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1. Introduction

Software radio, or software-defined radio (SDR), is an emerging 
concept that characterizes the implementation of signal process-
ing chains in software rather than in dedicated hardware [1]–[3]. 
Therefore, reconfigurable devices, including digital signal proces-
sors (DSP’s) and field-programmable gate arrays (FPGA’s), will 
be the main processing entities of future SDR platforms. An SDR 
platform stands for an SDR mobile terminal or base stations.

We introduce the term SDR application as the part of the sig-
nal processing chain of a radio transceiver that is implemented in 
software. An SDR application comprises several SDR functions 
that process and propagate data. An SDR function represents a 
software-defined signal processing block, such as a filter, a decod-
er, or a RAKE receiver.

Future SDR applications will be no longer specifically tailored, 
but rather will have similarities with today’s massive computing 
applications. Therefore we argue that general-purpose computing 
methods, mapping and scheduling, in particular, should be consid-
ered in SDR contexts.

Mapping describes the assignment of software modules to hard-
ware resources. Scheduling determines the execution intervals of 
mapped software modules. The related contributions propose al-
gorithms that jointly address the mapping and scheduling prob-
lems to minimize the overall execution time of an application [4]–
[11]. In software-defined radio, however, the principal objective is 
to meet all system constraints in hard-to-meet cases [12].

This paper addresses the SDR mapping problem: An SDR ap-
plication, which requires a certain amount of computing resourc-
es for real-time processing, has to be mapped to an SDR plat-
form with limited computing capacity. Appropriate software and 
hardware abstractions provide the necessary information on the 
required and the available computing resources. We consider time 
as an implicit resource and assume that the SDR application may 
be executed in a pipelined fashion; this, by and large, solves the 
scheduling problem. In other words, a mapping that meets all sys-
tem constraints indicates that the SDR application can be proc-
essed within its maximum allowed time frame. The grey shaded 
blocks in Fig. 1 show the scope of the paper within the context of 
the SDR mapping problem.

We model SDR applications as directed acyclic graphs (DAG’s) 
of particular characteristics. We randomly generate a number of 
such DAG’s and map them individually to several platform archi-

tectures. These platform architectures represent different resource 
occupations of a dynamically reconfigurable SDR platform. We 
use two simple mapping algorithms that are guided by a paramet-
ric cost function. The contribution of this paper is to show the in-
fluence of the platform architecture, the cost function parameter, 
and the mapping algorithm on the application mapping.

The rest of the paper is organized as follows: In section 2 we 
present the SDR system modeling. Section 3 briefly describes the 
mapping algorithms and introduces the cost function. In section 
4 we discuss the simulation set-up, analyze the results, and de-
rive conclusions.

2. SDR System Modeling

The SDR system modeling encompasses the modeling of SDR 
platforms and applications. Our modeling accounts for the tim-
ing constraints of SDR applications and the limited computing re-
sources of SDR platforms.

2.1 Modeling of SDR Platforms

The computing resources in of an SDR platform are the process-
ing powers of N heterogeneous processors and the available band-
widths between them. N may be as small as 1–3 for a single-user 
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mobile terminal and as large as 10–20 for a multi-user base sta-
tion. A processor represents an SDR-specific processing device, 
such as a DSP or an FPGA. The processing powers in MOPS 
(Million Operations Per Second) of processors P1 to PN are re-
sumed in

C =  (C1, C2, ..., CN) [MOPS].       (1)

The available bandwidth in MBPS (Mega-Bits Per Second) be-
tween Pi and Pj is Bij (i, j ∈  1, 2, …, N). We assume a shared mem-
ory (of unlimited capacity) for processor-internal communication. 
Matrix B can then be written as
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Without loss of generality, we label processors in order of de-
scending processing capacities; that is, C1 ≥ C2 ≥ ... ≥ CN. Further-
more, if Ci = Cj and i < j, then
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2.2 Modeling of SDR Applications

We model an SDR application as a cluster of M SDR functions f1, 
f2, …, fM, where M may be in the order of tens. Any SDR function 
fi (i ∈  1, 2, ..., M) belongs to a chain of at least two SDR func-
tions. Directed acyclic graphs (DAG’s) model these SDR function 
chains, where a node in a DAG stands for an SDR function and an 
arc for a non-zero bandwidth requirement. SDR functions are log-
ically numbered: if fi sends data to fj, than i < j [13].

The modeling of an SDR application features

c =  (c1, c2, ..., cM) [MOPS],   (4)

which absorbs the computing demands, and
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which specifies the bandwidth requirements.

3. Mapping

M SDR functions can be mapped to N processors in N M differ-
ent ways. The problem of finding an optimal solution is NP hard 
in general [5]. Therefore, the applied mapping algorithm must be 
efficient in terms of computing time and mapping results. Here 
we consider the ordered version of the t-mapping [12] and the 
corresponding greedy approach. The two dynamic programming 
approaches, which are apt for any cost function, are briefly de-
scribed in 3.1. A cost function proposal follows thereafter.

3.1 Mapping algorithms

The t-mapping systematically maps one process at a time, starting 
with f1 and finishing with fM, to each one of the N processors. The 
decisions are taken as a function of the accumulated mapping cost 
due to some cost function. These decisions discard mapping com-
binations to such a degree that before addressing SDR function fi 
(i ∈  2, 3, …, M), N (partly) different mapping combinations of the 
first (i–1) SDR functions are available. The algorithm then adds 

the mapping of fi to processor Pk (k ∈  1, 2, …, N) to one of the N 
mapping combinations of size (i–1).

After finishing the processing of SDR function fM, the algorithm 
chooses the mapping combination of minimum cost. This combi-
nation represents the mapping proposal due to the particular prob-
lem and cost function. The t-mapping’s computing complexity is 
of order M·N  2.

The greedy or g-mapping is a simplification of the t-mapping. It 
maps one process at a time to the processor that is associated with 
the minimum accumulated cost due to some cost function. That 
is, the algorithm maps fi (i ∈  1, 2, …, M) to either P1, P2, …, or 
PN and adds it to the mapping combination of size (i–1). Its com-
plexity order is M·N.

3.2 Cost Function

The purpose of the cost function is to guide the mapping proc-
ess so that the mapping proposal meets all system constraints. 
Hence, the cost function has to manage the limited computing re-
sources of an SDR platform. In [12] we introduced a cost func-
tion that seems suitable for this purpose. Parameter q extends this 
cost function to

cost(k, i) = q · costcomp(k, i) + (1–q) · costcomm(k, i).        (6)

The term cost(k,i) represents the cost of mapping fi to Pk (i ∈  1, 2, 
…, M; k ∈  1, 2, .., N) and is for i > 1 a function of the correspond-
ing previous mapping decisions. The computation cost costcomp(k,i) 
is obtained as the quotient between the required processing pow-
er ci of SDR function fi and the remaining processing capacity of 
processor Pk. The sum of up to (i–1) quotients between the re-
quired bandwidths (for the data transfers between f1 and fi, f2 and fi, 
…, and fi–1  and fi) and the corresponding currently available band-
widths defines the communication cost costcomm(k,i).

Throughout the mapping process the algorithm dynamically 
updates the remaining processing and bandwidth capacities. This 
way the algorithm recognizes and discards any infeasible alloca-
tion, an allocation that reserves more than 100% of any comput-
ing resource.

The weight q in (6) may take any real value in [0...1] and spec-
ifies the relative importance of the computation cost in respect to 
the communication cost.

Fig. 2: SDR platform architectures I – IX.
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4. Simulations

4.1 SDR Platforms

A future SDR platform will be subject to the dynamic reconfigu-
ration of its functionality [1]–[3]. In other words, the available re-
sources of an SDR platform will be partially or totally de- and re-
allocated in a dynamic fashion.

We model a partially and dynamically reconfigurable SDR plat-
form as a cluster of three fully interconnected processors. This 
cluster is representative for an SDR mobile terminal or the min-
imum computing cell within an array of processors, which mod-
els an SDR base station. The partial deallocation of resources im-
mediately before their reallocation leaves the processing platform 
in one of the nine states shown in Fig. 2. An SDR platform state, 
or architecture, abstracts the available computing resources of an 
SDR platform at some time instance.

Homogeneous processing and bandwidth capacities charac-
terize platform architecture I, heterogeneous processing capaci-
ties platform architecture II, heterogeneous bandwidth capacities 
platform architecture III, and heterogeneous processing and band-
width capacities platform architectures IV–IX (Fig. 2). Any plat-
form state s (s ∈  I, II, …, IX) offers a total processing capacity 
of 9000 MOPS and a total inter-processor bandwidth of 12 000 
MBPS.

4.2 SDR Applications

In order to avoid a particular implementation and to provide sta-
tistically representative results, we generate 10 million random 
DAG’s with the following parameters:

– M = 25,
– con = 0.2,
– ci uniformly distributed in [1, 2, ..., 500] MOPS,
– bij uniformly distributed in [1, 2, ..., 500] MBPS.

Parameter con indicates the probability of drawing an arc between 
fi and fj (i < j); no arc between fi and fj means bij = 0. Any of the ran-
dom DAG’s consists of one or several components. (A component 
is a connected subgraph [13]). Several components stand for par-
allel function chains. A two-component DAG, for example, per-
fectly models an SDR transceiver with one function chain for the 
transmit and one for the receive path.

A random DAG requires 6262.5 MOPS in the mean, which is 
70% of a platform’s remaining computing capacity. The probabil-
ities that the compound processing requirement of an SDR appli-
cation be larger than 4500 MOPS and 9000 MOPS are 0.99 and 
5·10-5, respectively.

The total bandwidth demand of a random DAG is [con · (M 2 – 
M)/2] · (500 MBPS + 1 MBPS)/2 = 15 030 MBPS in the mean. 
93.6% of the DAG’s require more bandwidth than the 12 000 
MBPS that are available for inter-processor data flow. This can 
be solved by mapping (highly) communicating SDR functions to 
the same processor.

4.3 Results and Discussion

For each q ∈  0, 0.05, 0.1, …, 1, the two mapping algorithms 
individually compute the mapping of a DAG to any SDR plat-
form architecture. Figs. 3 and 4 show the percentage of unfeasibly 
mapped DAG’s as a function of the platform architecture and the 
cost function parameter.

First of all we notice the interrelation between the number of in-
feasible allocations and the platform architecture: The minimum 
number of infeasible allocations is achieved for platform states I 
and IV, the maximum number of infeasible allocations for VI and 
VIII. We explain this using the notations Pk

(s) and Bij
(s), where s 

identifies the platform state.

Platform state I works well because the components of the SDR 
application can be well distributed between the homogeneous 
processing and link capacities. State III lacks the homogeneous 
communication network and complicates such a distribution.

Most of the processing load is likely to be distributed between 
P1

(s) and P2
(s) (s ∈  II, IV, V, …, IX). States IV and VII are favo-

rable, because B12
(IV) = B21

(IV) = B12
(VII) = B21

(VII) = 3000 MBPS, 

Fig. 3: g-mapping results for platform architectures I – IX.

Fig. 4: t-mapping results for platform architectures I – IX.
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whereas the corresponding bandwidths of II, V, and VIII (VI and 
IX) are merely 2000 (1000) MBPS.

P1
(VI) and P1

(VIII) have less communication capabilities than P1 of 
any other platform state. The fact that P1 generally executes more 
SDR functions than P2 or P3 explains the overall inferiority of 
platform states VI and VIII. In practice we should, therefore, try 
to avoid these two platform states.

Figs. 3 and 4 also show that any architecture has an optimal q: 
qopt

(I) = 0.6, qopt
(II) = 0.7, qopt

(III) = 0.45, and qopt
(IV–IX) = 0.45–0.65. 

Recall that the higher the q, the more decisive is the computation 
cost in respect to the communication cost and vice versa. Plat-
form state II, which differs from I in the computing capacities, 
leads to more infeasible allocations than platform state I; there-
fore, qopt

(II) > qopt
(I). Similarly, platform state III, which differs from 

I in the bandwidth capacities, is inferior to platform state I; there-
fore, qopt

(III) < qopt
(I). Platforms states IV–IX are a combination of II 

and III, and so are their optimal q values. 
The two local maxima of the 18 curves confirm that the limit-

ed processing and bandwidth capacities require a composite load 
balancing, that is, 0 < q < 1. In section 4.2 we have mentioned that 
the inter-processor bandwidths are the major bottleneck in this 
study. The cost function with q = 1, which balances the processing 
load and does not care about (excessive) data flow between proc-
essors, explains the global maximum at q = 1 (Figs. 3 and 4).

As regards the mapping algorithm, the results show that the g-
mapping is always inferior to the t-mapping. The relative inferior-
ity is a function of q and s. In respect to qopt

(s), the g-mapping leads 
to about 50% more infeasible allocations for s = VI and VIII, al-
most twice as many infeasible allocations for s = III, V, and IX, 
and more than twice as many infeasible allocations for s = I, II, 
IV, and VII.

If, on the other hand, we require a feasible allocation for at least 
90% of the DAG’s, both algorithms are suitable for q = 0.6 and s 
= I, II, IV, and VII, only the t-mapping for q = 0.5 and s = III, V, 
and IX, and neither the g-mapping nor the t-mapping for s = VI 
and VIII.

Finally, we study the robustness of the mapping algorithms 
against variations of q. Therefore we compute the range of q in-
stances (q-range) with less than 100 000 additionally infeasi-
ble mappings in respect to the optimal result. That is, if the op-
timal result for platform state s is x(s) [%], than all instances of q 
with less than (x(s) + 1) [%] infeasible allocations define the cor-
responding q-range. Fig. 5 shows the q-range as a function of the 
platform architecture and the mapping algorithm.

First we observe that the q-range of the t-mapping is mostly 
higher than the q-range of the g-mapping. Thus, the t-mapping 
is more roust than the g-mapping. Fig. 5 further shows that the q-

range is a function of the platform architecture. In this scenario 
however, q = 0.6 works for any of the nine platform architectures 
with any of the two mapping algorithms. Hence, the importance 
of adjusting q to its optimal value is not that critical here; the map-
ping algorithm and, moreover, the platform architecture condition 
the application mapping (Figs. 3 and 4). Nevertheless, qopt could 
be of great importance in another scenario.
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Fig. 5: The q-range as a function of the platform architecture and the 
mapping algorithm.


