
EURASIP Journal on Applied Signal Processing 2005:16, 2626–2640
c© 2005 Hindawi Publishing Corporation

Software Radios: Unifying the Reconfiguration
Process over Heterogeneous Platforms

Xavier Revés
Departament de Teoria del Senyal i Communicacions, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain

Email: xavier.reves@tsc.upc.es

Antoni Gelonch
Departament de Teoria del Senyal i Communicacions, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
Email: antoni@tsc.upc.es

Vuk Marojevic
Departament de Teoria del Senyal i Communicacions, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
Email: marojevic@tsc.upc.es

Ramon Ferrús
Departament de Teoria del Senyal i Communicacions, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
Email: ferrus@tsc.upc.es

Received 31 January 2004; Revised 21 February 2005

Future radio transceivers supporting the software radio concept will provide increased features for radio access networks. However,
the reconfiguration of radio equipment requires the existence of an architecture, a common framework, which allows the flexible
management of software running on radio processors. Such a framework must take into account the heterogeneity of hardware
devices and platforms for radio applications. Since the flexibility has a cost in terms of added overhead, a conceptually simple
but efficient structure that allows powerful mechanisms to develop and deploy software radio applications is required. This paper
describes our approach, the reasons that motivated it, and some implementation issues. The proposed framework is essentially
based on four items: an abstraction layer which hides any platform-dependent issue, a simple time-driven software structure,
a delimited interface format for software blocks which does not actually constrain communication, and a global time-reference
mechanism to guarantee real-time behaviour.

Keywords and phrases: software (-defined) radio, reconfiguration, flexible radio, software abstraction layer (middleware), hard-
ware abstraction layer, radio execution environment.

1. INTRODUCTION

Software radio [1, 2] is an emerging technology that
promises great advantages to radio system engineers and to
the wide segment of potential or actual users of these systems.
The concept spans from the radio terminals (base stations or
mobile equipment) to network management, including re-
source management for optimum service provision. The key
aspect that unleashes the potential behind software radio is
the unbinding of radio capabilities from hardware. Software
running on digital hardware processors, including general-
purpose processors (GPP), digital signal processors (DSP),
field-programmable gate arrays (FPGA), and so forth, may
accomplish the hard processing tasks from intermediate fre-
quency (IF) to bit stream at the physical layer and, of course,

the tasks at higher layers. The increase in flexibility allows
considering the radio interface as a dynamic and adjustable
part of the system rather than a fixed one. Unfortunately, the
state-of-the-art has not yet reached the technological point
to construct an end-to-end completely flexible radio system.
The reason is that some parts still remain working in the ana-
logue domain.

In software radio equipment, wide-bandwidth high-
resolution analogue-to-digital and digital-to-analogue con-
verters change the information from the real world to
the numerical world. Here the information is managed by
soft-programmable digital processors. At present, there is
a plethora of processors whose brute force may deal with
harder processing tasks, like IF filtering, Viterbi decoding,
and so forth. A processing demand of some GOPS (billions

mailto:xavier.reves@tsc.upc.es
mailto:antoni@tsc.upc.es
mailto:marojevic@tsc.upc.es
mailto:ferrus@tsc.upc.es


Software Radio: Reconfiguration of Heterogeneous Platforms 2627

of operations per second) is not scaring any radio designer
any more. In addition, other tradeoffs emerge, like power
consumption, especially in battery-powered terminals, the
number of processors, their architecture and interconnec-
tion. Anyway, after having found a suitable combination and
organisation of processors, that is, a heterogeneous process-
ing platform, the full potential of software radio comes to the
scene.

Software radio embraces many possibilities to offer im-
proved and personalised radio services; for instance, quick
standard evolution through open standards that are updated
whenever new needs or new solutions emerge, adaptation
of the access network configuration according to instanta-
neous population distribution, global roaming, and so forth.
However, achieving these advantages is not possible with-
out a common framework and a formal design methodology
(e.g., [3, 4]) that fully expands software radios. This frame-
work must at least include a mechanism to specify what soft-
ware must run on the terminal (fixed or mobile), either di-
rectly downloading the executable files or through a more
reasonable way, and another to ensure the safe behaviour of
the software, keeping radio terminals within standard restric-
tions and respecting the user-operator contract bounds. A
third, complementary and very important mechanism can be
also envisaged: a network intelligent entity, centralised or dis-
tributed, determining the when, why, what, and how in a re-
configurable software radio environment (W3HSR). For in-
stance, when the terminal needs a reconfiguration, why must
it be reconfigured, what parts of the terminal are to be recon-
figured, and how to do it.

The next sections present a step further towards a possi-
ble answer to the problem of the development of software ra-
dios. It is a simple execution environment, a run-time man-
agement and abstraction layer that due to the simplicity of
its concept provides a powerful mechanism to develop and
deploy software radio applications. Because of the high-level
plane to where this tool moves the application, not only ra-
dio applications may take benefit from it. However, its inter-
nal architecture and specific features are oriented to provide
good support to the particularities of radio applications.

2. THE RADIO RECONFIGURATION PROBLEM

The first two questions (the “when” and the “why”) receive
an answer from the status of jointly managed, different wire-
less access networks. Independently of the complexity of the
algorithms used to decide whether a terminal should be re-
configured or not, the only issue to consider in the context
of this paper is the possibility that the management elements
may have access to contextual information provided by each
terminal.

The remaining two questions (the “what” and the “how”)
may be more difficult to answer. Every terminal has its par-
ticularities that make it difficult to homogenise the recon-
figuration procedure. As a general approach, software may
come from different sources, not being the same for differ-
ent terminals. A possible reason is that software optimisation

makes optimised products that are potentially better than the
products of competitors. Then it is likely that the optimised
algorithms are not public to avoid competitors reaching the
same performance level. This single reason already advocates
for different software solutions on terminals, although others
are possible. There are other issues related to software that
are not discussed in this paper, like the guarantee of software
security, download mechanisms, user-operator contractual
bindings’ agreement, and so forth [5].

At the hardware level, there exists a multitude of different
mobile terminals. Such a variety of terminals would be, by it-
self, a source of heterogeneity for the execution context of a
software radio. In base stations, an “unlimited” number of
hardware combinations are already possible employing em-
bedded processing cards from different manufacturers. Go-
ing beyond, why we do not consider the possibility to have
portable terminals with “variable” plug-and-play hardware.
Imagine a user selecting the RF minicard from manufacturer
A because of its high sensibility, dual-channel operation, and
maximum transmitted power among others. The IF mini-
card may be from manufacturer B because of the number
of simultaneous channels that it may capture, the computa-
tional performance, the power consumption, and so forth.
Finally, baseband (BB) minicard is selected from manufac-
turer C because of the power consumption versus bit rate,
weight, and price. All these cards can be inserted within a
chassis including a general-purpose processor running an
operating system and interfacing the keyboard, screen, cam-
era, and any other terminal peripheral. Over such a het-
erogeneous platform, the software radio application must
be executed, not only involving the general-purpose proces-
sor but above all the processors within RF, IF, and BB sec-
tions. Hence, in any radio interface endpoint, there is a large
amount of heterogeneity.

The previous paragraphs introduce the problem of pro-
viding a safe, unified, regulated environment for the recon-
figuration of software radio terminals with heterogeneous
hardware and probably nonpublic heterogeneous software
solutions. Such environment would allow taking the full ad-
vantage of the software radio concept to the network man-
agement entity, the users, the hardware manufacturers, and
the software programmers.

3. EXECUTION ENVIRONMENT

From the software radio network control centre point of
view, maybe the solution could just be as simple as hav-
ing software radio terminals with homologated software on
them, coming from any provider that the user may buy de-
pending on its terminal hardware. The terminal would then
accept commands from the control centre to move from one
mode to another (e.g., SDR forum approach [6]) within a
given list of possible agreed (standardised) modes and then
exchanges the software binaries loaded on the processors. For
a given mode and purchased software, the terminal could
simply have one or more files with information about the
software blocks to launch, which are all locally or remotely



2628 EURASIP Journal on Applied Signal Processing

accessible. In general, local access to software (e.g., stored
in a memory card) should be preferable over downloading
from a remote database because downloading software is rel-
atively slow. However, this option is useful for special situ-
ations. Also other options may be considered like, for in-
stance, compacting the amount to download not through
file compression but through efficient methods of describing
software. The availability of some kind of “virtual radio ma-
chine” (VRM) inside the terminal would provide yet another
possibility. Thus, it is quick to describe most of typical opera-
tions in radio systems through instantiation of radio entities
together with some additional parameters, while avoiding the
download of detailed information.

A first approach may be as simple as the mode switch-
ing stated before. Approaches that are more flexible could
increase the possibility of improvement of other relevant ra-
dio issues, like resource management (RRM), quality of ser-
vice (QoS), battery life, and so forth. As flexibility adds value
to radio interfaces, the conceived software-hardware struc-
ture should be the departing point from which to explore the
problems associated with the terminal reconfiguration pro-
cess. Before entering into the detailed description, it is nec-
essary to consider different software contexts. If in software
radio applications it is desirable to use any hardware plat-
form with any kind of processor (GPP, DSP, FPGA, etc.) and
use software from any homologated and licensed provider, at
least the constraints within one of the next three envisaged
contexts (or a combination of them) have to be granted.

(i) Software for the platforms comes in form of binary ex-
ecutable code.
(a) A compiled version for each possible processor

kind (or family of compatible processors) must ex-
ist.

(b) The code must not include any action that may
depend on surrounding processor hardware un-
known at compile time. Then, a set of standard
dynamically linkable libraries needs to be available
on the platform.

(ii) Software for the platforms comes in form of high-level
programming language.
(a) Each platform has to have a compiler that is able to

translate the high-level algorithm description into
a binary executable code.

(b) Libraries, dynamic or static, have to exist in the tar-
get platform to overcome hardware dependencies.

(iii) Software for the platforms comes in form of inter-
pretable language.
(a) A virtual machine (VM) has to run on each plat-

form. In the radio application context, a low-
resource utilisation and low-overhead VM are
mandatory.

(b) Specialised radio algorithms must be available to
VM to achieve a minimum performance. Even dif-
ferent libraries for different standards could be re-
quired to solve the peculiarities that each one may
offer. These libraries must come with the platform
or similarly as stated in the first situation in the list.

In any case, the solution to terminal heterogeneity is
finally libraries and/or virtual machines. They hide hard-
ware particularities (abstraction), and algorithm-related
software is at the end translated to processor-specific lan-
guage/executable. As a result, the same restrictions, method-
ologies, concepts, procedures, and so forth. found in general-
purpose computing platforms are found in software radio
platforms. Certainly, if only the software radio applications’
niche is considered, it is possible to make some simplifica-
tions over the more general approach. Nevertheless, one may
wonder if this is the only possibility. Is there another efficient
way to program the radio algorithms not requiring the avail-
ability of processor-specific executables or specialised radio
libraries for each platform? With the current state-of-the-art,
the answer is “probably not.”

4. THE ABSTRACTION LAYER

The first and basic step to advance in the process of defining
a common framework to develop and deploy software radio
applications is eliminating platform (hardware and support
software) dependencies. The next step is making it simpler
to specify radio applications, worrying only about algorithm
description. Based on available tools, the languages used to
program algorithms within the presented environment are
standard high-level languages like C/C++ and VHDL.

In this context, the possibility to add as much process-
ing resources as required for a given application, not having
to modify it at all, is of high importance. The possibility of
configuring the radio terminal with different hardware from
different providers requires the capability of adding (and re-
moving) plug-and-play hardware to (from) the system. The
different hardware topologies, configurations, and above all,
assigned tasks impose restrictions on the integration of dif-
ferent hardware to construct software radio platforms. Be-
cause of these and the previously stated objectives, a mul-
tiplatform software abstraction layer, platform-hardware ab-
straction layer P-HAL has been defined and constructed to
provide the following set of features (schematically repre-
sented in Figure 1):

(i) real-time seamless exchange of information from one
P-HAL compliant platform to another (bridge);

(ii) isochronisms of data and processes running on differ-
ent platforms (sync);

(iii) coordinated process control and scheduling on any
platform (kernel);

(iv) real-time system monitoring and data and statistics re-
trieval (stats);

(v) real-time adaptation of processes’ set-up parameters
(stats);

(vi) event logging and error control (kernel).

From the application’s point of view, the three first features in
the list produce the effect of having a single platform. Thus,
the same application description works on a single machine
or on multiple distributed machines, if the P-HAL layer ex-
ists in between the application and the hardware. It does not



Software Radio: Reconfiguration of Heterogeneous Platforms 2629

Abstract
application
description

Object
task 1

Object
task 2

Object
task 3

Object
task 4

Object
task 5

Object
task 6

Real
application
execution

Task 1
Task 2

Task 3
Task 4

Task 5
Task 6

Virtual
layer P-HAL

Platform
software

layer

SW
map

Stats
Bridge
Sync

P-HAL kernel

Stats
Bridge
Sync

P-HAL kernel

Stats
Bridge
Sync

P-HAL kernel

Stats
Bridge
Sync

P-HAL kernel

Hardware
layer

Platform 1 Platform 2 Platform 3 Platform 4

Physical interfaces

Figure 1: Representation of the platform abstraction layer.

matter which hardware runs a specific part of the application,
this part will just observe other parts as being aside. The pre-
vious situation and other P-HAL details appear in Figure 1,
where four processing machines (platforms) have their re-
spective P-HAL. From the point of view of the application
blocks, only a virtual P-HAL entity is visible. In any case, the
application is not aware of the underlying hardware. The fol-
lowing sections describe the required mechanisms to achieve
the pursued objectives.

4.1. Merging multiple platforms into one:
interplatform data bridging

In the proposed model, one platform almost does not need
to know anything about other platforms with which it coop-
erates. Because of this, the low-level communication process
has to be simplified and not tied to any specific configura-
tion. For such purpose, considering the IP network model
is interesting. Different platforms sharing a network con-
nection may use an IP address and a port number as the
single union point to exchange all the necessary informa-
tion. Since software radio applications require tough timing
control and fast interfaces (with reduced latencies and very
high bandwidth), it would be appropriate having the differ-
ent platforms connected through high-speed backplanes or
even dedicated connections. In such context, the IP model
is still valid. In an embedded processing environment, us-
ing the backplane bus with a 32- or 64-bit address may have
the same meaning as an IPv4 or IPv6 address in a network
domain. A given platform has only to know, for instance,
one backplane address for each additional accessible plat-
form. This address serves as interface to send information
to processes (parts of the application) running there or to
the corresponding P-HAL counterpart. The address actually
does not represent a typical memory address but rather an
access point to the platform that accepts streams of nonover-
lapping data. Before P-HAL is completely set up, only one

platform, which receives the name of P-HAL “master,” knows
these addresses. Then, it distributes them to other platforms
to construct the whole P-HAL environment.

Packets of data convey the application interface streams.
A packet goes either to another task within the same plat-
form or to another platform. In the latter case, P-HAL bridge
handles the transfer, as it knows the addresses (IP, backplane,
etc.) of all the access points of the remaining platforms. If
there is no physical connectivity with a particular platform
and data has to be moved to it, it is possible to use interme-
diate platforms, like in an IP network with its routers and
gateways. This, however, is not considered an interesting so-
lution for real-time applications because of the increased de-
lay. The bridging process is possible as each platform is as-
signed a range of virtual addresses (or labels). The processes
on a platform are assigned a label within the platform range
and a routing table is created.

4.2. Synchronising platforms and timing control

With the objective of observing a single and virtual time
throughout the abstract platform, it is mandatory that the
internal timers within each particular platform be synchro-
nised with enough precision. The features of a communi-
cations interface, the single interplatform interaction point,
determine the amount of available precision. Since there are
unknown latencies and delays in the communication process,
it is obvious that full synchronisation of all the timers is diffi-
cult (actually impossible) to achieve. Therefore, the expected
amount of synchronisation has to be enough for the tim-
ing control provided by the virtual platform. For instance,
if actions in the different real platforms are periodical with
a period of one second, a misalignment of one millisecond
should not be critical. Sync is the component within P-HAL
that deals with timing issues.

With the objective of reducing synchronisation require-
ments, the time on each platform divides into time slots that



2630 EURASIP Journal on Applied Signal Processing

Check config.

Receive data

Process data
Send data

Set monitor
Task done

Run stage

Finalise

Init. Get status

Slave
sync

Master
sync

TR

∆TE

Local
Remote

Figure 2: Object task structure and timing synchronisation proce-
dure.

become the minimum references on each individual plat-
form. Then, each individual platform runs, governed by its
P-HAL layer, at the best-suited timing interval, no matter
what it is: 1 second, 60 milliseconds, 50 microseconds, and
so forth. Merely two restrictions are imposed in the pre-
sented model. First, synchronisation error with other plat-
forms must be much lower (in the order of 1%) than the
time interval selected. Second, there must be an integer rela-
tion between any two combinations of time-interval lengths
of two different platforms. Figure 2 depicts the synchronisa-
tion procedure based on the measurement of the round-trip
time (TR) of a synchronisation packet. Strictly speaking, the
maximum error associated to this synchronisation procedure
is half the round-trip time, although in case of an almost
symmetric delay, the error is much lower (∆TE). Since the
misalignment is always lower than the time to move any data
packet from the origin process running on one board to the
destination on another, there is no need to take care about
it. One master sync and one slave sync appear in the figure.
This is the relative role played by two different platforms. In
general, there will be a single master sync if there exists full
connectivity of one platform with any one else, but the sys-
tem is not restricted in this sense.

Time slots control the movement of data and the pro-
cess scheduling. The scheduling mechanisms do not intro-
duce significant overhead in the focused application type.
This is because all the tasks, or at least those that require
more computational power, always have work to do. More
precisely, every process periodically gets some CPU time dur-
ing each time slot to perform the operations necessary within
such time interval. For instance, a digital filter processing
data at 100 ksamples per second with a time slot of 1 mil-
lissecond performs 100 multiply-accumulate (MAC) opera-
tions per time slot. Each process receives CPU time once per
time slot to perform its assigned operations, at any position
and in any order with respect to other processes within a time
slot. Upon completion of operations within a time slot, the
process remains stopped until the next time slot.

4.3. Describing an application

For the purpose of application development, we assume that
the above-proposed virtual platform with communication

and timing mechanisms is provided. The traditional appli-
cation programming interface (API) scheme is the way to ac-
cess services provided by P-HAL. The description of an appli-
cation in the context of P-HAL uses an object-oriented-like
approach [7], although the term “block diagram” is preferred
because “object-oriented” is rather associated to program-
ming environments using C++ classes, for instance. From
Figure 1 (abstract application layer part), an application is
made of several blocks (objects) and interfaces indicating the
data flow. Objects are programmed independently without
worrying about the context of execution. Some (few in gen-
eral) interfaces-per-object provide the possibility to exchange
information with other blocks. A simple definition of the
data format of object interfaces is important. The definition,
moreover of providing a means for data format agreement,
takes into account the requirements of any interface between
different objects of a software radio application. Although
any standard interface description language (like IDL, used
in CORBA applications [8]) could be applied, a more sim-
plistic approach is useful to avoid unnecessary waste of re-
sources without losing generality. Interfaces are then consid-
ered to carry out the data samples of time-variant signals
(e.g., x(n), z(m)). Any standardised or “easy-to-interpret”
binary format (e.g., 16-bit two’s complement, 32-bit IEEE
floating point, etc.) represents the amplitude. These “signals”
will travel through the overall P-HAL implemented mecha-
nisms. The software block does not know their destination
because of the mentioned independence between application
description and object programming. In the previous filter
example, it processes its input samples as they arrive, accord-
ing to the time-slot divisions, and generates output samples
at the same speed. No work is done while data is not avail-
able.

Like in any block-diagram-oriented description, a hier-
archy is used to encapsulate a set of objects within a more
complex function. At the lowest object level, an algorithm
is described using any of the aforementioned approaches:
binary file, high-level code, or function instantiation (VM-
like approach). For any source, however, the original pro-
gram structure, as shown in Figure 2, must follow some rules.
These consist of an initialisation stage, a time-slot-based ex-
ecution body, and a finalisation stage. Within the execution
stage, any incoming data is processed and outgoing data is
generated. From the point of view of the software object,
and due to the message-based process structure, the execu-
tion proceeds as long as data is available. Upon reaching the
end of data processing, P-HAL timing control entity assesses
the correct application behaviour in terms of real time. The
shown structure stems from the generally employed sequen-
tial programming but it may receive a different interpretation
when applied to processors that inherently use different pro-
gramming paradigms (fully concurrent processors may do
everything at the same time).

During the initialisation stage, the object may draw a set
of parameters (through P-HAL functions) to create a pro-
file of its actual tasks. The set of parameters depends on the
object programmer and its purpose at the time of program-
ming. However, it might be interesting having a subset of



Software Radio: Reconfiguration of Heterogeneous Platforms 2631

A/D Object
task 1

Object
task 2

Object
task 4

Object
task 3

Object
task 5

Object
task 6 Map

Carrier

A/D Task 1 Task 2

Task 3
Task 4

Task 5

Task 6

Platform 1

Plat
fo

rm
2

Platform 3

Platform 4
Processor 1

Processor 2

Processor 3

Processor 4

Processor 5Synthesiser

Figure 3: Sample mapping process.

predetermined parameters for some particular blocks to al-
low a general management of software through automated
tools. Following the filter example, the cutoff frequency, pass-
band, attenuation, and so forth. could be specified. The ob-
ject would then compute the required coefficients corre-
sponding to this purpose during the initialisation stage.

Additionally, there are some special blocks (dark grey in
Figure 3). These elements must be available to all software
radio applications to make them portable across platforms.
“A/D” and “carrier” are two possible examples in the stage of
waveform processing.

4.4. Mapping and launching software

After defining the application, it may be loaded into the com-
puting machine. Only P-HAL knows how to manage the
hardware for the purpose of software loading. The loading
process depends on the P-HAL frontend. Loading is possible
by using a set of commands. Simply stated, before having the
application running, a set of steps is necessary.

(i) P-HAL receives a plain description of the application
objects to launch and their interfaces, including pa-
rameters about the number and type of operations
per second, data precision, memory required, interface
bandwidth, and so forth.

(ii) P-HAL receives a plain model of the hardware, includ-
ing processors and its computing capacity, interfaces
and their transfer speed and modes, type and amount
of resources, and so forth. Interface speed is especially
important for interfaces between different platforms
(used by bridge).

(iii) Using the two previous information sets, the mapping
component (one per overall platform, see Figure 1)
within P-HAL selects the most appropriate processor
to run an object.

(iv) After mapping, the binaries are loaded into each pro-
cessor. P-HAL requests them through its frontend in
case they are not already available on the correspond-
ing platform.

(v) P-HAL configures internal interfaces to provide the re-
quired connectivity to objects.

(vi) With the binaries loaded, the initialisation process
starts and then the application runs.

(vii) P-HAL monitors the real-time behaviour based on the
defined time slots. If a real-time fault happens on any
process, it is possible to resume the mapping step to
remap the objects that incurred into the fault.

In Figure 3, a very simplified mapping process is shown
for some blocks of a radio receiver. Mapping starts at the
block closest to A/D because of its processing demand, which
is in general the highest among the receiver blocks. It is
mapped onto adjacent and most powerful processors. That
is, the mapping procedure is priority driven, where priorities
are assigned to blocks by assuming as relevant parameters the
processing demand and the required interface bandwidth.
Complex mapping algorithms can be applied (e.g., [9]), es-
pecially when, for example, P-HAL must provide support to
a base station implementation.

4.5. Monitoring and modifying software behaviour
Due to possible software malfunctioning, monitoring is a
necessary part of the system. Clearly, in addition to this soft-
ware behaviour, some relevant information from the appli-
cation side has to be provided to the radio access network
[1]. For such a purpose, P-HAL includes two additional con-
trol mechanisms. Firstly, in addition to the static parame-
ters assigned to each process according to application needs
and retrieved at the initialisation stage, the object may in-
clude dynamic parameters to update the software behaviour
whenever system management requires it. The second con-
trol mechanism provides data in the reverse sense. The ap-
plication sets some parameters that external entities may use
to monitor the radio interface. In both cases, the application
designer decides what parameters to use from the list avail-
able to the external management entity. P-HAL API supports
all the previous tasks. The application has solely to worry
about getting and setting parameters. Similarly, application



2632 EURASIP Journal on Applied Signal Processing

Linux box

IP link

VME bus

Fo
rc

e
5V

m
ic

ro
SP

A
R

C
II

Pe
n

te
k

42
91

Q
u

ad
-C

67
01

SH
aR

e
v1

O
ct

al
-X

C
40

13

A
/D

/A

Figure 4: Integrated hardware.

managers use P-HAL frontend to arrive at each parameter to
be set or retrieved.

The modification of the software behaviour is not only
associated with modifying dynamic parameters but also with
modifying objects (exchanging ones for others) and inter-
faces. To some extent, this modification represents submit-
ting a new application description following the previously
described steps. The purpose, however, is slightly different.
The objective is to provide differential-like modification of
objects running on the platform. This means that if one or
more blocks have to be modified under some given circum-
stances, it will be quickly done at run time, pausing applica-
tion during rearrangement of blocks and interfaces. The aim
is to provide a means to toggle from one mode to another
in a seamless manner without disconnecting the radio in-
terface. Support for such a mechanism is mandatory within
P-HAL as well as within the application description. More-
over, it provides a mechanism to optimise the computing re-
sources on a platform as a function of the environment (e.g.,
C/I, ACP, transmitted power, etc.).

5. APPLICATION ON A REAL HETEROGENEOUS
HARDWARE PLATFORM

A real heterogeneous hardware platform is the test bed to
profile the stated concepts and framework and assess its real-
world applicability. Without the intention of limiting the
scope of P-HAL, the integration of heterogeneous hardware
under the same abstraction layer is implemented on five dif-
ferent platforms. Each one only knows where other platforms
are located in its interface space, following the single address
approach introduced before. Considering the next five plat-
forms (see Figure 4), the heterogeneity becomes obvious.

(i) PC with a Pentium-III at 500 MHz processor and
Linux Red Hat 7.1 distribution OS.

(ii) Force Computers [10] Force-5V diskless workstation
with microSPARCTM II (32-bit RISC microprocessor)
offering 34 MFLOPS peak performance at 110 MHz
and Solaris 7 OS.

(iii) Pentek [11] board 4291 with four Texas Instruments
TMS320C6701 DSP processors at a maximum of
167 MHz. Total computing performance beyond 5 bil-
lion operations per second.

(iv) SHaRe [12] FPGA board furnished with eight Xilinx
XC4013 devices and a total performance of about 4 bil-
lion MAC operations per second.

(v) Data acquisition board with a single Xilinx XCV150
FPGA, high-speed A/D (12-bit), and D/A (14-
bit), 500 MHz bandwidth and sampling rate beyond
100 Msamples/second.

Except in the case of DSP processors and Virtex FPGA,
the remaining hardware is relatively old. The use of this hard-
ware is advantageous in terms of forcing the implementa-
tion of an abstraction layer that imposes low system over-
head. With low overhead, most of the processing capabilities
of processors remain for the application. Processors able to
cope with processing demand of software radio applications
that run at low frequency and/or with low logic utilisation are
interesting for battery-powered terminals, where power and
size are major concerns. Although in the computing domain
the tendency seems to move to highly featured and huge ap-
plications using plenty of resources of hardware, features like
reduced size and power efficiency are dominant in wide mar-
ket sectors.

5.1. Interfaces considerations

The platforms deal with four different interfaces, as observed
in Figure 4. The PC and workstation interface through a
TCP/IP over a 10BaseT link. This relatively slow interface
guarantees a synchronisation error (workstation being the
system’s time server) lower than 0.25 millisecond and pro-
vides a net transfer speed of less than 0.5 MBps (in-system
measurement). The workstation, DSP board, and FPGA
board share a common VME bus backplane whose transfer
speed, depending on the boards involved in the transmission
and the data format and sense, ranges from about 2 MBps
to approximately 80 MBps. Taking the best combination of
these transfer speeds, the synchronisation error between the
DSP and FPGA boards is less than 1 microsecond. DSP and
FPGA boards share another interface (partially ad hoc) lim-
ited to 66 MBps. Finally, the acquisition board is connected to
the FPGA board with an ad hoc interface at up to 128 MBps
(peak), which is used to transfer the system time to the last
board with an error also lower than 1 microsecond. Accord-
ing to the previous timings, the PC and the workstation
would use time slots of 25 millliseconds and the remaining
boards time slots of 100 microseconds. Consider the follow-
ing example for the implications of such timings. Buffering
requirements for the time intervals of 1 microsecond could
be as large as 1600 bytes (e.g., for a UTRAN CDMA signal at
four 8-bit samples per chip). This recommends the division
of data into multiple packets successively transferred when



Software Radio: Reconfiguration of Heterogeneous Platforms 2633

I/O interface

P-HAL front-end
Tasks P1 P-HAL local

Dispatch kernel

Tasks P2 P-HAL local
Dispatch kernel

Tasks P3 P-HAL local
Dispatch kernel

Tasks P4 P-HAL local
Dispatch kernel

D
SP

1
D

SP
2

D
SP

3
D

SP
4

VME interface

Lo
ca

lb
u

s

FP
G

A
X

Task

Board
timing

P-HAL
control

Local dedicated
interconnect

Task interface
adapter

I/O
interface

Packet
switching

IBUS
interface

IBUS

I/
O

V
M

E
in

te
rf

ac
e

Figure 5: DSP board P-HAL software and single FPGA P-HAL detail.

the interface runs on an FPGA, especially if packets have to be
stored into internal FPGA memory. On the other hand, the
workstation, with objects processing a bit stream of 2 Mbps,
requires a buffering of about 6250 bytes, only a factor of four
for a platform where memory is easily obtained without suf-
fering an important performance penalisation.

Actually, the initial function of the PC machine was to
serve the disk to the workstation. The inclusion of net-
work support to P-HAL extends its usability to distribute
computing across networks of general-purpose machines.
Applications in the general-purpose computing sector have
many other well-known software mechanisms available to
distribute computing, like RPC or CORBA. However, the
simplicity of concepts and functions behind P-HAL, fruit of
its orientation to tough tasks, makes of it a candidate for safe
and quick developments [13].

During the development of P-HAL, several factors arouse
that have not been initially considered. These include, for in-
stance, data endianness. These observations are proving that
the abstraction of a platform has many steps to follow.

5.2. General implementation aspects

Implementing all the tasks associated with P-HAL abstrac-
tion layer over Linux or Solaris machines is relatively easy
because of the large amount of available software libraries
and the OS itself. Moreover, there is no problem to control
the interfaces at hardware level, as all necessary drivers exist.
Certainly, the simplicity that allows the quick development of
software has the price of reducing the computing efficiency.
For the DSP and FPGA boards, such performance loss is un-
acceptable.

In the case of the DSP board, an approach with a stan-
dard OS (Linux, as open source, could be adapted) can be
perfectly assumed. Despite the particularities of the proces-
sor that make it adequate for signal processing tasks, there
are no large conceptual differences between DSPs and GPPs.
Therefore, a simple kernel (able to switch between different
processes) runs on each of the four DSPs. In addition, a part
of P-HAL runs on each processor, whilst the board P-HAL
frontend (input/output gate, synchronism, software loading)

only runs on one DSP, the one that is interfacing external
platforms. The tasks are based on a continuous packet gen-
erate and/or dispatch loop that manages control data as well
as processing data. Figure 5 illustrates a diagram of the struc-
ture of P-HAL software within the DSP board and the hard-
ware interfaces it deals with.

When implementing P-HAL on FPGAs, transferring all
the previous concepts becomes very costly in terms of area
utilisation (now the main resource considered is silicon area
or, equivalently, logic gates, instead of CPU time). The con-
ception of applications on FPGA is quite different from the
conception in sequential processors [14]. P-HAL must em-
ploy complex state machines able to process packets in and
out in the same way as, for instance, the DSP board does.
Another relevant issue here is the possibility to have multiple
processes running on an FPGA and swap them in and out, as
it is done on common computing platforms. In this case, to
simplify the control mechanisms, just one application pro-
cess is allowed per FPGA, apart from the P-HAL process.
Since there are eight available FPGAs independently config-
urable, each board may run up to eight processes. In Figure 5,
a schematic representation of the generic interface offered by
P-HAL to the application process appears. The usage of logic
within FPGAs depends mostly on the buffer size for each in-
terface. While controlling state machines for common part
of P-HAL use less than 40 CLB [15] (twice as much if fron-
tend is included), each additional stored byte for buffer FI-
FOs requires half a CLB (in Virtex devices, RAM may be im-
plemented without consuming CLBs). To save CLBs in the
current implementation, short packets are transmitted over
FPGA interfaces (64 bytes maximum) that have an accept-
able impact on interface efficiency. All these issues (and many
more) are important when providing the figures of the hard-
ware model.

The blocks represented in Figure 5 have different mean-
ings for the DSP and FPGA cases. In regards to a DSP plat-
form, blocks represent processes stored in memory that al-
ternatively get some CPU time. Conversely, regarding FPGA
platforms, blocks represent concurrent processes that occupy
different areas within the FPGA logic.



2634 EURASIP Journal on Applied Signal Processing

5.3. P-HAL performance and overhead

While the application moves towards an abstract context be-
ing unbound from the underlying hardware, P-HAL is tied
to each particular hardware platform. On the one hand, the
performance depends on the adaptation facility of the P-HAL
rules to the underlying hardware. A hardware that is oriented
to support mechanisms that are required by P-HAL will pro-
vide a lower overhead than a hardware that is completely
orthogonal to the P-HAL requirements. On the other hand,
performance also depends on the solution that the program-
mer has considered for the P-HAL software. As a result, the
figures appearing in the next sections are valid for the above-
stated hardware and the particular way of implementing P-
HAL on it. However, they give a good idea of what one can
expect when using an abstraction layer like P-HAL for the
focused applications.

In Linux or Solaris platforms, overhead is not the ma-
jor concern since higher communications layers are expected
to be running there (from the network, OSI model layer 3,
up to the application layer, OSI layer 7). Rather, the major
concern is maintaining the time granularity that the appli-
cation under P-HAL requires. This also depends on system
load because P-HAL uses the underlying kernel services for
its purposes. Also because scheduling mechanisms in Linux
or Solaris kernel are basically oriented to provide a fair CPU
assignment, P-HAL only guarantees that objects are executed
within time slot bounds if no other processes consume a lot
of CPU time (even momentarily). In order to keep a good
time resolution, the kernel has suffered modifications to re-
duce scheduling latency (10 milliseconds by default) to the
order of 0.5–1 millisecond (depending on the machine per-
formance). Lower scheduling latency introduces overhead in
normal operation because of the increased amount of pos-
sible scheduling actions per time unit. However, when P-
HAL controls most CPU consuming processes, the amount
of process swaps reduces to one per time slot and per pro-
cess, which reduces the overhead to be almost imperceptible.

The performance of using an approach like P-HAL can
be measured in terms of the additional resources that are re-
quired to run the abstraction layer against the benefits that
it provides. The benefits of the scheme have been described
in the previous sections while in the following ones, its cost
is being quantified. The measurement is made by computing
either the percentage of time or the percentage of area that
the executive components of P-HAL use all along the activity
of the application. Such percentages are assigned the qualifier
of overhead.

5.3.1. Overhead in the DSP platform

The produced overhead running an application on P-HAL
or running an ad hoc application is represented in Figure 6,
where it appears as a temporal distribution of the parts of
the software that run on one DSP. Objects A and B share the
processor and P-HAL is in charge of providing access to re-
sources (through a kernel service) and scheduling the execu-
tion of objects. In the figure, tasks located at the process swap
and kernel plane levels are actually tasks that are assigned

Schedule Service
Kernel plane

(ad hoc)

Process swap

Object A Object BObject B Object plane

Overhead

Figure 6: Overhead sources in DSP.

to P-HAL, while tasks located at the object plane are the ac-
tual execution of objects. Then, overhead only appears when
the processor runs tasks located at the two highest levels in
the figure. To measure the actual overhead, it is necessary to
make a more in-depth analysis of those tasks located at the
highest levels.

The first form of overhead is the time required to access
the P-HAL kernel services where specialised ad hoc func-
tions perform the requested actions (e.g., DMA transfer from
one memory location to another) by using the underlying
hardware. On the used DSP board, accessing a kernel ser-
vice takes about 100 CPU cycles (save the process context
and restore the kernel to provide the service). Since the real
clock frequency is of 100 MHz, this represents 1 microsec-
ond. In a system with a time slot of 1 millisecond (100000
cycles), accessing a single service uses 0.1% of the available
time. This percentage is relative to the performance of the
processor since in a 200 MHz processor, the overhead would
be 0.05%. To some extent, it is also relative to the solution
taken by P-HAL programmer (better or worse utilisation of
hardware).

Following the P-HAL approach, each object running on
P-HAL has to request at least four services per time slot (ac-
cording to Figure 2). The minimum overhead per object is
around 0.4% of the available time. The algorithm itself and
ad hoc service functions are necessary in any case, either us-
ing P-HAL or not, then they cannot be considered overhead.

A second source of overhead is scheduling different ob-
jects that run simultaneously on the same processor. An ad
hoc implementation would simply run one function after the
other (considering one function per object) but here more
elaborated procedures are required. Since the timing struc-
ture is simple enough to be just useful for a typical radio
application, scheduling consists of a sequential assignment
of CPU to the different object processes. In Figure 6, over-
head during a scheduling (from object A to object B) consists
of an initial process swap to reach the kernel process. The
kernel process performs the schedule, which requires some
time, and finally another process swap is performed to move
the execution point to object B. On the available platform,
scheduling takes around 2 microseconds (measured from sig-
nals captured with a logic analysis system, Figure 7) includ-
ing also the context swap. Taking into account the software
architecture of objects running on P-HAL and the minimum
amount of services that an object requires, 1 microsecond of
additional time overhead per object and time slot has to be
considered.



Software Radio: Reconfiguration of Heterogeneous Platforms 2635

Time not required

Slot length: 1 ms

100 us
Kernel thread time

Normal scheduling Last scheduling in a slot

Figure 7: Timing diagram for DSP scheduling.

20181614121086420
×102Time slot length (µs)

0

10

20

30

40

50

60

70

80

90

100

O
ve

rh
ea

d
(%

)

0

5

10

15

20

25

30

35

40

45

50

La
te

n
cy

(m
s)

5 objects

10 objects

15 objects

20 objects

5 objects

10 objects
15 objects20 objects

Figure 8: Overhead and latency variation as a function of objects
and time slots.

Hence, the minimum accumulated overhead rises to
0.5%, 0.4% for services (4 microseconds), and 0.1% for
scheduling (1 microsecond), of available time per object un-
der the previous slot conditions (1 millisecond). If more ser-
vices are requested, overhead will increase. Figure 7 gives an
idea of the little amount of time consumed by P-HAL pro-
cesses within a time slot, leaving a very high percentage of
resources for the radio algorithm (spot area). The label “time
not required” in the figure just shows that after all the ob-
jects have finished their processing, the processor may re-
main stopped until the next time slot. When the slot length
changes or the number of objects increases, the total over-
head follows the curves in Figure 8. As it is expected, in-
creasing the slot length leads to longer execution time by ap-
plication objects and lower execution time by P-HAL. Con-
versely, longer time slots increase latency because of execu-
tion pipeline, which may have an important impact on the
application.

Another kind of overhead to consider is the overhead
which is produced by the control mechanisms within P-HAL.
However, these control mechanisms are present in any ap-
plication, either ad hoc or platform-independent. For this
reason, although in the figures they may appear under the

overhead label, they are not actually considered as overhead.
Real-time statistics and time control can be the sources of
major resources consuming.

In the first case, since any management entity could re-
quest many parameters from objects (but only those pro-
vided by them), the overhead has been limited to 10% of
available time. In addition, in Figure 7, the time consumed
by a P-HAL kernel thread dealing with control mechanisms
is shown (at the beginning of the second time slot). In a 1-
millisecond time slot, at most, 100 microseconds are for that
execution thread. This, of course, can change from imple-
mentation to implementation.

In the second case, time control employs CPU resources
periodically. The real-time clock (RTC) control mechanism
also appears in Figure 7 (D1 TIME label), which is executed
once every 100 microseconds partly because this is the min-
imum resolution time assigned to the kernel to swap pro-
cesses (shorter periods are achieved if processes give up CPU
when they are done or waiting for a service). Thus, an ad-
ditional 0.1% of a time slot is reserved for maintaining the
RTC. A mechanism not shown in Figure 7 is the synchro-
nism procedure between platforms. However, this procedure
just performs a couple of VME bus accesses in intervals of
one second, which actually requires a very short time.

Overhead in terms of increased memory utilisation is not
included since it is negligible in terms of amount and cost.

5.3.2. Overhead in FPGA platform
The overhead measurement on the FPGA platform has the
same limitations than on the DSP platform: they are for an
individual implementation on a particular platform. More-
over, there are two different approaches when measuring the
overhead. One is considering any buffering included within
an FPGA. This would be the case where interfaces do not
have any FIFO memory to store the emitted packets. When
all the implemented memory is within the FPGA, overhead
rises tremendously (over 100% of logic gates [16]) compared
with the ad hoc implementation. This bad initial figure ap-
pears when FPGAs are relatively small (with 50 k–150 k gates,
especially if compared with current multimillion gate FP-
GAs) and when plenty of interfaces are available per FPGA:
two daisy-chain interfaces, one bus interface, and one mem-
ory interface (see Figure 5). A less generic implementation



2636 EURASIP Journal on Applied Signal Processing

P-HAL only
FPGA

Bus interfaces
(128 Mbps peak)

Serial control
interfaces
(32 Mbps)

I/
O

co
n

n
ec

ti
on

FPGA 3 FPGA 2 FPGA 1

FPGA 7

FPGA 4 FPGA 5 FPGA 6

Dedicated
interfaces

(128 Mbps)

I/
O

co
n

n
ec

ti
on

IB
U

S

VME
interface

(< 60 Mbps)

V
M

E

B
u

s
br

id
ge

Shared buffer
P-HAL control
Serial interface

RAM interface
IBUS interface
Object area

Figure 9: Adjusted P-HAL for SHaRe platform.

of P-HAL is necessary to reduce the amount of capabilities
available per FPGA. As a result, overhead figures are more
acceptable. Effectively, this does not limit P-HAL attributes
to FPGA implementations but rather reduces the amount of
hardware resources taken into account.

The board used for initial trials and tests of P-HAL con-
tains XC4013 FPGAs (13 k gates only). Saving resources is
therefore crucial. With eight FPGAs available, the total gate
count is of about 104 k gates. In Figure 9, a detailed view of
the minimum P-HAL architecture on SHaRe board appears.
The situation depicted in Figure 5 is preferable from the flex-
ibility point of view and the ease of the mapping procedure.
The limited amount of resources on this board does not al-
low loading communication modules of complete real sys-
tems. This is not a concern of P-HAL; it is possible to find
similar problems when constructing an ad hoc application.

The overhead measurement accounts for required logic
resources for two unidirectional dedicated interfaces, timing
control, and configuration registers. Some cases also include
bus (IBUS, a packet-oriented interface designed to provide a
good support to P-HAL mechanisms, as appears in Figure 5
or Figure 9) and RAM access logic. Interfaces only include a
(shared) buffer at the receiver side. Configuration registers
are mainly devoted to routing purposes. Under such condi-
tions, the percentage of resources occupied by P-HAL is of
about 25% (140 CLB, about 3.5 k to 7.5 k gates per FPGA).
The FPGA that is only devoted to P-HAL is not taken into
account in this figure. However, note that the same approach
with, for instance, Virtex 1000 FPGAs (1 M gates) would re-
sult in a utilisation of less than 0.5% with the same offered
P-HAL functionalities.

5.3.3. Performance summary

As mentioned above, performance can be measured as a ratio
between extra resources utilisation and benefits. Table 1 sum-
marises both, the approximated cost of using a structure like
P-HAL on a state-of-the art device (based on the aforemen-
tioned implementation), and the advantages it carries. The
conclusion is that processing at lower radio layers can be or-
ganised based on an abstraction layer that enforces software
portability and interoperability at the same time that isolates
the application from the underlying hardware. Even though,
it is true that the approach requires additional resources (cost
of nontuned software/hardware). It is also true that the com-
plexity of modern communications standards requires an in-
creasing independence of algorithms from hardware to speed
up development and reduce time-to-market.

Following the previous line, obtaining good results (e.g.,
power efficiency) depends on the capacity of the develop-
ment tools to adapt a hardware-independent program (al-
gorithm) to a specific processor. The human resources that
many times at present tackle the intensive task of optimis-
ing chip utilisation (either programmable or ASIC) will tend
to reduce increasingly when tools achieve enough efficiency
levels. Finally, when the application target is to use pro-
grammable devices, the increase in power consumption of
the presented approach can be roughly estimated as the per-
centage shown in the table.

5.4. Radio applications on P-HAL

To validate P-HAL as a candidate framework for software ra-
dios on heterogeneous platforms, a set of objects has been
adapted to P-HAL rules. However, because of the limited
amount of computational resources, simplified schemes have
been adopted. Despite this limitation, the essence of the ap-
plications remains unaltered. Therefore, trial applications are
good enough to detect limitations and make improvements
to the presented architecture. Note that the objective here is
not to optimise transceiver algorithms, but provide a good
framework for both, development and execution of radio ap-
plications.

Application objects are loaded from the Solaris worksta-
tion to any other platform. The role of this workstation is
to interface with the external management entity, whatever
it may be. Objects are loaded through P-HAL configuration
mechanisms. The time it takes to download the program
of an object to a processor depends on hardware and may
range from the about 60 milliseconds to configure an XC4013
FPGA through an 8 Mbps interface (its configuration bus) to
about 2 milliseconds to load an executable file to one DSP.

Note that P-HAL not only performs configuration tasks,
but it runs in parallel to the application providing the set of
functionalities described before. Then, the radio application
actually runs thanks to the presence of P-HAL, otherwise it
would be useless because the objects are programmed inde-
pendently from hardware. As shown in Figures 10 and 11,
the arrows interfacing modules are actually pieces of software
that run on the different processors involved in the data ex-
change procedure.



Software Radio: Reconfiguration of Heterogeneous Platforms 2637

Table 1: Performance comparison and tools requirements.

Design type Resources (DSP) Resources (FPGA) Benefits Human effort Tools effort

On abstraction layer ∼ 0.5%–1% ∼ 0.5%–1%
Flexibility (+), acceptable
power efficiency

Relatively low High

Custom 0% 0% Power efficiency, low flexibility High Medium

DSP 2

VME

Source

0010100
10111 . . .

13 kbps

Force 5V

Sink

VME
13 kbps

Rate: 1/3
4 states

Convolutional
encoder

50 col.
8 rows

Interleave
39 kbps

Frame format
20 sync. bits
780 data bits

VME
39 kbps

DSP 3

Deinterleave

Trellis
decoder

20 stages

FPGA 2 (FPGA 1 bypass)

8 samples/symbol
25 coefficients (12-bit)

Symbol
shaping &

gaussian filter

40 kbps

VME

FPGA 5 (FPGA 6 bypass)

20 symbols sign
correlation

Correlator &
symbol decision

P-HAL interface

FPGA 3

Carrier: 1/4
Phase res.: 0.022◦
14 bits output

NCO

RAM

640 kbps

FPGA 4

2nd order

PLL
(with NCO)

RAM

640 kbps

320 ksps

A/D

Bypass

Figure 10: GMSK transceiver.

(a) (b)

Figure 11: GMSK and QPSK CDMA generated spectrum.

5.4.1. Development flow

In a first stage, the mapping of objects is done manually for
best results. The testing of mapping algorithms is outside the
scope of this document, although it is a cornerstone in the
process from the abstract application down to hardware.

Objects are programmed in either C or VHDL. Ideally,
programming the object once would be enough but develop-
ment tools for GPP/DSP and FPGA are quite different. For
each object, a binary executable file is obtained. Such an exe-
cutable file is processor-specific. In general, an executable file

would be necessary for each possible processor. However, in
this case, the target processor is known, and then only one
binary file is necessary. Figure 12 represents the development
flow diagram for the two kinds of platforms.

5.4.2. Trial no. 1: GMSK transceiver

First testing application is a GMSK transceiver as shown in
Figure 10. The transmitter consists of a convolutional en-
coder, an interleaver, a frame formatter (for synchronisation
purposes), a sampling rate adjustment module, a Gaussian



2638 EURASIP Journal on Applied Signal Processing

Object source Compile

Synthesis

Link to libraries

P-HAL
Linux

P-HAL
Solaris

P-HAL
DSP (Pentek 4291)

Load-time object relocation

P-HAL

Implementation-time object
linking and relocation

P-HAL
FPGA (SHaRe)

Load

P-HAL

C

VHD

Figure 12: Development flow.

DSP 2

VME

Source 1

0010100
10111 . . .

64 kbps

Force 5V

VME

Source 2

0010100
10111 . . .

16 kbps

Rate: 1/3
4 states

Convolutional
encoder

50 col.
8 rows

Interleave

DSP 3

Rate: 1/3
4 states

Convolutional
encoder

50 col.
8 rows

Interleave

Multiplexer
and rate adjust

VME

250 kbps

16 Msps

A/D

FPGA 4

I/Q
modulation

Carrier: 1/4
14 bits output

FPGA 7 and 5

Shaping
filters

Root raised cosine
0.25 roll-off

4 samples/chip

FPGA 2

Pilot
channel

256 chips
PN sequence

Complex
spreading

FPGA 1

4 Mchips/s I/Q
SF = 32

Figure 13: QPSK CDMA transmitter.

filter, and a numerically controlled oscillator (NCO). The re-
ceiver consists of a phase-locked loop (PLL), a symbol syn-
chroniser, a symbol decision module, a trellis decoder, and a
deinterleaver. A random number generator on the worksta-
tion provides random bits to be transmitted. A dummy ob-
ject gathers all received bits. In total, there are eleven different
objects running on seven different processors. The spectrum
of the generated modulation is shown in Figure 11.

The application is divided into objects that are mapped
onto the processing devices as illustrated in Figure 10. Data
speed is rather low so that it is possible to transmit everything
on the VME bus. The required aggregate net transfer speed
on VME bus is approximately 13 kBps only. To simplify the
timing management, the time slot is 10 milliseconds for all
platforms. Time reference of P-HAL is originated at the A/D
platform.

This modest application serves as validation of the cor-
rect P-HAL behaviour on all the aforementioned platforms.

5.4.3. Trial no. 2: QPSK CDMA transceiver

The CDMA transmitter comprises another modulation
(Figure 13). Bit processing is similar as in the former trial at
the same time as data transfer speed and sampling frequency
have increased. On the FPGA side, there are not enough re-
sources to construct transmitter and receiver. This problem
is simply solved by adding an additional board and including
P-HAL on it.

5.4.4. Comments about implementations

The applications do not have loops involving more than one
object. This is to avoid mixing the signal time with the exe-
cution context time. Signal samples suffer from the time slot
division delay, and then in case of a loop, this would affect
the processing algorithm. This effect imposes different de-
sign rules to the radio application because fast loops in a vir-
tual execution context are not realistic. For instance, consider



Software Radio: Reconfiguration of Heterogeneous Platforms 2639

a frequency error detection algorithm working in the base-
band. It may modify the local oscillator frequency between
RF and IF only if the delay of one time slot, as imposed by
P-HAL, is not critical.

At the management level, P-HAL performs the swap-
ping of the FPGA configurations—from GMSK to QPSK
CDMA—upon a request from any external management
tool. The procedure starts loading a different mapping file.
From this file, P-HAL loads new executable binaries to the
FPGAs. A different linkage is necessary for every FPGA
model, due to the nonunified connectivity architectures (at
physical level, see Figure 9). Equivalent is to say that each
FPGA processor is different. Nevertheless, in GPP or DSP,
there is a similar situation. At load time, the OS makes a relo-
cation of executable code to adapt it to the context. In FPGA,
this procedure is more costly and it is preferable to perform
it at compile/link time.

6. CONCLUSIONS AND FUTURE WORK

The current work has been focused on the design and devel-
opment of a platform-hardware abstraction layer (P-HAL).
It provides a platform-independent support to the applica-
tion processes, especially those related to software radio con-
cept but not limited to them. The most relevant features in-
clude transparent data interfacing, real-time control, process
scheduling, and task monitoring. The key aspect of such ap-
proach is to deal with a set of different hardware/software
systems, DSP devices, FPGA arrays, and GPP running stan-
dard OS. Despite the heterogeneity, it has the capacity to offer
a single virtual platform.

The environment defines a common structure for the dif-
ferent application processes, a global timing framework, and
a uniform, plain, interface format. The timing mechanism
uses a division of time into slots of variable length depending
on the capabilities of processors and the associated support
software. On the other hand, the proposed interface defini-
tion allows detaching the different pieces of an application,
thus supplying a seamless integration of independently de-
veloped software. All the previously described features are
provided at a minimum overhead to avoid the unnecessary
waste of computational resources, a proof that it is possi-
ble to employ such approach in realistic contexts from now
on.

The tests of P-HAL continue with other more complex
applications and platforms. They will allow us to completely
profile the presented architecture, maybe adding new fea-
tures or even changing some rules. Further enhancements are
expected for the P-HAL in order to become a mature tool to
easily develop software radio applications.

ACKNOWLEDGMENT

This work has been supported by CYCIT Spanish Na-
tional Science Council (CYCIT) under Grant TIC2003-
08609, which is partially financed from the European Com-
munity through the FEDER Program.

REFERENCES

[1] J. Mitola, “The software radio architecture,” IEEE Commun.
Mag., vol. 33, no. 5, pp. 26–38, 1995.

[2] W. H. W. Tuttlebee, “Software-defined radio: facets of a devel-
oping technology,” IEEE Pers. Commun., vol. 6, no. 2, pp. 38–
44, 1999.

[3] S. Srikanteswara, J. H. Reed, P. Athanas, and R. Boyle, “A soft
radio architecture for reconfigurable platforms,” IEEE Com-
mun. Mag., vol. 38, no. 2, pp. 140–147, 2000.

[4] A. Munro, “Mobile middleware for the reconfigurable soft-
ware radio,” IEEE Commun. Mag., vol. 38, no. 8, pp. 152–161,
2000.

[5] S. Gultchev, K. Moessner, and R. Tafazolli, “Controlling re-
configuration,” in Proc. 3rd IEE International Conference on
3G Mobile Communication Technologies, pp. 474–478, Lon-
don, UK, May 2002.

[6] M. Cummings and S. Heath, “Mode switching and software
download for software defined radio: the SDR forum ap-
proach,” IEEE Commun. Mag., vol. 37, no. 8, pp. 104–106,
1999.

[7] A. A. Gray, C. Lee, P. Arabshahi, and J. Srinivasan, “Object-
oriented reconfigurable processing for wireless networks,” in
Proc. IEEE International Conference on Communications (ICC
’02), vol. 1, pp. 497–501, New York, NY, USA, 2002.

[8] J. Bertrand, J. W. Cruz, B. Majkrzak, and T. Rossano, “CORBA
delays in a software-defined radio,” IEEE Commun. Mag.,
vol. 40, no. 2, pp. 152–155, 2002.

[9] V. Chaudhary and J. K. Aggarwal, “A generalized scheme for
mapping parallel algorithms,” IEEE Trans. Parallel Distrib.
Syst., vol. 4, no. 3, pp. 328–346, 1993.

[10] http://www.forcecomputers.com.
[11] http://www.pentek.com.
[12] X. Revés, A. Gelonch, F. Casadevall, and J. L. Garcı́a, “Software

radio reconfigurable hardware system (SHaRe),” in Proc. 10th
International Workshop Field-Programmable Logic and Appli-
cations (FPL ’00), vol. 1896 of Lecture Notes in Computer Sci-
ence, pp. 332–341, Villach, Austria, August 2000.

[13] R. Ferrús, X. Revés, A. Umbert, and F. Casadevall, “Real-time
emulation of RRM strategies for UMTS bearer services,” in
Proc. 56th IEEE Vehicular Technology Conference (VTC ’02),
vol. 2, pp. 955–959, Vancouver, Canada, September 2002.

[14] S. Hauck, “The roles of FPGAs in reprogrammable systems,”
Proc. IEEE, vol. 86, no. 4, pp. 615–638, 1998.

[15] Xilinx, Inc., The Programmable Logic Data Book, 2004.
[16] X. Revés, V. Marojevic, A. Gelonch, and R. Ferrús, “The cost

of an abstraction layer on FPGA devices for software radio
applications,” in Proc. 15th IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications (PIMRC
’04), vol. 3, pp. 1942–1946, Barcelona, Spain, September 2004.

Xavier Revés was born in Sarroca de Lleida
(Spain) in 1974. He received the Engineer of
Telecommunication degree from the Uni-
versitat Politècnica de Catalunya (UPC),
Spain, in 1998. He is currently applying
for the Ph.D. degree in the Department of
Signal Theory and Communications at the
UPC. In 2001, he joined UPC as an As-
sistant Professor, which is his current sta-
tus. His research is focused on radio com-
munications, with special emphasis on digital processing plat-
forms including hardware and software architectures, software ra-
dio technologies, and analogue/digital transceiver front-end archi-
tectures. Since 1999, he has been participating in several projects of

http://www.forcecomputers.com
http://www.pentek.com


2640 EURASIP Journal on Applied Signal Processing

technological transfer to industry, including the European FUSE
Program. He has also been and is currently involved in European
Framework Program projects like ARROWS and EVEREST.

Antoni Gelonch received the Engineer
of Telecommunication and Dr. Eng. de-
grees from the Universitat Politècnica de
Catalunya (UPC), Spain, in 1991 and 1997,
respectively. In 1992, he joined UPC, where
he became an Associate Professor in 1997.
His main activities after graduation were
focused on the field of digital communi-
cations with particular emphasis on digi-
tal radio. From 1992, he has been involved
mainly in the analysis and development of digital mobile radio sys-
tems. His research interests include cellular and personal commu-
nication system, multipath transceiver design, and software radio
techniques including their relation with the reconfigurable com-
puting, mobility, and radio resources management. In the last ten
years, he participated in several research projects founded by both
public and private organizations. In particular, the most important
projects in which he has participated have been the CODIT Project
of the RACEII Program and the RAINBOW Project in ACTS Pro-
gram. In the context of the 5th European Framework Program, he
has participated in the WINEGLAS IST Project. At present, under
the 6th European Program, he is involved in the EVEREST, which is
related to the end-to-end QoS in wireless heterogeneous networks
and in the E2R, where the reconfiguration concept (software radio)
extends to the complete wireless network.

Vuk Marojevic received the Dipl.-Ing. de-
gree in electrical engineering from the Uni-
versity of Hannover, Germany, in 2003.
During his graduate study, he spent three
terms at the Universitat Politècnica de
Catalunya (UPC), Barcelona, Spain, where
he is currently working towards a Ph.D. de-
gree in communications. Since 2004, he has
been supported by a grant from the Cata-
lan Government. His research interests are
in the field of software-defined radio architectures and algorithms
as well as operating system support for reconfigurable computing
devices.

Ramon Ferrús was born in Batea (Tarrag-
ona), Spain, on March 16, 1971. He re-
ceived the Engineer of Telecommunications
degree from the Universitat Politècnica de
Catalunya, Spain, in 1996, and the Ph.D. de-
gree from the same university in 2000. In
1996, he joined UPC, where he was an Assis-
tant Professor from 1996 to 2002. He is cur-
rently an Associate Professor in the Signal
Theory and Communications Department.
He currently lectures on mobile communications, data transmis-
sion systems, and communication theory. Since 1996, his research
field has been mobile radio communications. His doctoral thesis
contributed to the study of the radio access and handover mecha-
nisms in cellular systems. Currently, his research interest is focused
on QoS, mobility, and radio resource management in the context of
heterogeneous IP-based mobile communications systems. He has
actively participated in several research projects in the frame of
European Programs ACTS (RAINBOW Project) and IST (WINE
GLASS, ARROWS, and EVEREST Projects), where his main

contributions have been focused on the development of real-time
hardware/software platforms for the emulation of different wireless
access networks.


