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Abstract

This paper proposes Reinforcement Learning as a foundational stone of a framework for efficient

spectrum usage in the context of next generation mobile cellular networks. The objective of the frame-

work is to efficiently use the spectrum in a cellular OFDMA network while unnecessary spectrum is

released for secondary spectrum usage within a Private Commons spectrum access model. Numerical

results show that the proposed framework obtains the best performance compared with current other

approaches for spectrum assignment. Moreover, the framework is relatively simple to implement in

terms of computational requirements and signaling overhead.
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I. INTRODUCTION

NEXT generation of mobile cellular networks devise a radio access network (RAN) based on

Orthogonal Frequency Division Multiple Access (OFDMA) techniques. Such an interface divides

a broad frequency band into many frequency subcarriers. In practice, the minimum radio resource in

frequency is a small group of contiguous subcarriers, named hereafter as a chunk. This provides high

robustness against typical variations of the frequency response of the mobile channel enabling high speed

data communications [1]. However, an OFDMA RAN in a cellular scenario is highly affected by intercell

interference (i.e., the interference that two or more neighbor cells using the same chunk cause each other),

reducing the data rate that users can obtain in a given cell. Hence, such radio access interface requires

strategies for selecting the cell-by-cell spectrum assignment in order to avoid intercell interference.

On the simplest extent, the cell-by-cell spectrum assignment strategy can be fixed by means of the

Frequency Reuse Factor (FRF) concept [2], where the available spectrum is divided into several equal

subbands that are assigned to cells. For instance, in the case FRF=1 the whole band is available in all cells

whereas in FRF=3 the entire bandwidth is equally distributed among clusters of 3 cells. Also hybrid reuse

schemes like Partial Reuse [3] or Soft Reuse [4], divide the entire frequency band of the system between

a central and an edge subband, with FRF=1 and FRF=3 as frequency planning deployments respectively.

However, these fixed spectrum assignment strategies are proved to be clearly inefficient with variable

spatial traffic demands, where different traffic loads per cell are given at different times of the day. Hence,

higher flexibility in the spectrum management can be provided by Dynamic Spectrum Assignment (DSA)

strategies [5]. They are intended to automatically and dynamically decide which particular chunks are

assigned to each cell in order to maintain the Quality of Service (QoS) of the ongoing users’ sessions

while smartly coping with the intercell interference. Therefore, DSA strategies would allow network

operators to exploit the spectrum band allocated by the spectrum regulator more efficiently than when

considering the FRF concept.

DSA strategies could also be efficiently exploited in the framework of new envisaged regulatory rules.

For instance, they can serve to achieve an efficient spectrum usage within the Private Commons initiative

[6], which is a spectrum access model where primary (licensee) mobile network operators agree to

open their spectrum for unlicensed secondary usage at the same time that they may charge a fee for

each commercial secondary spectrum access [7]. In particular, DSA can provide the primary operators’

networks with the proper cognitive mechanisms to automatically adapt the spectrum assignment to variable

traffic demands, so that non-used chunks can be available for secondary usage.



In this context, Reinforcement Learning (RL) techniques show appealing cognitive capabilities since

they try to learn the suitable set of actions to choose in order to maximize a numerical reward by following

a cyclic interaction with an environment [8]. RL has been proposed for several applications in the field

of mobile communications such as, radio resource management [9], QoS provisioning and routing [10],

[11] and joint management of multiradio and multioperator scenarios [12].

Regarding spectrum assignment tasks, RL was proposed in papers applied to dynamic channel assign-

ment in former voice service oriented mobile networks [13][14], but these approaches are not suitable to

the future services based on data packets transmission. More recently, RL has been applied to spectrum

sensing [15] or spectrum sharing [16] procedures in OFDMA based networks from a secondary spectrum

market but not from a primary operator perspective. On the other hand, in [17], [18], [19] we introduced

a DSA framework with RL capabilities (in the following RL-DSA) for a multicell OFDMA packet radio

access network. The algorithm learns the most suitable spectrum assignment for a given set of cells in

order to maximize a given reward, in accordance with certain cellular system’s performance objective.

This paper extends our previous work by proposing first a new RL-DSA learning algorithm providing

global optimization of the reward signal, allowing RL-DSA to escape from local maxima. Second, a

novel model for practical implementation of the reward signal is given, extending and exploiting what

was briefly described in [17], [18], [19]. Third, an exhaustive performance comparison with, fixed, hybrid,

and other dynamic spectrum assignment strategies within the private commons scenario is given showing

remarkable improvements over the rest of strategies. Finally, new results attending to the convergence

behavior of RL-DSA and practical facts regarding the complexity and signaling overhead of the framework

are given, illustrating that the implementation of our proposal is feasible and then could constitute a

candidate solution for spectrum management in next generation cellular systems.

In the following, Section II presents some useful definitions. Section III is devoted to present the

RL-DSA algorithm whereas section IV describes how RL-DSA can be implemented in a typical next

generation cellular network. Next, sections V and VI present the simulation model and obtained results

respectively. Finally section VII concludes this paper.

II. DEFINITIONS AND PERFORMANCE METRICS

We consider a spectrum band of W Hz allocated to a primary operator that is shared between a set of

K cells in the downlink OFDMA mobile cellular network. The band is divided into N chunks so that

chunk bandwidth is B = W/N Hz. We define a spectrum assignment as a distribution of the N available

chunks over the K cells, being possible the same chunk to be assigned to more than one cell, causing



potential intercell interference. Different spectrum assignment strategies are possible, leading to different

performances over the cellular network. In order to compare different schemes and for the remainder of

the paper, we define the following performance metrics:

• User dissatisfaction probability P thtarget . It is defined as the percentage of seconds in which user

throughput is below a target throughput thtarget called satisfaction throughput.

• Spectrum usage. It is defined as Wk=NkB where Nk is the number of chunks assigned to cell k.

• Spectral efficiency. It denotes the throughput per unit of spectrum. It is defined as η=(1/K)
∑K
k=1 ηk,

in bits/s/Hz, where ηk=THk/Wk is the spectral efficiency per cell and THk is the aggregate

throughput of all users in cell k.

III. RL-DSA ALGORITHM

RL-DSA functional architecture is composed of several RL agents, whose operation procedure is

described in the following, together with the new learning algorithm and the RL-DSA architecture.

A. Single RL agent based on REINFORCE

Let consider that a single agent i interacts with an environment in a succession of time steps (denoted

with t), where for each action a reward signal ri(t) is returned to the agent. The proposed RL-DSA

algorithm is based on the modified REINFORCE methods presented in [20], which have been proven to

converge to global maximum of reward signal in the long-term thanks to the climbing of an appropriate

gradient of the average reward, and to the inclusion of a perturbation term to allow RL to get out of local

maxima. In this paper we focus on the simplest REINFORCE agent, which is based on Bernoulli distri-

butions and logistic functions. Hence, each RL agent’s output yi(t) ∈ Y={0, 1} is a Bernoulli random

variable with action selection probability pi(t). That is, it is a two-action agent where Pr(yi=1)=pi and

Pr(yi=0)=1−pi. Moreover, agent’s input xi(t) and internal status wi(t) are related with pi(t) by means

of the logistic function as

pi(t)=
(
1 + e−xi(t)wi(t)

)−1
. (1)

The learning capability of the agent is condensed step-by-step in the internal status wi(t), which is

updated in accordance with the following learning rule:

wi(t)=wi(t−1)+∆wi(t), (2)

∆wi(t)=α(t)[ri(t)−r̄i(t−1)][yi(t−1)−pi(t−1)]xi(t−1) + α(t)ξ (wi(t−1)) +
√
α(t)ζi(t). (3)



Note that, by varying the internal status, wi, the learning algorithm is varying the selection probabilities

in (1) so knowledge acquired from current reward is certainly enforced in the agent. The first term in (3)

performs the gradient ascent of the reward signal as in the learning algorithm considered in [17], [18],

[19]. Parameter α(t) > 0 is called the learning rate (for details regarding its update see [17]). r̄i(t) is

the average reward obtained as r̄i(t)=βri(t) + (1−β)r̄i(t− 1), with 0 < β 6 1. The second term in (3)

bounds the behavior of the algorithm and introduces a minimum exploratory behavior in the agent, with

a small exploratory probability, 0 < pexplore � 1, through the next function

ξ (wi(t)) =


L− wi(t), wi(t) > L;

0, |wi(t)| < L;

−L− wi(t), wi(t) 6 −L;

(4)

where L= ln ((1−pexplore)/pexplore). This probability is necessary to allow the algorithm to explore new

actions not taken in the past in order to seek for better reward responses. Finally, the third term introduces

a perturbation parameter ζi(t), which is a random variable of zero mean and variance σ2 (e.g., in this

paper ζi(t) takes the value either +σ or -σ with equal probability, being σ a positive constant). This term

was proposed to give the algorithm the capability of escaping from local maxima and reaching global

maximum of the average reward with a sufficient small value of σ and a sufficient number of iterations

of the learning loop [20].

B. RL-DSA functional scheme and procedure

Fig. 1 depicts the functional architecture of RL-DSA, which is composed of KN RL agents. The

kn-th agent is devoted to learn whether the n-th chunk is assigned to the k-th cell. Obviously, in order

to face a real world problem with RL it is necessary to appropriately select the physical meaning of

the context, output and reward sets. Particularly, we use RL-DSA to associate different cellular network

traffic distributions (context inputs) to different spectrum assignments (output actions). Then, the context

xkn reflects the load status of the k-th cell. That is, xkn=Uk ∀n, being Uk the average number of users

in the k-th cell. This context remains constant during a RL-DSA execution so that RL-DSA is able to

associate solutions to both homogeneous and heterogeneous spatial distributions of the traffic load (i.e.,

users per cell). On the other hand, the action taken by RL-DSA is a binary vector Υ=(y11, y12, ..., yKN )

that represents a candidate chunk-to-cell assignment in each RL step. To this end, it is considered that

the n-th chunk is assigned to the k-th cell if the output ykn is 1 (and not assigned in case ykn is 0).

Finally, the physical meaning of the reward signal r, common to all agents, is given in next section.



Then, for a succession of RL-steps t = 1, 2, ... RL-DSA works as follows:

1. REPEAT

2. Receive reward r(t) from the environment.

3. Update average reward r̄(t).

4. FOR all k ∈ {1, 2, ...,K} and all n ∈ {1, 2, ..., N}

5. Update internal status wkn(t) following (2) and (3)

6. Compute internal probabilities pkn(t) according to (1)

7. Generate an action ykn(t) as a Bernoulli random variable with action selection probability pkn(t)

8. END FOR

9. UNTIL (t > MAX STEPS)

10. FOR all k ∈ {1, 2, ...,K} and all n ∈ {1, 2, ..., N}

11. IF pkn > 0.5

12. Assign the n-th chunk to the k-th cell.

13. ELSE

14. Do not assign the n-th chunk to the k-th cell.

15. END IF

16. END FOR

Condition in step 9 finishes the learning loop when a maximum number of steps (MAX STEPS)

is reached. Steps from 10 to 16 are executed by Decision Maker module in Fig. 1 to decide the final

spectrum assignment for the real network. Notice that RL-DSA bases on the knowledge stored in internal

probabilities pkn(t) and not on the very last random action to decide the spectrum assignment to the

network area. Moreover, note that a given chunk can be assigned by the algorithm to more than one cell.

Regarding the initial step, the first time that RL-DSA is triggered, full assignment is set, i.e., ykn(0)=1,

and accordingly pkn(0)=1−pexplore and wkn(0)=L ∀n, k. Moreover r̄kn(0)=0 ∀n, k. Notice that, thanks

to the exploratory probability, the spectrum assignment chosen by RL-DSA in the following steps can be

different from full assignment (because the outputs are Bernoulli random variables). This situation triggers

the learning of RL-DSA, causing that internal status and consequently action selection probabilities will

evolve according to the learning rule until the end of the learning loop. Moreover, the perturbation term

included in this paper in the learning rule makes that the update of the internal status is different for

each chunk in one cell even if the reward and the outputs do not vary in two consecutive steps, allowing

RL-DSA to escape from local maxima of the reward signal.



Finally, in subsequent triggers, RL-DSA begins from the assignment learned in the previous run, so

that the knowledge acquired until that moment in internal status and probabilities is exploited.

C. Reward Signal Formulation

The target of the DSA strategy is two-fold. First, it should assure a given QoS in terms of a minimum

average user throughput in the primary cellular network. Second, it should improve spectrum usage in

a Private Commons scenario, where opportunities for secondary spectrum usage in primary non-used

spectrum are generated. Based on these targets, the reward signal per step r(t), common for all RL

agents in RL-DSA, is defined as:

r(t)=
∑K

k=1
rk(t) +

∑s(t)−1

j=1
jR, (5)

rk=


0, if t̂hk<thtarget;

λη̂k + µ(N−Nk), otherwise.
(6)

rk constitutes the reward signal per cell, R is an upper bound for all rk, and s(t) stands for the number

of cells that fulfill a QoS constraint, rk(t) > 0, as explained in the following. t̂hk is the estimated average

user throughput for cell k in bits/s, η̂k is the estimated average spectral efficiency in bits/s/Hz, and N−Nk

is the number of non-used chunks in that cell. λ>0 and µ>0 are appropriate scaling constants. Then, the

reward for a given cell is zero if the average user throughput is below the user satisfaction throughput

target thtarget. On the other hand, if the QoS is fulfilled in the k-th cell, rk is a positive real value, which,

in practice, is upper bounded due to the existence of a maximum achievable spectral efficiency ηmax and

a finite number of available chunks. Then, let R=ληmax+µN be this upper bound that fulfills 0 6 rk<R

∀k. The inclusion of the second term in (5) assures that r(t) increases monotonically with s(t), as proved

in the Appendix. Thus, RL-DSA will tend to select a spectrum assignment that maximizes the reward

while at the same time maximizing the number of cells fulfilling the QoS constraint.

IV. DSA FRAMEWORK WITH LEARNING CAPABILITIES

Fig. 2 depicts a hierarchical architecture for an operator who deploys a multicell system with an

OFDMA-based radio interface. Typically, OFDMA builds a time-frequency grid (Fig. 2 lower right

corner). The whole available band is divided into chunks, whereas time it is divided into frames of

a very short duration (e.g., ms), which allows combating the rapid fluctuations of the radio channel, also

known as fast fading [1]. From a resource allocation perspective, we have to decide which chunks are



allocated to each cell, and which of those chunks in a cell are assigned to a user in a given frame. Trying

to perform this chunk-to-cell-to-user assignment simultaneously in the short-term can be very costly in

terms of signaling exchange and computational requirements. Our hierarchical approach can reduce these

costs by decoupling the resource assignment problem into two temporal scales:

• In the short-term (i.e., frame by frame) the so called Short-Term Scheduler in each cell decides

how to schedule users’ transmissions into available chunks depending on the channel status reported

by users. There are several possibilities for the scheduling strategy. We consider in this paper two

of them: Round Robin (RR) and Proportional Fair (PF). RR is a non-channel aware strategy that

cyclically allocates chunks to users regardless whether the radio channel status is appropriate or not

for the selected user in the scheduled frame. On the other hand, PF is a channel-aware strategy

that is able to exploit the channel in time and frequency domain [21]. It takes into account the

instantaneous Signal to Interference plus Noise Ratio (SINR) γm,n perceived by the m-th user in

the cell in the n-th chunk to schedule users’ transmissions. We consider constant transmitted chunk

power and the typical radio channel propagation features (i.e., the distance dependant pathloss, slow

fading, and frequency selective fading) for the computation of γm,n [1]. Frequency selective fading

makes that the channel gain varies from one chunk to another for all m and n. Additionally, STS

takes care of the so called Adaptive Coding and Modulation (ACM) procedure, which decides the

modulation and coding rate that m-th user should employ in transmission over the chunk n for a

given γm,n. In this paper ACM bases on Table I [22]. Finally, users can be granted with more than

one chunk in a frame, but a chunk can only be assigned to a single user.

• In the long-term (e.g., thousands of frames) the controller of a cluster of cells (named hereafter

DSA controller) decides which chunks should be used by each cell under control (i.e., it performs

cell-by-cell spectrum assignment). Long-term execution can be considered because a chunk-to-cell

assignment can be valid for a given spatial traffic distribution which usually changes in a slow

way. The functional architecture of the DSA controller is depicted in Fig. 2. RL-DSA implements

the decision and learning functionalities as explained before in section III. RL-DSA execution is

supported by two functional entities that constitute its environment: the RL-Trigger entity and the

Network Characterization Entity (NCE), as explained next.

A. RL-Trigger entity

The RL-Trigger entity observes and analyzes the network variable status. Then it detects the instants

when the current spectrum assignment is no longer valid to achieve a given users’ QoS performance.



Let P thtarget

k be the average dissatisfaction probability per cell k over a period of l seconds. Based on

this period, each cell reports to the DSA controller P thtarget

k and its average number of users Uk. Then,

RL-Trigger computes the average network dissatisfaction probability as

P thtarget=(
∑K

k=1
UkP

thtarget

k )/(
∑K

k=1
Uk) (7)

where K is the number of cells of the network area. Then the RL-Trigger entity triggers the execution of

the RL-DSA algorithm if P thtarget is either above a given threshold δup or below a threshold δdown, since

in these cases current assigned resources would be either insufficient or over-provisioned, respectively,

in accordance with the desired QoS. In addition, RL-Trigger entity provides the execution context at the

beginning of a new execution, which in this paper is the average number of users per cell Uk. This context

orients the RL-DSA learning and hence allows RL-DSA to adapt to potential uneven distributions of the

traffic load.

B. Network Characterization Entity

Once RL-DSA is executed, its intermediate actions are applied off-line to a Network Characterization

Entity (NCE) 1. Each action of RL-DSA represents a candidate spectrum assignment for the network, and

in turn, the NCE returns the reward signal given in (5). Hence NCE constitutes a model of the network’s

response in terms of reward for a given spectrum assignment and network context. We propose in this

paper a practical model to implement NCE.

In order to build the reward signal, the NCE needs to estimate the average spectral efficiency η̂k, the

average user throughput for cell t̂hk, and the number of non-used chunks in that cell N−Nk. This last

term can be easily obtained from the input spectrum assignment provided by RL-DSA. Alternatively, η̂k

and t̂hk can be obtained as follows.

Assuming a cellular system with uniformly distributed users per cell, the average spectral efficiency

in bits/s/Hz for a given cell k is given by

η̂k=N−1
k

∑
n∈Ck

G(Φk,n, Uk)
∫∫

A
A−1q (SINR(Φk,n, ρ, θ)) ρdρdθ, (8)

where Nk and Ck are the number and the set of chunks assigned to a given cell k respectively. Φk,n,

is the set of cells that cause interference for a specific cell k in a specific chunk n, and Uk is the

average number of users in the cell. G(Φk,n, Uk) is a gain factor that captures the characteristics of the

short-term scheduling strategy (Round Robin or Proportional Fair) used in the cell. q (SINR(Φk,n, ρ, θ))

is the spectral efficiency in bits/s/Hz for a given value of the Signal to Interference plus Noise Ratio



(SINR(Φk,n, ρ, θ)) at a given point (ρ, θ) of the cell in polar coordinates. For instance, function q can

be the mapping table given in Table I. Hence, (8) is the average spectral efficiency for all points in the

area A covered by the cell and for all assigned chunks to that cell.

Mobile cellular networks are interference limited systems, that is, noise at the receiver can be usually

neglected when compared with the received interference. Then, we approximate the SINR as a Signal to

Interference Ratio as follows:

SINR(Φk,n, ρ, θ)=

 ∑
j∈Φk,n

(
1 + (dj/ρ)2 − 2 (dj/ρ) cos (θ − φj)

)−0.5χ

−1

(9)

where it has been considered that any interfering cell j is located, in polar coordinates, at a point (dj ,φj)

with respect to the reference cell k. Also, the same transmission power and antenna gains are assumed

for all cells, and χ denotes the pathloss exponent [1]. On the other hand, G(Φk,n, Uk) will depend on the

considered packet scheduling strategy. In particular, it is well known that the achieved spectral efficiency

for a RR short-term scheduling strategy does not depend on the number of users in the cell, because

RR leads to equal users’ transmission probability [23]. Then, for a RR strategy a proper setting would

be G(Φk,n, Uk)=1. However, a channel-aware scheduler with unequal users’ transmission probabilities,

such as PF, leads to a dependence of the achieved spectral efficiency with the number of users in the cell

under certain SINR patterns. For this type of channel-aware schedulers, G(Φk,n, Uk) would correspond

to a gain factor over the RR spectral efficiency. For PF, gain factor concept was developed by recent

studies [23]. This gain factor depends on the number of users and the SINR distribution over the cell, as

shown in Fig. 3. This figure plots a set of PF gain factor curves obtained for exhaustive simulations that

focus on the central cell in a two-ring macrocell scenario with different intercell interference patterns

Φk,n, leading to different average SINRs (other simulation values are detailed in Table II). Finally, NCE

estimates the average user throughput per cell as t̂hk = Wkη̂k/Uk, where Wk is the bandwidth assigned

to cell k.

V. SIMULATION MODEL

Results presented in this paper focus on the assessment of the proposed framework in a dynamic

downlink OFDMA-based multicell scenario where both temporal and spatial variations of the load per

cell are considered. Configuration parameters are summarized in Table II. The scenario is composed of

K=19 cells and a maximum of N=12 available chunks, which is one of the possible spectrum deployments

of 3GPP LTE [24]. Users are distributed homogeneously within a cell, and they move at the speed of 3

km/h following a random walk model [24]. Users always remain within their cell (i.e., handovers are not



considered). Users are assumed to have always data ready to be sent (i.e., full-buffer traffic model), so

that each user tries to obtain as much capacity as possible. The target throughput thtarget is 256 kbits/s.

The STS implements a PF strategy, although similar results have been obtained with a RR short-term

scheduling strategy.

The performance of the system is evaluated during one hour to capture changes in the spatial distribution

of the load (users). In that respect, three types of cells can be distinguished in the scenario, as it is shown

in Fig. 4. At the beginning all cells are equally loaded with 15 users. After 25 minutes, type 1 cell

increases the number of users in 2 users per minute. Type 2 cells increase the number of users in

one user per minute whereas type 3 cells decrease the number of users in one user per minute. These

variations take place only during a 10 minutes period between minutes 25 to 35. After minute 35, users

are heterogeneously distributed among cells. Note that this pattern tries to reflect a temporal evolution of

the load in the scenario that progressively would tend to concentrate the traffic load within a single cell

(i.e., cell 1 in Fig. 4). Finally, RL-DSA is executed each time that the system dissatisfaction probability

falls outside the interval (δdown, δup) = (0.001, 0.1). Default RL configuration parameters are included

in Table II based on experimental results.

VI. RESULTS

A. Performance Evaluation

Results for the proposed RL-DSA algorithm are compared with fixed and dynamic strategies. As fixed

strategies, frequency reuse factors FRF1 (universal reuse), FRF3, Partial Reuse (PR) [3], and Soft Reuse

(SR) [4] strategies are considered. As a dynamic strategy, the heuristic strategy DSA2 from [6] named

here Heur-DSA is retained. Configuration parameters for these strategies can also be found in Table

II, where it can be appreciated that Heur-DSA is dynamically triggered following the same criterion as

RL-DSA.

Fig. 5 depicts the average dissatisfaction probability evolution for all cells and each type of cell.

Results for cells #1, #3 and #9 in Fig. 4 are presented, as representative ones for type of cells 1, 2 and

3 respectively (analogous results were obtained for other cells of the same type). RL-DSA improves the

average dissatisfaction probability with respect to the fixed spectrum assignment strategies and shows

similar behavior with respect to Heur-DSA. Dynamic strategies provide dramatic improvements with

respect to fixed strategies especially when the distribution of the load is heterogeneous (i.e., for time

above 35 minutes). For instance, the dissatisfaction probability is more than 4 times lower than that

for FRF3. Also, RL-DSA maintains a dissatisfaction probability below 10% target for all type of cells.



Similarly, Fig. 6 depicts the spectral efficiency evolution. It can be observed that RL-DSA attains the

best spectral efficiency for all cells. Thus, RL-DSA achieves the best trade-off between users’ satisfaction

and spectral efficiency. Finally, it is shown in Fig. 7 that RL-DSA approach achieves the best results

in fairness fulfillment. Fairness is defined as the 5-th percentile of the average user throughput per cell

normalized to mean throughput. It represents the balance between the throughput attained by the users

in the center and in the edge of the cell.

Fig. 8 depicts the chunk usage per cell. Specifically, Fig. 8(a) shows the average number of non-

used chunks per cell in the scenario demonstrating that RL-DSA is the strategy that leaves more free

chunks. However, it is also interesting to see how these non-used chunks are distributed. Fig. 8(b) shows

the average number of non-used chunks in clusters of adjacent cells in the scenario. That is, we count

for chunks that are not used in a cell and all its adjacent cells. Such non-used chunks would be more

appropriate for secondary usage since secondary transmissions would not cause interference in a wider

region. Observe that RL-DSA is the unique strategy that generates these spectrum usage opportunities

during the complete simulation. Therefore, RL-DSA assigns the right amount of spectrum per cell so

that users obtain the satisfaction throughput, but not more. In this way, there is spectrum free that can

be used by a secondary spectrum market.

B. Convergence Behavior

The convergence behavior of RL-DSA for different values of its main parameters such as the learning

rate (α), the maximum number of steps (MAX STEPS), and the random perturbation term (σ) are

studied hereafter. These results show a qualitative behavior that may be useful to setup RL-DSA. Fig.

9 shows Root Mean Square Error (RMSE) between the reward achieved by RL-DSA and the optimal

reward in a given scenario. In order to make feasible the computation of the optimal reward, we have

set a very particular scenario with 19 cells and 19 chunks, and 5 users per cell, where any spectrum

assignment that gives one different chunk per cell (i.e., no intercell interference) was considered to be

optimum, that is, attained the best reward defined in (5). Note that an excellent RMSE of 1% can be

reached in 104 steps for some of the configured parameters, which denotes a good convergence behavior

of RL-DSA since the solution space for the scenario involves 219·19 (4.69·10108) different assignments.

The study reveals that a high α reduces the number of steps needed to converge to the optimal solution.

On the other hand, high values of σ perform better for a low number of steps but lower values obtain

lower RMSE for a high number of steps. Finally, notice that for a number of steps above 105 the RMSE

falls below 2% for all tested values of the parameters, revealing a robust behavior of RL-DSA with



respect to the values selected for its parameters.

C. Implementation Issues

The required signaling exchange between the cells and the centralized DSA controller in the proposed

framework in section IV is low since it is only produced on periods of l seconds. Moreover, only few

bytes are needed to encode the dissatisfaction probability P thtarget

k and the average number of users Uk per

cell k, which act as inputs of the RL-Trigger entity. That is, if P thtarget

k and Uk are encoded with 8 bits and

1 bit is devoted to determine if a specific chunk is assigned to a cell (i.e., KN bits encode the resultant

spectrum assignment), then K(N + 8 + 8) bits are needed to bear all the signaling for the execution of

RL-DSA. For the numbers considered in Table II, only 532 bits are needed, which is clearly bearable

for current communication trunks of a network operator.

Moreover, RL-DSA requires a small constant number of operations per step (i.e. few additions and

products including simple forms of random number computation). Finally, memory requirements are low

since only few records to store the weights, probabilities, rewards and outputs are needed per RL-agent.

These properties make the implementation of the RL-DSA scheme quite feasible.

VII. CONCLUSION

This paper has presented a framework for Dynamic Spectrum Assignment (DSA) in the context of

next generation downlink OFDMA-based networks. Decisions regarding spectrum assignment reside

on a Reinforcement Learning-based algorithm (RL-DSA), which maximizes a reward signal defined

targeting an efficient spectrum usage with QoS assurance. On the one hand, RL-DSA has shown the best

tradeoff between spectral efficiency, QoS fulfillment and fairness among the different spectrum assignment

strategies. On the other hand, RL-DSA was able to generate spectrum usage opportunities for secondary

spectrum markets in a Private Commons spectrum access model. In addition, it is quite easy to change

the optimization objective of the framework, by changing the reward signal formulation and the NCE

functional block devoted to build such a reward signal. Finally, studies about convergence behavior show

an excellent robustness of RL-DSA with respect to the values selected for its parameters.

The proposed framework could be extended for a distributed architecture in future work. Then, this

architecture could enable the deployment of base stations that autonomously learn the best spectrum

configuration to achieve eventually near-optimal spectral efficiency and QoS performance.



APPENDIX

In the following it is proved that reward r(t) increases monotonically with the number of cells s(t)

fulfilling the QoS constraint. The reward signal r(t) from expression (5) can be bounded as:∑s(t)−1

j=1
jR 6 r(t) < Rs(t) +

∑s(t)−1

j=1
jR. (10)

By substituting the well-known result for the arithmetic sum and operating we can get:

0.5R[s2(t)− s(t)] 6 r(t) < 0.5R[s2(t) + s(t)]. (11)

On the other hand, let assume an increase in the number of cells fulfilling the QoS constraint s(t) to

s′(t) = s(t) + 1. Then, the corresponding reward r′(t) obtained will be lower bounded as:

0.5R[s′2(t)− s′(t)] = 0.5R[s2(t) + s(t)] 6 r′(t). (12)

and r′(t) > r(t) follows. This proves that r(t) is a monotonically increasing function with the number

of cells s(t) that fulfill the QoS constraint (i.e., rk > 0).
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LIST OF TABLES

TABLE I

MODULATION AND CODING SCHEMES [22]

SINR threshold (dB) Modulation b (bits/s/Hz) Coding Rate r Spectral efficiency q=b*r (bits/s/Hz)
< 0.9 0 0 0
≥ 0.9 2 (QPSK) 1/3 0.66
≥ 2.1 2 (QPSK) 1/2 1
≥ 3.8 2 (QPSK) 2/3 1.33
≥ 7.7 4 (16QAM) 1/2 2
≥ 9.8 4 (16QAM) 2/3 2.66
≥ 12.6 4 (16QAM) 5/6 3.33
≥ 15.0 6 (64QAM) 2/3 4
≥ 18.2 6 (64QAM) 5/6 5



TABLE II

SIMULATION PARAMETERS

Number of cells [K] 19
Cell Radius [R] 500 meters
Antenna Patterns Omnidirectional
Frame duration 2 ms

Averaging window [l] 15000 frames
Carrier Frequency 2 GHz

Number of chunks [N ] 12
Chunk bandwidth [B] 375 kHz
Total Bandwidth [P ] 33 dBm

Path Loss at d Km in dB 128.1+37.6log10(d) [24]
Path Loss Exponent [χ] 3.76

Slow Fading standard deviation 8 dB [24]
Slow Fading decorrelation distance 5 m [24]

Fast Fading Model ITU Ped. A [24]
UE thermal noise -174 dBm/Hz
UE noise factor 9 dB

UE speed 3 km/h
Trigger Threshold [δdown, δup] [0.001, 0.1]

User’s satisfaction throughput [thtarget] 256 kbits/s
Maximum spectral efficiency [ηmax] 5 bits/s/Hz

Short Term Scheduling method Proportional Fair [21]
PF Averaging window 50 frames

RL parameters [α, β, σ,∆, pexplore] [100, 0.01, 0.05, 10-6, 0.001]
Reward Parameters [R, λ, µ] [6.2, 1, 0.1]

MAX STEPS 1000000
Partial Reuse (PR) specific parameters

Number of chunks of central cell 6
Number of chunks of edge cell 2
Centre-Edge pathloss threshold -100 dBm

Soft Reuse (SR) specific parameters
Number of chunks of central cell 8
Number of chunks of edge cell 4
Centre-Edge pathloss threshold -100 dBm
Heur-DSA specific parameters

Initial Margin Factor 1.5
Margin factor step 0.25
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NOTES

1It is worth noting that the off-line learning considered here brings two major advantages over on-line learning (i.e., actions

applied directly to the live real network). First, the physical time taken by the real network to return a proper averaged reward

can be unacceptably slow in terms of elapsed time compared with the quick response that NCE could provide. Second, actions

taken by RL-DSA during the learning process are random, bringing in some cases prohibitive costs in performance for the live

network if on-line learning is implemented. On the contrary, applying those actions to an off-line environment only supposes a

cost in simulation time, allowing RL-DSA to take actions from the whole action space without any restriction.
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