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Abstract— Joint Radio Resource Management (JRRM) is the 
envisaged process aimed at optimizing the radio resource usage 
of wireless systems to satisfy the requirements of both the 
network operators and the users in the context of future 
generation wireless networks. In particular, this paper 
proposes a two-layered JRRM framework to improve the 
efficiency of multi-radio and multi-operator cellular scenarios. 
On the one hand, the intra-operator JRRM relies on fuzzy-
neural mechanisms with economic-driven reinforcement 
learning techniques to exploit radio resources within a single 
operator domain. Micro-economic concepts are included in the 
proposed approach, so that user profile differentiation can be 
considered when making a JRRM decision. On the other hand, 
inter-operator JRRM enables subscribers to obtain service 
through other operators, if the home operator network is 
blocked. Simulation results in a number of different scenarios 
show that inter-operator agreements established in a 
cooperative scenario benefit both the operators and users, 
which enables efficient load management and increased 
operator revenue. 

 
I. INTRODUCTION 

In the last two decades, cellular communication systems 
have experienced significant evolution, leading to the 
deployment of a variety of Radio Access Technologies 
(RATs). Currently, second generation (2G) technologies 
(e.g. Global System for Mobile Communications – GSM) 
coexist with 2.5G and 3G standards (e.g. General Packet 
Radio Service – GPRS – and Universal Mobile 
Telecommunications System – UMTS). Besides that, 
several technologies are currently available. For example, 
EDGE (Enhanced Data rates for Global Evolution) is an 
evolution of GPRS with data rates up to 60 Kb/s per time 
slot together with improved spectrum efficiency; HSDPA 
(High Speed Downlink Packet Access) is an evolution of 
Wideband Code Division Multiple Access (WCDMA) to 
improve the bit rate to 10 Mb/s. At the same time, as 3G 
standards are introduced, other air interfaces have been 
developed and standardized. In particular, IEEE 802 
produces an evolving family of standards, such as 802.11 
local, 802.15 personal, 802.16 and 802.20 metropolitan and 
802.22 regional area networks.  
In an environment of multiple RATs, it raises the notion of 
being always best connected. This refers to being connected 
in the best possible way, combining for instance wide area 
coverage of cellular systems with WLAN (Wireless Local 

Area Network) high bandwidth hot spots. According to this 
concept, the different radio networks are components of a 
heterogeneous radio access network.  In Beyond 3G vision, 
all systems will constitute possible access interfaces to a 
common IP based core network. In this scenario, an operator 
owns several components of the composite radio 
infrastructure, that is, it can own licenses for deploying and 
operating different RATs. This calls for new interworking 
mechanisms among radio access systems to exchange 
signalling and traffic load as they have already been 
considered e.g. between GSM/EDGE and WCDMA-based 
systems [2][3] and between WLAN and cellular networks 
[4]-[10]. Besides, IEEE 802.21 is developing a standard to 
enable handover and interoperability between heterogeneous 
access networks [11]. The IEEE P1900 standard project 
family [12] defines standards dealing with new technologies 
and techniques focusing on the autonomous and 
decentralised operation of next generation networks. 

The introduction of the heterogeneous radio access 
network concept, together with the availability of multimode 
terminals capable of accessing different technologies, 
introduces a new dimension in the radio resource 
management problem. Instead of performing the 
management of radio resources independently for each 
RAT, some form of global management can be envisaged. 
In this heterogeneous scenario, Joint Radio Resource 
Management (JRRM) is the suitable process to manage 
dynamically and coordinate the allocation and deallocation 
of radio resources among different radio access systems. 
JRRM strategies may be activated within a single operator 
domain (i.e. intra-operator JRRM) to support a variety of 
objectives, such as avoiding disconnections due to the lack 
of coverage in the current RAT, blocking due to the 
overload in the current RAT, possible improvement of 
Quality of Service by changing the RAT, support of user’s 
preferences in terms of RATs, support of the operator’s 
preferences for RAT usage or load balancing among RATs. 
Besides, in a multi operator context, they could also be 
activated (i.e. inter-operator JRRM) to exploit 
complementary characteristics existing both spatially and 
temporally among traffic characteristics of different 
operators. In this sense, radio resource trading among 
operators coexisting in the same region may be considered a 
more efficient method for overall radio resource usage.  

In standardization and literature, the intra-operator 
JRRM problem has been targeted from a technical 



perspective [2][3][13][14]. However, in a heterogeneous 
network context, making technical considerations about the 
dynamic behaviour of the network only provides a narrow 
approach to a problem that, due to the interrelationship 
among user preferences, operator business models, different 
investments in the different RATs, etc., should be naturally 
regarded from a broader perspective. In fact, it should be 
considered that both the users’ and the network operators’ 
satisfaction strongly depend not only on resource allocation 
and the quality the users perceive from a service, but also on 
pricing policies, such as the price the user pays for the 
service. As a result, in this paper, micro-economic concepts 
have been introduced together with radio-interface 
management decisions.   

On the other hand, JRRM in a multi-operator context has 
been examined from various perspectives in the literature. In 
[15], resource brokerage functionalities in a Beyond 3G 
network, enabling cooperation among different network 
providers are introduced. In [16], the network operators are 
considered competitive actors in a scenario characterized by 
user-centric vision. Finally, in [17], entities that are 
introduced in a multi-RAT and multi-operator scenario are 
discussed.  

To the best of the author’s knowledge, no other work in 
the literature has proposed a solution for JRRM at both 
intra- and inter- operator levels. As a result, in this paper, we 
present a comprehensive treatment in a mobile, multiuser, 
multicell, multi-RAT and multi-operator scenario, where 
intra-operator and inter-operator JRRM are combined in a 
two-layered JRRM strategy to fully exploit the available 
radio resources and improve the network operators’ revenue. 

The first layer of the proposed approach is in charge of 
dealing with intra-operator JRRM. To address this objective, 
we make use of a solution based on a fuzzy neural network 
(FNN). Using intelligent techniques has been considered in 
the open literature as an effective method of dealing with 
problems associated with radio resource management, such 
as handoff decision (e.g. [18][19]), connection admission 
control (e.g. [20]), power control (e.g. [21]), channel 
allocation (e.g. [22][23]) and QoS provisioning (e.g. 
[24][25]). In the particular case of JRRM, the advantage of 
this choice is two-fold. On the one hand, we can exploit the 
capability of fuzzy logic controllers (FLC) to make effective 
decisions in situations where the available sources of 
information are qualitatively interpreted and heterogeneous 
in nature, as is the case for available inputs in mobile 
environments. Moreover, policies issued by the operators 
can fit properly into this FLC by means of the fuzzy rule 
base. On the other hand, by improving the fuzzy logic 
controller with learning capabilities of neural networks, we 
provide a framework capable of interacting with the 
surrounding environment and accordingly self-tuning and 
acting, which is the major pillar of the so called cognitive 
networks [26], which perfectly fits the variable conditions in 
mobile scenarios. This fuzzy neural network has already 
been presented in [27], where a technical study of multi-
service provision in a multi-RAT and single-operator 

scenario has been introduced. In this paper, we further 
extend this approach by including micro-economic 
considerations in the JRRM decision making process. Thus, 
we present an economic-driven approach, and highlight 
advantages arising from this solution, specifically decision 
comprehensiveness and performance improvement. 
Furthermore, the single operator solution presented in [27] 
is extended to a multi operator solution: if an operator is 
unable to properly provide service to its users by means of 
the intra-operator JRRM, due to the current traffic 
conditions, the second layer of the proposed approach (inter-
operator JRRM) is triggered to improve radio resource 
usage by trading resources with other operators. The inter-
operator operation is managed by means of a third trusty 
party, referred to as Metaoperator, and is built upon by 
extending the intra-operator mechanisms using a multiple 
objective decision making process based on the combination 
of fuzzy set theory and the Analytic Hierarchy Process 
[30][31].  
As a result, the innovative contributions of this paper can be 
summarized as follows: 

1- Proposal of a framework to deal with JRRM in a 
multi-cell and multi-RAT scenario at both intra and 
inter-operator levels. 

2- Proposal of a FNN including micro-economic 
concepts, as a solution for the intra-operator 
JRRM. 

3- Proposal of trading/pricing strategies among 
operators, as a solution for the inter-operator 
JRRM.  

The rest of the paper is organized as follows. In section 2, 
we present the two-layered architecture proposed in this 
paper for JRRM. Section 3 and section 4 describe the two 
layers with details. Section 5 is devoted to the presentation 
of simulation scenarios where the proposed approach has 
been evaluated. Section 6 describes representative 
simulation results. Finally, section 7 concludes summarising 
the main results of the work. 

 

II. SYSTEM ARCHITECTURE 

The JRRM scheme proposed in this paper will 
incorporate two main radio resource management 
functionalities: 

- RAT and cell selection (i.e. the functionality that 
decides the RAT and cell the mobile has to be 
attached to). 

- Bit rate allocation (i.e. the functionality that 
decides the most suitable bit rate or bandwidth for 
each accepted user in the selected RAT). 

The JRRM algorithm is activated every time a new user 
asks for admission in the system and periodically during the 
user session. It assures the dynamic allocation and de-
allocation of radio resources in the scenario and selection of 
the most suitable RAT. 

Our proposal to make such a decision consists of a two-
layered solution. 



A.  Layer 1: Intra-operator JRRM 

The solution proposed for intra-operator JRRM is based on 
a fuzzy neural network (FNN), which considers as decision 
making inputs the information coming from the different 
RATs belonging to a certain operator. 

The reason for this choice is that the variety of JRRM 
inputs belonging to the different RATs will provide, from a 
technical perspective, very dissimilar and heterogeneous 
information. Then, the initial driving inputs for RAT 
selection, such as the power level of the received signals and 
the cell loads, have to be properly considered in a 
comprehensive RAT selection decision making process but 
are not directly comparable because related to different 
RATs. Other technical aspects associated with the mobile 
user, such as mobile speed or battery life, may favour a 
particular RAT (for example WLAN would be an 
inappropriate choice for high speed users) in an imprecise 
manner. On the other hand, besides the technical aspects of 
the decision making process, economic and subjective 
inputs must be considered. Specifically, both the users’ and 
the operator’s preferences in terms of which is the 
appropriate RAT to serve a given traffic, beyond purely 
network performance issues, obey subjective imprecise 
mechanisms. Users’ preferences may depend on a trade-off 
QoS versus cost. A user may prefer connecting to a less 
expensive RAT at the expense of the perceived QoS. In turn, 
the operator’s preferences may be driven by the return on a 
certain investment in the infrastructure of a certain RAT.  

In recent years, fuzzy logic methodology has been 
proven to make suitable decisions from imprecise and 
dissimilar information [33]. Furthermore, it allows for 
encompassing in the decision making process the no 
specificity inherent in human formulation of preferences, 
which is useful in this problem to balance the so many 
heterogeneous inputs before making the final RAT selection 
decision. Consequently, a JRRM scheme based on a FLC is 
considered in this study. The key concept in our approach is 
that fuzzy logic transforms heterogeneous inputs of a JRRM 
scheme into homogeneous membership values. These 
membership values are then processed by means of the so-
called inference engine, where reasonably defined rules are 
capable of simplifying the large state space of solutions 
existing in such a complex JRRM problem. However, we 
have to keep in mind that in certain applications one of the 
main weakness of a decision making process based on a 
FLC is its high dependability on the particular membership 
functions and on their particular shapes, which can strongly 
affect the performance. Therefore, the use of neural 
networks can be considered [28] to properly tune the 
membership functions selected for the FLC, thus developing 
a hybrid solution incorporating both fuzzy logic and neural 
networks. In particular, we propose the use of a 
reinforcement learning algorithm to tune the FLC 
parameters defining the membership functions’ shapes, with 
the aim of maintaining at a certain desired rate a Key 
Performance Indicator, which reflects the user satisfaction 
under both technical and economic perspectives. Then, the 

resulting framework is able to make decisions in an 
environment characterized by high heterogeneity in the 
decision making inputs, and at the same time introducing 
techno-economic based learning mechanisms. The JRRM 
decisions auto-adapt themselves to the changing traffic, 
mobility, propagation conditions and user profiles to satisfy 
user requirements. The appropriateness of this choice has 
already been demonstrated from a purely technical 
perspective in [27], where the proposed approach was 
compared in terms of performance to four alternative JRRM 
strategies, which have been described in both the literature 
and standardization [2][3][13]. Also, other authors have 
utilized the fuzzy neural methodology to solve problems 
related to radio resource management in heterogeneous 
networks [29]. 
With respect to system architecture, a high level allocation 
of the intra-operator JRRM functions in a heterogeneous 
cognitive network is shown in Figure 1. In particular, it is 
assumed in this paper that the operator service area is sub-
divided into domains, each of them including a sub-set of 
cells belonging to different RATs. Each domain is managed 
by a FNN, which is in charge of executing the Fuzzy Neural 
JRRM algorithm for the set of cells under its domain. Note 
that the architectural model in Figure 1 could be 
implemented in many different ways, ranging from residing 
the Fuzzy Neural JRRM functionalities into existing 
network nodes, e.g. a Radio Network Controller, Base 
Station Controller, Access Point Controller, etc., to 
allocating them to new network nodes, e.g. in the form of 
external servers. As a result, the proposed system 
architecture could be mapped on the envisaged approach in 
3GPP standardization body [2][3].  

 

Figure 1: Proposed system architecture for the intra-operator 
JRRM execution based on fuzzy neural methodologies. 

 

B. Layer 2: Inter-operator JRRM 

To further improve radio resource usage achieved by means 
of the intra-operator JRRM, we propose to exploit the 
potential complementary characteristics of traffic 



distribution experienced by N operators, through radio 
resource trading among them. In particular, the envisaged 
technical solution assumes the previous establishment of 
inter-operator agreements maintained and guaranteed by a 
Metaoperator [32] (see Figure 2), to which each network 
operator can transfer its rights in case the intra-operator 
JRRM cannot satisfy user satisfaction constraints. In this 
way, the potentially dissatisfied user is awarded access to 
the service through another network operator, selected as a 
result of a decision making process performed by the 
Metaoperator, who acts as a third trusty party.  
It is worth mentioning that this proposal is based on the idea 
that both operators participating in the trading process 
benefit from the establishment of inter-operator agreements. 
In particular, the operator “renting” radio resources takes 
advantage of this exchange in the short term, in terms of 
revenue from the service provision for the user. On the other 
hand, the operator “borrowing” radio resources benefits over 
the long term since the user, instead of being blocked, is 
provided with service in a transparent manner. 
Consequently, the user is not motivated to churn.   
In this paper, we will refer to the operator who was 
contracted by the user, as the H-operator (i.e. Home 
operator), and to the operator who actually provides service 
to the user, as the S-operator (i.e. Serving operator). From 
Figure 2 it can be noticed that the i-th network operator is 
characterized by its own intra-operator JRRM entity, which 
makes decisions regarding the RAT and the bandwidth, 
within its own network domain by means of the fuzzy neural 
framework. 

When the i-th intra-operator JRRM makes a decision 
leading to blocking (i.e. a user is blocked if at session start a 
sufficient amount of bandwidth cannot be allocated for it, so 
that the session is not initiated) or dropping (i.e. a user is 
dropped if during the user session, the user handing over to 
another cell and/or RAT cannot be provided with a 
sufficient amount of bandwidth in order to continue the 
session already initiated), the i-th network operator sends 
the Metaoperator a request of admission for the potentially 
blocked/dropped user in another operator’s network, 
informing about the contracted QoS. The trading agent asks 
the rest of N-1 operators, who are willing to accept the user, 
to trigger their JRRM entity and return the information 
corresponding to the potential allocation of the user. 
According to the information collected from the N-1 
potential serving operators, a decision process is triggered at 
the Metaoperator and the most suitable S-operator is 
selected. As shown in Figure 2, the Metaoperator consists of 
two building blocks, namely pricing block and trading 
agent, which will be described in section 4. With respect to 
implementation feasibility, it is worth noting that inter-
operator operation follows similar mechanisms as those 
already available in case of International Mobile Roaming. 
Additionally, another option for radio resource trading 
would be that the H-operator selects a S-operator among N-
1 available, without the Metaoperator acting as a third trusty 
party.  

 

Figure 2: Proposed system architecture for inter-operator 
JRRM execution in a multi-operator scenario. 

 

III. INTRA-OPERATOR JRRM 

The intra-operator approach presented in this paper takes the 
FNN presented in [28] and adapts it to issues specific to 
JRRM. The FNN here introduced consists of reinforcement 
learning and a FLC implementing the fuzzifier, the 
inference engine and the defuzzifier. 
The FNN works in two modes. The first one is the “down-
up” process, through which the FLC, based on the selected 
input linguistic variables, generates the corresponding 
output linguistic variables, according to which JRRM 
decision is made. The second working manner is the “up-
down” process, during which the reinforcement signal is 
propagated from the top to the bottom of the FNN structure 
to adjust the FNN parameters, as will be described in the 
second part of this section.  
In the following, we first describe the FLC and the 
reinforcement learning algorithm used to tune the FLC 
parameters. Afterwards, we introduce the micro-economic 
concepts that will be used to select an adequate 
reinforcement signal to define the user satisfaction from 
both technical and economic perspectives. Finally, we pay 
attention to the practical feasibility of the proposed FNN. 
Without loss of generality, we will describe a FNN in a 
scenario characterized by three different RATs. 

A. Fuzzy Logic Controller 

Inputs of the FNN are a set of linguistic variables, which 
correspond to different measurements. Selection of these 
linguistic variables has to take into account the most 
relevant parameters that influence RAT selection and 
bandwidth allocation. 
As a result, we classify them among three groups of inputs: 
- Coverage indicators, in order to make RAT/cell selection 
and bit rate allocation coherently with the cell coverage in 
the scenario. 
- Cell load indicators, in order to avoid situations in which 
the cell load reaches high values, thus degrading the 
performance. 



- Context aware indicators relative to the mobile. Some 
examples may be the mobile speed or the battery life.  
 
On the other hand, the outputs of the FNN are subdivided 
into two groups, and they are the driving indicators that 
perform cell/RAT selection and bit rate allocation: 
 
- To perform cell/RAT selection, each RAT is characterized 
by an indicator referred to as Fuzzy Selected Decision 
(FSD) value, which takes values in the range [0,1] and 
reflects the appropriateness of selecting a RAT  before 
others. 
- To perform bit rate allocation, an output value, indicated as 
BW, is associated with each RAT giving an indication for 
the amount of bandwidth which should be assigned to the 
user. 
The FNN can be graphically represented by the 5-layered 
structure described in Figure 3. Nodes in layer 1 are input 
linguistic nodes and nodes in layer 5 are output linguistic 
nodes. The output linguistic nodes are in charge of pumping 
decision signals out of the network during the “down-up” 
process and feeding the reinforcement signal r(t) into the 
network during the “up-down” process. The remaining 
layers are referred to as hidden layers and they implement 
the FLC. The nodes in layer 2 and layer 4 are term nodes, 

which act as membership functions of the input and output 
linguistic variables, respectively. The implementation of the 
fuzzification/defuzzification functions is depicted in Figure 
3. The nodes in layer 3 are rule nodes and they implement 
the inference engine; each layer 3 node represents a fuzzy 
rule and all the nodes form the fuzzy rule base of the FLC. 
The input and output linguistic nodes and their 
corresponding term nodes are fully connected between layer 
1 and layer 2 and between layer 4 and layer 5, respectively. 
In turn, the links between layer 2 and layer 3 and between 
layer 3 and layer 4 operate as inference engine: the links 
between layer 2 and layer 3 define preconditions of the rule 
nodes, whereas the links between layer 3 and layer 4 define 
the consequences. 
Each layer k consists of Nk nodes (k=1,….,5). The i-th node 
at layer k is characterized by p inputs, k

p
k uu ,...,1 , coming 

from layer k-1 nodes, which are processed by the activation 
function k

if . The output of the i-th node of the k-th layer 

will be indicated as k
io  and will be given by  
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Figure 3: Layered Fuzzy Neural scheme 
 

Layer 1 



The first layer nodes are input nodes, so that they just feed 
the input data without change into the network. We consider 
7 input linguistic variables (i.e. N1=7): 
- Coverage Indicator (CI) for each of the considered RATs: 
CIj, j = 1, 2, 3. 
- Cell Load Indicator for each of the considered RATs: LIj, j 
= 1, 2, 3. 
- Context Aware Indicator (CAI) with respect to the user. 

Layer 2 

The second layer nodes execute the fuzzification operation. 
They calculate the degree of membership for the input 
received by the input node to the particular fuzzy set 
associated with the second layer node, which is defined by a 
membership function. In case of Gaussian membership 
functions, for the i-th layer 2 node: 

( ) ( )
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⎞
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⎝

⎛ −−= 22

222
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where 2
im  and 2

iσ  are the mean and variance of the i-th 

Gaussian membership function at layer 2, 2
iu  is one of the 

seven input linguistic variables and 2,...,1 Ni = .  
The term sets defined for each input linguistic variable are: 
- T(CIj) = T{Low, High} 
- T(LIj) = T{Low, Medium, High} 
- T(CAI) = T{Low, High} 
Where j = 1, 2, 3, so that, layer 2 consists of N2=17 nodes.  
Notice that, in terms of the coverage indicator, the selected 
fuzzy sets take two values, either Low or High. In turn, the 
load indicator is represented by three fuzzy sets (Low, 
Medium or High), which suggests that a higher level of 
granularity is required for this parameter since it has a 
stronger impact over resource allocation. Finally, the 
context aware indicator is also considered with two fuzzy 
sets, either Low or High, since it is used in the RAT 
selection only as an indication that some RATs may not be 
appropriate for certain users (e.g. WLAN would be an 
inappropriate choice for high speed users).  

Layer 3 

The third layer nodes calculate the degree of membership of 
the precondition of the fuzzy logic rule corresponding to the 
specific node by means of the AND operator, so that the i-th 
rule node takes the minimum among the p received inputs 
from layer 2: 

( ) ( )33
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where 3,...,1 Ni = . Considering the dimension of the term 
sets defined in layer 2, N3=432.  

Layer 4 

The fourth layer nodes sum the degree of membership of the 
layer 3 nodes, with the same i-th layer four node as a 
consequence, to identify the degree of membership for the 
consequent part of the rule. So,  
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where q is the number of layer 3 nodes with the i-th layer 4 
node as a consequence, and 4,...,1 Ni = .  
At layer 5, there are two groups of nodes. The first one 
corresponds to the RAT selection procedure (i.e. FSDj, j = 1, 
2, 3), whereas the second corresponds to the bit rate 
allocation (i.e. BWj, j = 1, 2, 3). 
The term sets defined for each output linguistic variable are: 
- T(FSDj) = T{Yes, Probably Yes, Probably Not, Not} 
- T(BWj) = T{Low, Medium, High} 
where j = 1, 2, 3, so that, layer 4 consists of N4=21 nodes.  
Layer 5 
The fifth layer nodes finally perform the defuzzification 
function computing the output according to the center of 
area method: 
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where 5
jm  and 5

jσ  are the mean and the variance of the j-th 
Gaussian function of the r layer 4 nodes that are connected 
to the i-th layer 5 node. That is, r is the number of inputs of 
the i-th layer 5 node, coming from layer 4 nodes. Besides, 

5,...,1 Ni = , where N5=6. 
Finally, the outputs of the network are the result of the 
defuzzification function: 
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where Ti, is the set of layer 4 nodes connected with the layer 
5 nodes providing FSDi, with i = 1, 2, 3. Similarly, in terms 
of the allocated bandwidth, it will be given at the output of 
layer 5 as follows: 
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BWi,,MAX is the maximum bit rate that can be allocated in 
RATi. In turn, Wi is the set of layer 4 nodes connected with 
the layer 5 nodes that provide BWi, with i=1, 2, 3. 
Once the FNN has been defined by means of the five layers, 
the input/output linguistic variables and the corresponding 
term sets, it is necessary to set up the FNN structure by 
defining the fuzzy inference rules contained in the fuzzy 
rule base and the initial shape and position of the 
membership functions. This set up phase is performed off-
line, and after, the reinforcement learning is in charge of 
adjusting the on-line parameters defining FNN structure. 
The off-line set up of FNNs is a rapidly developing research 
field and several methods exist in the open literature. They 



can be intuitive and based on logical operations derived 
from the expert knowledge of the variables to define (e.g. 
intuition, inference methods [33]) or they can make use of 
more complex algorithms based on e.g. neural networks, 
genetic algorithms, pattern recognition, inductive reasoning, 
etc. [33]. The first group of procedures has been intensively 
adopted in literature [34]. For example, in the case of 
inference rules, many experts have found that they provide a 
convenient way to express their knowledge, since in our 
daily life, most of the information on which our decisions 
are based on is linguistic, rather than numeric in nature. On 
the other hand, the second group of mechanisms performs 
well, if training data are available off-line [28]. 
Nevertheless, for the JRRM application, it would be very 
difficult and expensive to obtain an off-line comprehensive 
training data file to establish the neural network because the 
JRRM decisions depend on many time-variant factors (e.g. 
traffic loads, signal strengths, etc.), which can hardly be 
captured in a training data file. In addition, methods using 
databases to formulate rules and membership functions may 
be computationally very expensive if the database is large. 
As a result, the choice of which method to use depends on 
the problem size and problem type.  
Consequently, in case of JRRM, the authors consider that a 
suitable method of setting up off-line the network is to 
define both the membership functions and the fuzzy 
inference rules by means of intuition and the knowledge the 
network operator has of the problems associated with 
determining the FNN structure. For example, a coverage 
membership function is first reasonably defined considering 
measurements such as the sensitivity levels and the power 
received at the cell edge.  
The offline definition of the membership functions will be 
introduced in section 5, together with the simulation 
scenario. With respect to the membership function shapes, a 
bell shaped function is selected since it is easy to derive, 
which is useful when reinforcement learning is activated. 
The fuzzy inference rules contained in the fuzzy rule base 
are described in ANNEX A together with the rationale 
based on which they have been defined. 
B.  Reinforcement Learning 
The reinforcement learning procedure is executed in concert 
with each FLC execution to activate an error back-
propagation learning algorithm that minimizes a quadratic 
error function, by means of the propagation of an error term 
from the top to the bottom of the 5-layered structure. The 
error propagation updates the means and standard deviations 
of the fuzzification and defuzzification bell-shaped 
membership functions. The quadratic error function for 
minimization is defined as: 

( ) ( )( )2*

2
1 tyytE −=  (8) 

where y* denotes the target value of a certain Key 
Performance Indicator and the reinforcement signal is 
defined as r(t)=y*- y(t). Consequently, as a result of the 
reinforcement learning procedure, the algorithm adapts its 
parameters to minimise (8), which is equivalent to maintain 

the overall Key Performance Indicator value at the desired 
target rate.  
During each fuzzy neural JRRM execution, the FLC 
computes the output linguistic variables FSDi and BWi for 
RATs i = 1, 2, 3, hence selecting a RAT and a bit rate to be 
allocated in this RAT. Consequently, the Key Performance 
Indicator at time t can be measured, thus generating the 
error term that is propagated through the multilayered 
system. The general learning rule for a parameter w(t) to 
update (e.g. a mean or standard deviation of the different 
membership functions)  is: 
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where γ is the learning rate.  
In the fifth layer, taking into account (5) and (9), corrections 
of the mean 5

im  and the standard deviation 5
iσ  of the 

membership function are given, respectively, by: 
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where p is the number of nodes at layer 4 connected to the i-
th layer 5 node and 5,...,1 Ni = .  
In the third and fourth layers, there are no parameters to 
tune. On the other hand, to obtain corrections for the mean 

2
im  and standard deviation 2

iσ  in the second layer, the 
error term has to be propagated from the top to the bottom 
of the 5-layered structure, so that, by applying the delta 
learning rule, we obtain:   
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where 4,...,1 Nn = , 3,...,1 Nk = and 2,...,1 Ni = .  
Then, 
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C. Economic-driven JRRM 

The cellular wireless business must establish an appropriate 
balance between economics and radio resource usage, since 
pricing, resource deployment and allocation strategies 
determine user satisfaction and operator exploitation results. 
Users without adequate QoS are likely dissatisfied. 
However, user feelings also depend on the price paid for the 
service, since users offered very high QoS at a very high 
price may be dissatisfied, as well. Moreover, the satisfaction 
concept is different if it is measured from a user-centric or a 
network-centric perspective, although both strongly depend 
on the bandwidth allocation and pricing policies. As a result, 
in this paper, two metrics have been identified to quantify 
user and operator satisfaction. 

- User-centric metric: User Acceptance 

From the user perspective, the notion of user acceptance of a 
given service is thought to be an appropriate indicator of 
user satisfaction, since it includes a trade-off between the 
price paid and the perceived quality. Specifically, user 
acceptance can be defined as the probability that users are 
satisfied with the service obtained from the network, in 
accordance with their payment obligations. Therefore, user 
acceptance should be, on the one hand, an increasing 
function of the utility u that the user perceives from a given 
service, which is related mainly to QoS parameters like e.g. 
bandwidth, delay, etc., and on the other hand a decreasing 
function of the price p that the user pays for that service. 
Then, a suitable definition of the user acceptance is given by 
[35]: 
( ) ( )εμ −−−= pCupuA exp1,    (18) 

where C, μ and ε are constants representing the different 
user sensitivity to utility and price. 
The utility u is a function that in turn depends on the 
specific service characteristics and the elasticity of the 
applications. Inelastic applications (e.g. real time voice) are 
characterized by a step utility function depending on e.g. 
whether the allocated bandwidth B is above or below a 
given threshold. On the other hand, elastic applications (e.g. 
data applications) exhibit more flexible behaviours in the 
sense that the utility is a smoother function of the allocated 
bandwidth. Particularly, a suitable definition of the utility is 
given by: 
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where 2.42.0 ≤≤ K  and 202 ≤≤ ξ are tuneable 
parameters [35]. We will consider 2=K , 2.2=ξ  and 

05.0=C . Notice that, a value of user acceptance A means 
that during A% of the time, the user considers the QoS 
received as satisfying with respect to the price paid.  

In order to consider that different users may exhibit a 
different sensitivity relative to the specific service, two user 
profiles are considered in this paper. The corresponding 
acceptance functions are plotted in Figure 4 (i.e. μ=2 and 
ε=1.5 for consumer users and μ=40 and ε=2.5 for business 
users) as a function of the allocated bandwidth. The 
consumer profile represents the population segment for 
which the price is more relevant than the allocated 
bandwidth. Therefore, its acceptance is high even for 
relatively low bandwidths and decreases rapidly for high 
bandwidths because they are unwilling to pay for them. On 
the contrary, the business profile represents the population 
segment for which the most important thing is the allocated 
bandwidth rather than the price. Consequently, their 
acceptance is low for low bandwidths and decreases slowly 
for high bandwidths. 
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Figure 4: User acceptance of consumer and business user 

profiles. 

- Network-centric metric: network revenue 

From the network operator perspective, the revenue is 
considered as the network metric to define operator 
satisfaction. The operator revenue can be formulated as a 
function of the price that the users are paying and the user 
acceptance, in the sense that only users accepting the service 
will be in practice generating revenue. This leads to the 
following definition of revenue [35]: 
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where Nu is the number of users, pi is the price paid by the i-
th user for the bandwidth Bi and ( )ii puA ,  is the 
corresponding user acceptance. 
Using the FNN presented in the first part of this section as a 
foundation, we can now select the Key Performance 
Indicator parameter to define the reinforcement signal by 
including micro-economic concepts introduced in this 
section. To this aim, the reinforcement signal selected for 
the FNN is defined based on the user acceptance function. 
More specifically, the error signal to be minimized by the 
reinforcement learning procedure is defined based on (8), 
with ( ) ( )tAty =  and ** Ay = , where A(t) is the current 
overall user acceptance averaged over the number of users 
in the scenario and A* is its target value. In this manner, it is 



possible to obtain a JRRM framework that makes RAT 
selection and bandwidth allocation decisions, which are 
driven by the ultimate objective of maintaining the overall 
user acceptance value, at a certain desired rate.  

C. Practical feasibility of the FNN 

With respect to the numerical complexity of the proposed 
algorithm, it should be mentioned that the number of 
operations in the procedure is low enough to ensure 
operation in real time by means of software approaches. In 
that sense, the required operations should be considered at 
the following two levels: 
1.- To achieve the fuzzy-based decision with respect to the 
RAT and bandwidth allocation, the type of performed 
operations are essentially comparisons according to the 
inference rules at layer 3 and sums of the different layer 3 
outputs. Also, a small number of multiplications and 
divisions are required for layer 5. The implementation of 
membership functions for layer 2 can be performed by 
means of look-up tables, thus only requiring memory access. 
As a result, in our approach, the number of operations to 
achieve a decision per user is on the order of 5000, which 
turns into a requirement of about 100μs per user on a single 
state-of-the-art general-purpose processor (e.g. 2 GHz). 
Then, real time operation is feasible even with a high 
number of users, since the time constraints are typically 
fixed at the radio frame-time scale (e.g. in the order of 
tenths of milliseconds). 
2.- With respect to the reinforcement learning algorithm, the 
effect is the modification of the parameters of the 
membership functions at layer 2 and layer 5 used by the 
fuzzy-based decision procedure according to the system 
evolution. Since this modification occurs at the long-term, it 
does not pose constraints for real-time operation.   

IV INTER-OPERATOR JRRM 

The inter-operator JRRM operation is centered on the 
notion that the establishment of inter-operator agreements is 
aimed at improving radio resource usage of all the operators 
involved in the trading process, as well as their revenue, all 
while maintaining the target value for overall user 
satisfaction. The establishment of these agreements can be 
based on different solutions [15]-[17]. In this paper, we 
envisage a Metaoperator in charge of dealing with the inter-
operator operations. As depicted in Figure 2, the 
Metaoperator consists of two building blocks, namely the 
trading agent and the pricing block. The trading agent is in 
charge of performing the S-operator decision making 
process. On the other hand, the pricing block defines the 
different business model options to exchange users among 
operators. The two blocks are described with further details 
in the following. 

A. Trading Agent 

The trading agent implemented in the Metaoperator is 
the actor that provides the bridge among different operators 
by making transactions for offering and demanding radio 

resources. Different forms of market basis can be envisaged 
(e.g. auction mechanisms, game theory, etc.). In particular, 
in this paper, the trading agent is implemented by means of 
a multiple criteria decision maker based on the combination 
of fuzzy set theory and Analytic Hierarchy Process [30][31], 
which is a powerful technique that considers more than one 
criteria, each one weighted with respect to its relative 
importance to the problem, when making decisions. In fact, 
in a multi-RAT and multi-operator scenario, the most 
suitable RAT and bandwidth to allocate depends on many 
heterogeneous inputs (i.e. technical, subjective, economic, 
etc), so that a framework capable of taking into account 
multiple criteria to make a decision is considered an 
appropriate choice.  

In a scenario where N operators (OPs) coexist, the 
multiple objective decision maker aims to select the most 
appropriate S-operator among the N-1 alternatives, taking 
into account a certain number of decision criteria. In 
particular, the following criteria are considered:  

C1 - FSD 
C2 - User acceptance, A 

The FSD value is considered as an appropriate decision 
criterion since its computation captures the main technical 
indicators reflecting the specific network context. In turn, 
user acceptance of the service has been selected as the 
second considered criterion because it encompasses both 
utility and pricing considerations and serves as a reliable 
indicator of both user satisfaction and operator revenue. In 
particular, whenever a certain user is transferred to another 
operator, the two decision criteria with respect to the i-th 
alternative operator OPi, are Ci1=FSDi and Ci2=Ai, 
respectively, which are the FSD associated with the RAT 
selected for the user by OPi if it was chosen as S-operator 
and the corresponding user acceptance. According to the 
theory of decision based on fuzzy sets, the decisions are 
made in two steps: 

- For each alternative OPi, select its smallest value for 
any of the criteria. So, for OPi, the decision value is 

( )iii AFSDD ,min= . 
- Select the operator with the highest value Di  for the 

optimal decision. 
So far, this procedure assumes that the two decision 

criteria are equally important. However, if the decision 
criteria had different degrees of importance, it would be 
possible to combine the decision process described above 
with the Analytic Hierarchy Process.  

B. Pricing Block 

The transaction between H-operator, Metaoperator and 
S-operator has to be transparent to the user involved in the 
trading process. Consequently, the price actually charged to 
the user should be independent of the operator which is 
actually providing the service, and equal to the price p 
charged by the H-operator under normal operation. Then, it 
is assumed that the total revenue generated by the user is 
shared between the two involved operators, so that the H-
operator offering the potentially dropped/blocked user to the 



trading agent will maintain keep a revenue (1-α)p from this 
user, while the S-operator will receive αp, where 0≤α≤1.  

Depending on the value selected for α, different business 
models can be envisaged. For example, if α=1, then the 
business model is based on the agreement that the S-
operator will get all the revenue from the transaction. In this 
case, the S-operator exploits its available radio resources 
more efficiently, thus improving its revenue. On the other 
hand, the H-operator also benefits because it guarantees 
customer satisfaction in a setting where it would not be 
possible to support the required QoS. In turn, if α<1, the 
business model considers that the H-operator has to be 
guaranteed with a percentage of the revenue derived by its 
contracted users. From the S-operator perspective, a 
possible approach for fixing α consists of relating it to the 
actual normalized load (η≤1) in its network, e.g. α=η. If the 
S-operator’s network is highly loaded, a higher percentage 
of revenue should be guaranteed to incentivize the 
transaction. 

In particular, we will consider three different business 
models:  

-  No Inter-Operator Agreements (NIOA)  
This business model considers the classical approach, in 

which the operators in the scenario do not cooperate in order 
to take advantage of the complementary characteristics of 
their temporal/spatial traffic distribution. 

-  S-Operator Gets All Revenue (SOGAR)  
Inter-operator agreements have been established, with 

α=1, so that the S-operator receives 100% of the income 
derived from supporting the service requested by the user. 

- Shared Revenue Based on Load (SRBL) 
Inter-operator agreements have been established and 

α=η, where 1≤η  is the normalized load. Then, the H-
operator receives a percentage of the income derived from 
its subscribers, which depends on the average load of the S-
operator, so that the more loaded the S-operator, the higher 
the income that it has to guarantee.  

Finally, in order to analyze and compare profitability 
between operators, a new indicator referred to hereafter as 
profit (P) is defined. In this paper, the operator profit is 
calculated by subtracting the expenses (E) faced by the 
operator from its revenue. In particular, the expenses that 
will be considered only include the cost of infrastructure 
deployment. 

ERP −=       (21) 

 

V DEFINITION OF  SIMULATION SCENARIOS 

This section presents the multi-RAT, multicell and 
multi-operator simulation scenarios where the proposed 
fuzzy neural JRRM algorithm has been evaluated.  

Each operator manages a deployment area where 
different RATs coexist. Without loss of generality, a 
scenario including the essentials of three RATs, namely, 
UMTS, GERAN and WLAN is retained to illustrate the 
behaviour of the proposed JRRM algorithm. A tight 

coupling interworking is considered as it can be easily 
managed when jointly UMTS and GERAN (GPRS/EDGE 
Radio Access Network) are considered [2][3]. Also a 
WLAN could be tightly coupled following e.g. the Generic 
Access Network model [7].  

Two different deployment scenarios are considered and 
they will be associated with different operators depending 
on the specific case study. Deployment #1 (see Figure 5 (a)) 
consists of 4 UMTS base stations, 2 GERAN base stations 
and one WLAN access point. Cell radii are 150m for 
WLAN, 650m for UMTS and 1km for GERAN. 
Deployment #2 consists of 2 UMTS base stations, 2 
GERAN base stations and one WLAN access point (see 
Figure 5 (b)). Table 1 summarizes the deployment 
characteristics including the number of frequency carriers 
for each cell and the cost per frequency carrier computed 
over unit time [40]. 
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Figure 5: Simulation scenario: a) deployment #1 b) 
deployment #2. 

Table 1: Infrastructure deployment  

 Infrastructure 
deployment # 1 

Infrastructure 
deployment # 2 

Base 
Station 

# Freq 
carrier 

Cost Freq 
carrier 

# Freq 
carrier 

Cost Freq 
carrier 

WLAN 1 0.0112 1 0.0112 
UMTS1 1 0.0865 0 0 
UMTS2 1 0.0865 1 0.0865 
UMTS3 1 0.0865 1 0.0865 
UMTS4 1 0.0865 0 0 

GERAN1 4 0.018*4 1 0.018 
GERAN2 4 0.018*4 1 0.018 
Economic 

units 
 =0.5   =0.22 

 
 
To evaluate the proposed framework, we consider 

simulation scenarios where two operators, referred to as 
OP1 and OP2, coexist. Different simulation scenarios can be 
analyzed. The two operators are differentiated by: (1) 
Infrastructure deployment and (2) Market share.  

Concerning infrastructure deployment, the investments 
of the two operators can be either the same (i.e. symmetric 
infrastructure deployment) or different (i.e. asymmetric 
infrastructure deployment). In the symmetric deployment, 
both OP1 and OP2 are characterized by infrastructure 
deployment #1 (notice that this corresponds to an 
investment of 0.5 economic units). In the asymmetric 



deployment, OP1 is characterized by the infrastructure 
deployment #1 (i.e. 0.5 economic units investment) whereas 
OP2 is characterised by the infrastructure deployment #2 
(i.e. investment is reduced to 0.22 economic units). In terms 
of market share, the operators can be characterized by either 
the same (i.e. balanced market share) or a different (i.e. 
unbalanced market share) number of subscribers. 
Combining the different options, we can study four 
scenarios as summarized in Table 2. 

Table 2: Simulation scenarios. 

Scenario Infrastructure 
Deployment 

Market share 

A) Symmetric  Balanced 
B) Symmetric  Unbalanced 
C) Asymmetric  Balanced 
D) Asymmetric Unbalanced 

 
A mobility model with users moving according to a 

random walk model inside the coverage area is adopted with 
a randomly assigned mobile speed (MS) [ ]hKm /50,0∈  
and a randomly chosen direction. The propagation model 
considered for UMTS and GERAN is given by 
L=128.1+37.6 log d (km), which assumes that the frequency 
band is similar for both systems (i.e. GERAN: 1710-1785 
MHz; UMTS: 1900-2025 MHz) [36]. For WLAN, since the 
conditions are different (e.g. different frequency bands, 
access point located indoor, lowest height, etc.) the 
propagation losses inside the hotspot are modelled by L= 20 
log d(m)+40 [37].  

With respect to the traffic model, the beginning and the 
end of the user’s activity periods are defined according to a 
Poisson scheme with an average of 6 calls per hour and user 
average call duration of 180 seconds. The maximum bit rate 
available to the users in a UMTS and GERAN cell is 384 
Kb/s and 96 Kb/s, respectively. Results are presented for the 
uplink direction, and the considered possible bit rates for the 
different RATs are:  

- For UMTS: 32 kb/s, 48 kb/s, 64 kb/s, 80 kb/s, 96 kb/s, 
112 kb/s, 128 kb/s, 192 kb/s, 256 kb/s, 320 kb/s, 384 kb/s. A 
single carrier is considered. The maximum allowed uplink 
load factor is 0.75. 

- For GERAN: 32 kb/s, 48 kb/s, 64 kb/s, 80 kb/s, 96 
kb/s. It is assumed that four carriers are available in the 
GERAN cell for GPRS users, with coding scheme CS-4 
[38], thus having a maximum bit rate in the cell of 640 kb/s. 

- For WLAN, it is considered that the total available 
bandwidth (i.e. 11 Mb/s for IEEE 802.11b) is equally 
distributed among the WLAN users (i.e. the higher the 
number of users the lower the bandwidth per user will be). It 
is also assumed that more WLAN users are not accepted 
when the bandwidth per user is less or equal than 384 kb/s. 
A single access point is considered. It is worth mentioning 
that CFP (Contention free period) mechanisms enable 
different users to share a WLAN channel, simply by 
scheduling the transmissions on top of the Medium Access 
Control layer [39]. Consequently, no bandwidth allocation 

will be assumed at the output of FNN for WLAN. On the 
other hand, for UMTS and for GERAN, the allocated bit 
rate decided by the fuzzy neural algorithm will be given by 
rounding BWUMTS or BWGERAN to the closest bit rate.  

The fuzzy neural algorithm is activated every 100 ms for 
the simulation purposes to re-allocate bandwidths and/or 
RATs to the currently admitted users as well as to include 
new users, so that the allocated resources can be changed 
dynamically.  
With respect to the FNN described in section 3, we have 
considered: 
- As coverage indicator, the signal strength (SS) with respect 
to three cells belonging to three different RATs: RATi , i=1, 
2, 3. The signal strength is defined as the received power 
signal at the user terminal receiver. 
- As cell load indicator, the resource availability (RA) with 
respect to three cells belonging to three different RATs: 
RATi, i= 1, 2, 3. The resource availability is a RAT-
dependent concept and with respect to the different RATs is 
defined as follows: 
- For UMTS, RA=1-ηUL, where ηUL is the uplink cell load 
factor. 
- For GERAN, RA=640kb/s - ρ, where ρ is the current 
amount of kb/s already allocated in the corresponding cell. 
- For WLAN, RA=Maximum number of users – number of 
users allocated in WLAN cell, where the maximum number 
of users is the number of users that could be allocated in 
WLAN considering a rate of 384 kb/s per user (i.e. 11 
users).  
- As a context aware indicator relative to the mobile, mobile 
speed (MS) is used to indicate the inappropriateness of 
selecting certain RATs according to the network layout. 

The initial membership functions defined offline (before 
reinforcement learning operation) are depicted in Figure 6, 
whereas the fuzzy inference rules contained in the fuzzy rule 
base are defined in ANNEX A. The learning rates γ that 
have been considered are: 
- γ to tune the membership functions at layer 5: 0.00001; 
- γ to tune the RA membership function for UMTS at layer 
2: 0.00001; 
- γ to tune the RA membership function for GERAN at layer 
2: 0.0001; 
- γ to tune the RA membership function for WLAN at layer 
2: 0.0001; 
- γ to tune the SS membership functions for all RATs at 
layer 2: 0.001; 
- γ to tune the MS membership functions at layer 2: 0.0001; 

Simulation results have been obtained considering that 
the target user acceptance probability is retained to A*=0.8, 
which is considered a reasonable choice since it means that 
80% of the time, the user is satisfied with the service 
perception according to the price paid for it.  
It is worth noting that when a user is in outage, the 
bandwidth assigned to the user is computed as zero, so that 
the utility and consequently the corresponding user 
acceptance are zero as well. A user is considered in outage 
if: 



(1) A user is in outage in UMTS whenever the required 
transmission power PT,i  by the i-th user in the uplink is 
higher than the maximum available power at the terminal 
(e.g. PT,i >21 dBm), where PT,i is given by (22): 
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iPL , is the Path Loss and ibR , is the bit rate for the i-th user;  

Eb/N0=3 dB is the target requirement, ULη =0.75 is the 
uplink cell load factor, PN=-106 dBm is the noise power and 
W=3.84 Mc/s is the WCDMA chip rate.  

(2) A user is in outage in GERAN and WLAN when the 
received power does not satisfy the sensitivity criterion (e.g. 
for GERAN it is below -87 dBm and for WLAN it is below  
-94 dBm in case of multicell scenario). 

The retained performance measurements are: 
- Blocking: A user is blocked, if at session start, the 

JRRM algorithm assigns a bit rate of 0 Kb/s. 
- Dropping: A user is dropped, if after a change in the 

serving cell, the JRRM assigns a bit rate of 0 Kb/s. 
Furthermore, a user is also dropped, if it is continuously in 
outage during more than a given timeout. A reference value 
of 3 s has been considered for simulation purposes.  
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Figure 6: Initial membership functions 

 
 

VI SIMULATION RESULTS AND DISCUSSION 
In this section, we first present results examining FNN 
behaviour. In particular, we show that the proposed 
approach guarantees a user-centric vision and user profile 
differentiation by making JRRM decisions leading to the 
maintenance of an overall value of user acceptance at a 
desired target rate, regardless of user class (i.e. consumer or 
business). Additionally, we demonstrate that the proposed 
JRRM scheme is able to consider the user preference, in 
terms of utility and price, when selecting the RAT and the 
bandwidth. We will consider two different simulations, 
where a certain number of consumer and business users, 

respectively, are located in a scenario A where two 
operators coexist.  
Then, we present simulation results to evaluate the inter-
operator operation. To this end, the users located in the 
scenario are uniformly distributed between the two classes 
of traffic and they are subscribers of two operators OP1 and 
OP2. In this case, the market share between the two 
operators will depend on the particular scenario (see Table 
2). 
The inter-operator operation will be evaluated in terms of 
improved profit and radio resource usage. In particular, we 
will study, the impact of different business models, the 
impact of different market shares and the impact of different 
infrastructure investments.  



Finally, to generalize the proposed approach, we will 
consider a more complex simulation scenario, where five 
operators characterized by different infrastructure 
deployments and market shares coexist.  
The number of users in all presented figures represents the 
sum of users belonging to OP1 and OP2. Furthermore, a 
statistical analysis of performances in terms of minimum, 
maximum, average and standard deviation values of the 
simulations has been realized, but for the sake of simplicity 
has been shown only for one figure as it will be detailed in 
section 6.D.  
 

A. Study of the behaviour of the FNN 

As described in section 3, the reinforcement learning 
mechanism allows setting the average value of an objective 
and measurable Key Performance Indicator (i.e. the user 
acceptance) to a target value. The objective of the 
simulation described in this section is to demonstrate that 
the average user acceptance can be set to the target rate 
A*=0.8, for both consumer and business users, and the 
system is able to maintain this value during the whole 
simulation time, as depicted in Figure 7. Furthermore, 
during the simulation time, FNN has to cope with two sharp 
traffic variations. At simulation start, the whole system 
switches from a situation in which no mobile is located in 
the scenario, to another one with 200 users uniformly 
distributed between the two operators (i.e. each operator has 
100 subscribers). Also, at simulation frame 300000, 100 
additional users join the scenario, 50 of them are OP1 
subscribers and the remaining 50 are OP2 subscribers. 
Finally, at simulation frame 700000, 100 users, uniformly 
distributed among the two operators, leave the scenario. 
Notice that, at simulation start, a transient period during 
which the fuzzy neural machine converges to the desired 
condition is necessary. Corresponding to the second and 
third traffic changes, the average value of user acceptance 
does not vary significantly. The reason is that the 
reinforcement learning’s interactions with the surrounding 
environment are effective enough to activate the necessary 
modifications on the neural network parameters, so that the 
average value of user acceptance is maintained at the 
desired rate, despite changes in the environment.  
It is worth noting that the same behaviour has been observed 
for both consumer and business users, which demonstrates 
that the reinforcement learning identifies the appropriate 
parameters to satisfy requirements for both classes of traffic, 
characterized by different user profiles.  
Furthermore, Table 3 presents some illustrative performance 
figures of the proposed intra-operator implementations of 
the algorithm. A total of 200 consumer and business users, 
uniformly shared between two operators characterized by 
the same infrastructure deployment, has been considered. 
Simulation results show that the greater willingness of 
business users to pay for high bandwidths turns into an 
overall increase in the allocated bandwidth with respect to 
consumer users. In particular, the average bandwidth 

assigned to consumer users and business users is 74Kb/s and 
168 Kb/s, respectively. Similarly, and due to the higher bit 
rates available in UMTS, the allocation of business users in 
UMTS is up to 6% higher than the allocation in GERAN, 
while the opposite occurs for consumer users. The higher 
amount of bandwidth allocated for business users translates 
into a higher operator revenue from this class of users, since 
they are willing to pay a higher price for the good 
perception of the service. 
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Figure 7: Time evolution of user acceptance. 

Table 3: Consumer and Business Performance Values. 

 Consumer users Business users 
% UMTS Selection 46.5 52.9 

% GERAN Selection 53 47 
%WLAN Selection 0.5 0.1 

Revenue 1.57 4.74 
Average assigned 
bandwidth  

74 Kb/s 168 Kb/s 

 

B.  Improved revenue and radio resource usage through 
inter-operator agreements. 

First, let us consider a scenario characterized by symmetric 
conditions for the two operators, in terms of both 
infrastructure deployment and market share (i.e. scenario 
A). In this sense, the operators are likely to be highly loaded 
in the same time and space conditions, thus reducing their 
complementary characteristics to a minimum. Then, in such 
a situation, cooperation among operators occurs mainly to 
face blockings or droppings associated with sporadic 
overload situations. 
Figure 8 and Figure 9 compare performance in terms of 
blocking and dropping probabilities obtained in the 
considered simulation scenario for two cases: inter-operator 
agreements have been established among the two operators 
(i.e. in both SOGAR and SRBL cases) and inter-operator 
agreements have not been established. Simulation results 
show an important reduction in both blocking and dropping 
probabilities when inter-operator agreements have been 
established. 
The benefits obtained in the case of inter-operator 
agreements can also be read in terms of increment of radio 
interface usage. In fact, if the maximum tolerable blocking 



probability is set to e.g. PB= 2%, the maximum number of 
admitted users increases to 36% (i.e. capacity gain ΔC from 
250 to 340 users), as shown in Figure 8, with respect to the 
case that inter-operator agreements have not been 
established. This capacity gain can be translated into a profit 
gain ΔP of up to 34%, as shown in Figure 10.  
Notice as well that, since the infrastructure deployment is 
symmetric and the market is equally shared between the two 
operators, the profit is almost equally distributed between 
the two operators. For the sake of simplicity, Figure 10 
represents the aggregated profit for the two operators. In 
addition, the choice of the business model (i.e. SOGAR and 
SRBL) does not impact the profit distribution between the 
operators or their performance figures, since the percentage 
of exchanges between OP1 and OP2 is similar in both 
directions. As a result, only the results regarding the 
SOGAR model are shown in Figure 10. 
As an additional illustrative result, we analyze the gain 
when three operators coexist in the same scenario. In this 
case the radio resource usage can be even improved. The 
increment of capacity, with respect to the case that inter-
operator agreements have not been established, increases to 
54% (i.e. capacity gain from 350 to 540 users), as shown in 
Figure 11 (where for the sake of simplicity only results 
related to the SOGAR business model have been shown), 
which can be translated into a revenue gain up to 60%, 
which occurs because more operators are taking part in the 
trading process, thus improving the trunking gain and the 
complementary characteristics of the traffic in the scenario. 
On the other hand, if instead of considering a scenario 
characterized by a balanced market share, we consider a 
simulation scenario where the two operators are 
characterized by the same infrastructure deployment, but 
where the market is not equally shared between the two 
operators (i.e. scenario B), we can obtain further benefits in 
terms of radio resource usage and operator revenue. In 
particular, we consider that OP1 controls 2/3 of the market 
share, whereas the remaining part is managed by OP2 (i.e. 
with 300 users, 200 users are OP1 subscribers, so that OP1 
is their H-operator, whereas the remaining 100 are OP2 
subscribers, so that OP2 is their H-operator). In this case, 
the capacity gain for PB=2% is increased to 54% (i.e. 
capacity gain from 220 to 340 users), which can be 
translated into a profit gain up to 43%, with respect to the 
case that inter-operator agreements have not been 
established when considering the aggregated profit of the 
two operators. Reasons for the additional percentage 
improvement in operator profit is that in a scenario where 
the two operators are, on average, equally loaded (i.e. 
balanced market share), the complementary characteristics 
to be exploited by the trading mechanisms among operators 
are reduced to a minimum. On the contrary, the unbalanced 
market share increases the complementary characteristics of 
traffic distribution to be exploited by the proposed 
algorithm.  
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Figure 8: Blocking performance comparison – scenario A 

with two operators. 
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Figure 9: Dropping performance comparison – scenario A 

with two operators. 
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Figure 10: Profit comparison – scenario A with two 
operators. 

0

2

4

6

8

10

12

14

300 350 400 450 500 550 600
Number of users in the scenario

(%
)

NIOA - Blocking

SOGAR - Blocking

NIOA - Dropping

SOGAR - Dropping

ΔC

0

2

4

6

8

10

12

14

300 350 400 450 500 550 600
Number of users in the scenario

(%
)

NIOA - Blocking

SOGAR - Blocking

NIOA - Dropping

SOGAR - Dropping

ΔC

 

Figure 11: Blocking and Dropping performance comparison 
– scenario A with three operators. 



 

C. Impact of different business models. 

Let us consider a scenario where the two operators have the 
same infrastructure deployment, but unbalanced market 
share (i.e. scenario B). OP1 controls 2/3 of the market share, 
whereas the remaining part is managed by OP2. In this case, 
the probability of OP2 acting as S-operator for OP1’s 
subscribers is much higher than the reverse, since OP1 has 
more subscribers than OP2 and the infrastructure 
deployments of the two operators are the same. In particular, 
with a low load of 200 users, simulation results, not shown 
here for the sake of brevity, reveal that 100% of the inter-
operator exchanges are in the OP1→OP2 direction. 
However, when the number of users increases, some 
blockings or droppings occur with OP2. Therefore, some 
users need to be transferred in the OP2→OP1 direction. As 
an example, with 400 users in the scenario, 85% of 
exchanges are OP1→OP2 and the remaining 15% are 
OP2→OP1.  
Other considerations can be made observing Figure 12, 
which shows the OP1 and OP2 profits, respectively, for 
different business models. First, it is worth mentioning that 
in this scenario, OP2 is the operator that benefits more 
economically by the establishment of agreements with OP1 
(up to 36% and 25% of profit increment in case of SOGAR 
and SRBL business models, respectively, with respect to the 
case that inter-operator agreements have not been 
established, NIOA). In fact, the direction of exchanges is 
mostly in the OP2 direction. However, OP1 also takes 
advantage of the agreements, since some users that would 
have been blocked have instead been satisfactorily served by 
OP2. The exchange operation is transparent to the users, so 
that in the long term, they are not motivated to churn from 
OP1 to another operator. Additionally, the operator with a 
higher number of subscribers (i.e. OP1) profits from the 
business model SRBL (up to 11% of revenue increment 
with respect to the case that inter-operator agreements have 
not been established), which guarantees a percentage of 
revenue derived by its subscribed users to the H-operator. 
On the other hand, the operator characterized by the lowest 
portion of market share (i.e. OP2) takes more advantage in 
terms of profit by the business model SOGAR (up to 36% of 
improvement in revenue with respect to the case that inter-
operator agreements have not been established), which 
guarantees 100% of the revenue derived by inter-operator 
exchanges to the S-operator. 
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Figure 12: OP1 and OP2 profit for different business models 

– scenario B. 

D. Impact of infrastructure investment 

We now consider a scenario where the operators are 
characterized by different infrastructure deployments and 
the same market share (i.e. scenario C). In particular, OP1 
invests in the infrastructure deployment depicted in Figure 5 
(a), whereas the deployment of OP2 is depicted in Figure 5 
(b). 
Observing the profit simulation results depicted in Figure 
13, two tendencies can be highlighted when low (i.e. 60 or 
80 users) or a high (i.e. more than 80 users) traffic demand 
is considered. For business model NIOA (see Figure 13), 
when the traffic demand is low, the OP1 and OP2 profits are 
almost similar, despite the different infrastructure 
deployments. On the one hand, the revenue of OP1 is not 
high enough to compensate for the high infrastructure 
investment. On the other hand, due to the infrastructure 
deployment of OP2, which provides only GERAN coverage 
in an area of the scenario (see Figure 5 (b)), 
blockings/droppings are likely to occur also in cases of low 
traffic demand, thus reducing the OP2’s revenue and 
consequently OP2’s profit.  
Additionally, when the revenue distribution is regulated by 
the business model SRBL, which guarantees a percentage of 
revenue to the H-operator (notice that the direction of 
exchanges in scenario C is in most of the cases OP2→OP1), 
the lower cost of infrastructure invested by OP2 and the 
percentage of revenue (1-α)p from subscribers served by 
OP1 results in OP2 achieving a higher profit than OP1 (e.g. 
with 60 users, the profit of OP2 is 59% higher than the 
profit of OP1). 
In turn, in the case of the SOGAR business model, since the 
direction of exchanges is mostly OP2→OP1, the additional 
revenue αp from OP1 subscribers enables OP1 to achieve 
better profit performance than OP2. 
On the other hand, with more than 80 users, independent of 
the business model considered, OP1 outperforms OP2 in 
terms of profit, since it is capable of providing service to 
more users than OP2, which in turn has to use the OP1 
infrastructure to provide service to them. When the traffic 
demand is high, the higher operator revenue achieved by 
serving a higher number of users and by resource trading 
enables OP1 to compensate for the high infrastructure 



investment costs and generates higher profit than the case in 
which the operator invested less on infrastructure.  
It is worth noting that the SOGAR model guarantees that the 
operator investing more on infrastructure benefits, to a 
larger extent, in terms of profit by the cooperative 
establishment of inter-operator agreements. In particular, 
with 120 users, the profit of OP1 is 1.3 and 2.6 times higher 
than the profit of OP2, with SRBL and SOGAR models, 
respectively. It is worth mentioning that the OP1 
infrastructure costs are 2.3 times higher than OP2 costs (i.e. 
the cost of infrastructure of OP1 and OP2 is 0.5 and 0.22, 
respectively), which are on the same order of magnitude for 
the profit ratio in the case of SOGAR (i.e. 2.6).  
In this sense, we conclude that SOGAR business model 
guarantees a fairer distribution of income among the 
cooperative operators than the SRBL business model, by 
guaranteeing a higher revenue to the operator that actually 
provides service to the users. In this model, the H-operator 
benefits in a more indirect manner, as long as its subscribers 
do not face service limitations and, consequently, do not feel 
motivated to churn. 
To further study the impact of infrastructure investments, a 
sensitivity-type simulation has been considered, where two 
operators are characterized by the same market share, but by 
different infrastructure deployments. The deployments are 
represented by means of a y factor indicating the relation 
between the cost of one operator’s infrastructure and the 
total cost of the scenario’s infrastructure. Figure 14 
represents the operator profit as a function of its 
infrastructure share (i.e. y) when 150 users, uniformly 
distributed between the two operators, are considered. 
In the case of NIOA business model, the operator profit 
increases with the percentage of infrastructure share, but 
when the operator controls more than 50% of the 
infrastructure in the scenario, the operator profit does not 
increase anymore, since this infrastructure is sufficient to 
provide service to the operator subscribers. Consequently, 
profit in this case remains constant. On the other hand, in 
the case of SRBL business model, the operator profit is 
always higher than the NIOA case. The reason is that when 
the operator is characterized by less than 50% of the 
infrastructure in this scenario, it cannot provide service to its 
subscribers, and consequently, a portion is served by other 
operators that are characterized by a higher infrastructure 
share in the scenario. A percentage 1-α of the revenue from 
these users is maintained by the H-operator, so that in case 
of low infrastructure share, the SRBL model still results in 
operator profit increases. In turn, in the case of SOGAR 
model (α=1), the profit of the operator characterized by low 
infrastructure share y is similar to the NIOA case, since the 
operator primarily behaves as the H-operator.  
When y=50%, the two operators are characterized by the 
same infrastructure deployments, so that, taking into 
account that the two operators are also characterized by the 
same market share, the business model does not affect the 
profit distribution in the scenario. 

A different tendency in profit distribution can be observed 
when the operator controls a more significant percentage of 
infrastructure in the scenario, so that, for y>50% the 
operator is economically benefited by both SRBL and 
SOGAR business models, since it can provide service to the 
subscribers with a lower y. Notice that the SOGAR model 
provides a higher profit than SRBL in this case, since the 
direction of exchanges is mostly from the operator 
characterized by a lower y to that characterized by a higher 
y. 
For the operator profit results shown in Figure 14, a 
representative statistical analysis of performances has been 
realized, as observed from the picture, representing the 
minimum and maximum values for each simulation result, 
which were obtained over 100 runs. Also, an evaluation in 
terms of average values and standard deviation has been 
realized. For example, for the results corresponding to 
y=50% i.e. operator profit equal to 1.2, the average value 
over 100 runs is 1.18, with a standard deviation of 0.06. 
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Figure 13: OP1 and OP2 Profits for different business 
models – scenario C. 
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Figure 14: Operator profit versus infrastructure share y 

 

E. Impact of different market shares 

To study the impact of different market shares we consider 
two operators characterized by the same infrastructure 
deployment, which is represented in Figure 5 (a). In this 
scenario an increasing number of users is considered to be 
demanding service. Different market shares are taken into 
account by modifying the value of a variable x, which 
represents the relation between the number of users of one 
operator and the total number of users in the scenario. 



For a situation of medium traffic demand (i.e. 300 users), 
Figure 15 shows the operator profit when considering 
different values of market share x for a given operator in the 
scenario. 
From Figure 15, we first observe that the establishment of 
inter-operator agreements (i.e. SRBL or SOGAR) allows for 
improvements in the network operator’s profit, with respect 
to the case that inter-operator agreements have not been 
established. In particular, two tendencies can be observed. 
When the operator is characterized by low market share, the 
operator acts in most of the cases as the S-operator. 
Consequently, it is economically benefited by SOGAR 
business model, since according to this model, it can 
maintain 100% of the revenue from users. In turn, under 
similar conditions, the SRBL business model provides a 
lower profit to the operator since the S-operator keeps a 
percentage α<1 of the revenue coming from the users it 
serves. 
On the other hand, when the operator is characterized by a 
high market share, the operator acts in most of the cases as 
the H-operator so that it is benefited by the SRBL business 
model. In turn, in case of the SOGAR business model, there 
is no economic benefit for the operator with respect to 
NIOA model, since in this case α=1. However, the benefit 
of the operator is  long-term, since its subscribers are not 
motivated to churn because they were transparently 
provided with service by another operator.  
To sum up, Figure 16 summarizes the conclusion obtained 
in sections 6.D and 6.E. As the percentage of infrastructure 
deployment in the scenario increases with respect to the 
market share, the operator prefers the SOGAR business 
model since it can maintain 100% of revenue from the users 
because of the infrastructure deployed. In turn, as the 
percentage of market share increases with respect to the 
infrastructure deployment, the operator prefers the SRBL 
business model, since it can maintain a percentage α<1 of 
the revenue from its subscribed users that it cannot provide 
with service, due to the reduced infrastructure deployment 
with respect to market share.  
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Figure 15: Operator profit versus market share between two 

operators 
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Figure 16: Conclusion on the impact of infrastructure 
deployment and of market share 

 

F. Multi-operator scenario characterized by more than two 
operators 

The objective of this section is to generalise the previous 
conclusions to a scenario with more operators. For that 
purpose, we assume a scenario characterized by five 
operators, whose infrastructure deployments and traffic 
conditions are summarised in Table 4. The chosen 
infrastructure deployments are deployments 1 and 2. We 
consider two traffic situations, the first one characterized by 
low traffic conditions and the second by high traffic 
conditions. 

Table 4: Scenario characteristics 
OPERATOR INFRASTRUCTURE 

DEPLOYMENT 
HIGH 

TRAFFIC 
CONDITIONS 

LOW 
TRAFFIC 

CONDITIONS 
1 1 150 USERS 50 USERS 

2 1 30 USERS 10 USERS 

3 2 150 USERS 50 USERS 

4 2 150 USERS 50 USERS 

5 2 30 USERS 10 USERS 

 
Table 5 presents the blocking rate for the two traffic 
conditions with the considered business models. Thanks to 
the establishment of inter-operator agreements, the blocking 
rate in the scenario is reduced from 8.8% and 19.55%, in 
case of low and high traffic conditions, respectively, to 0% 
and 6.99%. This result shows that improved radio resource 
usage can be achieved by means of establishing inter-
operator agreements, as depicted in subsection B, where the 
improved revenue and radio resource usage obtained 
through inter-operator agreements were studied in the 
context of scenarios characterized by two and three 
operators. 
Table 6 and Table 7 summarize the results obtained in terms 
of operator profit in the case of five operators. In case of 
NIOA, under both low and high traffic conditions, the 
operator with the highest profit is OP1, since it is 
characterized by the highest investment in infrastructure and 



the highest market share. On the other hand, OP2, despite 
having invested the same in infrastructure as OP1, has a 
reduced number of subscribers, and consequently a lower 
profit. Notice that in case of low traffic conditions, it cannot 
recover from the inversion in infrastructure, which is 
reflected with a negative profit value. OP3 and OP4, which 
are characterized by the same infrastructure deployment and 
the same market share (scenario A), have the same profit. 
Notice that this profit is lower than OP1 profit, since OP1 
has invested more in infrastructure and consequently can 
provide service to more users. Finally, OP5, as OP2, is 
characterized by a reduced market share, however in 
contrast to OP2, OP5 has invested in the reduced 
infrastructure deployment, consequently, his profit is higher 
than OP2’s. 
When considering the establishment of inter-operator 
agreements, the operator with highest benefit is OP2, which, 
due to the reduced market share, is characterized by the 
highest amount of capacity to “rent”. That is, as explained in 
subsection B, the unbalanced market share characteristics of 
OP2 with respect to the other operators, increase the 
complementary characteristics of traffic distribution to be 
exploited by the proposed algorithm. Also, OP5 is 
characterized by a reduced market share. Consequently, it 
benefits from the establishment of inter-operator 
agreements, but at a lower percentage than OP2, due to the 
reduced infrastructure deployed with respect to OP2. 
Because OP2 mostly acts as the S-operator, it benefits from 
both SOGAR and SRBL, but at a higher percentage by 
SOGAR. In fact, as demonstrated in subsections C, D and E, 
where the impact of different business models, different 
infrastructure deployments and different market shares were 
studied, the operator characterized by a low market share 
and a high infrastructure deployment  benefits from the 
SOGAR business model.  
Also, OP1 is benefited by the establishment of inter-
operator agreements, in both SOGAR and SRBL cases 
(23.8% and 20.4% of profit increment with respect to NIOA 
in case of high traffic conditions). The reason is that OP1, as 
OP2 and OP5, serves OP3 and OP4 users, which cannot be 
provided with service in their home networks due to their 
reduced infrastructure deployments. It is worth noting that, 
as already shown in subsection D where the impact of 
different infrastructure deployments was studied, the 
operator investing more in infrastructure (i.e. OP1) benefits 
more from the SOGAR business model relative to SRBL.  
On the contrary, the operators investing less in infrastructure 
(i.e. OP3 and OP4) benefit from the SRBL business model, 
since they can keep a percentage of the revenue coming 
from their subscribers, despite having deployed a more 
reduced infrastructure than OP1 and OP2. It is worth noting 
that OP3 and OP4 do not benefit in the short term by 
SOGAR business model. However, they take advantage 
from the establishment of inter-operator agreements based 
on the SOGAR model in the long term, since the users are 
provided with service in a transparent manner, and therefore 
will not be motivated to churn. Notice that, OP3 and OP4, 

characterized by the same conditions in terms of market 
share and infrastructure, present very similar results in terms 
of profit (i.e. scenario A). 
Finally, as explained in subsection D with respect to the 
impact of different infrastructure deployments, further 
considerations can be made comparing results obtained in 
case of low and high traffic conditions. In case of SRBL and 
in low traffic conditions, OP3 and OP4, despite their 
reduced infrastructure deployment, outperform OP1 in terms 
of profit. The reason is that OP1 revenue is not high enough 
to compensate for high investment in infrastructure 
deployment. In turn, in case of SOGAR, OP1 can keep the 
revenue coming from the OP3 and OP4 users because of the 
establishment of inter-operator agreements. As a result, 
having invested in infrastructure more than OP3 and OP4, it 
is economically benefited with respect to them, which 
results in SOGAR being a fairer business model than SRBL. 
On the other hand, when the traffic condition is high, OP1 is 
the operator that correctly estimates the necessary 
infrastructure to be deployed. Consequently, it outperforms 
OP3 and OP4 in terms of profit in both SRBL and SOGAR 
cases. Similar considerations can also be made for OP2 and 
OP5, which are characterized by the same market share, but 
by different infrastructure deployments. Under low traffic 
conditions, OP2 does not compensate for the investments on 
infrastructure, in both NIOA and SRBL cases, and 
consequently looses more than OP5, who made an 
investment that was more comparable to its market share. In 
turn, the SOGAR model allows OP2 to take advantage of its 
infrastructure, so that OP2 outperforms OP5 in terms of 
profit. Finally, under high traffic conditions, OP2 can 
compensate for the high infrastructure costs because of the 
revenue generated from other operators’ users, which results 
in a profit higher than OP5. 

Table 5: Improved Radio Resource Usage 
BLOCKING RATE (%) NIOA SOGAR/SRBL 

LOW TRAFFIC 
CONDITIONS 

8.88 0 

HIGH TRAFFIC 
CONDITIONS 

19.55 6.99 

 

Table 6: Improved operator profit – High traffic conditions 
HIGH TRAFFIC 
CONDITIONS 

OP1 OP2 OP3 OP4 OP5 

NIOA 2.35 0.06 1 1 0.08 

SOGAR 2.91 2.42 1 1 0.3 

SRBL 2.83 1.7 1.45 1.45 0.2 

Table 7: Improved operator profit – Low traffic conditions 
LOW TRAFFIC 
CONDITIONS 

OP1 OP2 OP3 OP4 OP5 

NIOA 0.38 -0.3 0.4 0.4 -0.1 

SOGAR 1.1 0.27 0.4 0.4 -0.08 

SRBL 0.71 -0.21 0.85 0.85 -0.09 

 



 

VII CONCLUSION AND FUTURE WORKS 

This paper has presented a comprehensive framework to 
deal with JRRM at both the intra-operator and inter-operator 
levels. A two-layered approach to improve radio resource 
usage and operator revenue has been proposed. 
First, an intra-operator JRRM based on fuzzy neural 
methodology has been presented. This approach allows 
dealing with the vagueness and dissimilarity typical of a 
heterogeneous Beyond 3G network and allows for the 
introduction of cognitive-based mechanisms to interact with 
the surrounding environment to maintain a certain degree of 
user satisfaction. Furthermore, the introduction of micro-
economic concepts allows for the making of a more 
intelligent JRRM decision and also takes into account the 
particular user profile in the decision making process. 
Simulation results show that the user acceptance of both 
consumer and business users can be maintained at a desired 
value and the RAT selection and bit rate allocation for each 
user are made according to their particular profile. In 
particular, in terms of RAT assignment, simulation results 
show that the economic-driven JRRM assigns a consumer 
user to the GERAN RAT and a business user to a UMTS 
RAT with higher probability, whereas in terms of bit rate 
allocation, the average bandwidth assigned to business users 
is higher than that assigned to consumer users. 
Second, the inter-operator JRRM has been described and 
evaluated in different scenarios where multiple operators 
coexist and each is characterized by certain infrastructure 
deployment and a certain market share. The profit has been 
introduced as a reliable indicator for the financial situation 
of the operator since it includes the revenue from the service 
provision to the users and the operator’s investment in 
infrastructure. Three different business models have been 
evaluated based on the sharing of revenue generated by the 
users transferred from one operator to another.  
Simulation results have shown that the establishment of 
inter-operator agreements is beneficial because of both 
network performance (i.e. blocking/dropping probability 
reduction and capacity gain) and operator revenue 
improvement. These benefits can be improved if the two 
operators are characterized by complementary traffic 

distribution, e.g. unbalanced market share, or if more than 
two operators take part in the trading process.  
Furthermore, the business model denoted here as SOGAR, 
which guarantees 100% of revenue derived by a user to the 
operator that actually provides service for it (i.e. the S-
operator), benefits the operator that correctly estimates the 
infrastructure deployment necessary to satisfy the service 
demand and properly invests. In this case, the H-operator 
takes advantage of the fact that its users are not motivated to 
churn because they have been provided with service in a 
transparent manner.  
Finally, with respect to future works, a Fuzzy Neural 
decentralized JRRM can be studied. This is in line with 
Working Group IEEE P1900.4 standard project, which 
proposes a policy-based radio resource usage scheme, where 
decision making is shared between the network and the 
mobile terminals.  
 

APPENDIX A 

This Appendix contains the list of 432 inference rules 
(see Table 8) considered in the FNN of OPi when the three 
RATs developed by OPi are WLAN, UMTS and GERAN 
and the seven input linguistic variables are: the signal 
strength and the resource availability as coverage and load 
indicators, respectively, and the mobile speed.  

The rationale behind these rules is if the signal strength 
(i.e. SS) received from one RAT is Low (i.e. L), then this 
RAT will not (i.e. N) be assigned. Otherwise, the amount of 
bandwidth to assign to the user depends on the available 
resources (i.e. RA) in that RAT. If RA is High (i.e. H), then 
the bandwidth to assign is High (i.e. H). If RA is Medium 
(i.e. M), then the bandwidth to assign is Medium (i.e. M). If 
RA is Low (i.e. L), then the bandwidth to assign is Low (i.e. 
L). 

On the other hand, if the user receives a signal strength 
High from both a UMTS and a GERAN cell, (i.e. SSUMTS is 
H and SSGERAN is H) and if UMTS is characterized by a 
High resource availability (i.e. RAUMTS is H), the user will 
be assigned with higher priority to UMTS. If the user is in 
the coverage area corresponding to the WLAN Hotspot (i.e. 
SSWLAN is H), WLAN will always be preferred to both 
GERAN and UMTS due to the higher bandwidth attained at 
reduced costs. 

Table 8: Fuzzy Rule base 

IF THEN 
SSUMTS SSGERAN SSWLAN RAUMTS RAGERAN RAWLAN MS FSDUMTS FSDGERAN FSDWLAN BWUMTS BWGERAN 

L L L L,M,H L,M,H L,M,H L N N N L N 
L L H L,M,H L,M,H H L N N Y L L 
L L H L,M,H L,M,H M L N N PY L L 
L L H L,M,H L,M,H L L N N PN L L 
L H L LM,H H L,M,H L N Y N L H 
L H L L,M,H M L,M,H L N PY N L M 
L H L L,M,H L L,M,H L N PN N L L 
L H H L,M,H L,M,H H L N N Y L L 
L H H L,M,H H M L N Y PY L H 
L H H L,M,H M M L N PY PY L M 



L H H L,M,H L M L N PN PY L L 
L H H L,M,H H L L N Y PN L H 
L H H L,M,H M L L N PY PN L M 
L H H L,M,H L L L N PN PN L L 
H L H L,M,H L,M,H H L N N Y L L 
H L H H L,M,H M L Y N PY H L 
H L H M L,M,H M L PY N PY M L 
H L H L L,M,H M L PN N PY L L 
H L H H L,M,H L L Y N PN H L 
H L H M L,M,H L L PY N PN M L 
H L H L L,M,H L L PN N PN L L 
H L L H L,M,H L,M,H L Y N N H L 
H L L M L,M,H L,M,H L PY N N M L 
H L L L L,M,H L,M,H L PN N N L L 
H H L H L,M,H L,M,H L Y N N H L 
H H L M H L,M,H L PY Y N M H 
H H L M M L,M,H L PY PY N M M 
H H L M L L,M,H L PY PN N M L 
H H L L H L,M,H L PN Y N L H 
H H L L M L,M,H L PN PY N L M 
H H L L L L,M,H L PN PN N L L 
H H H L,M,H L,M,H H L N N Y L L 
H H H H L,M,H M L Y N PY H L 
H H H M H M L PY Y PY M H 
H H H M M M L PY PY PY M M 
H H H M L M L PY PN PY M L 
H H H L H M L PN Y PY L H 
H H H L M M L PN PY PY L M 
H H H L L M L PN PN PY L L 
H H H H L,M,H L L Y N PN H N 
H H H M H L L PY Y PN M H 
H H H M M L L PY PY PN M M 
H H H M L L L PY PN PN M L 
H H H L H L L PN Y PN L H 
H H H L M L L PN PY PN L M 
H H H L L L L PN PN PN L L 
L L L,H L,M,H L,M,H L,M,H H N N N L L 
L H L,H L,M,H H L,M,H H N Y N L H 
L H L,H L,M,H M L,M,H H N PY N L M 
L H L,H L,M,H L L,M,H H N PN N L L 
H L L,H H L,M,H L,M,H H Y N N H L 
H L L,H M L,M,H L,M,H H PY N N M L 
H L L,H L L,M,H L,M,H H PN N N L L 
H H L,H H L,M,H L,M,H H Y N N H L 
H H L,H M H L,M,H H PY Y N M H 
H H L,H M M L,M,H H PY PY N M M 
H H L,H L H L,M,H H PN Y N L H 
H H L,H L M L,M,H H PN PY N L M 
H H L.H M L L,M,H H PY PN N M L 
H H L,H L L L,M,H H PN PN N L L 
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