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ABSTRACT 
In future all-IP based wireless networks, like the envisaged in 
the Long Term Evolution (LTE) architectures for future 
systems, network providers will have to deal with large traffic 
volumes with different QoS requirements. In order to increase 
exploitation of network resources wisely, intelligent adaptive 
solutions for class based traffic regulation are needed. In 
particular, Active Queue Management (AQM) is regarded as 
one of these solutions to provide low queuing delay and high 
throughput to flows by smart packet discarding.  

In this paper, we propose a novel AQM solution for future 
all-IP networks based on a reinforcement learning scheme 
that allows controlling both the queuing delay and the packet 
loss of the different service classes. The proposed approach is 
evaluated through simulations and compared against other 
algorithms used in the literature, like the Random Early 
Detection (RED) and the Drop From Tail (DFT), confirming 
the benefits of the proposed algorithm. 

I. INTRODUCTION 

With the aim to provide seamless mobility and service access, 
mobile communications are nowadays directed towards all-IP 
network solutions. In that sense, 3GPP is currently 
standardising the requirements for Evolution of current 3G 
systems (up to and including Release 6) to all-IP Network 
system from Release 7 [1]. The expectations are the 
integration of existing 3GPP access systems with future 
enhancements and other wireless (WLAN, WiMAX, etc.) and 
wired access technologies (xDSL, Cable, etc.). Independence 
of the layer 2 in all-IP enables session connectivity across 
multiple access systems, with faster and cheaper 
incorporation of new technologies and services. 

Merging of communications technologies is expected to 
introduce huge amount of IP traffic that should be handled by 
operators in the different segments of the all-IP network. 
Therefore, new challenges are to be faced in order to provide 
end-to-end quality of service (QoS) to users with different 
types of services, while using network resources efficiently. 
This will avoid the over provision in the different segments 
with the consequent capital expenditure saving for network 
operators.  

Differentiated services (DiffServ) [2], appear as a possible 
solution to QoS provision in next generation all-IP networks. 
Traffic of the same class is classified under one flow and 
treated as one. Priority in network assignment depends on the 
flow’s class denoted as per-hop-behaviour (PHB). Two PHB 
groups are recognized for DiffServ: expedited forwarding 
(EF) [3] and assured forwarding (AF) [4]. EF is characterised 
by low loss, latency and jitter. For the AF class bandwidth 
and jitter guarantees are expected to have lower latency 
demands than for the EF class. In turn, DiffServ can have 

different types of AF classes with different levels of drop 
precedence of IP packets. On the other hand, traffic with 
neither bandwidth nor high delay restriction is identified as 
best effort (BE) traffic. Usual mapping sorts VoIP users in 
EF, video streaming users in AF and www browsing, mms, 
email, ftp users in BE class. 

The queue management is a well known issue in IP 
networks with best effort traffic [5]. It already plays a role in 
commercial core networks in order to increase network 
efficiency and support QoS. The current solutions are, 
however, oriented to network over-dimensioning and absolute 
precedence of prioritized classes with respect to best effort 
service to avoid buffer congestion. In presence of congestion 
or overload situations simple tail drop from limited buffers is 
applied, usually only for BE class [6]. 

Nevertheless, the voice service, as legacy service of the 
mobile communications systems, is still dominant in vast 
aspects of mobile networks. Migration of conversational users 
to PS (packet switched) networks (VoIP) will lead to IP 
domains with a significant fraction of EF users. In these 
environments, active queue management becomes even more 
sophisticated and improvements for class based queues might 
contribute to increase network efficiency. 

In this paper, a novel intelligent active queue management 
algorithm is proposed, the Reinforcement Learning-Queuing 
Delay Limitation (RL-QDL). It enables adaptive queue 
management and copes with the QoS requirements of the 
different DiffServ classes in terms of both packet dropping 
ratio and end-to-end delay. The algorithm will be evaluated 
by means of simulations and compared against other 
proposals existing in the literature, like the Random Early 
Detection (RED) and the Drop From Tail (DFT), revealing a 
better behaviour to improve resource utilisation and to adapt 
to the varying traffic conditions.  

The rest of this paper is organized as follows. In section II, 
end-to-end QoS in all-IP is described. A review of the 
different baseline solutions to the queue management problem 
and its place in all-IP networks is given in section III. This is 
followed by our algorithm described in section IV. In section 
V modelling scenario is described, and results are compared. 
In the end, conclusions are summarised in section VI. 

II. QOS IN ALL-IP NETWORKS 

While providing advanced services and seamless mobility 
independently of the access technology, main objectives of 
all-IP networks include end-to-end QoS and security 
guarantees. However, it is not easy to predict the IP traffic 
model for this network, while at the same time QoS should 
not be degraded. As examples for possible methods to achieve 
this, intelligent routing and dynamical load control 
mechanisms are usually mentioned [1]. 



The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'07) 

 
Figure 1: Edge-to-edge QoS support. 

On its way, in the all-IP network, traffic is passing through 
various domains, as illustrated in Figure 1. One domain might 
correspond to the network provisioned by one service 
operator, including the radio access part with one or more 
technologies and the core network. The Ingress Router (IR) is 
the first router to receive the packet in one domain and the 
Egress Router (ER) is the one to send it out of it. Intermediate 
routers are denoted as Core Routers (CR). The called party or 
end server might be in another domain that can either be a 
direct neighbour of the first one or be located several domain 
hops away. Each domain needs to meet specific edge-to-edge 
QoS guarantees predefined for it, between ingress and egress 
router. This should be carried out following previous 
negotiation, in order to support the desired end-to-end QoS. 
Inside one domain the bandwidth broker (BB) is managing 
the resource handling and QoS provisioning, depending on 
the accomplishment of QoS expectations in egress routers. 

III. ACTIVE QUEUE MANAGEMENT IN ALL-IP NETWORKS 

The router model considered here is shown in Figure 2. It 
assumes class based queuing (CBQ), with support for three 
different classes, namely EF, one AF and BE. The entering 
traffic is directed in the corresponding buffer by the aggregate 
classifier. Queue management is responsible for packet 
behaviour inside the buffer. In turn, the scheduler is in charge 
of link resource assignment by determining the class whose 
packet will be transmitted next. For a given class the packets 
of the buffer are served following a first input first output 
(FIFO) policy. 

The need for a proper queue management strategy emerges 
from the queuing behaviour itself. Packet buffering restrains 
data loss; however, queuing directly introduces delay into the 
system. Therefore, buffers should be related to the maximum 
delay the system is permitted to introduce. At the same time, 
queues should be able to absorb the data bursts arising from 
the IP traffic variability. Consequently, the queue limits 
should also be related with the bursts size.  

Under high traffic conditions, just by limiting the buffer 
size, the accumulation of the queues will continue and, while 
accumulating delay in flows, at the same time the ability of 
absorbing incoming data bursts will be reduced. Therefore 
AQM strategies are introduced to control which packets 
should be dropped from the queue.  

In all-IP networks AQM becomes a tool to support QoS 
under extreme conditions and, together with dynamic routing 
and scheduling, it takes care of traffic handling. Typically, 
AQM has its place as a mechanism for congestion control in 

best effort networks [7]. However, AQM methods for CBQ 
have been rarely studied, and no dominant solution has been 
established. Therefore, the algorithm proposed in this paper 
will be compared with two basic queue management solutions 
that are detailed in the following. 

EF

AF

BE

Scheduler
Input Output

Per-Class Queues

Curent occupancy

Aggregate 
Classifier

 
Figure 2: Router model. 

A. Drop From Tail (DFT) algorithm 
This baseline algorithm consists in a simple limitation of the 
queue lengths [8]. In that case, every packet that encounters 
full queue on arrival will be dropped. Though simple, this 
method is still a usual solution in queue management. In our 
case, the queue size will be specific for each class. 

B. Random Early Detection (RED) algorithm 
The IETF RFC recommendation on active queue management 
[5] is to use RED [9] as the default queue management 
algorithm unless otherwise needed by the operator. In order to 
face overload situations RED algorithm drops packets by 
assigning to each incoming packet a certain dropping 
probability depending on the queue occupancy N (i.e. the 
number of packets in the buffer) at the time of the packet 
arrival. For this purpose two thresholds for queue occupancy 
NMIN and NMAX, and a maximum drop probability pMAX are 
defined. Then, the packet dropping probability in RED is 
calculated as: 

 
0

1

MIN

MIN
N MAX MIN MAX

MAX MIN

MAX

N N
avr Np p N N N

N N
N N

 ≤
 −= ⋅ < < −
 ≤

 (1) 

Where avr is the estimate of the average queue size calculated 
with weight factor α (0<α<1): 
 (1 )avr avr Nα α= ⋅ − + ⋅  (2) 
Although this algorithm was originally developed for single 
buffer case, in our study RED will be applied independently 
to the buffer of each of the classes, like in [10]. 

IV. PROPOSED AQM SOLUTION, RL-QDL 

We propose an AQM mechanism whose objective is the 
preservation of QoS when the network is highly loaded. Let’s 
suppose that QoS specifications are expressed in terms of 
delay, loss and throughput requirements inside the domain. 
QoS violation occurs whenever the traffic does not meet the 
specific QoS demands (e.g. when a packet exceeds a 
maximum delay, when a packet is lost or when the throughput 
is below a specific limit).  

The AQM algorithm will define specific delay thresholds, 
denoted as QDL (queuing delay limits) for each class, so the 
packets whose delay is longer than the threshold will be 



The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'07) 

dropped. The packet check for discarding is carried out from 
the front of the queue before next packet is to be scheduled, 
as shown in Figure 3(a). Determination of appropriate values 
for the QDL thresholds can depend on traffic characteristics, 
system state, and QoS demands. With aim to have adaptable 
mechanism that may deal with all the previous issues, a 
reinforcement learning (RL) [11] algorithm is introduced to 
determine the QDL, forming the RL-QDL AQM mechanism. 

In this study we consider RL agent that explores 
continuous state and action space using Gaussian unit search 
behaviour. In previous work, Hui and Tham have applied RL 
approach like this on dynamic adjustment of weights in 
packet schedulers [12]. Actually, in our work, to demonstrate 
RL-QDL algorithm’s benefits, we base simulations on their 
network topology and QoS indicators. However, our approach 
to the network’s adaptability, dealing with revenue increasing 
problem, is completely different. To improve system 
performances, we apply RL to dynamic adjustment of AQM 
parameters while leaving packet scheduler static.  

As illustrated in Figure 3(b), each RL agent in the router 
computes a reward function that reflects the QoS fulfilment 
by the different packets in the network. It is computed using 
information from the same router (throughput, loss) and from 
egress routers (delay and rate violation for traffic passed 
through that router) that is received from the BB. Reward for 
router i is therefore calculated as: 
 ∑ ⋅−⋅−⋅−⋅=

j
jijthrjijdlyjijlossjiji thpdplptcr )( ,,,,,,,  (3) 

Index j stands for traffic class, parameter cj is the charge per 
bit for the traffic successfully carried in that class, and ti,j is 
the amount of traffic (bits) passed through router i in the same 
class. Parameters ploss,j, pdly,j are penalizations per packet, for 
the number of packets lost in transport (li,j) and for those not 
meeting delay requirements (di,j), respectively. Parameter pthr,j 
is penalization per each activity interval of a traffic source in 
which throughput requirements are not accomplished (thi,j).  

Reward is accumulated in time by exponential averaging, 
giving higher influence to most recent reward samples: 
  11 ˆ)1(ˆ −− ⋅−+⋅= nnn rrr γγ  (4) 
where n is the number of current time step, rn-1 is the past 
reward value, nr̂  is the baseline rewards accumulate, and the 
weight of exponential averaging constant is γ , 0<γ <1. 

During exploration/evaluation cycle, for each class and in 
each of the routers (see Figure 3(b)), the RL-QDL AQM 
algorithm computes, in each time step n, the QDL thresholds. 
For the j-th class in time step n the value of the delay 
threshold is denoted as QDLn,j and is obtained as a Gaussian 
random variable with average µn,j and standard deviation σn,j.  
 , , ,( , )n j n j n jQDL N µ σ=   (5) 
The average and standard deviation are updated in each time 
step, according to the measured reward function as: 
 1, , , , ,ˆ( ) ( )n j n j j n n n j n jr r QDLµµ µ α µ+ = + ⋅ − ⋅ −  (6) 
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Figure 3: (a) Router with RL-QDL AQM solution. (b) RL 

agent model. 
Parameters αµ,j and ασ,j are RL adaptive rate constants for 

µ and σ,  respectively. As said before, evaluation relies on the 
search behaviour of the Gaussian unit, based on reaction to 
previous evaluation. After the change of QDL, if the average 
reward has increased, the mean for next evaluation (µn+1) will 
follow the previous change direction and in the case of reward 
degradation it will follow the opposite direction. The update 
of σ aims at narrowing or broadening the search around µ 
depending on the suitability of the different obtained 
parameters. For details the reader is referred to [13]. 

V. SIMULATION MODEL 

The simulation model considers the network structure shown 
in Figure 4, which is based on [12]. There are 8 traffic sources 
(S0-S7), 6 routers (R1-R6), 8 receivers (D0-D7) and a 
bandwidth broker (BB). All the receivers are receiving traffic 
from one (corresponding) source (Sx-Dx,x=0,..,7). BB is 
passing the information on QoS violation from egress routers 
(R5, R6) to all the routers in the network. Each source is a 
traffic generator with a specific class and behaviour. The 
capacities of each link are indicated in the figure. 

Sources from S4-S7 have the same characteristics as 
sources from S0-S3, respectively. Each source Sx generates 
sessions according to an exponential session interarrival time 
and a constant session duration. Characteristics of each source 
are given in Table 2. The specific session interarrival time is 
varied depending on the total load to be simulated. The 
average ON and OFF interval duration for the ON/OFF 
sessions is 0.5s with an exponential distribution for EF, AF 
and BE(S1) traffic and a Pareto distribution for BE(S3) 
traffic. During the ON period, packets with constant length 
(125 bytes) are generated with exponential interarrival time.   

All the routers implement weighted fair queuing (WFQ) 
[14] scheduling with static weights. The simulations were 
repeated for two different weight proportions in schedulers 
WEF:WAF:WBE=1:1:1 and WEF:WAF:WBE=3:2:1.  

To measure the degree of QoS fulfilment, the same 
function (3) is used to compute the reward of the overall 
network. This time throughput and all the penalties are 
calculated on an edge-to-edge basis, for the entire domain (i.e. 
throughput, delay and rate penalties are measured in egress 
routers, while the packet loss is obtained from all the routers).  

Table 1: Parameters of the reward function. 
Class (j) cj ploss,j pdly,j pthr,j 
EF 0.0001 0.2 0.2 - 
AF 0.00004 0.08 0.04 10 
BE 0.00001 0.02 - - 
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Table 2: Source characteristics. 
Source Class Source type Rate per session in the 

ON period  (kb/s) 
S0, S4 EF ON/OFF 64 
S1, S5 BE Always ON 64 
S2, S6 AF ON/OFF 300 
S3, S7 BE ON/OFF 128 
 

3Mb/s 3M
b/s

3Mb/s

 
Figure 4: Network model. 

A.  Simulation Parameters 
The expected quality of service requirements and parameters 
of the reward function are based on those from [12]. In EF 
class all the packets delayed for more than 10ms are 
penalized. In AF class packets are penalized when delayed for 
more than 35ms or when equivalent throughput in ON time 
interval was lower than 200 kb/s. Lost packets are penalized 
in all the classes. The parameters of the reward function are 
given in Table 1. 

For the DFT algorithm the queue length equals 10 for EF 
class and 100 for AF and BE classes. In turn, for RED 
parameter setup follows instructions from [15], and in all the 
classes we have: NMIN=5 packets, NMAX=3*NMIN, α=0.002, 
pMAX=0.1. 

Regarding RL-QDL algorithm, based on experience and 
various testing, the RL parameters were set as follows: 
αµ=0.001, ασ=0.0001, γ=0.2 for all the classes. The start 
values for the variance (all the classes) was set to σ0

2=10-6, 
and the starting average queuing time limits were: 
µ0

EF=7.5ms, µ0
AF=15ms and µ0

BE=30ms. Update time interval 
for RL is set to 10s. For simplicity reasons we suppose that 
the queues themselves are infinite. However, notice that, 
since the algorithm dynamically drops packets, the number of 
packets in the queue will eventually be limited.  

B. Results 
All the simulations were done using OPNET network 
simulator. The length of the simulations was 5000s, where 
statistics were collected after the first 2000s. In case of RL -
QDL, the RL mechanism was started after 500s. 

1) Case study 1: Load variation 
In the first case study we consider the same traffic load (bit/s) 
for all the classes, i.e. one third of the offered traffic belongs 
to EF, one third to AF and one third to BE class 
independently of the overall offered load. Then the system 
behaviour is analysed when varying the total average load 

from 60% to 100% of the link capacity. The load variation is 
simulated by scaling the average interarrival session time in 
each source. In particular, Table 3 gives session duration 
times and session interarrival times for an average load of 
100%; as well as overall load for that case (i.e. the total 
offered load from one source).  

Figure 5 shows the results for reward per second obtained 
in simulations. The specific WFQ weights are marked in 
parentheses. It can be seen that for load below 70%, the 
difference among applied algorithms is negligible. When 
increasing the load, obviously higher revenue is obtained 
when higher classes are treated with more priority 
(WEF:WAF:WBE=3:2:1). Depending on the schedulers weight 
proportion DFT or RED give better results one than the other. 
However, in all the cases RL-QDL achieves a higher reward 
than the other alternatives. This shows that our adaptive AQM 
algorithm can adjust and contribute to increase in QoS 
independently of the scheduler’s weights. In case of 100% 
loaded network, average system reward gains at least 5,8% in 
WEF:WAF:WBE=3:2:1 case, and when WEF:WAF:WBE=1:1:1 
gain is at least 28,9%. 

The interaction of results learned from classes can be 
deducted from Figure 6 and Figure 7, which compare loss and 
delay for RED and RL-QDL algorithm, for a 100% loaded 
network. It can be noticed that, while having less packets 
dropped in all the classes (higher overall throughput), the 
average delay in both EF and AF class is still lower for RL-
QDL algorithm. This implies that the proposed method can 
drop packets more efficiently when dealing with congestion. 
The effect is even more significant when 
WEF:WAF:WBE=1:1:1. 

In Figure 8 cumulative distribution function of edge-to-
edge delay in EF class is presented. As for RED the delay 
depends on serving rate and queue length, it will increase 
with traffic load increase and in case of WEF:WAF:WBE=1:1:1 
will become unsuitable. Meanwhile, delay is directly 
controlled by our algorithm and is better adjusted to system 
demands again. 

Table 3: Sessions’ distribution (100% loaded network). 
Source Session 

Interarrival (s) 
Session 
duration (s) 

Load 
(kb/s) 

S0, S4 0.96 30 1000 
S1, S5 7.68 60 500 
S2, S6 4.5 30 1000 
S3, S7 3.84 30 500 
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Figure 5: System’s reward per second. 
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Figure 6: Mean delay and loss when WEF:WAF:WBE=3:2:1. 
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Figure 7: Mean delay and loss when WEF:WAF:WBE=1:1:1. 
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Figure 8: Cumulative distribution function of delay in EF 

class for 100% loaded network. 
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Figure 9: System reward for dynamic class proportion. 

2) Case study 2: Dynamic class proportion 
Second test was to observe the system’s behaviour when 
proportion in contribution to overall traffic is dynamically 
changed among classes. In particular, the average number of 
users generated in source S4 was halved after 3000s. At the 
same moment and for the rest of the simulation the rest of the 
bandwidth is occupied by adding more users in source S7. 
Starting from the values from Table 3, system is all the time 
100% loaded in average. In this way the number of users of 
the premium class (EF) has been significantly reduced in 

some of the routers, and the bandwidth is occupied by more 
BE traffic. The results obtained for this case are shown in 
Figure 9, revealing the trend of having higher revenue with 
RL-QDL. The difference is especially significant in case of 
equal prioritization of classes (WEF:WAF:WBE=1:1:1). Note 
that the fluctuations at the beginning of the figure are due to 
the stabilization of the statistics, as only after 2000s the 
statistics are starting being collected.  

VI. CONCLUSION 
In this work we have presented a new active queue 
management algorithm that uses reinforcement learning to 
increase system performances (RL-QDL). In tests made, our 
algorithm gave better results than the DFT and RED classical 
approaches, of up to 29%. The advantage of the proposed RL-
QDL algorithm is its ability to learn from the environment in 
order to adapt to networks with different load levels, 
independently of the class prioritization and changes in traffic 
proportion, thanks to the reinforcement learning capabilities. 
Consequently, it becomes an eligible candidate to take place 
as a solution to support QoS provisioning in all-IP networks. 
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