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Abstract—In this paper, an innovative mechanism to perform
joint radio resource management (JRRM) in the context of hetero-
geneous radio access networks is introduced. In particular, a fuzzy
neural algorithm that is able to ensure certain quality-of-service
(QoS) constraints in a multicell scenario deployment with three
different radio access technologies (RATs), namely, the wireless
local area network (WLAN), the universal mobile telecommunica-
tion system (UMTS), and the global system for mobile communi-
cations (GSM)/Enhanced Data rates for GSM Evolution (EDGE)
radio access network (GERAN), is discussed. The proposed fuzzy
neural JRRM algorithm is able to jointly manage the common
available radio resources operating in two steps. The first step
selects a suitable combination of cells built around the three avail-
able RATs, while the second step chooses the most appropriate
RAT to which a user should be attached. A proper granted bit
rate is also selected for each user in the second step. Different
implementations are presented and compared, showing that the
envisaged fuzzy neural methodology framework, which is able
to cope with the complexities and uncertainties of heterogeneous
scenarios, could be a promising choice. Furthermore, simulation
results show that the reinforcement learning mechanisms intro-
duced in the proposed JRRM methodology allow guaranteeing
the QoS requirement in terms of the so-called user dissatisfaction
probability in the presence of different traffic loads and under
different dynamic situations. Also, the proposed framework is
able to take into consideration different operator policies as well
as different subjective criteria by means of a multiple decision-
making mechanism, such as balancing the traffic among the RATs
or giving more priority to the selection of one RAT in front of
another one.

Index Terms—Beyond third-generation (3G) networks, fuzzy
neural controllers, joint radio resource management (JRRM),
radio access technology (RAT) selection.

I. INTRODUCTION

W IRELESS mobile digital communication systems have
been releasing services to the mass market for more

than a decade, first focusing on voice service and, more re-
cently, on a variety of data services. In this context, the problem
faced by a network operator is to offer a system where the net-
work usage is maximized for a given set of quality-of-service
(QoS) requirements. In the traditional approach to solving this
problem, two aspects can be clearly distinguished: network
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planning (i.e., the design of the fixed network infrastructure
in terms of the number of cell sites, cell site location, number
and architecture of concentration nodes, etc.) and radio resource
management (RRM) (i.e., for a given network deployment,
the way radio resources are dynamically managed in order to
meet the instantaneous demand of the users moving around the
network).

In the framework of second-generation (2G) time-division
multiple access (TDMA)-based mobile systems, e.g., global
system for mobile communications (GSM), network planning
is key. For a given network configuration, there is an almost
constant value for the maximum capacity, and radio resource
allocation actions in the short-term scale have a limited impact.
On the contrary, in the framework of third-generation (3G)
mobile systems, the situation is significantly different as long
as code division multiple access (CDMA) becomes the dom-
inant technology. The reasons are twofold. First, in CDMA-
based systems, there is no constant value for the maximum
available capacity since it is tightly coupled with the amount
of interference in the air interface. Second, the multiservice
scenario drops for some services the constant delay requirement
and, consequently, opens the ability to exploit RRM functions
to guarantee a certain target QoS, to maintain the planned
coverage area, and to offer a high capacity while using the radio
resources in an efficient way [1].

In turn, the perspective of Beyond 3G systems is that of
heterogeneous networks, where the multiplicity of access tech-
nologies as well as the diversity of terminals with reconfig-
urability capabilities will be key in order to allow users on
the move to enjoy seamless wireless services, irrespective of
geographical location, speed, and time of day [2]. In this sce-
nario, joint resource radio management (JRRM) is the identified
process to manage dynamically and coordinately the allocation
and deallocation of radio resources (e.g., time slots, codes,
frequency carriers, etc.) between different radio access tech-
nologies (RATs) for the spectrum bands allocated to each of
these systems. With JRRM, a more efficient usage of the radio
resources will follow.

Some approaches to the JRRM problem are available in the
open literature, and most of them are focused on functional and
architectural behaviors. For example, [3] presents an Internet
protocol (IP)-based end-to-end architecture involving different
network domains where JRRM becomes a key element. In
turn, [4] presents an interesting framework for the provision
of JRRM algorithms to deal with the high degree of complex-
ity associated with heterogeneous network scenarios. Another
interesting contribution to JRRM can be encountered in [5],
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where the analytic hierarchy process (AHP) and grey relational
processes are jointly used as a tool to introduce priorities
among user preferences, service applications, and network
conditions in heterogeneous networks involving universal mo-
bile telecommunication systems (UMTS) and wireless local
area networks (WLANs). In [6], the benefits of JRRM, in terms
of intersystem handover and intersystem-network-controlled
cell reselection, are analyzed in a heterogeneous UMTS ter-
restrial radio access network (UTRAN)-GSM/EDGE radio ac-
cess network (GERAN) scenario. Furthermore, the provision
of cellular and IEEE 802.X WLAN integration, by means of
loose and tight coupling architectures, has also been invoked
in order to extend JRRM capabilities, including noncellular
technologies in [7]. The benefit related to load balancing among
the different RATs involved appears in [8], and meaningful
combinations for RATs are analyzed in [9]. In standardization,
the impacts of JRRM over network architecture have been intro-
duced by the Third Generation Partnership Project (3GPP) for
GERAN and UMTS, with both centralized and decentralized
approaches [8], [10]. In addition, a 3GPP-WLAN interworking
architecture has been finalized [11].

Nevertheless, not many specific algorithms have been pro-
vided in the open literature that assess relative improvements
among different JRRM strategies, even in simple scenarios. In
this paper, a comprehensive JRRM treatment is presented in a
mobile, multiuser, multicell, and multi-RAT scenario. In such
uncertain scenarios, learning from interaction is a foundational
idea underlying learning theories and intelligence, which is
a basis for the so-called cognitive networks [12]. Interacting
produces a wealth of information about cause and effect, about
the consequences of actions, and about what to do in order to
achieve explicit goals. Taking this into account, this paper intro-
duces the use of reinforcement learning mechanisms based on
neural networks over a fuzzy logic-based methodology in order
to cope with the complexities raised in heterogeneous radio
access network scenarios. As a result, the novelty of the JRRM
approach proposed in this paper consists of taking advantage of
the fuzzy set concept and of the learning capabilities of neural
networks in order to make decisions about RAT selection and
bit rate allocation in a scenario with several available RATs. In
particular, the benefits of the fuzzy-based decision making are
twofold. On the one hand, it allows dealing with the vagueness
and uncertainty that are typical of heterogeneous scenarios,
where dissimilar technical decision making inputs have to be
taken into account in order to perform RAT selection and bit
rate allocation. On the other hand, it allows encompassing
in the decision making process the nonspecificity inherent in
human formulation of preferences, which is useful since the
particular user and operator preferences have to be considered
before making the final RAT selection decision. Furthermore,
the learning capabilities embedded in the neural network allow
interactions with the surrounding environment aimed at per-
forming JRRM operation from a user-centric perspective. This
innovative fuzzy neural-based JRRM approach significantly
extends the preliminary work carried out by the authors in
[13] and [14], where this approach was explored and assessed
in simplified scenarios and without self-adaptive components.
Further, the promising results obtained in [13] and [14] have

motivated to undertake the progress described in the rest of
this paper, where more realistic multicellular scenarios have
been considered, and further advances in terms of user-centric
concepts and implementation approaches have been achieved.

The full set of results provides the sufficient insight into the
problem to allow one to state that the present fuzzy neural
framework can be a firm candidate for JRRM.

Specifically, the aim of this paper is to propose a JRRM
scheme in a cellular scenario, including UMTS, GERAN, and
WLAN 802.11b, as available RATs. This scheme should pro-
vide, at each mobile position and along the service connection
time, the most suitable RAT and allocated bit rate. The proposed
fuzzy neural approach will be presented, assessed, and com-
pared to other JRRM reference options. Then, a scalable JRRM
architecture that is based on a two-step functional procedure
will show its ability to be managed by simple policy procedures.
Finally, a framework that is able to incorporate additional de-
cision criteria, such as user demand and operator preference, is
also considered in order to study the impact that personalization
in the service provision might have in the final JRRM behavior.
This procedure is based on the combination of fuzzy logic with
AHP [15], [16].

In the above context, the rest of the paper is organized
as follows. In Section II, the framework for JRRM develop-
ment in multi-RAT and in multicell systems is described. In
Section III, the proposed fuzzy neural JRRM algorithm is
detailed. Section IV presents the specific scenario where the
proposed strategies are evaluated. Section V presents some
representative results and reveals the potentials of the proposed
approach. Finally, Section VI summarizes the main conclusions
reached.

II. FRAMEWORK FOR JRRM STRATEGY DEVELOPMENT

The JRRM concept is intended to achieve an efficient usage
of the joint pool of the radio resources available, belonging to a
variety of RATs in a certain service area. In this respect, it is
necessary to progress toward specifying the operational frame-
work and the required functionalities to achieve these targets.

The proposed JRRM scheme will incorporate three main
RRM functions: RAT and cell selection (i.e., the functionality
set to decide the RAT and the cell the mobile has to be attached
to at session start), bit rate allocation (i.e., the functionality set
to decide the most suitable bit rate or bandwidth for each RAT
and accepted user), and admission control (i.e., the functionality
set to decide whether a request to set up a connection can be
accepted).

The inputs available for JRRM decisions are mainly the
following:

1) RATs deployed, bandwidth available for each RAT, and
scenario configuration (e.g., base station maximum trans-
mitted power level, code sequences available in case of
CDMA-based RATs);

2) measurements coming from the different RANs (e.g.,
load levels) as well as measurements coming from the
user equipments (UEs), such as the received power lev-
els, the path loss, or the chip energy over noise and
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interference spectral density (Ec/Io) in the case of
CDMA-based RATs;

3) techno-economic and subjective aspects, including opera-
tor policies, that may prefer the use of certain RATs over
others for different reasons (e.g., commercial strategies,
radio network ownership, etc.) as well as subscriber
profiles and user preferences (e.g., considering QoS
versus cost).

In order to envisage proper JRRM algorithm development
frameworks, it is important to consider that the variety of JRRM
inputs belonging to different RATs will provide, in general,
imprecise and very dissimilar information. This is reflected
in, for example, the initial driving inputs for RAT selection
and vertical handover, which have to be extracted from the
received pilot signals, although such signal strengths may not
be comparable for the different RATs. Similarly, cell loads from
different RATs are not directly comparable. In addition, other
aspects, like the mobile speed, favor more or less a particular
RAT according to the network layout.

As a result, since the fuzzy logic-based methodology has
been proven to be good at explaining how to reach suitable deci-
sions from imprecise and dissimilar information, the framework
for JRRM strategy development proposed here will consider
this approach. In fact, fuzzy logic strategies have been widely
proposed in the literature in many different fields of knowledge
[4], [17]–[21] because, by means of defining reasonable rules, it
is possible to simplify the large state space of solution possibil-
ities existing in a complex problem, which saves relevant effort.
Therefore, this strategy could also be retained as a solution
for JRRM, while keeping in mind that pattern aspects, like
the selected membership functions and their particular shapes,
included in the fuzzy methodology are still rather subjective. On
the other hand, the use of neural networks, which are good at
recognizing patterns by means of learning procedures, can also
be considered by tuning these membership functions properly,
thus developing hybrid solutions incorporating both fuzzy and
neural methodologies. Using intelligent techniques has been
considered in the open literature as an effective method for
dealing with the problems related to RRM, such as handoff
decision (e.g., [18] and [19]), connection admission control
(e.g., [20]), power control (e.g., [21]), and channel allocation
(e.g., [22] and [23]). Each of these intelligent techniques has a
particular computational property (ability to learn, explanation
of decisions, etc.) that makes it suitable for a particular applica-
tion and not for others. For example, while neural networks are
good at recognizing patterns, they are not good at explaining
how they reach their decisions. On the other hand, fuzzy logic
systems are good at explaining their decisions from imprecise
information, but they cannot automatically acquire the rules
they use to make the decisions or to tune the functions that
convert a crisp value (i.e., a numeric value) into a fuzzy quan-
tity. Due to the limitations of these two techniques, intelligent
hybrid systems that combine them, overcoming the limits of
each one, have been created. Such solutions have been proposed
in the literature in different fields [23], [24]. In this context, a
fuzzy neural framework is proposed as a suitable candidate for
the solution of JRRM related issues.

Fig. 1. Proposed network architecture for the execution of the fuzzy neural
JRRM algorithm.

In terms of network architecture, a high-level allocation of
JRRM functions in a heterogeneous RAT scenario is shown in
Fig. 1. In particular, it is assumed in this paper that the service
area is subdivided into joint fuzzy neural domains, each of them
including a subset of cells belonging to different RATs. Each
domain is managed by a joint fuzzy neural controller (JFNC),
which is in charge of executing the JRRM algorithm for the set
of cells under its domain. Note that the architectural model in
Fig. 1 could be implemented in many different ways, ranging
from residing the JFNC functionalities into existing networks
nodes (e.g., a radio network controller, RNC; base station
controller, BSC; access point controller, APC) up to allocating
them in new network nodes (e.g., in the form of external
servers). This way, the proposed architecture could be mapped
on the envisaged approach in 3GPP [8], [10]. The paper
assumes a scenario with a single operator owning all the RATs.
However, a scenario encompassing the hypothesis of the exist-
ence of agreements among different operators can also be consid-
ered by making use of entities like a trusted third party [25].

III. FUZZY NEURAL JRRM ALGORITHM

The proposed framework for JRRM algorithm implementa-
tion based on fuzzy neural mechanisms consists of three main
blocks, as shown in Fig. 2, identified as fuzzy-based decision,
reinforcement learning, and multiple objective decision mak-
ing, respectively.

The fuzzy-based decision, reinforcement learning, and mul-
tiple objective decision making algorithms are executed every
time a new user asks for admission in the system and during the
user session. It assures the dynamic allocation and deallocation
of radio resources in the scenario and the selection of the most
suitable RAT, while keeping the desired QoS requirements of
all admitted users.

The inputs of the fuzzy-based decision block are a set of
linguistic variables LVi corresponding to different measure-
ments. The selection of these linguistic variables has been made
taking into account the following most relevant parameters that
influence the RAT selection and bandwidth allocation:

1) signal strength with respect to the considered RATs, in
order to make RAT/cell selection and bit rate allocation
coherently with the cell coverage in the scenario;

2) cell load, in order to avoid, as much as possible, conges-
tion situations (i.e., situations in which the load reaches
high values, thus degrading performance);
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Fig. 2. Block diagram of the proposed JRRM algorithm.

3) mobile speed, in order to indicate the inappropriateness
of selecting certain RATs (e.g., WLAN would be an
inappropriate choice in case of high-speed users).

In addition, subjective and techno-economic criteria in the
form of user preferences (UP) and operator preferences (OP)
are inputs of the multiple objective decision making block,
since it is considered that they are key elements that should play
a role in the JRRM decision, as emphasized in Section II.

On the other hand, the outputs of the fuzzy neural algorithm
are subdivided into two groups, which are the driving indicators
to perform cell/RAT selection and bit rate allocation.

1) To perform cell/RAT selection, each RAT is characterized
by an indicator, which takes values in the range [0, 1],
referred to as fuzzy selected decision (FSD) value, which
evaluates the appropriateness of selecting a RAT in front
of the others.

2) To perform bit rate allocation, an output value (B) is
associated to each RAT, which gives an indication of the
amount of bandwidth that should be assigned to the user.

In the following subsections, the purpose of each block
represented in Fig. 2 is detailed.

A. Fuzzy-Based Decision

This process is executed in three steps by the fuzzifier,
inference engine, and defuzzifier blocks.
Step 1. Fuzzifier: The fuzzifier carries out the fuzzification

process, the objective of which is to assign, for each input
linguistic variable, a value (between 0 and 1) that corresponds
to the degree of membership of this input to a given fuzzy set.
A fuzzy set is a linguistic subjective representation of the input
variable. A total of seven linguistic variables is considered here
to describe the proposed JRRM approach. They include the
following:

1) SSUMTS , SSGERAN , SSWLAN (received signal
strength for each of the considered RATs);

2) RAUMTS , RAGERAN , RAWLAN (resource availability
in each of the considered RATs);

3) MS (mobile speed).
A linguistic variable is characterized by a term set. Specif-

ically, the term sets considered here for each linguistic
variable are

X(SSUMTS) = X(SSGERAN ) = X(SSWLAN )
= X{L,H} (1)

X(RAUMTS) = X(RAGERAN ) = X(RAWLAN )
= X{L,M,H} (2)

X(MS) = X{L,H} (3)

where H stands for “high,” M for “medium,” and L for “low.”
Each element of the term set is a fuzzy set Xj(LVi) with

membership function µXj
(LVi). Thus, the function of the

fuzzifier is to map the numeric value of the linguistic variable
LVi(t) to the fuzzy set Xj(LVi(t)) with a degree of member-
ship µXj

(LVi).
The shape of a membership function can be a triangle, a

trapezoid, or a bell-shaped function. Due to the fact that a
bell-shaped function is easy to derivate, which is useful when
the reinforcement learning is activated, this is the membership
function shape chosen for the proposed algorithm [17].

Notice that, in terms of the signal strength, the selected fuzzy
sets may take two values: low or high. In turn, the resource
availability is represented by three fuzzy sets—low, medium, or
high—reflecting that a higher level of granularity is required for
this parameter since it has a stronger impact over the resource
allocation. Finally, the mobile speed is also considered with two
fuzzy sets: low or high. Considering that the speed is used in
the RAT selection only as an indication that some RATs may
not be appropriate for high-speed users, not much granularity is
required when using this parameter so that its term set consists
of only two fuzzy sets. Notice that the number of values in each
term set has been chosen in order to have a limited number of
combinations among them.

The information corresponding to the input linguistic vari-
ables is periodically reported to the JFNC. This information
includes the signal strength at the user receiver measured in
different ways according to the RAT considered. In the case
of UTRAN, the signal strength is measured by the received
signal code power (RSCP) of the pilot channel [26]. For
GERAN, the measure corresponds to the power received in the
broadcast channel [27]. Finally, for WLAN, the beacon signal
transmitted by the access point is measured [28]. In addition
to this, the mobile speed should also be available to the JFNC.
Several possibilities could be envisaged to estimate the mobile
speed, for example, based on doppler frequency, positioning,
cell reselection, handover rates, etc. However, it is worth not-
ing that the envisaged algorithm does not require very accu-
rate mobile speed estimations, since just an indication of the
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TABLE I
EXAMPLE OF INFERENCE RULES

inappropriateness of selecting some RATs (e.g., WLAN) in the
case of high-speed users is required. Concerning the resource
availability, it is defined as 1 − ρ, where ρ is the resource occu-
pation (i.e., the ratio between the average resource occupation
in a cell over a defined period of time and the maximum avail-
able resources). The resource occupation is RAT dependent.
In the case of UTRAN, it corresponds to the cell load factor.
For GERAN, it is measured as the ratio between the number of
occupied slots and the total number of slots. Finally, for WLAN,
it is the ratio between the current and the maximum available
throughput.
Step 2. Inference Engine: In a fuzzy controller, the dynamic

behavior of the system is characterized by a set of linguistic
rules expressing the decision policies and defined as follows:

IF (a set of conditions are satisfied) THEN (a set of conse-
quences can be inferred).

These rules are predefined and stored in the so-called fuzzy
rule base. Each rule is characterized by a precondition depend-
ing on a particular combination of the fuzzy sets described
in step 1 and by a consequence indicating, in linguistic terms
and for each RAT, the suitability of selecting each RAT and
the corresponding allocated bit rate. As a result, the output of
the inference engine is still a fuzzy value defined with respect
to two groups of output linguistic variables. On the one hand,
the decision D(DUMTS ,DGERAN ,DWLAN ) output linguistic
variables have been defined with the following term sets:

X(DUMTS) = X(DGERAN ) = X(DWLAN )

= X{Y, PY, PN,N} (4)

where Y stands for “yes,” PY for “probably yes,” PN for
“probably not,” and N for “not.”

Similarly, there will be two output linguistic variables cor-
responding with the allocated bit rate B(BUMTS , BGERAN ),
each with the following term sets:

X(BUMTS) = X(BGERAN ) = X{H,M,L} (5)

where H stands for “high,” M for “medium,” and L for “low.”
It is worth mentioning that the bandwidth allocation for

WLAN is not considered here as a fuzzy neural algorithm out-
put. The reason is that current WLAN systems (i.e., 802.11b)
are not able to guarantee a bandwidth rate. Nevertheless, the
proposed strategy could be easily extended to also consider
WLAN bandwidth assignments in case.

An example of three inference rules is shown in Table I.
Assuming that the jth rule corresponds to the first row

in Table I, the membership value of the output jth rule is

defined as

µY (DUMTS)j =µN (DGERAN )j = µN (DWLAN )j

=µH(BUMTS)j = µL(BGERAN )j

= min [µH(SSUMTS), µL(SSGERAN )
µL(SSWLAN ), µH(RAUMTS)
µH(RAGERAN ), µM (RAWLAN )
µL(MS)] . (6)

Then, finally, the consequences of the rules in the fuzzy rule
base leading to the same fuzzy set of a given output linguistic
variable have to be combined in order to obtain the membership
value of this fuzzy set. In particular, it is computed as the sum
of the membership values of all the rules having that fuzzy set
as a consequence.
Step 3. Defuzzifier: Finally, the defuzzifier executes the

defuzzification, which consists of converting the outputs of
the inference engine into a crisp value, denoted as fuzzy se-
lected decision (FSD), indicating the suitability of selecting
each RAT. The three outputs—FSDUMTS , FSDGERAN , and
FSDWLAN —are then obtained. The defuzzification method
considered is the center of area method [17]. Similarly, the
defuzzification process also provides the allocated bit rate by
means of the outputs BWUMTS and BWGERAN .

B. Layered Fuzzy Neural Controller

The above steps of the fuzzy-based decision procedure can
be graphically represented by means of a five-layered structure
used in neural networks, which enables the use of reinforcement
learning to adjust the different membership functions. This
fuzzy neural structure is shown in Fig. 3 and is composed of
a set of nodes belonging to the different layers.

Each node in the kth layer (k = 1, . . . , 5) is numbered by
a cardinal i ranging from 1 to the number of nodes in the kth
layer.

The basic structure of each node is shown in Fig. 4, where uk
i

represents the ith input signal for the kth layer, and p represents
the number of inputs connected to the node. Each node is char-
acterized by an integration function f(uk

1 , uk
2 , . . . , uk

p), which
combines the different inputs, and by an activation function
a(f), which provides the output.

In the following subsections, the characterization of the dif-
ferent layers corresponding to the down/up operation according
to the proposed fuzzy neural JRRM approach is provided.
Layer 1: In this layer, there are as many nodes as the number

of input linguistic variables (i.e., seven). The nodes in this layer
just transmit input values to the next layer

f1
i = u1

i i = 1, . . . , 7 (7)
a1

i = f1
i i = 1, . . . , 7. (8)
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Fig. 3. Layered fuzzy neural scheme.

Fig. 4. Basic structure of a node in the fuzzy neural scheme.

Layer 2: The nodes in this layer correspond to the fuzzifi-
cation procedure. According to the dimension of the term sets
previously described, in this layer, there are 17 nodes. Each
node performs a bell-shaped function, which is defined by

f2
i = −

(
u2

i − m2
i

)2

(σ2
i )2

, i = 1, . . . , 17 (9)

a2
i = ef2

i , i = 1, . . . , 17 (10)

where m2
i and σ2

i are, respectively, the mean and variance of
the bell-shaped membership function associated to the ith node
in layer 2.
Layer 3: The nodes in this layer correspond to the different

combinations existing in the inference engine. Then, denoting

as |X(LVi)| the number of elements in the term set X corre-
sponding to linguistic variable LVi, the number of nodes of this
layer is

|X(MS)| × |X(SSUMTS)| × |X(SSGERAN )|
× |X(SSWLAN )| × |X(RAUMTS)| × |X(RAGERAN )|
× |X(RAWLAN )| = 2 · 23 · 33 = 432. (11)

Each layer 3 node is linked to seven layer 2 nodes, corre-
sponding to the seven input linguistic variables. The links are
used to perform precondition matching of fuzzy control rules.
Therefore, each node should perform the AND operation

f3
i = min

(
a2

j

)
∀ layer 2 node j linked to a layer 3 node i

1 ≤ i ≤ 432. (12)

Similarly, the output function of each layer 3 node simply
transfers the same value obtained in the input function

a3
i = f3

i , 1 ≤ i ≤ 432. (13)

Layer 4: In this layer, there are two groups of outputs. The
first one corresponds to the RAT decision DUMTS , DGERAN ,
and DWLAN , while the other one is for the allocated bit rate
BUMTS and BGERAN with the term sets defined in (4) and (5).
Since there is one node for each of the fuzzy sets in the
considered term set, there are a total of 18 nodes in layer 4.
Each node performs a fuzzy OR operation integrating the input
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coming from the layer 3 nodes that have the same consequence
(i.e., leading to the same RAT decision or bit rate allocation). It
is given by

f4
i =

∑
j∈Ci

a3
j , i = 1, . . . , 18 (14)

where Ci is the set of layer 3 nodes that are connected to the
considered ith layer 4 node

a4
i = min

(
1, f4

i

)
, i = 1, . . . , 18. (15)

Layer 5: Each node of this layer carries out the defuzzifica-
tion procedure. Hence, there are two kinds of nodes: the FSD
values and the BW values. The number of nodes is then five.
The function used to carry out the centre of area defuzzification
method is

f5
i =

∑
j∈Ti

m5
jσ

5
j u5

j , i = 1, . . . , 5 (16)

a5
i =

f5
i∑

j∈Ti

σ5
j u5

j

, i = 1, . . . , 5 (17)

where m5
j and σ5

j are the centers and the widths of mem-
bership functions. Furthermore, Ti is the set of layer 4
nodes connected to the considered layer 5 node. For instance,
in the case i = 1 corresponding to the FSDUMTS output
(Fig. 3), the considered layer 4 nodes are j = 1 (corresponding
to DUMTS = N ), j = 2 (corresponding to DUMTS = PN ),
j = 3 (corresponding to DUMTS = PY ), and j = 4 (corre-
sponding to DUMTS = Y ). The values of the inputs u5

i are the
corresponding outputs of the layer 4 nodes.

Notice that a5
i provides the FSD values as follows:

FSDUMTS =

∑
j∈TUMT S

m5
jσ

5
j u5

j∑
j∈TUMT S

σ5
j u5

j

(18)

FSDGERAN =

∑
j∈TGERAN

m5
jσ

5
j u5

j∑
j∈TGERAN

σ5
j u5

j

(19)

FSDWLAN =

∑
j∈TW LAN

m5
jσ

5
j u5

j∑
j∈TW LAN

σ5
j u5

j

. (20)

TUMTS , TGERAN , and TWLAN are, respectively, the set
of layer 4 nodes connected to the layer 5 nodes providing
FSDUMTS , FSDGERAN , and FSDWLAN . Similarly, in
terms of allocated bandwidth, it will be given at the output of
layer 5 as follows:

BWUMTS =BWUMTS,MAX

∑
j∈WUMT S

m5
jσ

5
j u5

j∑
j∈WUMT S

σ5
j u5

j

(21)

BWGERAN =BWGERAN,MAX

∑
j∈WGERAN

m5
jσ

5
j u5

j∑
j∈WGERAN

σ5
j u5

j

(22)

where BWUMTS,max and BWGERAN,max are the maximum
bit rate that can be allocated in UMTS and GERAN, respec-
tively. In turn, WUMTS and WGERAN are now the set of
layer 4 nodes connected to the layer 5 nodes that provide
BWUMTS and BWGERAN , respectively. For instance, in the
case of the node providing BWUMTS (Fig. 3), the consid-
ered layer 4 nodes in WUMTS are j = 5 (corresponding to
BUMTS = L), j = 6 (corresponding to BUMTS = M ), and
j = 7 (corresponding to BUMTS = H).

Once the fuzzy neural network has been defined by means
of the five layers, the input/output linguistic variables, and the
corresponding term sets, it is necessary to set up the structure
of the fuzzy neural network by defining the fuzzy inference
rules contained in the fuzzy rule base and the initial shape and
position of the membership functions. It is worth noting that
this set-up phase is performed off-line and that afterward, the
reinforcement learning is in charge of adjusting online the para-
meters defining the fuzzy neural network structure. The off-line
set up of fuzzy neural networks is a rapidly developing research
field, and there exist several methods in the open literature.
They can be intuitive and based on logical operations derived
from the expert knowledge of the variables to define (e.g.,
intuition, inference, rank ordering, angular fuzzy sets methods
[17]), or they can make use of more complex algorithms based
on, for example, neural networks, genetic algorithms, pattern
recognition, inductive reasoning, etc. [17]. The first group of
procedures has been intensively adopted in the literature [29].
For example, in case of inference rules, many experts have
found that they provide a convenient way to express their
knowledge since, in our daily lives, most of the information on
which our decisions are based is linguistic, rather than numeric,
in nature. On the other hand, the second group of mechanisms
performs well if training data are available off-line [24]. Nev-
ertheless, for the JRRM application, it would be very difficult
and expensive to obtain off-line a comprehensive training data
file to set up the neural network, because the JRRM decisions
depend on many time-variant factors (e.g., traffic loads, signal
strengths, etc.) that can hardly be captured in a training data
file. In addition, methods using databases to formulate rules and
membership functions may be computationally very expensive
if the database is large. As a result, the choice of which method
to use depends on the problem size and on the problem type.

Consequently, in case of JRRM, the authors consider that
a suitable method to set up the network off-line is to define
both the membership functions and the fuzzy inference rules
by means of the intuition and the knowledge the network
provider has of the problem to face and of all the elements
determining the fuzzy neural network structure. For example, a
signal strength membership function is first reasonably defined
considering measurements such as the sensitivity levels at the
cell edge.

C. Reinforcement Learning Procedure

This procedure is developed in order to determine appro-
priate membership functions for the layer 2 and 5 nodes,
specifically the m2

i , σ2
i , m5

i , and σ5
i values corresponding to

the fuzzification and defuzzification steps. The mean mi and
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the standard deviation σi of the membership functions in the
second and forth layers are first set off-line.

Successively, these parameters are dynamically adjusted by
means of the reinforcement learning procedure that acts ac-
cording to a reinforcement signal r(t), depending on a desired
output quality measurement. In the layered fuzzy neural struc-
ture shown in Fig. 3, this reinforcement signal is introduced at
layer 5 and is propagated from top to bottom in order to adjust
the specific parameters in lower layer nodes. Notice that the
proposed JRRM algorithm does not require a very accurate
initial selection of the membership function parameters, since
a most appropriate tuning will be successively provided online
by the reinforcement learning algorithm.

In this paper, the reinforcement signal will be set in order
to achieve a desired value of the “dissatisfaction probability,”
defined as the probability that a user does not receive its
desired bandwidth according to its specific contract. Notice that
this type of measurement introduces a user-centric approach
in the proposed algorithm while, at the same time, allows a
quantification of the degree of quality that is being perceived
by services that differ from the classical constant bit rate ones
like, for example, speech.

The reinforcement signal is then defined as

r(t) = (P ∗
I − PI(t)) (23)

where PI(t) is the current measured dissatisfaction probability
at time t and where P ∗

I is the desired target value of this
probability. Then, the goal of the reinforcement learning is to
minimize the error function given by

E(t) =
1
2
r(t)2 =

1
2

(P ∗
I − PI(t))

2 . (24)

Let us assume that w is a general adjustable parameter (e.g.,
any of the means and deviations of the membership functions
at layers 5 and 2). The general learning rule for this parameter
is given by

w(t + 1) = w(t) + γ

(
−∂E(t)

∂w(t)

)
(25)

where γ is the learning rate. The learning rule can be expressed
as a function of the dissatisfaction probability as

w(t + 1) = w(t) + γr(t)
∂PI(t)
∂w(t)

. (26)

In the following, the computations of ∂PI(t)/∂w(t) layer
by layer, starting at the output nodes (i.e., corresponding to the
up/down operation), are presented.

The updating rule for a layer 5 parameter is given by

∂PI(t)
∂w(t)

=
∂PI(t)
∂a5

i

∂a5
i

∂w(t)
=

∂PI(t)
∂a5

i

∂a5
i

∂f5
i

∂f5
i

∂w(t)
(27)

where the subindex i stands for the ith node, and a5
i and f5

i are
defined in (17) and (18). Then, the updating rule for the mean

values m5
i is given by

m5
i (t + 1) = m5

i (t) + γ · r(t) · σ5
i u5

i∑
j∈Ti

σ5
j u5

j

. (28)

In the same way, the updating rule for σ5
i is

σ5
i (t + 1) = σ5

i (t) + γ · r(t)

·
m5

i u
5
i

( ∑
j∈Ti

σ5
j u5

j

)
−

( ∑
j∈Ti

m5
jσ

5
j u5

j

)
u5

i( ∑
j∈Ti

σ5
j u5

j

)2 . (29)

In relation to the membership functions in the layer 2 mean
and dispersion parameters, the reinforcement signal propagated
from layer 5 to layer 2 is defined as follows:

δ2
i =

∂E(t)
∂f2

i

=
∑

n

∂E(t)
∂u4

n

∑
k

∂u4
n

∂u3
k

∂u3
k

∂f2
i

(30)

where n = 1, . . . , 18 corresponds to the layer 4 nodes, k =
1, . . . , 432 corresponds to the layer 3 nodes, and finally, i =
1, . . . , 7 corresponds to the layer 2 nodes.

Furthermore, the intermediate derivatives are given by

∂E(t)
∂u4

n

= r(t) ·
m5

nσ5
n

( ∑
j∈Tn

σ5
j u5

j

)
−

( ∑
j∈Tn

m5
jσ

5
j u5

j

)
σ5

n

( ∑
j∈Tn

σ5
j u5

j

)2

(31)

∂u4
n

∂u3
k

=

{ 1, if kth layer 3 node is connected
to nth layer 4 node

0, otherwise
(32)

∂u3
k

∂f2
i

=

{ 1, if ith layer 2 node provides the min
among rule node k inputs

0, otherwise.
(33)

Then, the adaptive rules for a generic mean and dispersion of
the ith node of layer 2 are given by

m2
i (t + 1) =m2

i (t) + γδ2
i · efi

2
(
u2

i − m2
i

)2

(σ2
i )2

(34)

σ2
i (t + 1) =σ2

i (t) + γδ2
i · efi

2
(
u2

i − m2
i

)2

(σ2
i )3

. (35)

With respect to the numerical complexity of the proposed
algorithm, it should be mentioned that the number of operations
in the procedure is low enough to ensure operation in real time
by means of software approaches. In that sense, the required
operations should be considered at the following two levels.

1) In order to achieve the fuzzy-based decision with re-
spect to the RAT and bandwidth allocation, the type of
operations to be performed are essentially comparisons
according to the inference rules at layer 3 and sums of
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the different layer 3 outputs. Also, a small number of
multiplications and divisions are required in layer 5. Note
that the implementation of the membership functions in
layer 2 can be done by means of look-up tables, thus
only requiring a memory access. As a result of that, the
number of operations to achieve a decision per user is on
the order of 5000, which turns into a requirement of about
100 µs per user on a single state-of-the-art general-
purpose processor (e.g., 2 GHz). Then, real-time opera-
tion is feasible even with a high number of users, since
the time constraints are typically fixed at the radio frame-
time scale (e.g., on the order of tenths of milliseconds).

2) With respect to the reinforcement learning algorithm,
the effect is the modification of the parameters of the
membership functions at layers 2 and 5 used by the
fuzzy-based decision procedure, according to the system
evolution. Since this modification occurs at the long term,
it does not pose constraints for real-time operation.

D. Multiple Objective Decision Making

In a heterogeneous framework, the RAT selection decision
may not depend only on radio interface related issues such
as resource availability or signal strength but on qualitative or
techno-economic inputs as well. In particular, as shown in Fig. 2
the proposed multiple objective decision making block takes
as input the output of the fuzzy neural block (FSD), as well
as the UP (i.e., the preference of the user with respect to the
allocation of one or another RAT, which can take into account
quality versus cost aspects) and the OP (i.e., the preference of
the operator with respect to the allocation of one or another
RAT, which may be based on, for example, business models).

The framework for the multiple objective decision making is
introduced in [15] and [16] as a general basis and considered
here as a particular case for JRRM application. The criteria
considered for each RAT are C1 = FSD, C2 = UP , C3 =
OP . If they were equally important, the decision for each RAT
would be given by Di = Ci1 ∩ Ci2 ∩ Ci3 or equivalently by
Di = min(FSDi, UPi, OPi) for the ith RAT (i = UMTS,
GERAN , or WLAN ). Then, the selected RAT would be that
having the maximum value of Di.

Due to the fact that the different criteria may have a different
subjective importance, a number α ≥ 0 indicative of the impor-
tance of the criterion is introduced so that the more important
the criterion, the higher the value of α. Then, the decision is
made according to

D = Cα1
i1 ∩ Cα2

i2 ∩ Cα3
i3 (36)

where

1
N

N∑
n=1

αn = 1 (37)

N being the number of criteria (i.e., N = 3 in this case). This
way, the criteria of weak importance have less influence over
the selected decision.

A suitable method for computing αi is given in [15], based
on the relative importance between criteria. Specifically, the

Fig. 5. Considered multi-cell scenario.

Fig. 6. Functions of the joint fuzzy neural controller.

different criteria are compared in such a way that aij represents
the relative importance of criterion i with respect to criterion j.
Then, the N × N matrix B is defined with components bij


bii = 1
bij = aij , i �= j
bji = 1/bij .

(38)

Then, the αn are given by the components of the vector
obtained from the product of the number of criteria N and
the unit eigenvector corresponding to the highest eigenvalue of
matrix B.

IV. SCENARIO MODEL FOR JRRM EVALUATION

In order to evaluate the JRRM fuzzy neural algorithm, a
multicell scenario, with a seven cell deployment, including
four UMTS base stations, two GERAN base stations, and one
WLAN access point, has been envisaged, as illustrated in Fig. 5.
Each cell is characterized by a given coverage area and by
its corresponding RAT. The considered scenario consists of
circular cells defining WLAN, UMTS, and GERAN dominant
areas.

In this scenario, both the RAT and the cell need to be selected
for each user during the execution of the JRRM algorithms.
To this end, a two-step procedure has been considered in the
JFNC introduced in Fig. 1 in order to decouple the cell selection
from the RAT selection and bandwidth allocation processes, as
outlined in Fig. 6.

It is assumed that the JRRM procedure explained in
Section III is executed for each user after having selected a
combination of cells from the available RATs (i.e., a UMTS
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cell, a GERAN cell, and a WLAN access point). The rationale
behind this split of functionalities is to have a limited number
of inputs in the fuzzy-based decision procedure, thus obtaining
a more scalable JRRM procedure.

In the following subsections, different approaches for the cell
combination selection functions are explored.

A. Cell Combination Selection

The cell combination selection function is in charge of
selecting for a given subscriber one cell for each of the
considered RATs (i.e., UMTS, GERAN, and WLAN). The
considered scenario consists of eight combinations of cells:
C1 (WLAN, UMTS1, GERAN1), C2 (WLAN, UMTS2,
GERAN1), C3 (WLAN, UMTS3, GERAN1), C4 (WLAN,
UMTS4, GERAN1), C5 (WLAN, UMTS1, GERAN2),
C6 (WLAN, UMTS2, GERAN2), C7 (WLAN, UMTS3,
GERAN2), and C8 (WLAN, UMTS4, GERAN2).

Two possible criteria have been envisaged to perform the
combination selection.

1) Signal strength criterion. The combination is built se-
lecting, for each RAT, the cell providing the best signal
strength at the user receiver.

2) Fuzzy criterion. The fuzzy system is first applied to all
the combinations. Successively, the maximum FSD value
among the ones corresponding to the UMTS, GERAN,
and WLAN cells belonging to each combination is taken
as the indicator of the appropriateness of selecting one of
them. Consequently, the selected combination will be that
providing the highest FSD. Notice that, compared to the
signal strength criterion, the fuzzy criterion also allows
consideration of the effects of load and mobile speed.

It is worth noting that, in a given deployment scenario,
some combinations could be disregarded in advance if the
corresponding cells do not overlap, thus reducing the number
of computations so that the scalability can prevail.

B. RAT Selection and Bit Rate Allocation

The RAT selection and bit rate allocation are implemented by
means of the fuzzy-based decision, reinforcement learning, and
multiple decision-making algorithms explained in Section III
and constitute the final JRRM step once a particular combi-
nation selection has been retained. This process is carried out
at the admission control phase and along the active users’ ses-
sions, thus checking whether a horizontal or vertical handover
is required.

In order to apply the fuzzy neural JRRM algorithm in the
JFNC, two different approaches are considered. The first ap-
proach is a fuzzy neural system per combination. In this case,
there is a separate fuzzy neural system for each combination.
The system inputs are the input linguistic variables computed
according to the base stations that form part of the combi-
nation. Each fuzzy neural system evolves independently from
the others, which means that a different reinforcement learning
mechanism is applied to each combination (i.e., layers 2 and 4
parameters in Fig. 3 are adapted as a result of the evolution of

the dissatisfaction probability for those users associated with
that particular combination). The second approach is a fuzzy
neural system per scenario. In this case, there is a single fuzzy
neural system for the whole scenario. The system inputs are
the input linguistic variables computed according to the base
stations that belong to the combination previously selected
for the mobile that has activated the algorithm execution. The
reinforcement signal is the dissatisfaction probability of all the
users in the scenario.

In order to study the suitability of the different alternatives
identified here, the approaches to select the most suitable
combination and the most suitable RAT will be combined and
assessed. Then, four possible implementations are considered.

1) Implementation no. 1 considers the signal strength crite-
rion to perform combination selection and a fuzzy neural
system per scenario to perform RAT selection.

2) Implementation no. 2 considers the signal strength crite-
rion to perform combination selection and a fuzzy neural
system per combination to perform RAT selection.

3) Implementation no. 3 considers the fuzzy criterion to
perform combination selection and a fuzzy neural system
per scenario to perform RAT selection.

4) Implementation no. 4 considers the fuzzy criterion to
perform combination selection and a fuzzy neural system
per combination to perform RAT selection.

C. Performance Measurements

With respect to performance measurements, the concept of
service dissatisfaction is considered. A user is “dissatisfied” if
at least one of the following situations occurs.

1) The fuzzy neural system assigns to it an amount of
bandwidth lower than the desired one according to its
contract.

2) The user is in “outage,” which means that the received
power does not satisfy the sensitivity criterion, which
is defined differently for each of the RATs, as detailed
below.

For UMTS, the required transmission power PT,i by a given
ith user in the uplink is given by [1]

PT,i =
Lp,iPN

1 − ηUL

1
W(

Eb
N0

)
i
Rb,i

+ 1
(39)

where Lp,i is the Path Loss, Rb,i is the bit rate for the ith user,
Eb/N0 = 3 dB is the QoS target, ηUL = 0.75 is the uplink
cell load factor, PN = −106 dBm is the noise power, and
W = 3.84 Mc/s is the WCDMA chip rate. According to this
expression, if the required power is higher than the maximum
available power at the terminal (e.g., PT,i > 21 dBm), the user
is in outage.

In turn, for WLAN and GERAN, the condition to be in out-
age is that the received power is below a sensitivity threshold:
set to −93 dBm for WLAN and −87 dBm for GERAN as
representative values.
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In order to properly capture the performance of the system,
the following measurements are also considered to complement
the “dissatisfaction” probability:

1) Blocking probability. A user is blocked if, at the session
start, the JRRM algorithm assigns to the user a bandwidth
of 0 kb/s.

2) Dropping probability. A user is dropped if, after changing
the current cell combination that is being considered in
the bandwidth allocation for a given user, the JRRM
algorithm assigns to the user a bandwidth of 0 kb/s, which
means that a horizontal or a vertical handover failure
has occurred. Furthermore, a user is also dropped if it is
continuously in outage during more than a given timeout.
A reference value of 3 s has been considered in this paper.

Notice that a user in outage, before being dropped out, is
considered dissatisfied. The reason of this choice is that this
kind of situation allows the reinforcement learning algorithm to
“learn” the most appropriate way to make a decision. In fact,
it is assumed that users are moving in an area where there
is always at least one available RAT, so an outage can only
be originated from a wrong JRRM decision in terms of either
RAT selection or bandwidth allocation (e.g., a high bandwidth
to a user at the cell edge). Consequently, this situation can be
corrected by exploiting the learning capabilities of the proposed
framework, without having to drop the call.

V. RESULTS AND DISCUSSION

A. Parameter Definition

The proposed fuzzy neural strategy has been first evaluated
through simulations in the reference multicell scenario shown
in Fig. 5 in order to analyze its behavior and to tune and validate
the parameters that have more impact on the final decision.

A mobility model with users moving according to a random
walk model inside the coverage area is adopted with a randomly
assigned mobile speed (MS) ε[0, 50 km/h] and a randomly
chosen direction. The propagation model considered for UMTS
and GERAN is given by L = 128, 1 + 37, 6 log d (km),
which assumes that the frequency band is similar for
both systems (i.e., GERAN: 1710–1785 MHz; UMTS:
1900–2025 MHz) [30]). For WLAN, since the conditions are
different (e.g., different frequency bands, access point located
indoor, lowest height, etc.) the propagation losses inside the
hot spot are modeled by L = 20 log d(m) + 40 [31]. The
beginning and the end of the user’s activity periods are defined
according to a Poisson scheme with an average of six calls per
hour and an average call duration of 180 sec. The maximum
bit rate available to the users in a UMTS and GERAN cell
is 384 and 96 Kb/s, respectively. In addition, it is assumed
that the user contractual bit rate is 192 Kb/s for UMTS and
40 Kb/s for GERAN.

Results are presented for the uplink direction, and the con-
sidered possible bit rates for the different RATs are as follows.

1) For UMTS, the results are 32, 48, 64, 80, 96, 112, 128,
192, 256, 320, and 384 kb/s. A single UTRAN FDD
carrier is considered. The maximum allowed uplink load
factor is 0.75.

2) For GERAN, the results are 32, 48, 64, 80, and 96 kb/s. It
is assumed that four carriers are available in the GERAN
cell for GPRS users, with coding scheme CS-4 [32], thus
having a maximum bit rate in the cell of 640 kb/s.

3) For WLAN, it is considered that the total bandwidth
available (11 Mb/s) is equally distributed among the
WLAN users (i.e., the higher the number of users, the
lower the bandwidth per user will be). It is also assumed
that no more WLAN users are accepted when the band-
width per user is less or equal than 384 kb/s. A single
access point is considered. It is worth mentioning that
contention-free period (CFP) mechanisms allow different
users to share a WLAN channel simply scheduling the
transmissions on top of the MAC, which justifies the as-
sumption that the same bit rate per user is considered [33].

The allocated bit rate decided by the fuzzy neural algorithm
will be given by rounding BWUMTS or BWGERAN to the
closest bit rate for UMTS or for GERAN, respectively.

Cell radii of 150 m for WLAN, 650 m for UMTS, and 1 km
for GERAN are retained.

The fuzzy neural algorithm is activated every 100 ms for the
simulation purposes in order to reallocate bandwidths and/or
RATs to the currently admitted users as well as to include
new users so that the allocated resources can be changed
dynamically.

The resource availability (RA) is a RAT-dependent concept
and, for the different RATs used in the fuzzy neural JRRM
algorithm, is defined as follows.

1) For UMTS, RA = 1 − ηUL, where ηUL is the uplink cell
load factor.

2) For GERAN, RA = 640 kb/s − ρ, where ρ is the current
amount of kb/s already allocated in the corresponding
cell.

3) For WLAN, RA = maximum number of users–number
of users allocated in WLAN cell, where the maximum
number of users is the number of users that could
be allocated in WLAN considering a rate of 384 kb/s
per user.

In the following subsections, the different aspects of the
proposed JRRM algorithm that have an influence over the final
performance will be analyzed on a step-by-step basis in order
to better clarify the relevant role played by each one.

B. Role of Membership Functions

The considered initial membership functions, which have
been set up off-line (as explained in Section III), are depicted
in Fig. 7. In order to analyze the impact of the membership
function selection without initially including the reinforcement
learning procedure, Fig. 8 plots alternative membership func-
tions for the RAUMTS and the RAGERAN linguistic variables.
The modified membership functions shown in Fig. 8 have
been selected based on the reference membership functions
from Fig. 7, maintaining their standard deviation values but
modifying their mean values. In particular, the mean values
of the RAUMTS membership functions have been increased,
while the mean values of RAGERAN membership functions
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Fig. 7. Considered reference membership functions.

Fig. 8. Modified membership functions.

Fig. 9. Percentage of UMTS assignments as a function of the signal strength.

have been decreased so that the corresponding membership
functions have been shifted to the right and to the left, re-
spectively. The objective of these modifications is to show
the impact that the membership function shapes and positions
have on the final JRRM decision. Specifically, this impact is
quantified in Figs. 9 and 10, where the UMTS and GERAN
allocation probabilities are shown as a function of the signal
strength (i.e., the percentage of times that, for a given value of
the signal strength, UMTS or GERAN are allocated). Notice
that, by moving the UMTS and GERAN membership functions
toward higher and lower values, respectively, the meaning
of the fuzzy sets low, medium, and high are modified. For

Fig. 10. Percentage of GERAN assignments as a function of the signal
strength.

example, by shifting the RAUMTS membership functions to
the right, the linguistic variable RAUMTS is characterized as
“low” with higher membership values with respect to the ref-
erence membership function case. Consequently, the GERAN
percentage assignment is expected to increase and the UMTS
one to decrease. This is reflected in Figs. 9 and 10, where the
GERAN assignment becomes more likely and the UMTS one
more unlikely, with respect to the reference simulation.

As a result of the previous considerations, the setting of
means and standard deviations of membership functions rep-
resent a key element in the RAT selection decision. In order to
eliminate the subjectivity that may characterize the membership

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on November 10, 2008 at 06:22 from IEEE Xplore.  Restrictions apply.



GIUPPONI et al.: NOVEL APPROACH FOR JOINT RADIO RESOURCE MANAGEMENT 1801

Fig. 11. Evolution of the dissatisfaction probability.

function shapes and positions setting, the reinforcement learn-
ing algorithm is applied.

C. Role of Reinforcement Learning

As described in Section III, the reinforcement learning mech-
anism allows one to set the average value of an objective and
measurable parameter PI(t) (i.e., dissatisfaction probability) to
a target value P∗

I . The objective of the experiment described
in this section is to show that the target rate P∗

I can be set to
any desired value (i.e., P∗

I = 1%, 3%, 10%), and the system is
able to maintain this value during the whole simulation time, as
shown in Fig. 11.

Furthermore, during the simulation time, in Fig. 11, the fuzzy
neural system has to cope with two sharp traffic variations. At
simulation start, the whole system switches from a situation
in which no mobile is located in the scenario to a situation in
which 100 users are moving around the scenario and demanding
service. In addition to this, at simulation frame 1 000 000, 50
more users join the scenario. Notice that, at the beginning
of the simulation, a transient period after which the fuzzy
neural machine converges to the desired QoS condition occurs,
whereas, in correspondence with the second traffic change, the
user dissatisfaction does not significantly vary. The reason is
that the reinforcement learning interactions with the surround-
ing environment are effective enough to activate the necessary
modifications on the neural network parameters so that the
average value of user dissatisfaction is maintained at the desired
rate, in spite of the changes in the environment situation.

D. Role of Inference Rules

As pointed out in Section III, the JRRM decision policies are
expressed by means of the fuzzy control rules associated with
the fuzzy inference engine. The results shown up to now have
been obtained considering a set of inference rules referring to
a situation where the UMTS RAT is preferred rather than the
GERAN RAT. An illustrative subset of the 432 rules is shown
in Table II.

If these rules are changed, a different distribution of the
traffic is obtained. This means that the operator could select
different inference rules according to specific operator policies
or business models to match the particular operational needs.

In order to prove that the decision policies stated by the
inference rules (IR) can modify the traffic distribution in
the scenario, a new scenario characterized by nine carriers
in GERAN, in order to offer a similar capacity to the one
offered by UMTS, is considered. In this scenario, three sets
of inference rules will be considered. The first one (UMTS
Priority IR), shown in Table II, gives a higher priority to
the UMTS selection; the second one (GERAN Priority IR)
gives a higher priority to the GERAN selection; and the
third one (Balanced IR) aims at balancing the traffic among
UMTS and GERAN RANs. In Tables III and IV, illustrative
subsets of balanced IR and GERAN priority IRs are shown,
respectively.

The design strategy in the proposed fuzzy rule bases (i.e.,
Tables II–IV) is that if the signal strength (SS) is low for
a RAT, the user would not (N) be assigned to that RAT;
otherwise, the resource availability defines the appropriateness
of the assignment according to the selected decision policy.
For example, if the MS is H , there would be no chance for
WLAN to be selected, even though SSWLAN and RAWLAN

are H . Additionally, if SSUMTS and SSGERAN are H as well
as RAUMTS and RAUMTS , the user would be assigned ac-
cordingly to the selected decision policy. Based on the GERAN
priority IR, the most appropriate choice would be GERAN
(DGERAN = Y,DUMTS = N), whereas, based on the UMTS
priority IR, it would be UMTS (DUMTS = Y,DGERAN =
N). Notice that, if SSWLAN is H and RAWLAN is H , the
WLAN would always be preferred with respect to the other
RATs in the case of low-speed users due to the capacity increase
attained at low cost.

Fig. 12 shows the aggregate bandwidth allocated in each
UTRAN and GERAN base stations for the different inference
rules.

It can be noticed that the traffic load per RAT and cell varies
according to the different policies because the inference rules
determine the RAT selection and the bit rate allocation. In
particular, according to the GERAN and the UMTS priority
IRs, the traffic is mainly distributed within GERAN and UMTS
RATs, respectively, whereas, according to the balanced IR, the
traffic distribution is almost uniform among the different RATs.
As a result of that, an operator could balance the traffic in the
network or give more impact to a particular RAT, preserving the
same performances in terms of dissatisfied users and keeping
the blocking and dropping probabilities to nearly comparable
rates, as is shown in Table V.

E. Role of Multiple Objective Decision Making

The purpose of the experiment included in this section is
to show how the multiple objective decision block is able to
distribute the traffic among the available RATs according to
multiple decision criteria. In particular, considering that besides
radio interface related aspects, the JRRM decision should also
depend on techno-economic and subjective criteria, such as
the operator preference and the user demand. There are three
criteria taken into account by the decision maker in this section:
the FSD (the only one considered up to now), the OP, and the
UD, as described in Section III.
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TABLE II
UMTS PRIORITY INFERENCE RULES

TABLE III
BALANCED INFERENCE RULES

TABLE IV
GERAN PRIORITY INFERENCE RULES

Fig. 12. Result of different inference rules’ policies.

The simulations considered here assume 50 users in the sce-
nario with four GERAN carriers in each cell. Implementation 3
and UMTS priority IRs are considered. It is supposed that

TABLE V
BLOCKING AND DROPPING PROBABILITY

FOR DIFFERENT INFERENCE RULES

both the users and the operator prefer the GERAN choice,
according to the following membership values: OPWLAN =
0.1, OPUMTS = 0.1, OPGERAN = 0.9, and UDWLAN = 0.1,
UDUMTS = 0.1, UDGERAN = 0.9.

In addition, a number is assigned to each criterion that is in-
dicative of its importance in the decision. The matrix describing
the relative importance of each criterion is shown in (40). The
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Fig. 13. Impact of OP and UD criteria in the traffic distribution.

first row in the matrix refers to the FSD criterion, the second
row to the UD criterion, and the third row to the OP criterion.

B =


 1 1/3 1/3

3 1 1
3 1 1


 . (40)

According to (40), the UP and OP criteria are three times
more important than the FSD criterion, and both criteria
strongly prefer the GERAN decision rather than any other
option. As a result, GERAN RAT is expected to be selected
with higher probability than UMTS and WLAN. In practice,
(40) can be changed dynamically in a rather slow way, and the
membership values would depend on the user profile and the
operator business models.

Fig. 13 shows that, with this new configuration, GERAN
bandwidth assignment has grown, whereas UMTS RAT has
never been selected, which is a consequence of the fact that
the most important criteria for RAT selection are now UD and
OP, which strongly prefer the GERAN assignment. In this case,
both blocking and dropping probabilities are retained to 0.11%.
In addition to this, it is worth mentioning that the dissatisfaction
probability in both cases achieves the convergence to the target
value of 10%.

F. Role of Different Implementation Types

In the following results, the four possible implementations
mentioned in Section IV are analyzed and compared in terms
of performances. In all cases, the dissatisfaction probability
is retained to 10%. To this end, the blocking and dropping
probabilities versus number of users resulting from applying
the four schemes are depicted in Figs. 14 and 15.

With respect to the cell combination selection, it can be
clearly observed that the fuzzy criterion (i.e., implementations
3 and 4) is more efficient than the signal strength criterion (i.e.,
implementations 1 and 2), which offers the lowest blocking and
dropping probabilities. The reason is that the fuzzy criterion
is able to take into consideration, by means of a comprehen-
sive trade-off, more information in the decision, such as the
load existing in each cell and the mobile speed. On the other
hand, as long as a fuzzy neural system is considered for each
combination (i.e., implementations 1 and 3), the percentage of
users admitted in the scenario increases when compared to their
counterpart of having a single fuzzy neural system per scenario.

Fig. 14. Performance comparison of the different implementations in terms of
blocking.

Fig. 15. Performance comparison of the different implementations in terms of
dropping.

The reason is that, by means of different combinations, the
specific characteristics of the traffic distribution in each instant
of time are better captured.

G. Performance Comparison of the Proposed Fuzzy Neural
Algorithm With Other Approaches

In order to compare the performances of the proposed fuzzy
neural algorithm, four alternative algorithms are considered.

The first alternative algorithm, which does not take into
account the JRRM concept, is denoted as non-JRRM (NJRRM).
The either new or handoff call will be attached to a RAT
randomly chosen among the ones in which the mobile mea-
sures a signal strength higher than the sensitivity. The second
approach selects the RAT in which the mobile measures the
lowest path loss, and it is denoted as path-loss-based JRRM
algorithm (PLJRRM). Finally, the third approach takes into
consideration the JRRM concept by aiming at balancing the cell
load or resource occupation, as defined in Section III. Among
the cells to which the either new or handoff user could be
attached to according to a SS criterion, the least loaded RAT
will be chosen. Then, the criterion is denoted as load-based
JRRM (LJRRM). A conventional handoff initiation mechanism
based on an signal strength threshold is considered for the three
proposed algorithms.

The last JRRM approach, which is an optimization of the
LJRRM algorithm, is based on [6] and [8]. It is referred to as
LJRRM_Th. Besides considering a signal strength reason han-
dover, LJRRM_Th takes into account a load reason handover.
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Fig. 16. Comparison between blocking probabilities.

Fig. 17. Comparison between dropping probabilities.

To this end, a minimum load reason handover threshold is set to
80% load for each cell. If the current cell exceeds this threshold,
the user could be handed over to another cell, thus aiming at a
more effective load balancing procedure.

It is worth observing that, to the best of the authors’ knowl-
edge, even though it is possible to find in the open literature
some JRRM frameworks able to perform RAT selection (i.e.,
[5] and [6]), no mechanism has been envisaged to assign
variable bit rates during the user session, which is one of the
innovative features of the proposed framework. Consequently,
and in order to make a fair comparison, the alternative algo-
rithms presented assign to the mobile users a constant bit rate
equal to the average rate assigned by the fuzzy neural JRRM in
case of maximum number of users considered (i.e., 150 users),
which is 220 Kb/s and 56 Kb/s in the UMTS and GERAN cells,
respectively.

In Figs. 16 and 17, the comparisons of performances are
shown as a function of the number of users moving around
the scenario. A dissatisfaction probability of 1% is considered
in order to compare the blocking and dropping performances.
The results clearly show the benefits offered by the proposed
fuzzy neural JRRM in front of the other alternatives. In fact,
with respect to the PLJRRM and LJRRM algorithms, the fuzzy-
based approach allows one to take into account all the heteroge-
neous technical inputs that could affect the JRRM decision (i.e.,
cell load and signal strength). In addition, with respect to the
LJRRM_Th, which takes into account load-based handovers
besides the signal-strength-based ones, the fuzzy neural JRRM
is characterized by more flexibility in the JRRM decisions,
thanks to the capability of learning from experience and inter-
acting with the environment embedded in the neural network.

It is also worth mentioning that, even though, according to the
alternative JRRM strategies presented, the admitted users are
always satisfied, because the allocated bit rate is constant and
higher than the desired one, this is at the expense of a very
high increase in both the dropping and blocking probabilities.
On the other hand, the fuzzy neural JRRM algorithm allows
keeping the dissatisfaction probability to the desired value (i.e.,
1%) while achieving, at the same time, much lower dropping
and blocking probabilities.

VI. CONCLUSION

In this paper, a fuzzy neural JRRM strategy for a multicell
and multi-RAT scenario, including the UMTS, GERAN, and
WLAN radio access technologies, has been proposed. The
algorithm operates in two steps in order to select the most
suitable RAT and cell to which each mobile should be attached.
The first step selects a combination of three cells built around
the three considered radio access technologies. To this end, a
fuzzy-based approach has been proven to be more effective than
a signal strength criterion. During the second step, the proposed
JRRM selects the most appropriate RAT among the three
considered and allocates a granted bit rate to each user. The role
of each element of the discussed fuzzy neural system has been
described in detail. Furthermore, the proposed algorithm allows
implementing different operator policies as well as technical
and subjective criteria, such as the operator and user preferences
when performing the RAT selection by means of appropriate
inference rules and a multiple decision mechanism. Moreover,
a reinforcement learning mechanism is used in order to tune the
considered membership functions, allowing the system to keep
a defined QoS parameter to a contracted value. In particular,
the proposed JRRM algorithm is able to keep the dissatisfaction
probability to a target value under different varying conditions
in terms of traffic, mobility, propagation, etc. Finally, the pro-
posed algorithm has been compared to four alternative JRRM
algorithms, showing that the discussed framework is able to
keep a desired value of user dissatisfaction probability while,
at the same time, having low values of dropping and blocking
probabilities.
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