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Abstract 

Radio Access Network (RAN) slicing is one of the key enablers to provide the design flexibility and enable 5G system to 

support heterogeneous services over a common platform (i.e., by creating a customized slice for each service).  In this 

regard, this paper provides an analysis of a Reinforcement Learning (RL)-based RAN slicing strategy for a heterogeneous 

network with two generic services of 5G, namely enhanced mobile broadband (eMBB) and vehicle-to-everything (V2X). 

In particular, this paper investigates the RAN slicing by evaluating the proposed scheme under different algorithm 

configurations (i.e., number of actions of RL) and parameters in order to analyze the performance in terms of metrics such 

as RL convergence time and to demonstrate the capability of the algorithm to perform an efficient allocation of resources 

among slices. In addition, this study compares the results obtained by the proposed solution to those obtained with a 

Proportional Scheme. 
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1. Introduction

The new fifth generation (5G) of mobile networks will 

support a wide variety of services and applications over a 

shared network infrastructure [1]. 5G capabilities need to 

adapt to the wide and dynamic variations of 5G 

requirements for a particular situation, as the 5G 

capabilities required to provide services depend on each 

particular use case. In this respect, 5G is expected to 

provide a great variety of services ranging over three 

generic types: a) enhanced Mobile Broad Band (eMBB), 

which focuses on services that require high data rate 

requirements, b) massive machine-type communications 

(mMTC), which support a massive number of static or 

dynamic machine communications, which are only 

intermittently active, and c) ultra-reliable and low-latency 

communications (URLLC), which focus on applications 

requiring very low latency and high reliability, such as 

mission critical communications or autonomous driving 

and Vehicle-to-Everything (V2X) [2-4].  

These services may have very different requirements in 

terms of 5G system functionality (e.g. priority, charging, 

policy control, security, and mobility) and key 

performance indicators (e.g. latency, mobility, 

availability, reliability and data rates). Besides, the 

stringent requirements in expected performance (e.g. peak 

rates above 10 Gb/s, latencies below 1 ms with 10–5 

reliability, 500 km/h mobility target) cannot always be 

achieved with a common network setting (e.g. optimizing 
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the network for low latency with high reliability could 

come at the expenses of reduced spectral efficiency) [5].  

Given these aspects, 5G networks should provide 

solutions that enable the creation of logically isolated 

network partitions across the shared physical network 

infrastructure, referred to as network slices, to be created 

on top of a common shared physical infrastructure.  Each 

network slice can be used to serve a particular service 

category (e.g., applications with different functional 

requirements) through the use of specific control plane 

(CP) and/or user plane (UP) functions [6]. Through the 

network slicing, 5G networks will be able to integrate the 

abovementioned multiple services with various 

performance requirements into a single physical network 

infrastructure. The Third-Generation Partnership Project 

(3GPP) has identified network slicing as one of the key 

technologies to achieve the aforementioned objectives in 

future 5G networks [7]. 

Focusing on the Radio Access Network (RAN) part of a 

network slice, due to the shared nature of the radio 

channel, an important problem in RAN slicing is to make 

an efficient distribution of the scarce radio resources 

among the different RAN slices [8]. For this reason, an 

efficient RAN slicing strategy for 5G systems needs to 

face different challenges and bring some benefits, 

especially in terms of network capacity utilization, 

reducing the network traffic congestion, avoiding the 

outage of service due to the lack of resources, and 

ensuring a high Quality of Service (QoS), e.g., in terms of 

data latency and transmission rate.  For this reason, 

network slicing has received increasing attention in the 

literature, where different algorithms have been proposed, 

e.g. for slice admission control, slice scaling, etc.

Specifically, a two-layer scheduler for an efficient and

low complexity RAN slicing approach is proposed in [9].

The proposed solution showed that different trade-offs

between isolation and efficiency could be achieved by

setting some parameters in the utility function.  The

authors in [10] proposed a low complexity heuristic

algorithm and slicing for joint admission control in virtual

wireless networks. In turn, the deployment of function

decomposition and network slicing as a tool to improve

the Evolved Packet Core (EPC) is presented in [11].

Meanwhile, the use of machine learning-based network

control and management strategies has also gained

attention in the context of mobile networks due to its

promising performance.  They have been used by

different works for managing the split of the available

radio resources among different slices based on

reinforcement learning (RL) [12-17], Markov Decision

Process (MDP) [18-19], game theory [20], and multi-

armed bandit [21].

In particular, reference [12] proposed a novel radio 

resource slicing framework for 5G networks with haptic 

communications based on virtualization of radio 

resources. The authors adopted a reinforcement learning 

(RL) approach for dynamic radio resource slicing in a 

flexible way, while accounting for the utility requirements 

of different vertical applications. An RL strategy 

proposed in [13] for intelligently scaling up/down slices 

according to traffic patterns of mobile users. The authors 

have investigated some typical resource management 

solutions based on Deep RL (DRL), including radio 

resource slicing and priority-based core network slicing. 

A slice admission strategy based on RL is proposed in 

[14], where slices for different services are virtualized 

over the same RAN infrastructure. Reference [15] 

provided RL-based radio resource scheduling policy for 

5G radio access network (RAN) to maximize the 

probability of meeting Quality-of-Service (QoS) 

requirements (i.e., throughput, PLR and delay). Inspired 

by the success of Enhanced DRL in solving complex 

control problems, [16] introduced a new DRL-based 

framework for allocating energy-efficient resources in 

cloud RANs. Specifically, the authors defined the state 

space, action space and reward function. They have also 

applied a deep neural network (DNN) to approximate the 

value of the work function, and formally formulated the 

resource allocation problem as a convex improvement 

problem. Reference [17] proposed an RL-based strategy 

for scheduling resources in a multi-tenant network with 

mobile and cloud service providers (SPs) based on a 

network policy designed to maximize the efficiency of 

infrastructure resources. 

A model for orchestrating network slices based on the 

service requirements and available resources is introduced 

in [18]. The authors proposed a Markov decision process 

framework to formulate and determine the optimal policy 

that manages cross-slice admission control and resource 

allocation for the 5G networks. Similarly, an adaptive 

algorithm for virtual resource allocation based on 

constrained Markov decision process is proposed in [19]. 

A network slicing scheme based on game theory for 

managing the split of the available radio resources in a 

RAN among different slice types is proposed in [20] to 

maximize utility of radio resources. In [21], an Online 

network slicing solution based on multi-armed bandit 

mathematical model to maximizes network slicing 

multiplexing gains and achieving the accommodation of 

network slice requests in the system with an aggregated 

level of demands above the available capacity is 

proposed.  

Although the above works have proposed different 

approaches for RAN slicing, none of them has dealt with 

scenarios including slices for supporting Vehicle-to-

Vehicle (V2V) communications, which constitute the 

focus of this paper. In this respect, in our previous work 

[22], we proposed a novel strategy based on offline Q-

learning and softmax decision-making to determine the 

adequate split of resources between the different slices 

while accounting for their utility requirements and the 

dynamic changes in the traffic load.  

Starting from the outcome of this off-line Q-learning 

algorithm, it was complemented with a low-complexity 

heuristic approach in [23] for fine tuning the resource 

assignment and achieving further improvements in terms 

of network performance. 
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In this paper, we extend our previous works [22, 23] by 

investigating the RAN slicing strategy under different 

algorithm configurations (i.e., number of actions of RL) 

and different algorithm parameters in order to 

demonstrate its capability to perform an efficient 

allocation of resources among slices in terms of network 

metrics such as resource utilization, latency, network 

traffic load, achievable throughput, and to analyze the 

impact on algorithm-related metrics such as convergence 

time. 

The rest of the paper is organized as follows. Section 2 

presents the system model and the problem formulation. 

Section 3 provides the proposed solution for RAN slicing. 

Section 4 presents the performance evaluation followed 

by the conclusions in Section 5. 

2. System Model and Problem
Formulation

2.1 System Model 

The considered scenario assumes a cellular Next 

Generation Radio Access Network (NG-RAN) with a 

gNodeB (gNB) [24] composed by a single cell. A 

roadside unit (RSU) supporting V2X communications is 

attached to the gNB. A set of eMBB cellular users (CUs) 

numbered as m=1,...,M are distributed randomly around 

the gNB and a flow of several independent vehicles move 

along a straight highway, as illustrated in the right part of 

Fig.1. The highway segment is divided into sub-segments 

(clusters) by sectioning the road into smaller zones 

according to the length of the road. It is assumed that each 

vehicle includes a User Equipment (UE) that enables 

communication with the UEs in the rest of vehicles in the 

same cluster. Clusters are numbered as j=1,...,C, and the 

vehicles in the j-th cluster are numbered as i=1,...,V(j).  

The vehicles in the highway are assumed to enter the 

cell coverage following a Poisson process with arrival rate 

a. The association between clusters and vehicles is

managed and maintained by the RSU based on different

metrics (e.g. position, direction, speed and link quality)

through a periodic exchange of status information.

Regarding the V2X services, this paper assumes V2V 

communication between vehicles. They can be performed 

either in cellular or in sidelink mode. In cellular mode 

each UE communicates with each other through the Uu 

interface in a two-hops transmission via the gNB while in 

sidelink mode, direct V2V communications can be 

established over the PC5 interface. We assume that, when 

sidelink transmissions are utilized, every member vehicle 

can multicast the V2V messages directly to multiple 

member vehicles of the same cluster 1 ≤ i ≤V(j) using 

one-to-many technology. The decision on when to use 

cellular or sidelink mode is done based on [25]. 

To simultaneously support the eMBB and the V2X 

services, the network is logically divided into two 

network slices, namely RAN_slice_ID=1 for V2X and 

RAN_slice_ID=2 for eMBB. The whole cell bandwidth is 

organized in Resource Blocks (RBs) of bandwidth B. Let 

denote as NUL the number of RBs in the UpLink (UL) and 

NDL the number of RBs in the DownLink (DL). The RAN 

slicing process should distribute the UL and DL RBs 

among the two slices. For this purpose, let denote αs,UL 

and αs,DL as the fraction of UL and DL resources, 

respectively, for the RAN_slice_ID=s with s=1,2. 

Regarding sidelink communications, and since the support 

for sidelink has not been yet specified for 5G in current 

3GPP release 15, this paper assumes the same approach as 

in current LTE-V2X system, in which the SL RBs are part 

of the total RBs of the UL. For this reason, the slice ratio 

αs,UL is divided into two slice ratios, namely ᾱs,UL, which 

corresponds to the fraction of UL RBs that are used for 

uplink transmissions, and, αs,SL, which corresponds to the 

fraction of UL RBs used to support sidelink 

transmissions. 

Each vehicle is assumed to generate packets randomly 

with rate λv packets/s according to Poisson arrival model. 

The length of the messages is Sm. When the vehicles 

operate in sidelink mode, the messages are transmitted 

using the SL resources allocated to the slice. Instead, 

when the vehicles operate in cellular mode, the messages 

are transmitted using the UL and DL resources. The 

average number of required RBs from V2X users of 

RAN_slice_ID= 1 per Transmission Time Interval (TTI) 

in UL, DL and SL, denoted respectively as 1,UL, 1,DL, 

1,SL can be estimated as follows:

,
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where x denotes the type of link, i.e. x  {UL,DL,SL}, 

m(j,i,t) is the number of transmitted messages by the 

vehicles of the j-th cluster in the t-th TTI and Speff,x is the 

spectral efficiency in the x link,  Fd is the TTI duration, 

which is 0.1 ms and T is the number of TTIs that defines 

the time window used to compute the average.  

Regarding the eMBB service, the average number of 

required RBs for eMBB users of RAN_slice_ID=2 in UL 

and DL in order to support a certain bit rate Rb is denoted 

as 2,UL, 2,DL, respectively, and can be statistically 

estimated as follows: 
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 where x denotes the type of link, andx(m,t) is the number 

of required RBs by the m-th user in the link x and in the t-
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th TTI in order to get the required bit rate Rb. It is given 

by x(m,t)=Rb/(SPeff,x·B). The values 2,UL, 2,DL  are 

computed within a time window T TTIs. Note also that 

2,SL=0, since the eMBB slice does not generate sidelink

traffic.

2.2 Problem Formulation for RAN Slicing 

The focus of this paper is to determine the optimum 

slicing ratios αs,UL, αs,DL in order to maximize the overall 

resource utilization under the constraints of satisfying the 

resource requirements for the users of the two considered 

slices.  

The total utilization of UL resources UUL is given by the 

aggregate of the required RBs in the UL and SL for each 

slice, provided that the aggregate of a given slice s does 

not exceed the total amount of resources allocated by the 

RAN slicing to this slice, i.e. s,UL·NUL. Otherwise, the 

utilization of slice s will be limited to s,UL·NUL and the 

slice will experience outage. Correspondingly, the 

optimization problem for the uplink is defined as the 

maximization of the UL resource utilization subject to 

ensuring an outage probability lower than a maximum 

tolerable limit pout. This is formally expressed as: 
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Following similar considerations, the optimization problem 

to maximize the resource utilization UDL in the DL subject 

to ensuring a maximum outage probability is given by: 
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3. Reinforcement Learning-based RAN
Slicing Solution

The problems in (3) and (4) with their constraints are 

nonlinear optimization problems. Such an optimization 

problem is generally hard to solve. The complexity of 

solving this problem is high for a network of realistic size  

Figure 1. RAN Slicing Strategy. 

with fast varying traffic conditions. For this reason, the 

use of an offline reinforcement learning approach to solve 

the problem in a more practical way is considered here, 

f  ollowing previous works [22,23].  

The general approach is depicted in Fig.1. Specifically, a 

slicing controller is responsible for determining a first 

estimation of the slicing ratios, denoted as β s,UL, β s,DL, for 

each slice by executing t                                                                                        he RL 

algorithm. It is assumed    that two separate RL algorithms 

are executed for the UL and the DL to determine 
respectively β s,UL, β s,DL. In the general operation of RL, the 

optimum solutions are found based on dynamically 

interacting with the environment based on trying different 

actions ak,x (i.e. different slicing ratios) selected from a set 

of possible actions numbered as k=1,...,Ax, where x {UL, 

DL}.  

As a result of the selected action, the RL process gets a 

reward RTOT,x(ak,x) that measures how good or bad the 

result of the action has been in terms of the desired 

optimization target. Based on this reward, the RL 

algorithm adjusts the decision making process to 

progressively learn the actions that lead to highest reward. 

The action selection is done by balancing the trade-off   

b    etw      ee n          explo       itation (i.e. try actions with high reward) and 
exploration (i.e. try actions that have not been used 

before in order to learn from them). In case this 

interaction with the environment was done in an on-line 

way, i.e. by configuring the slicing ratios on the real 

network and then measuring the obtained performance, 

this could lead to serious performance degradation since, 

during the exploration process, wrong or unevaluated 

decisions could be made at certain points of time due to 

the exploration, and affecting all the UEs of a given slice. 

To avoid this problem, this paper considers an off-line 

RL, in which the slicing controller interacts with a 

network model that simulates the behavior of the network 

and allows testing the performance of the different actions 
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in order to learn the optimum one prior to configuring it in 

the real network. The network model is based on a 

characterization of the network in terms of traffic 

generation, propagation modelling, etc. 

The considered RL algorithm in this paper is based on 

the proposed scheme in [22], which enables an 

exploration-exploitation traversing all possible actions in 

long-term. In turn, the reward is defined in accordance 

with the optimization problem, which intends to 

maximize the resource utilization subject to the outage 

probability constraint. The details about the reward 

function and the detailed operation of the Q-learning 

algorithm are presented in the following. 

Once the first estimation of the slicing ratios β s,UL, β s,DL 

has been obtained, a low complexity heuristic scheme is 

applied in order to perform a fine tuning and get the final 

slicing ratios  s,UL,s,DL. 

3.1 Reward Computation 

 The reward function should reflect the ability of the taken 

action to fulfill the targets of the optimization problems 

(3) and (4). Based on this, and for a given action ak,x with

associated slicing ratios αs,x(k) the reward is computed as

function of the normalized resource utilization  Ψs,x(ak,x)

of slice s in link x{UL,DL} defined as the ratio of used

resources to the total allocated resources by the

corresponding action. For the case of the V2X slice (s=1),

it is defined as:
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In turn, for the case of eMBB slice (s=2), it is defined as:   
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Based on these expressions, the reward Rs,x(ak,x) for the 

slice s in link x{UL,DL} as a result of action ak,x is 

defined as 
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In (9), whenever Ψs,x(ak,x) is a value between 0 and 1, the 

reward function will increase exponentially to its peak at 

Ψs,x(ak,x)=1. Therefore, the actions that lead to higher 

value of  Ψs,x(ak,x) (i.e. higher utilization) provide larger 

rewards and therefore this allows approaching the 

optimization target of (3) and (4). In contrast, if the value 

of Ψs,x(ak,x) > 1, it means that the slice s will be in outage 

and 

thus the reward decreases to take into consideration 

constraints (3a)(4a). Consequently, the formulation of the 

reward function per slice in (9) takes into account the 

constraints of the optimization problem. In addition, since 

the total reward has to account for the effect of the action 

on all the considered slices s=1,..,S, it is defined in general 

as the geometric mean of the per-slice rewards, that is:  

   , , ,
1

,

1

k x xTOT ksx

S

s
x

s

a RR a


 
 
 

  (10) 

3.2 Q-learning and low complexity heuristic 
algorithm  

The ultimate target of the Q-learning scheme at the slicing 

controller is to find the optimal action (i.e. the optimal 

slicing ratios for a given link x{UL,DL}) that maximizes 

the expected long-term reward to each slice. To achieve 

this, the Q-learning interacts with the network model over 

discrete time-steps of fixed duration and estimates the 

reward of the chosen action. Based on the reward, the slice 

controller keeps a record of its experience when taking an 

action ak.x and stores the action-value function (also 

referred to as the Q-value) in Qx(ak,x). Every time step, the 

QUL(ak,UL) and QDL(ak,DL) values are updated following a 

single-state Q-learning approach with a null discount 

rate [26] as follows: 

, , , ,( ) (1  ) ( )  . ( )k x k x TOTx k xx xa RQ Qa a        (11) 

where α ∈ (0, 1) is the learning rate, and RTOT,x(ak,x) is the 

total reward accounting for both V2X and eMBB slices 

after executing an action ak,x. At initialization, i.e. when 

action ak,x  has never been used in the past, Qx(ak,x) is 

initialized to an arbitrary value. 

The selection of the different actions based on the Qx(ak,x) is 

made based on the  softmax policy [26], in which the 

different actions are chosen probabilistically. Specifically, 

the probability Px(ak,x) of selecting action ak,x , k=1,...,Ax, is 

defined as   
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where τ is a positive integer called temperature 

parameter that controls the selection probability. With high 

value of τ, the action probabilities become nearly equal. 

However, low value of τ causes a greater difference in 

selection probabilities for actions with different Q-values. 

Softmax decision making allows an efficient trade-off 

between exploration and exploitation, i.e. selecting with 

high probability those actions that have yield high reward, 

but also keeping a certain probability of exploring new 

actions, which can yield better decisions in the future. The 

pseudo-code of the proposed RL-based RAN slicing 

algorithm is summarized in Algorithm 1.  
Once the offline RL algorithm has converged, i.e. the 

selection probability of one of the actions is higher than 

99.99%, a heuristic algorithm based on [23] will take the 

results of the RL algorithm as input and adjust the initial 

slicing ratios β s,UL and  β s,DL chosen by the RL in order to 

determine the final optimized values αs,UL and αs,DL, as 

illustrated in Fig.1.  

The idea of this fine tuning is that, based on the actual RB 

demands of each slice and the slicing ratios βs,UL, βs,DL the 

algorithm assesses if one of the two slices s has more 

resources than actually required in the link x{UL,DL}, 

i.e. Ψs,x(ax_sel) <1, and at the same time the other slice s’

has less resources than required, i.e. Ψs’,x(ax_sel)>1. If this

is the case, the slice s leaves some extra capacity ∆Cs,x that

can be transferred to the other slice s’. Specifically, the

extra capacity is defined as:

  , _,= 1 . s x s x sex l
C a   (18)

where the configuration parameter ω is a scalar in the range 

[0,1] used to leave some margin capacity to cope with the 

variations of the RBs consumption.   

4. Performance Evaluation

In this section, we evaluate the performance of the RAN 

slicing strategy through system level simulations performed 

in MATLAB.  

4.1 Simulation Setup 

Our simulation model is based on a single-cell hexagonal 

layout configured with a gNB. The model considers 

vehicular UEs communicating through cellular mode 

(uplink / downlink) and via sidelink (direct V2V) and use 

slice (RAN_slice_ID=1) and eMBB UEs operating in 

cellular mode (uplink / downlink) and using slice 

(RAN_slice_ID=2) based on the assumptions   described 

in section 2. Note that the slice ratio 1,UL·NUL is divided 

into two ratios (ᾱ1,UL= 65 % of 1,UL·NUL RBs for V2X 

users in sidelink and α1,SL =35 % of 1,UL·NUL RBs for 

V2X service in uplink direction).  

The traffic generation associated to each eMBB UE at a 

random position assumes that services generate sessions 

following a Poisson process with rate λe, required bit rate 

Rb=1 Mb/s and average session duration of 120 s. The 

gNB supports a cell with a channel organized in 200 RBs 

composed by 12 subcarriers with subcarrier separation 

Δf=30 kHz, which corresponds to one of the 5G NR 

numerologies defined in [27].  

The actions specify the fraction of resources for V2X and 

eMBB slices and they are defined such that action βk,x 

corresponds to β1,x(k)= k/N and  β2,x(k)=(1-k/N) for 

k=1,...,N, and x  {UL, DL}, where N is the number of 

actions. The simulation time is measured in units referred 

to as "time steps" that determine when the different 

simulation events occur. In the considered simulation, 

there is a set of possible actions numbered as k=1,...,Ax. 

For each action taken from this set of actions, the 

proposed RL dynamically interacts with a network model 

that simulates the behavior of the network and estimates 

the reward of the chosen action according to equation 

(14). Based on the reward, the RL algorithm keeps a 

record of its experience when taking an action ak.x and 

stores the Q-value in Qx(ak,x). Every time step, the 

QUL(ak,UL) and QDL(ak,DL) values are updated based on 

equation (15). Then, after multiple times of learning, RL 

selects the most appropriate action (i.e., the selection 

probability of one of the actions is higher than 99.99%). 

Once the RL algorithm has converged, the slicing ratios 

βs,x associated to this action are passed to the low-

complexity heuristic algorithm which in turn fine tunes 

Algorithm 1: RAN slicing algorithm based on RL 

1. Inputs:  NUL, NDL: Number of RBs in UL and DL. S:

number of slices, Set of actions ak,x for link x{UL,DL}

2.Initialization of Learning:  0t   ,  Qx(ak,x)= 0,

k=1,...,Ax,  x{UL,DL}

3. Iteration

4. While learning period is active do

5.     for each link  x{UL,DL} 

6. Apply softmax and compute  Px(ak,x) for each 

action  ak,x  according to (12); 

7. Generate a uniformly distributed random number 

u ∈ {0,1} 

8. Select an action  ak,x  based on u and probabilities 

Px(ak,x) 

9. Apply the selected action to the network and 

 evaluate  Ψs,x(ak,x)   based on  (5)-(8). 

10.          If  Ψs,x(ak,x)≤1 then 

11.    , ,s

,, = x k x

s x

a

k xR a e


12          else 

13.    , ,, s,1/= k x k xs x xR a a
14.         End 

15. Compute RTOT,x(ak,x)   based on equation (10)

16. Update Qx(ak,x) based on equation (11)

17. End

18. End
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the initial slicing ratios βs,UL, βs,DL chosen by the RL based 

on the resource requirements for each slice. 

Different simulations will be executed for different values 

of N in order to assess the impact of the number of 

actions. All relevant simulation parameters are 

summarized in Table 1.  

Table 1. Simulation parameters 

The presented evaluation results intend to assess and 

illustrate the performance of the proposed solutions in 

terms of network capacity, throughput, and outage 

probability when considering different configurations of 

the algorithm in relation to the number of actions N of the 

complexity heuristic approach.  

In addition, and as a reference for comparison, we assume 

a RAN slicing strategy denoted as “Proportional 

Scheme”, in which the ratio of RBs for each slice is 

proportional to its total traffic rate (in Mb/s). Similarly, 

comparison will also be presented against the case in 

which the algorithm includes only the Q-learning but not 

the heuristic approach. 

4.2 Impact of the number of Actions on the 
performance 

Fig. 2 presents the aggregate RB utilization (i.e. the 

number of used RBs normalized to the number of total 

available RBs) for both V2X and eMBB slices in the 

uplink (including both sidelink and uplink traffic), as a 

function of the number of actions N. It is worth 

mentioning that, although the aggregate of slicing ratios 

for V2X and eMBB slices will be 100%, this does not 

mean that the aggregate of resource utilization should be 

necessarily 100%, because the utilization measures the 

actual RBs that are occupied in accordance with the 

existing traffic. Therefore, it is possible that, at a certain 

point of time, one slice does not consume all the allocated 

RBs. The figure illustrates the behavior of the proposed 

solution with different values of ω and of the reference 

scheme. From the presented results, we notice that as the 

number of actions increases, the proposed solution with 

all the assumed values of ω maintains high resource 

utilization compared with the reference scheme. The 

reason for this is that, as the number of actions increases, 

there will be a greater chance of obtaining actions that 

lead to a higher value of Ψs,x(ak,x) (i.e., higher utilization) 

and provide larger rewards. Therefore, this allows better 

approaching the optimization target. 

Fig. 3 presents the time for convergence, as a function of 

the number of actions. It is measured as the number of 

simulated time steps of 0.1s in the execution of the off-

line RL until reaching convergence. We can clearly 

observe from the Fig. 3 that as the number of actions 

increases, the convergence time grows gradually (i.e., in 

the analyzed results this effect is particularly observed 

when the number of Actions increases beyond 15) 

because when the number of actions increases, the system 

needs to explore more actions (i.e. try more actions that 

have not been used before in order to learn from them) 

before finding the most appropriate one. Thus, this leads 

to a noticeable increase in convergence time. 

Looking at Fig. 2 and Fig. 3, a trade-off is found between 

resource utilization and convergence time. In particular, 

when increasing the number of actions, the proposed 

algorithm improves the resource utilization but with a 

Parameter Values 

General parameters 
Cell radius 500m 

Number of RBs per cell NUL=NDL=200 RBs 

Frequency 2.6 GHz 

Path loss model The path loss and the LOS probability 

for cellular mode are modeled as in [28]. 

In sidelink mode, all V2V links are 

modeled based on freeway case 

(WINNER+B1) with hexagonal layout 

[ITU-R] [29]. 

Spectral efficiency model 

to map SINR. 

Model in section A.1 of [30]. The 

maximum spectral efficiency is 8.8 

b/s/Hz. 

Shadowing standard 

deviation 

3 dB in LOS and 4 dB in NLOS. 

height of the gNB 10m 

Base station antenna gain 5 dB 

TTI duration ( Fd) 1ms 

Time window T 3s 

V2X parameters 

Length of the highway 1Km 

Number of lanes 3 in one direction (one is considered in 

the freeway) 

Lane width 4 m 

Number of clusters 4 

Size of cluster 250m 

Vehicular UE height  1.5m 

vehicle speed 80 Km/h 

Vehicle arrival rate a 1 UE/s 

Packet arrival rate v 1 packets/s 

Message size (Sm) 300 bytes 

eMBB parameters 

UE arrival rate m  1 UE/s 

UE height 1.5m 

Average session 

generation rate e 

Varied from 0.2 to 1.2 sessions/s 

Rb 1 Mb/s 

Average session duration 120 s 

RAN slicing algorithm parameters 

Learning rate α 0.1 

ω {0.25, 0.55, 0.85} 

Temperature parameter τ 0.1 

Actions of the RL 

algorithm 

N= {10,15,20,25} 
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longer convergence time. For example, when the number 

of actions is 20, the RAN slicing strategy with offline RL 

followed by the low-complexity heuristic algorithm with 

ω = 0.85 reaches a utilization of around 0.92 of the 

resources and the time needed to converge is about 18000 

time steps. Then, when increasing to 25 actions the 

utilization is improved up to 0.95, which corresponds to a 

relative gain of 3%. However, the convergence time 

increases up to 23000 time steps, representing an increase 

of 27%. Therefore, the slight improvement in utilization 

when increasing from 20 to 25 actions does not 

compensate for the degradation in convergence time.  

Figure 2. Uplink RB utilization as a function of 
the Number of Actions.  

Figure 3. Convergence time as a function of Number of 
Actions. 

4.3 Network Performance Metrics 

In this subsection, the performance of the RAN slicing 

strategy is compared with the reference scheme in terms of 

the obtained RB utilization, throughput, outage probability, 

and latency.   

Fig.4 plots the obtained RB utilization for UL, as a 

function of the eMBB session arrival rate (λe) when the 

number of actions is 20. Since SL and UL make use of the 

same set of RBs, the results included in Fig.4 refer to the 

total utilization by both links for V2X and eMBB slices.  

 From the presented results, we notice that the slicing 

strategy with both off-line RL and off-line RL followed by 

the low-complexity heuristic approach with all the assumed 

values of ω maintains higher resource utilization compared 

to the reference scheme for all the considered loads. This is 

due to the RL-based slicing solution that inherently tackles 

slice dynamics by selecting the most appropriate action. 

Further improvements are obtained by the offline RL 

followed by a low-complexity heuristic approach by 

checking the unused capacity left by each slice after 
selecting an action and use it to serve more traffic load in 

the other slice.  

Besides, we can see from fig. 4 that, when increasing the 

value of ω, the system provides more resources and 

therefore leads to better utilization, as it is observed when 

comparing the results for ω equal to 0.85 against the results 

for other values of ω.  

Regarding the quantitative comparison between 

strategies, the figure reflects that, for the RAN slicing 

strategy with offline RL followed by the low-complexity 

heuristic algorithm with ω = 0.85, the system utilizes 

around 94 % of radio resources in uplink when the eMBB 

session arrival rate is 0.8 sessions/s.  In contrast, in case of 

the proposed scheme with only offline RL algorithm, the 

system utilizes around 60 % of radio resources in uplink. 

Finally, for the reference proportional approach, the 

utilization is only about 51 % in uplink (i.e. offline RL 

followed by the low-complexity heuristic algorithm with ω 

= 0.85 achieves a relative gain of 84%).   

Figure 4. Uplink RB utilization as a function of the 
eMBB session generation rate λe (sessions/s). 

Fig.5 presents the aggregate throughput delivered in 

Mbits/sec for both eMBB and V2X slices in the sidelink 

and uplink. The figure illustrates the behavior of the RAN 

slicing strategy and the proportional scheme. We can 
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observe that the off-line RL and off-line RL followed by 

the low-complexity heuristic approach outperform the 

reference scheme. Specifically, the RAN slicing strategy 

with offline RL followed by the low-complexity heuristic 

algorithm with ω = 0.85 achieves a throughput of 123 Mb/s 

when the eMBB session arrival rate is 0.8 sessions/s. In 

turn, the RAN slicing strategy with only off-line RL 

achieves a throughput of 90 Mb, and the reference 

proportional approach a throughput of only 81 Mb/s (i.e. 

offline RL followed by the low-complexity heuristic 

approach with ω = 0.85 achieves a relative gain of 51% 

with respect to the reference). The reason for this behavior 

is that, as the number of eMBB sessions increases, 

requiring more radio resources, the proposed off-line RL 

followed by the heuristic algorithm ensures more RBs and 

achieves higher radio resource utilization than the reference 

schemes. Therefore, these RBs can be used to transmit 

more data. 

Figure 5. Aggregated throughput experienced by 
both slices in uplink as a function of the eMBB 

session generation rate λe (sessions/s). 

In Fig.6, we investigate the probability of having outage 

(i.e. the probability that there are no sufficient RBs to serve 

all the transmission requests) at a certain point of time. As 

shown in the figure, increasing the traffic load leads to an 

increase in the outage probability of the services.  

We notice from Fig.6 that, regardless of the considered 

scheme, the system does not experience outage when the 

eMBB session arrival rate λe  is less than 1.2 sessions/s. 

This is due to the fact that, for this low load, the system has 

sufficient amount of RBs to serve the traffic. Then, when 

the load increases (i.e. session arrival rate increases) the 

system starts to face situations in which some RB 

limitations may occur. For this reason, it is for these loads 

when a more efficient slicing strategy is needed to properly 

distribute the RBs among the slices. Therefore, it is 

observed that the proposed approach based on Q-learning 

followed by heuristic algorithm is able to achieve a better 

outage probability. In particular, for the RAN slicing 

strategy with offline RL followed by the low-complexity 

heuristic algorithm with ω = 0.85 the probability of outage 

is around 14 % when the eMBB session generation rate λe 

is 1.6 sessions/s. In the case of the RAN slicing strategy 

with only off-line RL, the probability of outage is 28%. In 

turn, for the reference proportional approach, the 

probability of outage is 32 % (i.e. offline RL followed by 

the low-complexity heuristic approach with ω = 0.85 

achieves a relative improvement of 56 % with respect to the 

reference). 

Figure 6. Outage probability as a function of the 
eMBB session generation rate λe (UEs/s). 

Fig. 7 illustrates the average latency for V2V service as a 

function of the V2X UEs packet generation rate λv 

(packets/s). We clearly observe from Fig.7 that the delay 

is only 0.03s when packet generation rate λv  6 vehicles/

s, while there is a marked increase when the packet 

generation rate λv increases (i.e., when λv  6). The reason 

for this increase is that for low loads (i.e., when λv< 6), 

when the system has sufficient radio resources regardless 

of the considered scheme, the latency is only due to the 

transmission delay. On the contrary, when the load 

increases, some situations of resource unavailability may 

arise, leading to increased queueing delay. In this case, the 

approach based on Q-learning followed by the heuristic 

algorithm, is able to better handle the load increase and 

lead to lower latency values than the other techniques.  

 From the presented results, we also notice that the 

approach proposed in this paper reduces the latency 

compared to the reference schemes. In case of the 

proposed strategy with offline RL followed by the low-

complexity heuristic algorithm with ω = 0.85, when the 

vehicle arrival rate is 10 vehicles/s, the average latency is 

only around 0.12s, while.in case of the proposed scheme 

with only offline RL algorithm, the average latency is 

about 0.28s. In case of the reference with proportional 

approach, the latency is about 0.32s (i.e. offline RL 

followed by the low-complexity heuristic approach with ω 

= 0.85 achieves a relative gain of 62 %). The gains are 

achieved because the proposed approach makes a more 

efficient use of the available RBs. Thus it reduces the 

corresponding waiting time and the transmission delay.  
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Figure 7. Average Latency as a function of the V2X 
UEs packet generation rate λv (packets/s). 

5. Conclusions

In this paper, we have investigated the performance of a 

RAN slicing strategy for splitting the radio resources into 

multiple RAN slices to support V2X and eMBB services in 

uplink, downlink and sidelink (direct V2V) 

communications. The RAN slicing strategy is based on off-

line RL followed by a low-complexity heuristic approach. 

This strategy has been compared against a reference 

scheme that makes an allocation of resources in proportion 

to the traffic rate of each slice. Extensive simulations were 

conducted to validate and analyze the performance of the 

RAN slicing strategy.  

Simulation results show the capability of the RAN 

slicing strategy to allocate the resources efficiently and 

improve the network performance. From the presented 

results, we notice that the RAN slicing strategy with both 

off-line RL and off-line RL followed by the low-

complexity heuristic approach maintains high resource 

utilization significantly, when the number of actions 

increases. The presented results also showed that further 

improvements are obtained when the configuration 

parameter ω of the low-complexity heuristic approach is 

increased. The proposed solution achieved better resource 

utilization, data rate, latency and outage probability with 

the value of ω equal to 0.85 compared to the proposed 

solution with other values of ω.  Besides, our RAN slicing 

scheme outperforms the proportional scheme in terms of 

resource utilization, data rate, latency and outage 

probability for all the assumed values of the configuration 

parameter ω.  

Future work includes the possibility of extending the 

evaluation of the algorithm for multi-cell scenarios. In this 

respect, since the algorithm is devised to work on a per-cell 

basis, this extension could be carried out just by having a 

separate slicing controller for each cell operating based on 

the specific traffic conditions of that cell. This would allow 

handling situations in which the traffic is not homogeneous 

in different cells. 
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