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Abstract 

The primary objective of cooperation in cognitive radio (CR) networks is to increase the spectrum access efficiency  

and  improve  the  network  performance.  However,  Byzantine  adversaries  or  unintentional  erroneous  conduct  in  

cooperation can lead to destructive behavior of CR users that can decrease their own and others’ performances. This  

work presents a dynamic solution for cooperation reliability in conditions with constraints typical for a CR network.  

Specifically,  in  CR networks,  the  information  on  the  success  of  cooperation  can  be  limited  only  to  cases  with 

interference; when malicious, cooperators can be completely non-correlated and can alter behavior; and the set of  

available cooperators can dynamically change in time. In order to face these challenges, each CR user autonomously  

decides with whom to cooperate by learning cooperators behavior with a reinforcement learning (RL) algorithm. This 

RL  algorithm  determines  the  suitability  of  the  available  cooperators,  and  selects  the  most  appropriate  ones  to 

cooperate with the objective to increase the efficiency of spectrum access in CR networks. The simulation results  

demonstrate  the  learning  capabilities  of  the  proposed  solution  and  especially  its  reliable  behavior  under  highly  

unreliable conditions.
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1 Introduction

Cognitive radio (CR) technology, as the core of CR networks, is a promising solution to deal with the problem of spec-

trum scarcity and low spectrum use associated to classical fixed spectrum assignment schemes 6. For a proper opera-

tion, CR networks need to perceive the behavior of primary users (PUs) in their assigned frequency bands and perform 

opportunistic spectrum access without or with minimal interference to them. To this end, CR networks need to be capa-

ble to learn from the environment and to dynamically adapt to environment conditions in accordance with the hetero-

geneity and randomness in PUs behavior. Besides, multiple CR networks that can be contending on the same spectrum 

resources introduce additional complexity in the process. 

1Short version of this paper has been presented in 6.

 This work was conducted during his stay at the BWN Lab, School of Electrical and Computer Engineering, Georgia Institute 
of Technology, Atlanta, GA, in 2009.



Opportunistic spectrum access procedures such as spectrum sensing, spectrum decision, spectrum sharing and spectrum 

mobility require that CR users continuously gather and process information. Cooperation is introduced in CR networks 

6 in order to increase the efficiency of the network (e.g. time and energy consumption for obtaining and processing in-

formation).  Despite the fact that the purpose of cooperation is to improve the overall network performance, it may also 

introduce malicious behavior and unreliability in CR networks. 

CR networks need not only to dynamically adapt to the changes in the radio environment, but also they need to be re -

sistant to various types of threats and system errors. Jammers, data falsification, or denial of service, are some of the  

threats in CR networks [3-6]. Different defenses can be developed to prevent these attacks. A first line of security is  

aimed to give protection against the outside threats (i.e., intrusions by unauthorized users). A second line of defense is  

against the so-called Byzantine threats (i.e., traitors among cooperators). Cooperative CR networks are especially vul-

nerable to Byzantine attacks, as the CR users rely on information obtained from others. The cooperation reliability in 

CR networks may also be jeopardized by unintentional malicious effects (i.e., from the lack of reliability of devices or 

systems). The cooperation in CR networks needs to be performed with unknown or known cooperators that may change 

their behavior, in conditions where the knowledge about the success of the cooperation is limited. Autonomous solu-

tions which are capable to learn and react dynamically according to the degree of reliability should be developed to deal 

with these issues in real time.

This paper addresses the reliability problem in cooperative CR networks. It presents a solution that determines the relia-

bility of the cooperators and selects which are appropriate for cooperation. The cooperator evaluation and selection in 

the proposed solution is based on reinforcement learning (RL) 6 which is a branch of machine learning envisaged as a 

good candidate for dynamic control and adaptation in CR networks 6. Specifically, CR networks are likely to rely on 

learning, which makes the learning from false beliefs one of the threats to a CR network (learning in erroneous or in -

truded conditions) 6. Therefore, the learned information should not be permanent, i.e., the learned beliefs should expire 

in due time in order to disable long-term malicious effects 6. The proposed solution uses exploratory properties of rein-

forcement learning to provide the ability to relearn the changes and react through appropriate reconfigurations.

The rest of this paper is organized as follows. In the next section, the detailed problem formulation typical for CR net -

works is given. In Section 3, the framework for the proposed solution is described, followed by the algorithm descrip-

tion in Section 4. Section 5 contains simulation results. Finally, the main conclusions are summarized in Section 6.

2 Problem Statement

CR users are opportunistically utilizing the network resources, and their incorrect actions may result in serious network 

capacity degradation. Cooperation is usually needed in these cases to ease the resources utilization. In such a case, a CR 

user collects information (the advices) from cooperators, and makes a decision about its next actuation regarding oppor-

tunistic spectrum access. CR user and its cooperators may be a CR base station or a CR terminal operating in either  

centralized or ad hoc CR networks. The constraints explained in this section are characteristic for the cooperative spec-

trum sensing in CR networks, where the cooperators provide information about spectrum availability and the CR user 

decides whether to access a given spectrum or not. 



2.1 Cooperation model

In the problem considered here a CR user needs to decide on the following unknown hypothesis in order to perform  

spectrum access: H0 (spectrum access not possible), H1 (spectrum access possible). In a cooperative scenario, CR user 

receives information messages from the cooperators in order to make a spectrum access decision. The communicated 

message can contain measured or estimated values in case of “soft decision”, or it can contain a local advice (local de -

cision) that each cooperator makes (usually a binary decision 0 or 1) in case of “hard decision”. Hard decisions reduce 

the communication overhead, but are more challenging for final decision making since they provide only minimum in-

formation. 

This paper considers the case with hard decision. This means the cooperator i makes a local decision and forwards it as 

an advice x(i) to the CR user: advice x(i)=1 means that local decision is H1 and x(i)=0 means local decision is H0. For 

example, if the measured signal power from the PU is lower than a threshold, a cooperator would send x(i)=1 meaning 

that the PU is not there so spectrum access is possible (H1). Based on combining the received information from the co-

operators, the CR user takes a global decision X (i.e. X=0 for H0 and X=1 for H1). 

The usual data fusion rule for hard decisions in the literature is “K out of M” rule 6. This means that at least K out of M 

received advices have to be H1 so that the global decision X is H1 (i.e., X=1). Otherwise global decision is H0 (i.e. X=0):
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Two special cases of “K out of M” rule are the extreme options: AND rule when K=M, and OR rule when K=1.

It is also assumed in the paper that N cooperators are available. However, not all of them are actually necessary for co-

operation. Then, the CR user can select only M (M≤N) cooperators based on their suitability to achieve the desired goal 

(see Fig. 1). The suitability of cooperators should include both aspects of reliability and accuracy. In this paper, dynam-

ic tracking of this suitability is carried out by means of reinforcement learning. 

Based on the above discussion, the proposed method needs to solve the following points:

• Decide how many cooperators to use (i.e. decide the value of M≤N),

• Learn how to select reliable cooperators (i.e. decide which are the most convenient M cooperators 

out of the N available ones),

• Make a decision from the M collected advices (i.e. apply “K out of M” rule).

2.2 Malicious behavior in cooperation

The malicious conduct in cooperation may be intentional and/or unintentional:

• The intentional malicious behavior is due to the Byzantine adversary that pretends to be a friend 

and uses its privilege to achieve its own desired goal.

• The unintentional incorrect behavior may be from: 



- Cooperators that are manipulated by other opponent systems and are unaware of their malicious effects 

(e.g., sensors in range of jammers giving impression of spectrum occupancy);

- Technological limitations (i.e. hardware and software errors, failures and limitations of the sensing de-

vices);

- Environment conditions (e.g. sensors in high shadowing zone).

Additional complexity in the detection of the malicious cooperators comes from the fact that cooperators may change 

their behavior in time. A reliable cooperator during a certain period may turn into a malicious cooperator in the future, 

and vice versa. Thus, a system needs to be capable of capturing such dynamic changes. This variable behavior may es-

pecially be present in cases when cooperators are occasionally manipulated by another enemy system, or when the at-

tacker is trying to gain the trust of the victim. 

2.3 Erroneous advices and decisions

Due to the malicious behavior, two types of erroneous advices are possible in such a system: erroneous positive advice 

when the spectrum access is not possible (x(i)=1|H0) and erroneous negative advice when the spectrum access is possi-

ble (x(i)=0|H1). For a cooperator i, the probabilities of erroneous advices are:
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The probabilities of erroneous advice  and  influence the final error probabilities of decision, i.e. the probabilities of er-

roneous non-actuation (PERR) and erroneous spectrum access (QERR), i.e. interference. In particular, for “K out of M” 

rule, these are:
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An optimal system will tend to minimize both PERR→0 and QERR→0. However, note that an erroneous spectrum access 

can lead to interference with primaries, which is more destructive than an erroneous non-actuation. Therefore, it is  

much more important to keep QERR within very low limits than PERR to assure minimum interference.

An additional constraint in CR networks is that the evaluation of the actuation is only possible once the spectrum access 

has actually happened (e.g., a collision occurs after making an access when the PU is active). However, an erroneous 

non-actuation (i.e. a missed opportunity of spectrum access) is usually not possible to detect, as the CR user does not  

have a success feedback when idle. In other words, there is no feedback when X=0 so that it is not possible to evaluate 

PERR. Thus, the way to minimize PERR is to maximize the spectrum access, i.e. to maximize Pr{X=1}.



2.4 Summary of considered challenges

Based on the above considerations, the goal of the proposed framework to deal with the problem of malicious behavior 

in cooperation is to maximize Pr{X=1}, but at the same time preserve QERR within very low limits. The following addi-

tional challenges are addressed in the problem considered in this paper:

1.The local decision of the cooperators is unknown and independent in each cooperator (i.e. cooperators are hetero-

geneous).

2.This paper considers a worst case scenario where probabilities qerr(i) and perr(i) are unknown, uncorrelated, and 

may vary dynamically and independently of each other. 

3.Probabilities Pr{H1} and Pr{H0} are unknown and may change with time.

4.There is no knowledge on the success of decisions not to actuate, i.e. when X=0.

5.The number of potential cooperators N can vary with time.

2.5 Related work

To the best of authors’ knowledge, the problem with all the aforementioned assumptions and conditions has not been 

addressed in the literature up to date. However, as the proposed solution combines suitability evaluation, data fusion 

and decision making in unreliable conditions, some partially related studies are briefly discussed in the following.

The classification of how good a cooperator is often results in trust evaluation, and is commonly compared with human 

behavior characteristics 6. The application of trustworthiness for reliable path selection in ad hoc and wireless sensor 

networks is present in the literature, e.g. 66. Existing studies distinguish between direct and indirect trusts, and address 

the influence of reputation, respect and rumors in trust construction. Similarly, the CR user in this paper also evaluates 

and assigns a grade of suitability to cooperators, reflecting their reliability.

Studies on how to use expert advices address the problem of how to use several experts to guess the unknown hypothe-

sis as close as possible to the best expert’s guesses 66. However, assumptions taken in the previous studies do not con-

sider all the constraints and limitations explained in the previous section (challenges 1-5) at the same time. Moreover,  

the behavior of the best cooperator does not guarantee that Pr{X=1} is maximized and does not preserve QERR within 

very low limits with higher priority.

The problem of maximizing Pr{X=1} while QERR is preserved within low limits appears as a Neyman-Pearson detection 

problem in the literature 6, where the data fusion from sensors should optimize the decision following the “K out of N” 

rule. Due to their high complexity, the methods used for solving this problem have only limited applications in cases  

with small number of highly similar sensors, e.g. 66. These solutions are also not applicable for the entire set of chal-

lenges 1-5 mentioned before.

3 Proposed Framework

In the proposed framework, N potential cooperators offer advices to a CR user and it needs to determine which of the 

potential cooperators to use in order to maximize its goals. The final decision of CR used is computed as a combination 



of decisions of several available cooperators. Therefore, how much convenient for cooperation is a given cooperator,  

depends on its grade of reliability, on the reliability of other cooperators, and on the number of needed cooperators at a  

certain moment. Thus, even when one cooperator does not change its behavior, the variation of general conditions can 

make it more or less appropriate in different time instants. 

The evaluation of cooperation suitability depends on the final outcomes, QERR and PERR, when a cooperator is used. The 

proper learning mechanism should assure that the malicious cooperators are not used. A proper cooperator selection 

should also reduce the signaling load of cooperation process, as the unnecessary cooperators can be excluded from co-

operation, while the goals are achieved with high accuracy.

3.1 Suitability list and cooperator selection

Each CR user performs its own evaluation and cooperator selection based on its own experience. In order to perform 

spectrum access, a CR user makes a suitability list for the N cooperators available to him at that moment. The appear-

ance and disappearance of cooperators (e.g., due to mobility) does not affect the algorithm, as they can easily be added 

or removed from the list. Each of these cooperators is characterized with a learning parameter pi, which is used to de-

fine their suitability πi.

In Fig. 2, the general framework is presented where CR user selects M cooperators from the suitability list and starts an 

application period, which is a period in which the cooperation is carried out with one group of M cooperators. During 

this period TA decisions are made about whether to access the spectrum or not. For each decision the resource access 

depends on the current advices of the M cooperators in use applying the “K out of M” rule. During one application peri-

od the group of M cooperators does not change.

The reward is computed at the end of each application period. This reward reflects the success of the decisions that a 

CR user has made. The reward will have two components r and ρ as will be explained in Section 4. Then, the RL algo-

rithm is executed to update the controlled parameters (learned parameters) pi for each cooperator i used in that period. 

The learned values pi are the key parameters in defining the suitability of each cooperator. Once the pi values are updat-

ed, the suitability of each cooperator πi in the system is computed. Based on this, a new set of cooperators is selected 

for the cooperation in the following application period. 

An additional degree of flexibility of the algorithm can be achieved by adapting M to CR user’s needs through time. 

The change of M can be performed based on the tracked values of erroneous access (interference) during previous ap-

plication periods. This process is independent from the RL algorithm that maintains the suitability list.

3.2 Cooperation communication

This work assumes that a small bandwidth control channel is available to exchange the cooperation messages. A CR 

user either invites cooperators for cooperation or listens to all cooperators and just ignores the ones denoted as unreli-

able. In the first case, the invitation to cooperate is performed only once at the beginning of each application period,  

and only if there has been a change in the set of used cooperators.



In case cooperators are invited for cooperation, the CR user also needs to perform occasional checkup of possibly new 

cooperators. This can be done only when the current performance is not satisfactory for a long period, or when a lot of 

cooperators have disappeared. Note that the CR user can optionally set a maximum limit for the number of cooperators 

in a suitability list. With this option it can also occasionally remove highly unreliable cooperators and replace them 

with the new ones.

This paper assumes direct data gathering from the cooperators. In general, data gathering can also be indirect (i.e. 

through an intermediate cooperator). However, with indirect data gathering, the proposed solution remains unchanged. 

In that case, two options would be possible:

• The intermediate cooperator makes a unique local decision from gathered data and forwards it to a 

CR user. This makes only the intermediate cooperator visible in suitability list. 

• The intermediate cooperator forwards all the gathered data. This opens the possibility to data falsifi-

cation 6, however, it would only change the original advice error probabilities of the indirect coop-

erators. 

4 Learning and Decision Processes

In this section learning mechanism and the application policy are first described for a fixed number of used cooperators 

M. Afterwards, the framework is extended for a variable value of M.

4.1 Cooperator selection

The learning capabilities of the proposed solution rely on RL 6 algorithms to maintain the suitability parameter of the 

prospective cooperators. RL is a branch of machine learning where an agent through interaction with environment 

learns and decides on actions in order to maximize some long term reward. The reward is an input that the agent re-

ceives from the environment, which represents the quality of the actions taken by the agent, and that should reflect the  

goals and needs of the system.

This work starts from the actor-critic learning and the REINFORCE algorithm 6. Actor critic methods require minimal 

computation in order to select actions, and use separate data structures for control policy (the “actor”) and the value 

function (the “critic”). The task of the “critic” is to “criticizes” the actor’s behavior, i.e. to determine after each action  

whether the results have gone better or worse than expected 6. This is carried out based on the interaction with the envi-

ronment through a reward function. The critic in this paper is performing the global reward accumulate, and the com-

parison of the current reward value to this accumulate. Based on the “critic”, the “actor” makes the update of the learn-

ing parameters pi that will determine the suitability, and selects the M cooperators for the next application period. Fig. 3 

presents the learning process of the algorithm. Details of the learning algorithm from the figure are given in continua-

tion.

The global reward function r is accumulated throughout the application period. For one application period, the reward r  

is:
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This reward presents the sum of the rewards and penalties accumulated during one application period. Index t corre-

sponds to each of the TA decisions made by the CR user. Only when the decisions are to actuate (i.e. Xt=1) the reward 

contribution is considered for that decision. Constants CG and CB define the ratio between reward increase and penaliza-

tion for correct and wrong spectrum access. Parameter αt equals:
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The reward obtained in equation  represents the overall actuation performance during one application period. Addition-

ally, the reward correction ρi is also computed in every application period for each cooperator i among the M active co-

operators:
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This reward represents the number of times the cooperator i gave non-actuation advice (x(i)=0) when decision was to 

access the resource (X=1), divided with the number of decisions in one application period. This value helps the learning 

process by penalizing the cooperators that often advise not to access the resource when the rest M-1 cooperators advise 

to do so. This is similar to the supervisor that contributes to faster learning 6. 

Each application period is followed by the learning process. The update of the learning parameter for each of the active 

cooperators is:

( ) (1 )i i i ip p r rβ ξ ρ π+ − − −� � � �
(

Here, β (0<β≤1) and ξ are positive constant parameters and πi (0≤πi≤1) is the suitability of the cooperator i to be select-

ed for the cooperation. The values of β determine the influence of the recent RL decisions to future RL decisions, i.e. 

higher values β of give more influence to the more recent decisions. Parameter ξ determines the strength of the bias of 

the individual penalization. The value of this parameter should be a small number (ξ<<1) not to have big influence 

over the main reward r. The parameter ř is the global reward accumulate, which is used as a reinforcement baseline or 

reward reference in the process of the behavior evaluation. After all the parameters pi of the active cooperators have 

been updated, ř is also updated as:

(1 )r r rγ γ+ −� � �
( (

where the parameter γ is constant, 0<γ≤1. The learning values pi and the global reward accumulate ř are the only values 

that need to be stored for the learning mechanism. Note that for γ=1 the algorithm only uses the current reward to eval-

uate cooperator set. For values of γ close to 1 influence of latest rewards in the exponential averaging of ř is more dom-

inant, whereas for lower values of γ their influence is less dominant.

Finally, once the updates of parameters pi are done, the suitability values πi are computed for all cooperators:
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M cooperators are randomly selected for cooperation for the following application period. Suitability value πi presents 

the probability with which cooperator i will be selected among these M cooperators.

4.2 Application policy

The application policy defines how the advices of the M cooperators are interpreted by the CR user in order to make the 

decision X. As hard decisions are used, the policy applies the “K out of M” rule. 

Error probabilities PERR and QERR are defined in equations  and , where it can be seen that for a given M, a value of K 

closer to M decreases QERR, but increases PERR (Theorem 1 in the Appendix). As the primary objective of our solution is 

to maintain QERR very low, K=M can be the safest choice (i.e., all the cooperators have to decide x(i)=1 in order to have 

X=1). However, this paper starts from the value K=M-1 as it allows one cooperator to advise x(i)=0 and still to decide 

X=1. This permits occasional exploration and faster learning of the RL algorithm on the cooperators that may be mali-

cious and are among the selected M cooperators. In any case, other values of K could also be used, as it will be studied 

in Section 5.

Now, for the case K=M-1 and M≥2, PERR and QERR from equations  and  become:
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where the advice error probabilities perr(i), qerr(i) are defined in equations  and .

4.3 Variation of M

A more adaptive system can be achieved if the number of used cooperators M can be variable. In particular, when QERR 

is high, M should be increased. In turn, when QERR is low, M may be decreased so that the PERR may be decreased more 

easily. Theorem 2 of the Appendix proves that adding one cooperator (with whichever value qerr≠1) can reduce QERR 

when necessary. In that case PERR increases for sure (unless perr=0 of the new cooperator), so the algorithm relies on a 

proper learning mechanism to encounter the best M cooperators to maintain PERR value as low as possible. Similarly, in 

the cases when QERR is sufficiently low it is possible to improve the value of PERR by reducing the number of coopera-

tors M without increasing QERR too much.

To carry out the adaptation of M, CR user tracks the amount of interferences it made over the last T application periods 

as follows:
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Here, s stands for the index of the application period, whereas t is the index of the decisions in one application period. 

Xs,t is the decision t made in the application period s, αs,t is the parameter defined in eq.  for the decision t in application 

period s, i.e. 1-αs,t=1 when the spectrum is not free for CR user in application period s. 



The average S(T) is independently tracked for the previous TX and TY application periods. Two threshold values are de-

fined to control M: DH
U and DH

L (DH
L<DH

U). M is changed as:

( ) 1U
X HS T D M M> = +ﾳ

( ) 1L
Y HS T D M M< = −￯

Note that longer periods TX and TY will make more accurate averaging, but lower values of TX and TY will allow a faster 

reaction to change M. The proposed mechanism will use smaller value TX than TY (TX<TY) so the change of M due to the 

interference (increment of M) can be performed after the average interference is measured over less application periods. 

On the other side, adjustment of PERR is of lower priority, so the decrement of M can be performed based on the average 

over more values. Threshold parameters DH
U and DH

L determine the reference values for the change of M based on in-

terference. 

Let us assume now that the number of the application periods from the last increment of  M is  TX
*. Then, as long as 

TX
*<TX, instead of using condition from equation , the modified condition to increment M is used:

* * * *( ) ( ) / 2 1U
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Similarly, if M has been decreased before TY
* application periods, and as long as TY

*<TY, instead of , the modified con-

dition for the next decrement of M is:
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The previously explained use of conditions  and  is done in order to disable consecutive changes of M due to the values 

that already have contributed to a change of M. Thus, the learning algorithm has time to readapt itself to the new num-

ber of cooperators in use. Note that the mechanism uses unitary change for M values in order to perform a more gradual 

and stable adaptation, as the learning algorithm can adapt to each newly added or removed cooperator. 

In order to avoid having very low values of M, the minimum number for M is set to be 3 whenever there are more than 

3 cooperators available (N≥3). When this is not the case (N<3), one or two cooperators may also be used. Note that for 

M=1, it needs to be K=1.

5 Simulation Results

This section presents some simulation results to evaluate the performance of the proposed approach. First the operation 

of the learning process is presented in a particular example, followed by the simulation results in more complex scenar-

ios.

5.1 Learning and reconfiguration

The purpose of this part is to demonstrate the operation of learning process. It is assumed that there are 10 cooperators  

(C1-C10) available and that the error probabilities perr(i) and qerr(i) change as given in Table 1. After every 2000 appli-

cation periods some of the probabilities change. Notation “--” indicates that the cooperator is unavailable in that period.  

The values for perr(i) and qerr(i) are chosen to represent different illustrative behaviors of the cooperators. For this set of 



results, the spectrum availability is randomly generated with Pr{H1}=Pr{H0}=0.5. Statistics are averaged over the last 

200 application periods.

Table 2 summarizes the list of parameters used in simulations. Initial values for the learning mechanism are  M=5 

(when M is variable) and pi=0. In case, new cooperators appear while the algorithm is already running, pi takes a ran-

dom value from the range (min{pj}, max{pj}) from the cooperators j in the suitability list.

In Fig. 4, an example of the adaptation process is shown for the case in which M is constant, M=5. The probabilities to 

select the cooperators (πi) change through time in accordance with the variation of the error probabilities  perr(i) and 

qerr(i). At the beginning more than five cooperators are performing well enough to be included in cooperation (e.g. co -

operators C3-C7 which have low perr(i) or qerr(i) and C8 that has low perr(i) and sufficiently low qerr(i) to maintain low 

QERR when combined with any four cooperators from C3-C7). Afterwards, the learning mechanism is trying to correct 

possible degradation of performances that can happen each time one of the used cooperators increases the error proba-

bility (either perr(i) or qerr(i)). This can be observed, for instance, when C7 increases perr from 0.01 to 0.99 after 2000th 

application period and, correspondingly, the algorithm decreases the probability to cooperate with it. Appearance and 

disappearance of cooperators is also followed by similar expected reaction. As it has been mentioned before, at the ap-

pearance of cooperators, the learning parameter p(i)  is randomly initialized. So when C1 and C4 appear at the same 

time at the 18000th application period, the probability to use C4 is high, whereas the probability to use C1 is low. How-

ever, the quality in the behavior of these two cooperators is perceived and these values are corrected fast so that the 

probability to use C4, having actually a large value of perr, is progressively decreased, while the probability to use C1, 

exhibiting good values of both perr and qerr, is progressively increased.

In order to illustrate the need for an adaptive value of M, note that during the application periods from 6000th to 8000th 

there are only three cooperators with perr(i)=0.01 and one with perr(i)=0.5, whereas the rest of them have perr(i)=0.99. 

Then, there is no combination of M=5 cooperators that can give lower PERR than 0.5 (see eq. ). Similarly, for the appli-

cation periods between 16000th and 18000th, the combination of available qerr(i) values does not permit QERR values as 

low as DH
U for M=5 (see eq. ). So, in this period average QERR is E(QERR)>2DH

U (Fig. 4c). Consequently, in these cases 

it is appropriate to modify the value of M.

In Fig. 5a, the performances (PERR and QERR) are also presented for the case M=4. Now, PERR is significantly lower be-

tween the 6000-8000th application periods. However, as expected, having one cooperator less can be a limitation for  

QERR. So, between the 16000th and 18000th application periods, the average value of QERR is even higher, E(QERR)≈6DH
U 

(as indicated in Fig. 5a).

Finally, in Fig. 5b and c the performance results are given for variable M. Now, the variation of M allows lowering of 

PERR in periods in which QERR is not close to the threshold (between 6000 th and 8000th application periods). In the peri-

ods from 16000th and 18000th, the values of PERR are higher than in both simulations with fixed M. Nevertheless, this 

tradeoff is done so the average value of QERR is now below the DH
U, i.e. E(QERR)≈0.9DH

U. 

As it is presented in Section 2, the primary objective was to maintain QERR very low and then to minimize PERR as much 

as possible. The presented results show how the mechanism maintains QERR low even in transitional periods (i.e., simu-



lation initialization and preference changes when conditions worsen). At the same time, fast convergence of the RL al-

gorithm lowers PERR relatively fast (e.g., after only ~300 application periods, even for M=5, average PERR is below 0.05 

without any previous knowledge - at session initialization).

5.2 RL convergence

In order to analyze convergence, simulations in specific and controlled scenarios have been performed. In particular, 

the test has been done with N=6 cooperators and two different scenarios:

Scenario 1: There are N1 cooperators that perform spectrum access blocking, i.e. perr=1, qerr=0. The 

rest of the cooperators are ideal.

Scenario 2: There are N2 cooperators that are stuck to state H0 (spectrum free) and lead to interfer-

ence, i.e. perr=0, qerr=1. The rest of the cooperators are ideal.

In both scenarios the algorithm is considered to converge when the average values  PERR →0 and  QERR →0.  Fig. 6a 

presents the evolution of PERR in scenario 1 (note that in this scenario QERR=0) for different values N1, whereas Fig. 6b 

presents the evolution of QERR in scenario 2 (note that in this scenario PERR=0) for different values N2. The figure shows 

that the convergence of PERR towards very small values (below 0.01) for scenario 1 can last between 300 and 400 appli-

cation periods depending on the value N1. However, the convergence of the QERR which is defined as more critical is 

significantly faster in the mechanism. It requires less than 100-200 application periods for QERR to reach values below 

0.01 and some 200-350 application periods to reach values below 0.001 depending on N2 (except for the case N2=4 

which is somewhat slower).

The algorithm uses K=M-1, which in scenario 1 makes the system completely immune to the case with one bad cooper-

ator (i.e. PERR=0 for N1=1). On the other side, in scenario 2, the system is completely immune to having one bad coop-

erator as well (i.e. QERR=0 for N2=1) due to having K=M-1 and the fact that the minimum value used for M is 3.

Note that scenarios 1 and 2 are the worst case scenarios for PERR and QERR, respectively, in the sense that in each appli-

cation period whenever the wrong set of cooperators is used the probabilities PERR and QERR for that application period 

will be 1. Additionally, the CR user has no knowledge of the suitability of any of the N cooperators at the beginning. 

5.3 Comparison with “K out of N”

In the following the analysis of the performances is done of the proposed algorithm under a completely random and un-

known behavior of the different cooperators. In the second set of results, number of cooperators is N=15, and the aim is 

to compare the performance of the proposed approach that adaptively varies M contributors with the “K out of N” data 

fusion dynamic highly hostile conditions.

Spectrum availability is simulated as two states of exponentially distributed length with mean of 1/λ=500 application 

periods. The spectrum access is randomly available with probabilities Pr{H1}=0.2 and Pr{H1}=0.8 in the two states. 

The simulation length is 2·105 application periods.

All cooperators change their behavior independently for perr(i) and qerr(i) after separately generated number of applica-

tion periods with mean 1/λp for perr and 1/λq for qerr, 1/λp=1/λq=2000. The new value perr is uniformly selected within a 



specific interval IP and value perr is uniformly selected within a specific interval IQ. In order to simulate different types 

of cooperators three behavior types are considered, defined by the following intervals: I1P=I1Q=[0-0.05], I2P=I2Q=[0.05-

0.75], I3P=I3Q=[0.75-1.00]. I1P and I1Q present relatively good behavior, whereas other behavior types are for less reliable 

or malicious cooperators. Then, when cooperator i wants to change perr(i) or qerr(i), it first randomly selects the range in-

terval: I1P (or I1Q for qerr) with probability P1 (or Q1 for qerr), I2P (I2Q) with probability P2 (Q2) and I3P (I3Q) with probabili-

ty P3 (Q3). Afterwards, the error rate perr(i) or qerr(i) is uniformly selected from the chosen interval. 

Probability values for eight case studies (a-h) considered in this section are given in Table 3. The values in the present-

ed case studies are chosen arbitrarily to present the performance of the proposed solution with different grade of mali-

cious behavior. This is because the behavior of the cooperators is assumed to be completely random and unknown in 

worst case scenarios with malicious users.

The proposed algorithm is compared with fixed “K out of N” solution for every K, K=1,…,N, denoted by QERR(K/N) 

and  PERR(K/N). Results for eight case studies (a-h) from Table 3 are presented in Fig. 7. In each graph, horizontal 

dashed lines represent the values PERR obtained with the proposed solution based on RL, denoted by PERR(RL). In turn, 

the value QERR(RL) is not plotted since it is in all the cases below 0.001.

The case studies (a-h) grade from less hostile to more hostile conditions. In case study (a) there are more values K for 

which both PERR and QERR can be preserved low with “K put of N”. From cases (b) to (d) the zone with both low PERR 

and QERR is becoming tighter. Finally, for case studies after (e) the tradeoff between setting low PERR or QERR by choos-

ing K becomes obvious. When smaller PERR is desired, lower K is preferable; however, when smaller QERR is desired, 

higher K is preferable. It can also be observed how PERR and QERR can take different values depending on the case condi-

tion, e.g. QERR is low with much smaller K in case (g) than (f), whereas PERR is low with much higher K in case (f) than 

(g). 

Fig. 8 compares values PERR obtained with the proposed solution, for eight case studies, with “K out of N” for the K that 

has the lowest PERR while assuring that QERR <DH
U=0.001. This is denoted as Best “K out of N” solution in the figure. 

Depending on the case conditions best K can be different K, e.g. K=8 for cases (c) and (g), and K=13 for case (h).

The proposed solution expresses higher robustness to malicious behavior and also maintains very low error probability 

values for PERR and QERR in less hostile conditions. In the case (a), PERR=0.004 for the proposed algorithm due to the ex-

ploration needed for reinforcement learning. For the cases (b) and (c) there still exists K in “K out of N” with slightly 

lower PERR. As the conditions become more hostile, the proposed solution outperforms all “K out of N” solutions (d-h).

5.4 Performance in the  presence of perfect cooperators

In this study, only two behavior types are considered, defined with following error probabilities I1P=I1Q=[0-0.05] and 

I2P=I2Q=[0.95-1.00] for  perr(i) and qerr(i). These behavior types are selected by the users with probabilities P1=Q1 and 

P2=Q2 (P2=1-P1=Q2=1-Q1). As in the previous scenario, from Section 5.3, behavior intervals are changed independent-

ly for perr(i) and qerr(i). Once a behavior type is assigned, values for perr(i) and qerr(i) are uniformly chosen from the cor-

responding interval. Two cases are compared now:



Case 1: All 15 cooperators assign random values to perr(i) and qerr(i).

Case 2: There are 2 perfect cooperators, that have constantly perr(i)=qerr(i)=0, whereas other 13 cooperators behave as 

in case 1.

The results for PERR when P2=Q2 is incrementing are presented in Fig. 9. For illustrative purposes best “K out of N” so-

lution, as defined in previous study (lowest PERR for QERR<0.001), is compared with the results obtained with proposed 

algorithm. The result obtained with the best fix K for the “K out of N” is taken independently for each simulated point. 

The results demonstrate that best “K out of N” obtains lower PERR in the presence of two perfect cooperators. However, 

it does not perform cooperator selection, so the final decision still needs to be made through combining with other 13 

imperfect cooperators.

Results show that in the case with two perfect cooperators the proposed solution reduces PERR to almost 0. As expected 

from Section 4, the learning mechanism manages to identify the good cooperators and achieves very good perfor-

mances with very low number of cooperators. Therefore, a reduction of M through cooperation leads to a significant 

improvement of performances.

5.5 Variation of K

Different values K of the decision rule “K out of M” in the proposed solution are tested in this section. The scenario  

case 1 from section 5.4 is considered. Fig. 10a,b compare PERR and QERR for cases where K=M to K=M-4. As the results 

show, K=M is the case that has the worst performances in terms of PERR, but, as expected, is the safest choice in terms 

of QERR. For K=M-2, the results are very similar to the case K=M-1. Values K (K<M-2) give similar results in terms of 

PERR, but increment QERR in more hostile conditions, i.e. when P2=Q2 increases.

Finally, Fig. 10c compares the average value M in the considered tests. As it has been seen, K=M-2 achieved the same 

results as K=M-1 in terms of PERR and QERR. However, K=M-1 achieved this with lower M, which enables reduction of 

communication load necessary for cooperation.

5.6 Variation of TA

This section compares performances for the different number of decisions per application period TA. Values PERR and 

QERR obtained for the case 1 from Section 5.4 are compared in Fig. 11. In terms of QERR most difference is achieved 

when TA=10 and TA=20. This reveals that when interference probability is critical, higher number of decisions per ap-

plication can be preferred. However, note that there is no need to take TA>50, as the number of decisions TA higher than 

50 is not decreasing QERR (below approximately 0.0005), whereas PERR is increased.

6 Conclusions

This paper had addressed the reliability issue for cooperative cognitive radio networks, trying to maximize opportunis-

tic radio access, with minimal interference to primary users, when cooperators advising on resource access can be unre-

liable or malicious. This paper has presented a solution that by means of reinforcement learning maintains a list of co-

operators and their suitability, and selects the appropriate ones to in order to maximize correct resource access. The re-



sults demonstrate the capability of the proposed solution to successfully learn and act in dynamic hostile environments. 

The proposed solution offers robustness to highly erroneous cooperation conditions that could be due to either lowered 

reliability or possible Byzantine attacks. Additionally, the proposed solution adapts the number of used cooperators in 

accordance with their performances. When there are few highly accurate cooperators, the proposed solution successful-

ly encounters them and bases the spectrum access decision only on their advices to achieve very high performances. 
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Appendix

In this section, some additional expressions that illustrate the dependence of PERR and QERR on M and K are derived. For 

the general case PERR (eq. ) and QERR (eq. ) can be presented as functions of M and K:
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As the values W(M,j) and F(M,j) are probabilities, it stands: 0≤W(M,j)≤1 and 0≤F(M,j)≤1.

Theorem 1. For a given number of cooperators M, for a hard decision with “K out of M” rule, case using K’’>K will 

have higher or equal error probability PERR but will have lower or equal error probability QERR, than the case using K.

Proof. From the equations  and  it can be observed that if instead of K, K’’=K+1 cooperators are used in the “K out of 

M” rule, the following expressions can be obtained:
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It is clear from the previous equations that:
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Theorem 2. For a number of cooperators M and a fixed difference Δ=M-K (K=M-Δ) in the “K out of M” rule, the error 

probabilities  are  PERR(M,K) and  QERR(M,K).  Then,  if  one  additional  cooperator  is  added,  i.e.  M  is  incremented 

(M’’=M+1), then, the new error probabilities will be PERR
*≥PERR(M,K) and QERR

*≤QERR(M,K), independently of the erro-

neous probability advices of the new cooperator perr
* and qerr

*.

Proof.  If number of cooperators  M is incremented, then K is also incremented M=M+1→K=K+1. So the new error 

probabilities become:
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If the cases when the new cooperator’s advice is 1 (with probabilities 1-perr

* and qerr
*) and 0 (with probabilities perr

* and 

1-qerr
*) are separated, the previous equations become: 
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Using expressions  and , expressions  and  become:
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Finally, from the last expressions and equations  and  it can be obtained:
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It is clear from the last equations that:
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Table 1.

Behavior of cooperators through simulation 

Application period                                      Cooperators 

                                   [  C1    C2   C3   C4   C5    C6   C7   C8   C9   C10 ]    

0                    perr  =    [ 0.01 0.50 0.01 0.01 0.01 0.01 0.01 0.01 0.99   --  ]

                      qerr  =    [   0.50   0.50   0.01   0.01   0.01   0.01 0.01 0.50 0.01   --  ]       

2000              perr   =   [ 0.01 0.50 0.01 0.01 0.01 0.01 0.99 0.01 0.99   --  ]

                       qerr  =   [   0.50   0.50   0.01   0.01   0.01   0.01 0.01 0.50 0.01   --  ]      

4000               perr  =   [   --   0.50 0.01 0.01 0.01 0.99 0.99 0.01 0.99   --  ]

                       qerr  =   [     --     0.50   0.01   0.01   0.01   0.01 0.01 0.50 0.01   --  ]      

6000               perr  =   [   --   0.50 0.01 0.01 0.01 0.99 0.99 0.99 0.99   --  ]

                       qerr  =   [     --     0.50   0.01   0.01   0.01   0.01 0.01 0.50 0.01   --  ]      

8000               perr  =   [   --   0.50 0.01 0.01 0.01 0.99 0.99 0.99 0.99 0.01]

                       qerr  =   [     --     0.50   0.01   0.01   0.01   0.01 0.01 0.50 0.01 0.01]      

10000             perr  =   [   --   0.50 0.01 0.01 0.01 0.99 0.99 0.99 0.01 0.01]

                       qerr  =   [     --     0.50   0.01   0.01   0.01   0.01 0.01 0.50 0.01 0.01]      

12000             perr  =   [   --   0.50 0.01    --   0.01 0.99 0.99 0.99 0.01 0.01]

                       qerr  =   [     --     0.50   0.01      --     0.01   0.01 0.01 0.50 0.01 0.01]      

14000             perr  =   [   --   0.50 0.01    --   0.01 0.01 0.99 0.01 0.01 0.01]

                       qerr  =   [     --     0.50   0.01      --     0.01   0.50 0.50 0.50 0.50 0.01]      

16000             perr  =   [   --   0.50 0.01    --   0.01 0.01 0.99 0.01 0.01 0.01]

                       qerr  =   [     --     0.50   0.01      --     0.50   0.50 0.50 0.50 0.50 0.01]      

18000             perr  =   [ 0.01 0.50 0.01 0.99 0.01 0.01 0.99 0.01 0.01 0.01]

                       qerr  =   [   0.01   0.50   0.01   0.50   0.01   0.50 0.50 0.50 0.50 0.01]      



Table 2.

List of parameters 

RL parameters Parameters for adaptive M

β ξ γ CG CB TA DH
U DH

L TY TX

0.4 0.05 0.4 1 -10 20 0.001 10-5 100 10



Table 3.

Case studies 

Case Q1 Q2 Q3 P1 P2 P3

(a) 0.9 0.1 0 0.9 0.1 0
(b) 0.6 0.2 0.2 0.8 0.1 0.1
(c) 0.8 0.1 0.1 0.7 0 0.3
(d) 0.6 0.2 0.2 0.6 0.2 0.2
(e) 0.6 0 0.4 0.6 0 0.4
(f) 0.5 0 0.5 0.7 0 0.3
(g) 0.8 0 0.2 0.3 0 0.7
(h) 0.4 0.3 0.3 0.4 0.3 0.3



Which 
cooperators 
are reliable? 

Fig. 1 The dilemma: Which cooperators are reliable? 



Fig. 2 The cooperator selection framework based on reinforcement learning and cooperation suitability list.



Fig. 3 The learning process.



Fig. 4  (a-b) Suitability of different cooperators (probability to cooperate) and (c) performance results for M=5.



Fig. 5 (a) Performance results for M=4; (b) performance results when M is variable and (c) corresponding M value.



(a)

(b)
Fig. 6 Evolution of: (a) PERR in Scenario 1, (2) QERR in Scenario 2. 



Fig. 7 Error probabilities PERR(K/N) and QERR(K/N) for “K out of N” fusion (K=1,…,N)  and PERR(RL) for proposed algorithm in 
eight case studies: (a-h).



Fig. 8 PERR in different case studies, the best K values for “K out of N” solutions are indicated next to the corresponding PERR val-
ues.



Fig. 9 PERR as a function of P2 =Q2.



(a)

(b)

(c)
Fig. 10 Results for variable K: (a) PERR, (b) QERR, (c) average M.  



(a)

(b)
Fig. 11 Results for different number of decisions in one application period TA: (a) PERR, (b) QERR. 
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