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A Rule-Based Solution Search Methodology for
Self-Optimization in Cellular Networks

J. Sánchez-González, J. Pérez-Romero, O. Sallent

Abstract—This letter presents a Rule-Based Solution Search
(RBSS) algorithm for self-optimization in a cellular network. It
improves the solution search process of classical optimization
methodologies by including a set of rules that capture the
knowledge of how a given problem can be solved. The results
obtained in a scenario using measurements from a real network
reveal that including the RBSS algorithm achieves reductions of
up to 60% and 90% in the convergence time of Particle Swarm
and Genetic Algorithms, respectively.

Index Terms—Self-optimization, Self-Organizing Networks
(SON), cellular networks, cell coverage, cell overlap.

I. INTRODUCTION

THE introduction of new wireless communication tech-
nologies and services has increased the complexity of

wireless networks in recent years. The solution to address this
complexity is the automation of many network procedures with
the objective of creating an autonomously managed network.
In this context, the concept of Self-Organizing Networks
(SON) is seen as a way to reduce both operational and capital
expenditures. For these reasons, in the last few years, there has
been intense research activity in this field [1]-[4]. The self-
organization of cellular networks includes self-configuration,
self-optimization and self-healing. The self-optimization pro-
cess is in charge of automatically finding the most appropriate
values of the network configuration parameters to optimize
the network performance in terms of specific performance
targets. Due to the large number of network parameters that
may be tuned in a large cellular network and the existence of
coupling effects among different cells, the use of automatic
optimization methodologies becomes fundamental because it
is very hard for an engineer to cope manually with the
associated complexity. In this context, several strategies have
been proposed in the literature [5]-[9].

Optimization strategies are usually based on an iterative
process in which new solutions are proposed and evaluated to
find better solutions as the number of iterations increases. One
of the critical aspects is the so-called solution search process
that determines how to generate the new solutions to be
evaluated at each new iteration. This process is usually based
on making random changes to the current solution(s) to obtain
the new solution(s) to be evaluated, as in algorithms such
as Simulated Annealing (SA) [7], Genetic Algorithm (GA)
[8] and Particle Swarm (PS) [9]. Several works propose the
inclusion of specific functionalities that guide the optimization
algorithm in the direction of better solutions to speed up the
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algorithm convergence, mainly by reducing the degree of ran-
domness in the exploration of the solution search space, which
tends to slow down the convergence [10]. In [10], a quadratic
approximation of the objective function is used to perform
deterministic mutation in evolutionary algorithms. However,
this approximation may not be valid in many problems where
the objective function cannot easily be approximated to a
known function, as in the optimization problem in this letter. In
[11], a guided mutation process based on a probability model
is proposed to assist a genetic algorithm under the assumption
that the variables in the search space take binary values. The
main drawback is the excessive computational cost.

Within this context, this work proposes a new algorithm
called Rule Based Solution Search (RBSS) that allows the op-
timization methodology to move toward better solutions inside
the search space, thus increasing the algorithm convergence.
The RBSS algorithm uses rules based on the knowledge of
how each specific problem may be solved. To the best of
the authors’ knowledge, this approach is new in the field of
cellular networks optimisation. The proposed RBSS approach
is integrated with the general self-optimization framework pre-
sented in [12] and particularized for the joint optimization of
cell coverage and overlap. The benefits provided by RBSS are
evaluated using measurements from a real network. The rest
of the letter is organized as follows. Sections II and III present
the self-optimization framework and the RBSS algorithm,
respectively. Section IV particularizes it for the optimization of
cell coverage and overlap. Section V presents the performance
assessment. Section VI summarizes the conclusions.

II. RBSS SELF-OPTIMIZATION FRAMEWORK

Let us consider a general cellular network that consists of
N cells with P tunable parameters per cell. The network con-
figuration is represented by a P×N matrix ψ = [ψp,n], where
ψp,n is the value of the p-th tunable parameter of the n-th cell.
The set of possible values of ψp,n is the range [Vmin,p, Vmax,p]
with resolution ∆p. The self-optimization procedure consists
of a continuous loop that interacts with the real network based
on observations and actions [1], as illustrated in Figure 1.
At the observation phase, certain measurements are collected
from the different cells. The Network Performance Monitoring
(NPM) process analyses these measurements to detect situa-
tions where some of the M optimization targets specified by
the operator are not properly fulfilled. The result of the NPM
will be the M×N performance matrix S(ψ) = [Sm,n(ψ)]. The
term Sm,n(ψ) (0 ≤ Sm,n(ψ) ≤ 1) reflects the performance of
the m-th optimization target in the n-th cell with the current
configuration ψ. An excessively high value of Sm,n(ψ) reflects
that the m-th target is not sufficiently optimized in the n-th
cell. Based on the elements of S(ψ), a trigger condition will
be evaluated to decide whether the performance is satisfactory
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Fig. 1. Network optimization loop.

or if the network needs further optimization. In the latter case,
the Optimization Search is triggered to find suitable values of
ψ that optimize the network performance given by S(ψ).

The Optimization Search is a multi-objective problem, as
it involves M optimization targets, which in general can be
partly contradictory. Therefore, some trade-off criterion among
targets must be specified by the network operator. A usual
approach is to define a joint cost function C(ψ) that combines
the contribution of the different targets by means of weights
βm, m = 1, ...,M , that make it possible to give more relevance
to certain targets than others. The optimal solution is thus
given by the configuration matrix ψ∗ that minimizes C(ψ):

ψ∗ = arg min
ψ
C(ψ) = arg min

ψ

(
M∑
m=1

βm

N∑
n=1

Sm,n(ψ)

)
(1)

The Optimization Search process requires smart methodolo-
gies that efficiently explore the search space while maintaining
low computational complexity. This letter assumes an iterative
process in which new candidate solutions ψi(k) are generated
and evaluated in each iteration k, as seen in Figure 1. The pro-
cess begins by initializing a set of NPOP candidate solutions
ψi(0) i = 1, ..., NPOP . One of them is the current network
configuration, and the others are determined randomly. Each
solution ψi(0) is evaluated in a similar way as in the NPM
process, estimating the matrix S(ψi) and the cost C(ψi) that
would exist in the network if this solution was applied.

In iteration k + 1, the algorithm generates new NPOP
solutions ψi(k + 1) based on the solutions of the previous
iteration ψi(k) in two steps, as shown in Figure 1. First,
the proposed RBSS algorithm explained in Section III is
executed to obtain an intermediate set of new solutions denoted
as ψ′i(k + 1) that are generated using deterministic rules
based on a priori knowledge of how a change in a given
parameter affects each optimization target. In this way, the
new solutions will be directed to improve the performance
for the different targets. Then, at the second stage, search
operators based on classical optimization methodologies (e.g.,
GA, PS) are applied over the outputs ψ′i(k + 1) provided by
the RBSS to obtain the solutions ψi(k + 1) to be evaluated
in the next iteration. The specific search operators depend
on the optimization methodology (e.g., for the conventional
GA, selection, mutation and recombination [8]). This second

stage introduces the required randomness to explore the search
space starting from a set of solutions that has been smartly
selected by the RBSS. The joint operation of RBSS and search
operators will lead a more efficient generation of the new
solutions in each iteration than if only the search operators
of conventional techniques were used. The new solutions
ψi(k+1) are evaluated, and the best solution found among the
solutions analyzed in all the iterations is retained. The process
is repeated until a termination condition is fulfilled, i.e., the
cost of the best solution found is below a threshold, or until
reaching a maximum number of iterations. The best solution
found specifies the new values of the configuration parameters.

III. RBSS ALGORITHM

The RBSS takes as input a solution ψi and smartly modifies
its parameters following a set of rules. A rule Rm,p(·) is a
function that specifies how to modify the parameter p of a
particular cell to improve the performance of the m target.
In detail, for each candidate solution ψi, one parameter is
modified to generate an intermediate solution ψ′i as follows:

1) Randomly select a cell n and an optimization target m
to be improved in this cell with probability:

Pm,n =
Sm,n(ψi(k))

N∑
n=1

M∑
m=1

Sm,n(ψi(k))

(2)

Note that, according to (2), targets and cells with higher values
of Sm,n(ψi) are chosen with higher probability.

2) Randomly select a tunable parameter p to be adjusted.
All parameters are selected with equal probability.

3) Randomly select the cell n∗ (where the parameter p will
be modified) with equal probability among the cell n and any
other cell that has influence on the target m of cell n.

4) The new value of the parameter p in cell n∗ is obtained
by applying rule Rm,p(·), that is ψ

′i
p,n∗ = Rm,p(ψ

i
p,n∗)

The rules Rm,p(·) depend on the optimization targets and
the parameters to be set, as explained in section IV. Note that
the RBSS algorithm includes both random components (steps
1, 2 and 3) and deterministic rules (step 4). Random com-
ponents allow consideration of the multiple possible options
when deciding which parameters and cells should be modified
to obtain improved solutions. In turn, the deterministic rules
ensure that the modification of the selected parameter will
make the new solution better than the previous one.

IV. RBSS FOR CELL COVERAGE/OVERLAP OPTIMIZATION

This section presents a particularization of the RBSS al-
gorithm for optimizing cell coverage and overlap in a UMTS
(Universal Mobile Telecommunications System) network. Cell
coverage optimization should guarantee that communication
is possible in the planned service area of a cell by avoiding
coverage holes. Cell overlap optimization aims to avoid areas
where access to the network is possible through too many cells,
which may generate excessive interference and soft handover
overheads [13]. Details on the measurements and the NPM
procedure can be found in [12], while this section presents
details of the RBSS. The P = 3 tunable parameters are
the CPICH (Common Pilot Channel) transmitted power ψ1,n,
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TABLE I
CONSIDERED RULES FOR CELL COVERAGE AND CELL OVERLAP OPTIMIZATION.

Cell Coverage optimization (m = 1) Cell Overlap optimization (m = 2)
Tx. power R1,1 : R2,1 :

(p = 1) ψ′1,n∗ = min(ψ1,n∗ + ∆1, Vmax,1) ψ′1,n∗ =

{
min(ψ1,n∗ + ∆1, Vmax,1) if n∗ = v
max(ψ1,n∗ − ∆1, Vmin,1) if n∗ = n

Tilt R1,2 : R2,2 :

(p = 2) ψ′2,n∗ =

{
max(ψ2,n∗ − ∆2, Vmin,2) if ψ2,n∗ > γn∗
min(ψ2,n∗ + ∆2, Vmax,2) if ψ2,n∗ < γn∗

ψ′2,n∗ =


max(ψ2,n∗ − ∆2, Vmin,2) if n∗ = v and ψ2,n∗ > γn∗

or n∗ = n and ψ2,n∗ < γn∗
min(ψ2,n∗ + ∆2, Vmax,2) if n∗ = n and ψ2,n∗ > γn∗

or n∗ = v and ψ2,n∗ < γn∗
Azimuth R1,3 : R2,3 :

(p = 3) ψ′3,n∗ =

{
max(ψ3,n∗ − ∆3, Vmin,3) if ψ3,n∗ > µn∗
min(ψ3,n∗ + ∆3, Vmax,3) if ψ3,n∗ < µn∗

ψ′3,n∗ =


max(ψ3,n∗ − ∆3, Vmin,3) if n∗ = v and ψ3,n∗ > µn∗

or n∗ = n and ψ3,n∗ < µn∗
min(ψ3,n∗ + ∆3, Vmax,3) if n∗ = n and ψ3,n∗ > µn∗

or n∗ = v and ψ3,n∗ < µn∗

the antenna tilt ψ2,n and the antenna azimuth ψ3,n. They
are the most common tunable parameters considered in the
literature for cell coverage and overlap optimization [2][5][13].
According to the RBSS algorithm of Section III, and after
selecting the cell n, the optimization target m and the tunable
parameter p in steps 1 and 2, the cell n∗ to be adjusted in step
3 is selected depending on the target m:

- Cell coverage optimization (m = 1): The cell n∗

is selected randomly with equal probability among the set
{n, neigh(n)}, where neigh(n) is the list of neighbor cells
of cell n consisting of first ring of cells that surround cell n
and have their antenna pointing in the direction of cell n.

- Cell overlap optimization (m = 2): The cell n∗ is selected
randomly with equal probability among the set {n, v} where
v is the cell suffering the overlap generated by the n-th cell.

Table 1 presents the rules applied in step 4 over the selected
cell n∗. In the case of a CPICH transmitted power change
(p = 1), rule R1,1 increases by ∆1 dB the CPICH transmitted
power of the selected cell n∗. In turn, rule R2,1 either increases
by ∆1 dB the CPICH transmitted power of cell n∗ = v that
suffers the overlap or decreases by ∆1 dB the CPICH power
of the cell n∗ = n that generates the overlap. When adjusting
the antenna tilt (p = 2) or the antenna azimuth (p = 3),
the rules Rm,p must consider that the effect of this change is
not the same at all geographical locations (e.g., an increase
in the antenna tilt of a cell may improve the cell coverage
near the cell, but it may degrade the coverage at the cell
edge). For this purpose, the NPM procedure first identifies
the set of geographical regions where there are coverage
(m = 1) or overlap (m = 2) problems associated with cell
n. Then, the RBSS algorithm randomly selects one of these
regions in such a way that regions with higher contributions
to Sm,n(ψi) are selected with higher probability. The selected
region is characterized by the geographical position Ω of
its centroid. Then, the rules applied by RBSS will tend to
improve the coverage or overlap conditions at position Ω by
computing as a reference the tilt γn∗ and azimuth µn∗ angles
corresponding to the direction between cell n∗ and position
Ω (see Figure 2). Then, for the coverage case, rules R1,2

and R1,3 (see Table 1) adjust the antenna tilt/azimuth of cell
n∗ to increase the antenna gain in the direction γn∗ , µn∗ of
position Ω. Specifically, for rule R1,2, if the current tilt ψ2,n∗

is higher than γn∗ (see Figure 2a), the rule decreases the tilt
by ∆2 degrees. Otherwise, the rule increases the tilt. A similar
decision is made for the azimuth ψ3,n∗ and angle µn∗ for rule

Fig. 2. Adjustment of antenna tilt (a) and azimuth (b).

R1,3. In turn, rules R2,2 and R2,3 make a distinction depending
on whether cell n∗ is the one generating the overlap (i.e.,
n∗ = n) or the one suffering it (i.e., n∗ = v). In the first
case, the tilt/azimuth is adjusted to reduce the antenna gain in
the direction γn∗ , µn∗ of position Ω. In the second case, the
adjustment is made to increase the antenna gain.

V. PERFORMANCE EVALUATION

The proposed RBSS methodology is evaluated using drive
test measurements obtained from a real network in a medium-
size European city. Figure 3 plots the location of the available
drive test measurements and the regions with cell coverage
and overlap problems detected by the NPM before applying
the optimization procedure. The self-optimization algorithm
adjusts the parameters of the N = 12 cells marked with black
arrows. This number of cells allows considering sufficient
neighboring cells to draw conclusions about how the cell
coverage and overlap problems can be mitigated. The CPICH
transmitted power ψ1,n varies in the range [25,35] dBm with
resolution ∆1 = 1 dB, the antenna tilt ψ2,n in the range
[0◦, 10◦] in steps of ∆2 = 1◦ and the antenna azimuth ψ3,n

in the range [a− 25◦, a+ 25◦] in steps of ∆3 = 5◦, where a
is the current antenna azimuth existing in the network.

Evaluation is performed for different Optimization Problems
(OP) defined in Table 2 depending on the number of selected
targets and tunable parameters. The RBSS operating jointly
with GA or PS is compared against the conventional GA and
PS schemes without RBSS support. The parameters of PS and
GA are the same as in [14]. Performance is evaluated in terms
of the number of iterations required by each methodology to
converge to a quasi-optimal solution (see Table 2). As the
optimal solution cannot be known a priori in this complex
scenario (see e.g., in Table 2 the huge number of possible
combinations NC for each OP), we assume convergence
when a methodology finds a solution with a cost lower than
Cbest(ψ

∗) + 5%, where Cbest(ψ
∗) is the cost of the best

solution found for a given OP after an initial and extensive run
of all the methodologies considered here. Table 2 reveals that
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TABLE II
NUMBER OF ITERATIONS TO REACH CONVERGENCE FOR EACH OP

Considered OP1: Cell coverage only OP2: Cell coverage and overlap OP3: Cell coverage and overlap OP4: Cell coverage and overlap
Methodology Tuned Parameter: ψ1,n Tuned Parameter: ψ1,n Tuned Parameters: ψ1,n,ψ2,n Tuned Parameters: ψ1,n,ψ2,n,ψ3,n

NC = 1112 ≈ 3.13 · 1012 NC = 1112 ≈ 3.13 · 1012 NC = 1124 ≈ 9.84 · 1024 NC = 1136 ≈ 3.09 · 1037

RBSS-PS 5 [37.50%] 7 [36.36%] 30 [56.52%] 39 [60.20%]
Conventional PS 8 11 69 98

RBSS-GA 25 [77.27%] 58 [87.47%] 66 [89.47%] 195 [90.89%]
Conventional GA 110 463 627 2141

Fig. 3. Location of problems with the initial configuration.

Fig. 4. Location of problems for the RBSS-PS.

RBSS reduces the convergence time very significantly with
respect to the conventional PS and GA. The reductions (shown
in brackets in Table 2) are higher for GA than for PS. It is
also remarkable that the reduction produced by RBSS is much
higher when considering more complex problems that include
more tunable parameters and thus the search space contains
more possible combinations NC . With higher number of tuned
parameters, the search space becomes larger, so it is more
relevant to have smart mechanisms, such as RBSS, that narrow
the search by quickly identifying the best combinations. The
results also show that PS provides faster convergence than
GA. Note also that the reduction in the number of iterations
produced by RBSS has a direct impact on the reduction of
the computational complexity which is mainly limited by the
solution evaluation stage, while the additional computational
cost incurred by the four simple steps of the RBSS algorithm
is marginal. Figure 4 shows the location of the coverage and
overlap problems after applying the RBSS-PS for OP4. The
solution found by RBSS-PS achieves significant improvements
with respect to the initial configuration before running the
optimization algorithm (see Figures 3 and 4). Almost all
the detected problems are removed, except certain coverage
problems in Cell 9 and Cell 22 and some overlap generated

by Cell 17 over Cell 22, which are nonetheless significantly
reduced. The cost of the initial configuration is 1.349, while
the cost of RBSS-PS is 0.083, so the cost reduction is 93.84%
that represents a reduction of 82.25% in the number of
geographical samples where coverage and/or overlap problems
are identified. Although, due to the nature of the GA and PS
algorithms, it cannot be proved that the global optimum is
found, the results reflect that the solution is good in practice.

VI. CONCLUSION
This letter proposes a new RBSS self-optimization frame-

work for cellular networks that improves the speed of con-
vergence of the optimization search process by including in
the solution search process a set of rules that reflect a priori
knowledge about how a configuration parameter affects a given
optimization target. This framework has been particularized for
optimizing cell coverage and overlap and has been evaluated
using measurements obtained from a real network. The results
reveal that the inclusion of the RBSS algorithm reduces the
convergence speed of conventional PS and GA by up to 60%
and 90%, respectively. This reduction is more remarkable in
optimization problems with large solution search spaces.
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