
Frequenz
60 (2006)
9-10

167

1. Introduction

Software radio, or software-defined radio (SDR), is an emerging
concept that characterizes the implementation of signal process-
ing chains in software rather than in dedicated hardware [1]–[3].
Therefore, reconfigurable devices, including digital signal proces-
sors (DSP’s) and field-programmable gate arrays (FPGA’s), will
be the main processing entities of future SDR platforms. An SDR
platform stands for an SDR mobile terminal or base stations.

We introduce the term SDR application as the part of the sig-
nal processing chain of a radio transceiver that is implemented in
software. An SDR application comprises several SDR functions
that process and propagate data. An SDR function represents a
software-defined signal processing block, such as a filter, a decod-
er, or a RAKE receiver.

Future SDR applications will be no longer specifically tailored,
but rather will have similarities with today’s massive computing
applications. Therefore we argue that general-purpose computing
methods, mapping and scheduling, in particular, should be consid-
ered in SDR contexts.

Mapping describes the assignment of software modules to hard-
ware resources. Scheduling determines the execution intervals of
mapped software modules. The related contributions propose al-
gorithms that jointly address the mapping and scheduling prob-
lems to minimize the overall execution time of an application [4]–
[11]. In software-defined radio, however, the principal objective is
to meet all system constraints in hard-to-meet cases [12].

This paper addresses the SDR mapping problem: An SDR ap-
plication, which requires a certain amount of computing resourc-
es for real-time processing, has to be mapped to an SDR plat-
form with limited computing capacity. Appropriate software and
hardware abstractions provide the necessary information on the
required and the available computing resources. We consider time
as an implicit resource and assume that the SDR application may
be executed in a pipelined fashion; this, by and large, solves the
scheduling problem. In other words, a mapping that meets all sys-
tem constraints indicates that the SDR application can be proc-
essed within its maximum allowed time frame. The grey shaded
blocks in Fig. 1 show the scope of the paper within the context of
the SDR mapping problem.

We model SDR applications as directed acyclic graphs (DAG’s)
of particular characteristics. We randomly generate a number of
such DAG’s and map them individually to several platform archi-

tectures. These platform architectures represent different resource
occupations of a dynamically reconfigurable SDR platform. We
use two simple mapping algorithms that are guided by a paramet-
ric cost function. The contribution of this paper is to show the in-
fluence of the platform architecture, the cost function parameter,
and the mapping algorithm on the application mapping.

The rest of the paper is organized as follows: In section 2 we
present the SDR system modeling. Section 3 briefly describes the
mapping algorithms and introduces the cost function. In section
4 we discuss the simulation set-up, analyze the results, and de-
rive conclusions.

2. SDR System Modeling

The SDR system modeling encompasses the modeling of SDR
platforms and applications. Our modeling accounts for the tim-
ing constraints of SDR applications and the limited computing re-
sources of SDR platforms.

2.1 Modeling of SDR Platforms

The computing resources in of an SDR platform are the process-
ing powers of N heterogeneous processors and the available band-
widths between them. N may be as small as 1–3 for a single-user

Dynamic Resource Allocation
in Software-Defined Radio –
The Interrelation between Platform
Architecture and Application Mapping*

By V. Marojevic, X. Revés, and A. Gelonch

Abstract – One of the main features of software-defined radio (SDR) is the dynamic switch from one radio ac-
cess technology to another. This requires a partial or total reconfiguration of an SDR platform, which contains a
cluster of heterogeneous processors with limited processing and dataflow capacities. SDR applications, mod-
eled as dynamic acyclic graphs, require a certain amount of computing resources for real-time execution. The
allocation of these resources or, in other words, the mapping of an SDR application to an SDR platform is the
subject of this paper. In particular, given an SDR application and the remaining computing resources of an SDR
platform, the objective is to find a mapping that meets all system constraints. In this sense, a number of simula-
tions with two mapping algorithms and a parametric cost function, which guides the mapping, show the interre-
lation between platform architecture and application mapping.

Index Terms – Applications, mapping, dynamic computing resource allocation, software-defined radio (SDR)

Fig. 1: The scope of the paper within the SDR mapping problem.

* This work has been supported by CYCIT (Spanish National Science
Council) under grant TIC2003-08609, which is partially financed from
the European Community through the FEDER program, the DURSI of
the Catalonian Government, and European social funds.

Frequenz
60 (2006)

9-10

168

mobile terminal and as large as 10–20 for a multi-user base sta-
tion. A processor represents an SDR-specific processing device,
such as a DSP or an FPGA. The processing powers in MOPS
(Million Operations Per Second) of processors P1 to PN are re-
sumed in

C = (C1, C2, ..., CN) [MOPS]. (1)

The available bandwidth in MBPS (Mega-Bits Per Second) be-
tween Pi and Pj is Bij (i, j ∈ 1, 2, …, N). We assume a shared mem-
ory (of unlimited capacity) for processor-internal communication.
Matrix B can then be written as

12 1

21 2

1 2

N

N

N N

B B
B B

B B

∞ 
 ∞ 
 
  ∞ 

L

L

M M O M

L

B = [MBPS]. (2)

Without loss of generality, we label processors in order of de-
scending processing capacities; that is, C1 ≥ C2 ≥ ... ≥ CN. Further-
more, if Ci = Cj and i < j, then

1, 1,
() ()

N N

ix xi jx xj
x x i x x j

B B B B
= ≠ = ≠

+ ≥ +∑ ∑. (3)

2.2 Modeling of SDR Applications

We model an SDR application as a cluster of M SDR functions f1,
f2, …, fM, where M may be in the order of tens. Any SDR function
fi (i ∈ 1, 2, ..., M) belongs to a chain of at least two SDR func-
tions. Directed acyclic graphs (DAG’s) model these SDR function
chains, where a node in a DAG stands for an SDR function and an
arc for a non-zero bandwidth requirement. SDR functions are log-
ically numbered: if fi sends data to fj, than i < j [13].

The modeling of an SDR application features

c = (c1, c2, ..., cM) [MOPS], (4)

which absorbs the computing demands, and

12 1

2

0
0 0

0 0 0

M

M

b b
b

 
 
 
 
   

L

L

M M O M

L

b = [MBPS] (5)

which specifies the bandwidth requirements.

3. Mapping

M SDR functions can be mapped to N processors in N M differ-
ent ways. The problem of finding an optimal solution is NP hard
in general [5]. Therefore, the applied mapping algorithm must be
efficient in terms of computing time and mapping results. Here
we consider the ordered version of the t-mapping [12] and the
corresponding greedy approach. The two dynamic programming
approaches, which are apt for any cost function, are briefly de-
scribed in 3.1. A cost function proposal follows thereafter.

3.1 Mapping algorithms

The t-mapping systematically maps one process at a time, starting
with f1 and finishing with fM, to each one of the N processors. The
decisions are taken as a function of the accumulated mapping cost
due to some cost function. These decisions discard mapping com-
binations to such a degree that before addressing SDR function fi
(i ∈ 2, 3, …, M), N (partly) different mapping combinations of the
first (i–1) SDR functions are available. The algorithm then adds

the mapping of fi to processor Pk (k ∈ 1, 2, …, N) to one of the N
mapping combinations of size (i–1).

After finishing the processing of SDR function fM, the algorithm
chooses the mapping combination of minimum cost. This combi-
nation represents the mapping proposal due to the particular prob-
lem and cost function. The t-mapping’s computing complexity is
of order M·N 2.

The greedy or g-mapping is a simplification of the t-mapping. It
maps one process at a time to the processor that is associated with
the minimum accumulated cost due to some cost function. That
is, the algorithm maps fi (i ∈ 1, 2, …, M) to either P1, P2, …, or
PN and adds it to the mapping combination of size (i–1). Its com-
plexity order is M·N.

3.2 Cost Function

The purpose of the cost function is to guide the mapping proc-
ess so that the mapping proposal meets all system constraints.
Hence, the cost function has to manage the limited computing re-
sources of an SDR platform. In [12] we introduced a cost func-
tion that seems suitable for this purpose. Parameter q extends this
cost function to

cost(k, i) = q · costcomp(k, i) + (1–q) · costcomm(k, i). (6)

The term cost(k,i) represents the cost of mapping fi to Pk (i ∈ 1, 2,
…, M; k ∈ 1, 2, .., N) and is for i > 1 a function of the correspond-
ing previous mapping decisions. The computation cost costcomp(k,i)
is obtained as the quotient between the required processing pow-
er ci of SDR function fi and the remaining processing capacity of
processor Pk. The sum of up to (i–1) quotients between the re-
quired bandwidths (for the data transfers between f1 and fi, f2 and fi,
…, and fi–1 and fi) and the corresponding currently available band-
widths defines the communication cost costcomm(k,i).

Throughout the mapping process the algorithm dynamically
updates the remaining processing and bandwidth capacities. This
way the algorithm recognizes and discards any infeasible alloca-
tion, an allocation that reserves more than 100% of any comput-
ing resource.

The weight q in (6) may take any real value in [0...1] and spec-
ifies the relative importance of the computation cost in respect to
the communication cost.

Fig. 2: SDR platform architectures I – IX.

Frequenz
60 (2006)
9-10

169

4. Simulations

4.1 SDR Platforms

A future SDR platform will be subject to the dynamic reconfigu-
ration of its functionality [1]–[3]. In other words, the available re-
sources of an SDR platform will be partially or totally de- and re-
allocated in a dynamic fashion.

We model a partially and dynamically reconfigurable SDR plat-
form as a cluster of three fully interconnected processors. This
cluster is representative for an SDR mobile terminal or the min-
imum computing cell within an array of processors, which mod-
els an SDR base station. The partial deallocation of resources im-
mediately before their reallocation leaves the processing platform
in one of the nine states shown in Fig. 2. An SDR platform state,
or architecture, abstracts the available computing resources of an
SDR platform at some time instance.

Homogeneous processing and bandwidth capacities charac-
terize platform architecture I, heterogeneous processing capaci-
ties platform architecture II, heterogeneous bandwidth capacities
platform architecture III, and heterogeneous processing and band-
width capacities platform architectures IV–IX (Fig. 2). Any plat-
form state s (s ∈ I, II, …, IX) offers a total processing capacity
of 9000 MOPS and a total inter-processor bandwidth of 12 000
MBPS.

4.2 SDR Applications

In order to avoid a particular implementation and to provide sta-
tistically representative results, we generate 10 million random
DAG’s with the following parameters:

– M = 25,
– con = 0.2,
– ci uniformly distributed in [1, 2, ..., 500] MOPS,
– bij uniformly distributed in [1, 2, ..., 500] MBPS.

Parameter con indicates the probability of drawing an arc between
fi and fj (i < j); no arc between fi and fj means bij = 0. Any of the ran-
dom DAG’s consists of one or several components. (A component
is a connected subgraph [13]). Several components stand for par-
allel function chains. A two-component DAG, for example, per-
fectly models an SDR transceiver with one function chain for the
transmit and one for the receive path.

A random DAG requires 6262.5 MOPS in the mean, which is
70% of a platform’s remaining computing capacity. The probabil-
ities that the compound processing requirement of an SDR appli-
cation be larger than 4500 MOPS and 9000 MOPS are 0.99 and
5·10-5, respectively.

The total bandwidth demand of a random DAG is [con · (M 2 –
M)/2] · (500 MBPS + 1 MBPS)/2 = 15 030 MBPS in the mean.
93.6% of the DAG’s require more bandwidth than the 12 000
MBPS that are available for inter-processor data flow. This can
be solved by mapping (highly) communicating SDR functions to
the same processor.

4.3 Results and Discussion

For each q ∈ 0, 0.05, 0.1, …, 1, the two mapping algorithms
individually compute the mapping of a DAG to any SDR plat-
form architecture. Figs. 3 and 4 show the percentage of unfeasibly
mapped DAG’s as a function of the platform architecture and the
cost function parameter.

First of all we notice the interrelation between the number of in-
feasible allocations and the platform architecture: The minimum
number of infeasible allocations is achieved for platform states I
and IV, the maximum number of infeasible allocations for VI and
VIII. We explain this using the notations Pk

(s) and Bij
(s), where s

identifies the platform state.

Platform state I works well because the components of the SDR
application can be well distributed between the homogeneous
processing and link capacities. State III lacks the homogeneous
communication network and complicates such a distribution.

Most of the processing load is likely to be distributed between
P1

(s) and P2
(s) (s ∈ II, IV, V, …, IX). States IV and VII are favo-

rable, because B12
(IV) = B21

(IV) = B12
(VII) = B21

(VII) = 3000 MBPS,

Fig. 3: g-mapping results for platform architectures I – IX.

Fig. 4: t-mapping results for platform architectures I – IX.

Frequenz
60 (2006)

9-10

170

whereas the corresponding bandwidths of II, V, and VIII (VI and
IX) are merely 2000 (1000) MBPS.

P1
(VI) and P1

(VIII) have less communication capabilities than P1 of
any other platform state. The fact that P1 generally executes more
SDR functions than P2 or P3 explains the overall inferiority of
platform states VI and VIII. In practice we should, therefore, try
to avoid these two platform states.

Figs. 3 and 4 also show that any architecture has an optimal q:
qopt

(I) = 0.6, qopt
(II) = 0.7, qopt

(III) = 0.45, and qopt
(IV–IX) = 0.45–0.65.

Recall that the higher the q, the more decisive is the computation
cost in respect to the communication cost and vice versa. Plat-
form state II, which differs from I in the computing capacities,
leads to more infeasible allocations than platform state I; there-
fore, qopt

(II) > qopt
(I). Similarly, platform state III, which differs from

I in the bandwidth capacities, is inferior to platform state I; there-
fore, qopt

(III) < qopt
(I). Platforms states IV–IX are a combination of II

and III, and so are their optimal q values.
The two local maxima of the 18 curves confirm that the limit-

ed processing and bandwidth capacities require a composite load
balancing, that is, 0 < q < 1. In section 4.2 we have mentioned that
the inter-processor bandwidths are the major bottleneck in this
study. The cost function with q = 1, which balances the processing
load and does not care about (excessive) data flow between proc-
essors, explains the global maximum at q = 1 (Figs. 3 and 4).

As regards the mapping algorithm, the results show that the g-
mapping is always inferior to the t-mapping. The relative inferior-
ity is a function of q and s. In respect to qopt

(s), the g-mapping leads
to about 50% more infeasible allocations for s = VI and VIII, al-
most twice as many infeasible allocations for s = III, V, and IX,
and more than twice as many infeasible allocations for s = I, II,
IV, and VII.

If, on the other hand, we require a feasible allocation for at least
90% of the DAG’s, both algorithms are suitable for q = 0.6 and s
= I, II, IV, and VII, only the t-mapping for q = 0.5 and s = III, V,
and IX, and neither the g-mapping nor the t-mapping for s = VI
and VIII.

Finally, we study the robustness of the mapping algorithms
against variations of q. Therefore we compute the range of q in-
stances (q-range) with less than 100 000 additionally infeasi-
ble mappings in respect to the optimal result. That is, if the op-
timal result for platform state s is x(s) [%], than all instances of q
with less than (x(s) + 1) [%] infeasible allocations define the cor-
responding q-range. Fig. 5 shows the q-range as a function of the
platform architecture and the mapping algorithm.

First we observe that the q-range of the t-mapping is mostly
higher than the q-range of the g-mapping. Thus, the t-mapping
is more roust than the g-mapping. Fig. 5 further shows that the q-

range is a function of the platform architecture. In this scenario
however, q = 0.6 works for any of the nine platform architectures
with any of the two mapping algorithms. Hence, the importance
of adjusting q to its optimal value is not that critical here; the map-
ping algorithm and, moreover, the platform architecture condition
the application mapping (Figs. 3 and 4). Nevertheless, qopt could
be of great importance in another scenario.

 References
[1] J. Mitola, “The software radio architecture,” IEEE Commun. Mag., vol.

33, no. 5, pp. 26–38, May 1995.
[2] W. H. W. Tuttlebee, “Software-defined radio: facets of a developing tech-

nology,” IEEE Pers. Commun., vol. 6, iss. 2, pp. 38–44, April 1999.
[3] E. Buracchini, “The software radio concept,” IEEE Commun. Mag., vol.

38, iss. 9, pp. 138–143, Sept. 2000.
[4] S.-Y. Lee, J. K. Aggarwal, “A mapping strategy for parallel processing,”

IEEE Trans. Comput., vol. C-36, no. 4, pp. 433–442, April 1987.
[5] V. Chaudhary, J. K. Aggarwal, “A generalized scheme for mapping paral-

lel algorithms,” IEEE Trans. on Parallel Distrib. Syst., vol. 4, iss. 3, pp.
328–346, March 1993.

[6] M. Tan, H. J. Siegel, J. K. Antonio, Y. A. Li, “Minimizing the application
execution time through scheduling of subtasks and communication traf-
fic in a heterogeneous computing system,” IEEE Trans. Parallel Distrib.
Syst., vol. 8, iss. 8, pp. 857–871, Aug. 1997.

[7] A. H. Alhusaini, V. K. Prasanna, C. S. Raghavendra, “A framework for
mapping with resource co-allocation in heterogeneous computing sys-
tems,” Proc. 9th IEEE Heterogeneous Computing Workshop (HCW
2000), Cancun, Mexico, May 2000, pp. 273–286.

[8] H. Topcuoglu, S. Hariri, Min-You Wou, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” IEEE Trans.
on Parallel and Dist. Syst., vol. 13, iss. 3, pp. 260–274, March 2002.

[9] R. Bajaj, D. P. Agrawal, “Improving scheduling of tasks in a heterogene-
ous environment,” IEEE Trans. Parallel Distr. Syst., vol. 15, no. 2, Feb.
2004.

[10] A.-R. Rhiemeier, F. Jondral, “Mathematical modeling of the software ra-
dio design problem,“ IEICE Trans. Commun., vol. E86-B, no. 12, Dec.
2003.

[11] A.-R. Rhiemeier, “A comparison of scheduling approaches in modular
software defined radio,” Proc. 3rd Karlsruhe Workshop on Software Ra-
dios (WSR’04), Karslruhe, Germany, March 17/18, 2004.

[12] V. Marojevic, X. Revés, A. Gelonch, “Computing resource manage-
ment for SDR platforms,” Proc. 16th IEEE Int’l Symp. Personal, Indoor
and Mobile Radio Communications (PIMRC 2005), Berlin, Sept. 11–14,
2005.

[13] D. F. Robinson, L. R. Foulds, Digraphs: Theory and Techniques. Gordon
and Breach Science Publisher Inc., 1980.

Vuk Marojevic
Dept. of Signal Theory and Communications
Universidad Politècnica de Catalunya
08034 Barcelona
Spain
Fax: +34 934017200
E-mail: marojevic@tsc.upc.edu

Xavier Revés
Dept. of Signal Theory and Communications
Universidad Politècnica de Catalunya
08034 Barcelona
Spain
Fax: +34 934017200
E-mail: xavier.reves@tsc.upc.edu

Antoni Gelonch
Dept. of Signal Theory and Communications
Universidad Politècnica de Catalunya
08034 Barcelona
Spain
Fax: +34 934017200
E-mail: antoni@tsc.upc.edu

(Received on July 7, 2006)
(Revised on July 15, 2006)

Fig. 5: The q-range as a function of the platform architecture and the
mapping algorithm.

