existing works has
discussed the capabilities, requirements, procedures and management tasks of an NDT for
the training of RL solutions for the RAN. Furthermore, given the standardization efforts of
some bodies, such as the O-RAN Alliance, on frameworks for training ML and RL solutions
for the RAN, the way to integrate NDTs into these frameworks is a relevant aspect that
remains a gap in the literature. This paper covers these two research gaps by proposing the
integration of NDTs on current frameworks of O-RAN alliance for training RL solutions
and by introducing different functionalities required for the configuration and operation of
the NDT to conduct the training.

Therefore, the main novelties and contributions of this paper are twofold:
First, motivated by the need to further specify the design of an NDT for the RAN

subsystem, a novel RAN NDT architecture is proposed. The proposed architecture, which
considers the terminology and structure of the NDT proposed by IETF in [10], includes the
different components required for building and representing the different RAN entities
and the functionalities for gathering real data, managing and operating the NDT. Detailed
insights on the component’s requirements and operation of an NDT for the RAN subsystem
are provided, as a difference from the prior works in [5–9], which only propose a high-
level design of NDTs embracing several subsystems, or the work in [3], which basically
identifies the components to be included in a RAN NDT but without providing many
details on the component’s requirements. In addition, new functional components that
had not been identified in previous works are included in the proposed architecture in this
paper regarding mobility, RAN management and optimization, RAN NDT exploitation
and NDT management. Moreover, the designed multi-component architecture allows a
flexible customization of the RAN NDT to be used in different applications and use cases.

Second, given the relevance and benefits of using NDT for training RL solutions for
the RAN, this NDT use case is addressed in detail in the paper and different functionalities
are proposed for supporting the NDT configuration and the training of RL algorithms on it.
These functionalities are described in the context of the O-RAN Alliance ML workflow [16].
To the authors’ best knowledge, none of the previous works has proposed the integration
of a RAN NDT within the O-RAN framework, nor have the functional requirements been
discussed for conducting the training on an NDT. So, this paper presents an illustrative
example of the proposed framework for training that consists of the implementation of
an NDT for the RAN to conduct the training of a specific RL solution for capacity sharing.
The implemented NDT is built following the proposed NDT architecture in the paper.
Results on the training of the capacity sharing solution on the implemented RAN NDT are
provided, showing the usefulness of the NDT for the RAN as a platform to successfully
train RL solutions.

The rest of the paper is organized as follows. Section 2 presents the architecture of the
NDT for the RAN. Then, Section 3 presents a functional model for training RL solutions on
an NDT of the RAN. Section 4 presents a specific applicability example of the proposed
model illustrated with some results. Finally, conclusions and future work are summarized
in Section 5.

2. NDT Architecture for the RAN

The design of the RAN NDT needs to allow the accurate characterization of the real
RAN behaviour and its performance assessment, as well as to be flexible for use in different
applications and cases. Considering this, Figure 1 shows the architecture of the NDT of the
RAN that is proposed in this paper. For facilitating the practical feasibility of the proposed
architecture, it is aligned with the terminology and concepts proposed in IETF in [10]. The
RAN NDT architecture includes three main modules: the data repository, which gathers and
stores the data from the real RAN, the service mapping models, which allow representing the
different elements and the operation in the real RAN, and the digital twin management, which
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manages the NDT. In addition, the architecture identifies different potential applications, or
Apps, that can benefit from a RAN NDT instance of the proposed architecture customized
to its requirements. In the following, further details on these modules are provided.
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2.1. Data Repository

The data repository module is responsible for collecting data from the real RAN envi-
ronment and storing it to feed the RAN NDT. This allows the NDT to have an accurate and
real-time representation of the real RAN but also provides historical data to be exploited by
the models in the NDT.

Types of data included in the repository can be related to configurations, operational
states, topology, traces, key performance metrics, etc. The data may also vary in the level of
detail (i.e., packet level, time slot level, user level, etc.) as well as in the time scale in which
it is gathered (e.g., milliseconds, seconds, minutes, etc.). This will depend on the purpose
of the NDT instance (e.g., training a RL model at the MAC layer operating at millisecond
time scales or a RRM policy operating in the order of minutes) and the required data by the
different models in the NDT.

2.2. Service Mapping Models

The service mapping models includes different models for representing the various
elements and functionalities in the RAN. A modular design is devised to improve the
programmability of the network services and the agility of operation and deployment. The
models are fed by the data in the data repository to update their parameters according to
the real RAN behaviour. The different service mapping models interact between them and
are divided into two main types: basic and functional models, which are described in the
following subsections, indicating some considerations on their design.

2.2.1. Basic Models

Basic models refer to RAN network elements and entities that allow capturing the
configuration and the RAN environment information. Figure 1 proposes some basic models,
namely scenario topology, gNBs, UEs, channel and network slices. Note that the incorporated
models correspond to the required ones to represent a 5G RAN deployment in the NDT, but
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more models could be incorporated if required (e.g., an eNB model in case of considering
interworking with an LTE network).

• Scenario topology model: covers the topographic information of the RAN area consid-
ered for the NDT, such as detailed maps including buildings, streets, parks etc.

• gNBs model: emulates the behaviour of the gNBs (i.e., 5G nodes) including aspects
such as their deployment information (e.g., gNB position, gNB height), configuration
(e.g., operating frequency, bandwidth configurations, numerologies, beamforming
model) and operation (i.e., packet conformance at different levels, etc.).

• UEs model: emulates the behaviour of Users Equipment (UEs) capturing physical
aspects such as their position, height, antenna gain or the noise figure but also others
such as the UE type (e.g., pedestrian, vehicular, sensor) and/or the UE Quality of
Service (QoS) requirements (e.g., minimum bit rate, latency, reliability).

• Channel model: characterizes the links between the UEs and the gNBs, considering the
effect of propagation loss, interference or noise in accordance with the parameters of
UEs and gNBs in the NDT (e.g., antenna heights, gains, noise figure, etc.).

• Network slices model: for systems with multiple slices, this module embraces all aspects
related to their characterization. For each slice, this may include the UEs belonging to
the slice, the Service Level Agreement (SLA) to be guaranteed and per-slice parameters
to be considered in the scenario.

2.2.2. Functional Models

The functional models cover network analysis, emulation, diagnosis, prediction and
assurance. In Figure 1, three subgroups of functional models are proposed.

The first subgroup is the emulation dynamics, which refers to those models that allow
controlling the RAN environment dynamics in the NDT. The proposed models in this
subgroup are the following:

• Traffic generation model: allows emulating a realistic behaviour of the traffic demand
in the real RAN at different levels (e.g., packet, user, service, network slice or system
levels), accounting for the temporal and spatial distributions in the considered RAN
area. The traffic generation can be either based on available models in the literature
(e.g., session generations according to a Poisson distribution and session durations
modelled by an exponential distribution) or on geo-localized traces and measurement
reports generated by UEs during their connection to the network. The traffic generation
model interacts with the UEs model in Figure 1 to generate new UE sessions.

• Mobility model: emulates how the users move in the RAN area, characterizing their
trajectories and speed. Different models can be defined for the existing user types in
the RAN area (e.g., pedestrian, vehicular, static, drones, etc.). This model interacts
with the UEs model to modify the UE’s positions and takes into account the scenario
topology model for users’ trajectories (e.g., pedestrian users usually walk on the
pavement while vehicles drive on the road).

• Propagation model: allows generating different radio propagation conditions, capturing
effects such as path loss, attenuations due to diffraction and rain, shadowing or fast
fading. The outcomes of the propagation model are provided to the channel model
in Figure 1.

The second subgroup is the RAN management & optimization. The models belonging
to this subgroup are management and optimization models that are applied in the real
RAN and, thus, impact the network behaviour. This includes RRM policies (e.g., admission
control, resource allocation, packet scheduling, etc.), optimization functions at network level
(e.g., interference coordination, handovers) and SON functions (e.g., capacity and cover-
age optimization, mobility load balancing, cross-slice capacity optimization, etc.). These
functions tune and control the different basic models.

The last group of functional models is the exploitation, embracing models for exploiting
the outputs of the rest of the service mapping models. The proposed models in this group
are the monitoring model, which allows obtaining detailed information of the functional
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and basic models in the RAN NDT, the Key Performance Indicator (KPI) reporting model,
which generates reports with KPI metrics of interest (e.g., resources utilization, throughput,
QoS satisfaction, etc.), the analysis model, for processing the obtained KPIs to assess the
performance of the different NDT models, and the visualization model, which can provide
different kind of graphs such as the evolution of different KPIs, coverage maps of the
different gNBs included in the RAN NDT, etc.

2.2.3. Models Design

The service mapping models can be approached as analytical models, simulators, or ML-
based models. The selection of one or another approach can depend on different aspects
such as the availability of data (i.e., if there are not any available data, an ML model cannot
be trained), the level of complexity of the selected approach or the required accuracy in the
NDT. For instance, the traffic generation model in an NDT of the RAN can be approached
as a ML model trained based on real data. However, if not enough data are available for
the training of the ML approach, the model can also be designed as a simulator, whose
parameters can be fine-tuned to adapt to real data collected from the RAN.

2.3. NDT Management

The NDT management module in Figure 1 fulfils the management function of the
NDT. This includes the NDT’s life-cycle management, i.e., the deployment, operation,
optimization, maintenance and termination of the different models in the NDT. This also
embraces the feed of data from the data repository to the different models and the validation
of the performance of the models as well as the interactions between them. In the case of
ML-based models, the NDT management module can provide support along the AI/ML
life cycle of the ML-based models in the NDT (i.e., training based on new data, testing and
operation). Moreover, the NDT management module is responsible for the activation of the
models specified when creating a specific RAN NDT instance. Another functionality is the
control of emulation processes on the NDT when it is used for assessing and exploring the
network performance in different situations (i.e., what-if situations such as different traffic
demand levels, diverse configurations of nodes, etc.). In addition, the NDT management
module is in charge of the monitoring of the execution of the NDT modules, encompassing
resource consumption, problem detection, connectivity between the RAN NDT and the
Apps and the experienced traffic.

2.4. Apps

The proposed architecture considers that different Apps can make use of the RAN
NDT. Each App is provided with a RAN NDT instance customized according to the specific
requirements of the App. This customization can embrace the activation of selected service
mapping models, the specification of the data to gather in the data repository, the definition
of the required KPIs, the specification of analysis and visualization capabilities for the App,
the specification of emulations if required, etc.

Figure 1 identifies different relevant Apps related to the different stages of the lifecycle
of the RAN that are identified as main use cases for the RAN NDT:

• Planning & Dimensioning Apps: When deploying new gNBs in the RAN or configuring
the existing ones, emulations can be performed on a RAN NDT instance to determine
the most adequate gNBs deployment locations and configurations to enhance the
coverage and capacity of the network. For this kind of App, the NDT instance will
include the already deployed gNBs and their configurations. Then, diverse emulations
associated with different configurations of the new gNB can be conducted on the RAN
NDT instance.

• Network Operation Apps: During the operation of the network, a RAN NDT instance
can contribute to the monitoring of the network by extending the performance metrics
obtained from the real network with additional ones obtained from emulations on the
RAN NDT. Based on this, possible failures or anomalies can be predicted and actions
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can be taken to avoid them. Therefore, the RAN NDT instance for this App should
include all the elements (scenario topology, gNBs, UE characterization, etc.) as in the
real RAN, which will be fed with real-time data from the RAN.

• Network Optimization Apps: The optimization of the RAN can benefit from a RAN NDT
instance for emulating different RAN configurations as well as for testing algorithmic
solutions before they are applied in the real RAN, allowing adjustment and validation
of their parameters. The testing of configurations can be conducted by enforcing them
on the RAN NDT instance and performing emulations. In the case of algorithmic
solutions, whether they are based on heuristics, analytics or machine learning, they
should be integrated within the RAN NDT instance to assess their performance
through emulations. For instance, if a RRM policy for admission control is tested,
it should be loaded as a functional model for RAN management & optimization, and
the corresponding admission decisions should be made on the RAN NDT instance
models to assess its performance. Furthermore, note that in the case of ML-based
solutions, and specially RL-based solutions, their training can be performed on the
NDT instance, as discussed in the next section.

3. NDT for RL Training Process

NDT allows performing the training of RL solutions for the RAN. The training pro-
cess of a RL model consists of learning the optimal policy that selects the best decision
(i.e., action) for each possible situation (i.e., state), which is the one that obtains the max-
imum reward. To achieve this, during the training process a RL agent (i.e., the learner)
iteratively interacts with an environment, where at each iteration the RL agent obtains a
state, selects an action, and then, as a result of the last action, receives a reward that evalu-
ates how good or bad the last action was for the last state, along with the new state [17].
Actions are selected according to both exploitation, where actions are selected following
the RL agent’s policy, and exploration, where actions are selected randomly. From this
interaction, the RL agent updates the policy. This is repeated until a convergence condition
is reached, when the training process is terminated.

RL solutions can be applied to problems of the RAN involving some sort of decision
making, mainly associated with RRM, RNM or SON functions. RL solutions for RRM
functions dynamically manage the provisioned resources operating at different time scales
from milliseconds to a few seconds and cover solutions for the different layers of the
protocol stack. Examples of RL applicability for RRM functions are channel coding, power
control and dynamic spectrum access at the physical layer, scheduling at the MAC layer,
admission control for Radio Resource Control (RRC) and dual connectivity at the Packet
Data Convergence Protocol (PDCP) layer. Moreover, RL can be applied to RNM and SON
functions to support the network planning, deployment and operation of the RAN in
terms of configuration, optimization and fault management, operating at longer-term time
scales. For instance, RL applicability examples related to SON functions include capacity
and coverage optimization, mobility robustness optimization, mobility load balancing or
cross-slice capacity optimization, also referred to as capacity sharing, for assigning available
resources to the different slices.

Despite the wide applicability of RL for the RAN, the training of these solutions
represents a relevant challenge from the implementation perspective. This is because
the trial-and-error behaviour involved during the training of RL solutions can lead to
unacceptable degradations in network performance if the training is performed directly
on the real RAN. To address this problem, the training of RL can be safely performed on a
RAN NDT. This can be conducted by considering the RL solution as an App in Figure 1 that
interacts with a RAN NDT instance during the training.

Figure 2 includes the proposed functional model for the training of RL models for
the RAN by using a RAN NDT. To facilitate its practical feasibility, the model is aligned
with the main components and functionalities involved in the training of ML models in the
O-RAN Alliance ML workflow [16]. These functionalities are coloured blue in Figure 2. As
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proposed components in this paper, the functional model includes a RAN NDT instance,
which is coloured green, and different components to support the training of the RL-based
models on it, coloured orange.
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The training of RL models is performed at the ML training host, which includes
different components, namely, model training & testing, model selection, model optimization
and model refine, all of them proposed in the O-RAN Alliance ML workflow [16].

Among these ML training host components, the RL model training is carried out
by the RL agent under the model training & testing, where the RL policy iteration process
takes place through the iterative interaction of the RL agent with the RAN NDT instance
that constitutes the training environment, making use of exploration and exploitation.
Hence, along the training process the RL agent iteratively obtains the states and rewards
from the RAN NDT instance and sends the actions to it. Then, according to the states,
actions and rewards, the policy is updated. The specific algorithm for updating the policy
depends on the considered RL technique (e.g., for Q-learning and DQN techniques the
corresponding algorithms can be found in [17,18], respectively). Note that the states
and rewards will result from the sent action, but also from the emulation dynamics and
components’ configurations in the RAN NDT instance. During the training, different
KPIs are monitored to assess the model convergence and determine whether the training
process is completed. Afterwards, the model testing takes place, consisting of validating
the behaviour of the trained model. This is performed by selecting the actions according
to the trained policies under exploitation mode and by triggering them on the RAN NDT
instance. During this process, the performance of the trained policies can be assessed
through different RAN-related KPIs (e.g., throughput, error rates, etc.). Once the training
and validation are completed, the RL model (i.e., the trained policy) can be packaged up,
e.g., as a container, and be deployed on the real RAN environment, where the RL model
actions are executed during a stage known as inference.

Within the ML training host, the model selection function selects the configurations for
the inference and the training of the RL model based on the requirements of the RL solution
e.g., training accuracy, training time, hardware resources in training and inference, inference
speed, etc. To control and configure the training environment, the environment specification
function is proposed to be included in the model selection functionality. Specifically, this
function configures the RAN NDT instance by specifying the models of the RAN NDT
instance that are required for the training of the RL model. To this end, the environment
specification interacts with the NDT management module in Figure 1 to configure the required
models in the model activation & configuration functionality. For example, this might include
the activation and configuration of the gNB and scenario topology models in Figure 1 of
the RAN NDT instance according to the gNBs configurations and topology in the real
RAN, respectively. Moreover, to ensure high performance of the RL model training, the
RL agent needs to experience, during the training, those relevant situations (i.e., states)
that will be experienced later on during inference. The environment specification function



Sensors 2023, 23, 1197 9 of 17

is also responsible for the configuration of the RAN NDT instance parameters to emulate
these situations in the emulating running control functionality of the NDT management. For
instance, different traffic levels or load distributions among the different gNBs can be set up
for emulation. As a RAN NDT instance can be fed by data from the real RAN environment
to be used by the service mapping models shown in Figure 1, another responsibility of the
environment specification function is to specify the data needed by the RAN NDT instance.
Based on this configuration, data are gathered from the real RAN environment and stored
in the data repository of the RAN NDT instance.

Regarding the model optimization component in the ML training host, it allows the
optimization of the hyperparameters of the RL model (e.g., number of layers of a neural
network in case of deep RL, number of neurons per layer, etc.) based on certain hardware
or performance metrics requirements such as model accuracy, model size, inference speed,
memory used, etc. Then, the RAN NDT instance can be used to test the performance of
different policies associated with different hyperparameter configurations.

Finally, the model refine component allows, if required, the upgrade of the model
through re-training after it has already been deployed in the real RAN. This can be required
when the performance of the deployed policies is no longer optimal due to mismatches
between the conditions considered during training and those in the real RAN environment.
For instance, this can occur when changes are made to the gNBs model (e.g., new gNB
deployment) or its elements configuration (e.g., a change in the configuration of a gNB), or
also when the users in the real RAN start behaving differently (e.g., new UE requirements,
new services are offered in the real RAN, etc.). In these situations, the model refine component
is notified and, accordingly, it triggers a re-training process conducted on a RAN NDT
instance updated in accordance with the new conditions.

4. Results

In this section, a use case example of the training of RL solutions on a RAN NDT is
provided. The considered use case is a RL solution for capacity sharing in RAN slicing, as
described in Section 4.1. Then, an implementation of a RAN NDT for the training of the
RL-based capacity sharing solution is described in Section 4.2 that is based on the RAN
NDT architecture proposed in Section 2. Next, the performance evaluation is assessed in
Section 4.3 that focuses on the training of the RL-based capacity sharing solution on the
implemented RAN NDT and on the performance of the learnt policies after training.

4.1. Use Case Example

This section presents an implementation of a RAN NDT to train an RL-based capacity
sharing solution for RAN slicing based on the architecture proposed in Figure 1.

The RL-based capacity sharing solution has the role of an App, as shown in Figure 1.
Specifically, the considered capacity sharing solution is the Deep Q-Network Multi-Agent-
Reinforcement Learning (DQN-MARL) capacity sharing approach proposed in our work
in [19]. The solution allows dynamically distributing the available capacity in a RAN
infrastructure composed of N gNBs among K tenants, each of them provided with a RAN
slice. Each gNB n has a total capacity of cn (b/s). The solution targets the efficient use of
the available capacity in the gNBs and, at the same time, the satisfaction of the SLA of the
tenants. The SLA established for the k-th tenant is defined in terms of: (a) the Scenario
Aggregated Guaranteed Bit Rate, SAGBRk, which is the aggregated capacity to be provided
across all gNBs to tenant k if requested, and (b) the Maximum Cell Bit Rate, MCBRk,n, which
is the maximum bit rate that can be provided to tenant k in cell n. The DQN-MARL capacity
sharing solution considers that each tenant is associated to a different RL agent. Each agent
tunes the resource quota (i.e., the fraction of capacity) assigned to the tenant’s slice in the
different gNBs in time steps of duration ∆t, in the time scales in the order of minutes.

To learn the policy that tunes the resource quota for each tenant, at each time step, the
RL agent obtains the state of the tenant in the different gNBs of the environment, which is
defined as a tuple with different metrics, including the resource usage and resource quota
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of the tenant, the resource quota not assigned to any tenant, the resources not used in the
gNB and the SLA parameters of the tenant. According to the obtained state, the RL agent
decides the actions to perform in each gNB, which can be to increase the resource quota
in ∆, to decrease it in ∆ or to keep it unaltered. To assess to what extent the applied resource
quota in each gNB was suitable, a reward is provided to each RL agent in the following
time step. The reward definition promotes the satisfaction of the SLA parameters and the
minimization of overprovisioning situations. For further details on definitions of the state
action and reward, the reader is referred to [19]. During the training of the solution, the
RL agents interact with a RAN NDT instance, from which the state and reward signals
are obtained and the actions, selected by an ε-Greedy strategy, are applied in the different
gNBs. Based on this interaction, the policy that tunes the resource quotas is updated until
it reaches convergence.

4.2. RAN NDT Instance

The implemented RAN NDT for training the DQN-MARL capacity sharing solution
corresponds to a specific RAN NDT instance of Figure 1. Following the functional model
in Figure 2, the environment specification module in the training host specifies the service
mapping models of the RAN NDT instance and their configuration to emulate different
realistic RAN conditions (i.e., RL agent states), apply the RL actions and obtain the re-
wards. In particular, the implemented RAN NDT instance allows capturing realistically
the spatial traffic distributions in an area with different gNBs and emulates the network
behaviour under different dynamic conditions with UEs moving through the scenario and
generating traffic. In the following, the description of the basic and functional models in
the implemented NDT (i.e., RAN NDT instance) is provided.

4.2.1. Basic Models

The implemented NDT has approached the basic models as follows:

1. Scenario topology model: corresponds with an urban scenario of 700 × 700 m in
Barcelona city shown in Figure 3, which encompasses different streets, avenues, a
park, and different seven-floor buildings with 3.5 m floor height.

2. gNB model: includes the gNBs deployed in the area. Each one is modelled as an
outdoor microcell and is specified by the following parameters: gNB position, height,
operating frequency, total transmitted power, total bandwidth, subcarrier separation,
total number of Physical Resource Blocks (PRBs), duplex mode and the gNB antenna
gain and noise figure. Only the downlink (DL) direction is considered. The positions
of the gNBs in the NDT are shown in Figure 3. To avoid border effects, it is assumed
that the study of the capacity sharing algorithm is performed only in the five central
gNBs that are numbered and highlighted in yellow in the figure.

3. UE model: is specified by the user density in the area (users/km2), the UE type,
which can be either stationary, pedestrian or vehicular, as well as by the UE position
that changes dynamically, the UE height, antenna gain, noise figure and required bit
rate Rb.

4. Channel model: provides the Signal-to-Interference and Noise (SINR) ratio for each UE
by considering the UE and gNB parameters and obtaining the path loss according to
the UE position and the propagation model of the NDT. Moreover, the channel model
provides the spectral efficiency Seff in b/s/Hz to each UE according to the SINR and
assuming that the maximum achievable Seff is 7.4063 b/s/Hz as established in [20],
and that UE is in outage if Seff is lower than 1 b/s/Hz. Additionally, inefficiency
factors due to cyclic prefix of 5G transmission and overheads (see [22]) have been
considered, taking values 14/15 and 0.8, respectively.

5. Network slice model: is specified by the associated SLA to be guaranteed to the different
network slices (i.e., the SAGBRk and MCBRk parameters in the DQN-MARL capacity
sharing algorithm), the bit rate requirement of UEs belonging to the network slice Rb,
the traffic generation parameters for the network slice and the percentage of users of
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the different types in the network slice. In addition, the resource quota of the network
slice in the different gNBs during the current time step is also configured here.
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The specific values of the parameters considered for the different basic models in the
NDT are listed in Table 1.

Table 1. Configuration of the implemented RAN NDT.

Parameter Value
gNB

Number of gNBs 5
gNB height 10 m

Operating frequency 3.5 GHz
Total transmitted power 35 dBm

Total bandwidth 100 MHz
Subcarrier separation 30 kHz

Duplex mode Time Division Duplex (75% of
symbols allocated to DL)

Number of PRBs per gNB 273
Antenna gain 20 dB
Noise Figure 9 dB

UE
UE height 1.5 m

UE antenna gain 0 dB
Noise Figure 9 dB

Channel

Average Spectral
efficiency (bits/s/Hz)

gNB 1 3.71
gNB 2 3.73
gNB 3 3.59
gNB 4 3.66
gNB 5 3.59
Network slice

Number of tenants 2
Required user

bit rate (Rb)
Tenant 1 8 Mb/s
Tenant 2 4 Mb/s

SAGBRk
Tenant 1 50% of the capacity in the system
Tenant 2 25% of the capacity in the system

MCBRk Tenant 1 and 2 90% of the cell capacity
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4.2.2. Functional Models

Concerning the functional models that have been implemented in the NDT, the fol-
lowing have been considered:

(1) Traffic generation model: considers that sessions are generated following a Poisson
distribution with a rate λ (sessions/s) and session durations are modelled by an expo-
nential distribution with average µ (seconds). The traffic generation parameters (λ, µ)
are provided by the network slice model so that the traffic generation is performed
per network slice.

(2) Mobility model: it is applied for each UE in the RAN NDT and its outcomes modify the
position feature in the UE. It is implemented as a random walk model with a certain
probability of changing direction in a range (+α, −α) (degrees). The implementation
considers that pedestrian UEs move at 3 km/h along the sidewalks of the streets
with a 20% probability of changing direction at an intersection. When they are
around a park area, they follow a random walk model in which the UE maintains
the same direction for an exponentially distributed time with an average of 10 s and
makes random direction changes in a range (+45◦, −45◦) with respect to the current
direction. Stationary UEs remain static throughout a simulation and can be placed
either outdoors on a pavement or a park or indoors on any of the floors of a building.
Vehicular UEs move along the streets at 30 km/h with a 25% probability of changing
direction at an intersection.

(3) Propagation model: the one included generates a propagation loss map by follow-
ing the Urban Microcell (UMi) model of [21], which specifies the path loss and 2D
correlated shadowing for outdoor-to-outdoor and outdoor-to-indoor links.

(4) RAN management & optimization models: the included models of this type in the RAN
NDT are the following. First, a capacity sharing SON model is included that receives
the resource quotas from the RL agents in the DQN-MARL capacity sharing solution
and configures them in each gNB. Second, a resource allocation model is included
as a RRM policy that computes the allocated PRBs, which correspond to the radio
resources in 5G, in each gNB to the different UEs according to the resource quotas
per network slice provided by the capacity sharing SON function. This resource
allocation is computed in time scales of the order of seconds, so effects related to
ms time scales (e.g., fast fading, scheduling, etc.) are characterized in average terms.
Third, a cell selection model is also incorporated as an RRM policy that selects the gNB
to be attached by a UE in every NDT execution step. In particular, it is assumed that a
UE attaches to the gNB with the maximum SINR.

Moreover, the models to exploit the outcomes from the rest of the functional and basic
models in the implemented RAN NDT are the following ones:

(1) Analysis model: computes the state and reward components for the RL agents in the
DQN-MARL capacity sharing solution.

(2) KPI metrics model: provides the generated offered loads, the radio resources utilization,
throughput, QoS/SLA satisfaction provided at the system, gNB and slice levels.

(3) Visualization model: allows visualizing coverage and traffic density maps in the area
as well as plots of the evolution of the different KPIs.

4.3. Performance Evaluation

The assessment of the performance of the training of the DQN-MARL capacity sharing
solution on the implemented RAN NDT is provided in this section. To conduct the training,
the environment specification functionality in Figure 2 has provided the model configuration
values in Table 1 to the models activation & configuration functionality of the implemented
RAN NDT. The scenario consists of two tenants, denoted as Tenant 1 and Tenant 2, that
share the capacity of 5 gNBs. Moreover, the environment specification functionality sets the
emulation parameters in the emulating running control functionality of the implemented
RAN NDT according to the values included Table 2 in terms of the user density in the RAN
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area for the two considered tenants, the percentage of users of each type (i.e., stationary,
pedestrian or vehicle) at morning, afternoon and night and the traffic generation parameters.
The parameters considered for Tenant 1 correspond to a business profile, which has more
density of users during the morning, while those considered for Tenant 2 correspond to a
residential profile, which is more intense during the afternoon. The RAN NDT execution
for the training is performed by repeatedly generating different random realizations of
traffic generation and mobility following the parameters in Table 2. The emulation in the
RAN is performed in time steps of 1 s duration, while the monitoring of the different
models is performed by averaging the different traffic-related metrics every 3 min.

Table 2. Emulation parameters for training.

Parameter Morning
(8–16 h)

Afternoon
(16–24 h)

Night
(0–8 h)

User density
(users/km2)

Tenant 1 3000 2000 100
Tenant 2 1000 4000 500

User types
percentages

Stationary 50% 60% 90%
Pedestrian 40% 30% 5%

Vehicle 10% 10% 5%

Traffic
generation
parameters

Session generation rate (λ) 1 session/s
Average session

duration (µ) 300 s

The considered configuration for the DQN-MARL capacity sharing solution is given
by the parameters of Table 3. For details on the meaning of each parameter, the reader
is referred to [19]. Based on this, the training is performed through the interaction of the
RL agents in the DQN-MARL capacity sharing solution with the RAN NDT according
to an E-Greedy policy. Moreover, the RAN NDT is configured to provide an evaluation
of the trained policy every 5000 steps of training, where a step is one interaction of the
RL agents with the RAN NDT instance. This evaluation consists in the application of the
trained policy until that moment without considering random actions (i.e., a greedy policy)
to a specific realization of the morning–afternoon–night pattern of Table 2 that is shown in
Figure 4. The subplots from (a)–(e) depict the evolution of the offered load (i.e., required bit
rate) per tenant and the aggregated offered load of both tenants in gNBs 1 to 5, respectively,
both normalized to the average gNB capacity. In all the gNBs and according to the emu-
lation configuration in Table 2, the offered load of Tenant 1 is larger during the morning
(t = 0 min until t = 480 min in Figure 4), while it is reduced approximately by 40% during
the afternoon (t = 480 min until t = 960 min in Figure 4) and it is very low during the
night (t = 960 min until t = 1440 min in Figure 4). Instead, the offered load of Tenant 2
remains low during the morning and night, but experiences similar offered load levels
to Tenant 1 during the afternoon. Focusing on the aggregated offered loads in each gNB,
gNB 1 experiences overload sometimes during the afternoon (i.e., the aggregated offered
load is larger than 1), while gNBs 2–5 always have enough capacity to fulfil the offered
loads of both tenants. This is because gNB 1 is located in a park (see Figure 3) with higher
affluence than the rest of the gNBs. Moreover, subplot (f) in Figure 4 shows the aggregated
offered load in the system (i.e., among all the gNBs) per tenant, jointly with the aggregated
offered load of both tenants in the system, both normalized to the total system capacity.
Note that the aggregated offered loads in the system are generally below the SAGBRk of
both tenants (i.e., 50% of system capacity for Tenant 1 and 30% of system capacity for
Tenant 2), only exceeding it sporadically in the case of Tenant 2 during the afternoon.



Sensors 2023, 23, 1197 14 of 17

Table 3. Configuration of the hyperparameters of the DQN-MARL capacity sharing solution.

Parameter

Initial collect steps 80,000
Maximum number of time steps for training 1.5·106

Experience Replay Buffer length (l) 107

Mini-batch size (J) 256
Learning rate (τ) 0.0001
Discount factor(γ) 0.9
E value (E-Greedy) 0.1

DNN configuration
Input layer: 17 nodes

1 full connected layer: 100 nodes
Output layer: 243 nodes

Reward weights (ϕ1, ϕ2) (0.5. 0.4)
Action step (∆) 0.03
Time step (∆t) 30 sSensors 2023, 23, x FOR PEER REVIEW 16 of 19 

 

 

 
Figure 4. Offered loads per tenant and aggregated for (a) gNB 1, (b) gNB 2, (c) gNB 3, (d) gNB 4,  
(e) gNB 5 and (f) at system level. 

As an output of the visualization model in the RAN NDT, Figure 5 depicts the evolu-
tion of the aggregated average reward of both tenants, denoted as R, as a result of the 
evaluations conducted periodically during the training. The figure shows that during the 
first 250·103 training steps, R increases abruptly, experiencing large fluctuations. After this 
period, R increases in a slower slope with lower fluctuations until it stabilizes at a value 
of around 1.6 after approximately 1500·103 training steps. These results highlight the use-
fulness of the implemented RAN NDT to conduct the training of the DQN-MARL capacity 
sharing solution. 

 
Figure 5. Evolution of the aggregated reward by tenant 1 and tenant 2 during training. 

Moreover, the visualization model in the RAN NDT also provides Figure 6, which 
compares the assigned capacity per tenant by the learnt policy after convergence to their 
respective offered loads in the different gNBs (subplots (a)–(e)) and system level (subplot 
(f)). In subplots (a)–(e) both the offered loads and assigned capacities are normalized to 
the gNB capacity. The results in these subplots illustrate that the assigned capacity per cell 
adapts to the offered load in all gNBs. Moreover, subplot (f) compares the offered loads 
and assigned capacities to both tenants in aggregated terms over all gNBs, both normal-
ized to the system capacity. From this subplot, the fact that the learnt policies allow satis-
fying the SAGBRk requirement can be observed as the aggregated offered loads per tenant, 

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400

Of
fe

re
d l

oa
d

Time (min)

Tenant 1 - gNB 1 Tenant 2 - gNB 1 Aggregated gNB 1

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400

Of
fe

re
d l

oa
d

Time (min)

Tenant 1 - gNB 2 Tenant 2 - gNB 2 Aggregated gNB 2

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400

Of
fe

re
d l

oa
d

Time (min)

Tenant 1 - gNB 4 Tenant 2 - gNB 4 Aggregated gNB 4

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400

Of
fe

re
d l

oa
d

Time (min)

Tenant 1 - gNB 3 Tenant 2 - gNB 3 Aggregated gNB 3

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400

Of
fe

re
d l

oa
d

Time (min)

Tenant 1 - gNB 5 Tenant 2 - gNB 5 Aggregated gNB 5

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400

Of
fe

re
d l

oa
d

Time (min)

System - Tenant 1 System - Tenant 2 Total system

(a) (b) (c)

(d) (e) (f)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 250 500 750 1000 1250 1500

R

Trainig steps (x1e3)

Figure 4. Offered loads per tenant and aggregated for (a) gNB 1, (b) gNB 2, (c) gNB 3, (d) gNB 4,
(e) gNB 5 and (f) at system level.

As an output of the visualization model in the RAN NDT, Figure 5 depicts the evolution
of the aggregated average reward of both tenants, denoted as R, as a result of the evaluations
conducted periodically during the training. The figure shows that during the first 250·103

training steps, R increases abruptly, experiencing large fluctuations. After this period,
R increases in a slower slope with lower fluctuations until it stabilizes at a value of
around 1.6 after approximately 1500·103 training steps. These results highlight the useful-
ness of the implemented RAN NDT to conduct the training of the DQN-MARL capacity
sharing solution.

Moreover, the visualization model in the RAN NDT also provides Figure 6, which
compares the assigned capacity per tenant by the learnt policy after convergence to their
respective offered loads in the different gNBs (subplots (a)–(e)) and system level (subplot (f)).
In subplots (a)–(e) both the offered loads and assigned capacities are normalized to the gNB
capacity. The results in these subplots illustrate that the assigned capacity per cell adapts to
the offered load in all gNBs. Moreover, subplot (f) compares the offered loads and assigned
capacities to both tenants in aggregated terms over all gNBs, both normalized to the system
capacity. From this subplot, the fact that the learnt policies allow satisfying the SAGBRk
requirement can be observed as the aggregated offered loads per tenant, which are lower
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than their respective SAGBRk, are satisfied. Hence, the learnt policies on the implemented
RAN NDT allow adapting the assigned capacity to the offered loads while satisfying the
SLA of both tenants.
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Figure 5. Evolution of the aggregated reward by tenant 1 and tenant 2 during training.
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Figure 6. Comparison of the offered loads and the assigned capacity per tenant for (a) gNB 1,
(b) gNB 2, (c) gNB 3, (d) gNB 4, (e) gNB 5 and (f) at system level. The required capacities are generally
satisfied, showing that the policies have been successfully trained on the RAN NDT.

To further assess the performance of the learnt policies, the KPI metrics model of the
implemented RAN NDT provides the per-tenant KPIs in Table 4 in terms of the average
reward, the average SLA satisfaction (i.e., ratio between the tenant’s throughput and the
minimum between the aggregated offered load in all gNBs and the SAGBRk) and the
average assigned capacity utilization per gNB (i.e., ratio between the throughput and the
assigned capacity per tenant). The values in Table 4 show that a similar average reward
is obtained by both tenants. In addition, high average SLA satisfaction is achieved, with
values above 0.85 for both tenants. The average assigned capacity utilization in all the
gNBs is around 0.8, revealing that the learnt policies assign the capacities to both tenants
with low overprovisioning. Overall, the obtained KPI values reflect that the implemented
RAN NDT has allowed the learning of high-performance policies.
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Table 4. KPI metrics obtained from KPI metrics model.

Parameter Tenant 1 Tenant 2

Average reward 0.78 0.84
Average SLA satisfaction 0.88 0.90

Assigned
capacity
utilization

gNB 1 0.83 0.88
gNB 2 0.77 0.82
gNB 3 0.78 0.80
gNB 4 0.77 0.83
gNB 5 0.78 0.80

5. Conclusions

This paper has discussed on the design and applicability of a Network Digital Twin
(NDT) for the Radio Access Network (RAN) subsystem. Aligned with the terminology
on NDT introduced by IETF, the paper has proposed the architecture of a RAN NDT that
is composed of different components for the gathering of data from the real RAN, for
the representation of the different entities and functionalities of the RAN, for exporting
relevant metrics and for the management of the RAN NDT. Based on the proposed RAN
NDT architecture, the specific RAN NDT use case of training Reinforcement Learning (RL)
algorithms for the RAN is described and different functionalities aligned with the O-RAN
Alliance ML workflow are proposed to support the training on the RAN NDT.

Moreover, the paper has described an illustrative example of an implemented RAN
NDT for the training of a specific RL solution for capacity sharing, namely, the DQN-
MARL capacity sharing solution, which allows the dynamic distribution of capacity in
scenarios with multiple gNBs among multiple tenants. Results to illustrate the performance
evaluation of the training of the solution have been provided for a specific configuration
of the RAN NDT. Results show that the training of the solution is successfully performed,
which proves the suitability of the implemented RAN NDT as a platform to conduct the
training. Also, the learnt policies after training achieve high performance, satisfying the
traffic demands of both tenants with low levels of overprovisioning and high service-level
agreement satisfaction.
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