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Abstract—An important concept in the 5th generation of 

mobile networks is multi-tenancy, which allows diverse operators 

sharing the same wireless infrastructure. To support this feature 

in conjunction with the challenging performance requirements of 

future networks, more automated and faster planning of the 
required radio capacity is needed. Likewise, installing Small Cells 

is an effective resource to provide greater performance and 

capacity to both indoor and outdoor places. This paper proposes 

a new framework for automated cell planning in multi-tenant 

Small Cell networks. In particular, taking advantage of the 
available network data, a set of detailed planning specifications 

over time and space domains are generated in order to meet the 

contracted capacity by each tenant. Then, the network 

infrastructure and configuration are updated according to an 

algorithm that considers different actions such as 
adding/removing channels and adding or relocating small cells. 

The simulation results show the effectiveness of various methods 

to derive the planning specifications depending on the correlation 

between the tenant’s and network’s traffic demands. 

Keywords—Capacity planning; dimensioning; 5G networks; 
multi-tenancy; Small Cells; SON. 

I.  INTRODUCTION 

 Cellular data traffic has grown exponentially in the last few 
years due to the increasing popularity of new mobile devices 

and application services. A promising solution to satisfy this 

demand in the forthcoming fifth generation (5G) is based on 
Small Cell (SC) deployments [1]. SCs, which are more 

economically attractive than macrocells, provide additional 
capacity to the macro-cell layer, offering overlay coverage over 

the area of interest. The dense deployment of SCs has proven 
to be a cost-effective way to offer more capacity and more 

spectrum reuse because of their smaller cell radius  [2-3]. 

 The future 5G radio access networks (RANs) will support 
multi-tenancy, so that multiple mobile operators, service 

providers, over-the-top companies and vertical sectors can be 
served over the same infrastructure. In this respect, the 

dynamic resource provisioning between tenants has been 
studied in [4-5], where a central entity is responsible for 

allocating resources via resource slicing. This kind of solutions 

are intended for operating in short-term time scales. From a 
perspective of larger time scales, multi-tenancy poses 

unprecedented challenges to the owner of the shared RAN in 
relation to radio network planning (RNP). For example, each 

“tenant” has specific characteristics  on its geographic and/or 

population coverage [6], which may also change frequently 

over the time. To ensure speedy and efficient deployment of 
services, traditional RNP has to be evolved toward new 

models, where SCs are considered as a key element to increase 
capacity. 

 Thanks to the Self-Organizing Network (SON) concept 
introduced by the 3rd Generation Partnership Project (3GPP) 

[7], traditional management tasks  in cellular networks have 

been transformed into a set of automated functions. Self-
planning is defined in [8] as the process of identifying the 

parameter settings of new network elements, including site 
locations and hardware configuration. It was included within 

the SON use cases defined by the Next Generation Mobile 
Networks (NGMN) alliance [9]. To meet the envisioned 

capacity of 5G networks, the concept of “Self-” has to be 

applied to the dimensioning, planning and deployment of SCs. 
By making these activities more dynamic, faster and automatic, 

capital and operational expenditures can be reduced and 
network performance improved. Thus, the new RNP functions 

will operate at shorter time scales than today, involving a set of 
decision-making processes that can be triggered by various 

events. The diversity of these events will also be much greater 
in the future 5G networks, ranging from call traces and cell 

counters crossing a given threshold to the arrival of new 

tenants. In addition, the decision-making processes will 
manage a wider range of cost-efficient solutions, taking 

advantage of the flexibility of SCs and being integrated with 
the optimization tasks to avoid suboptimal network 

configuration and inconsistencies. 

 Taking into account the gaps in the open literature, in this 

paper, a novel framework that applies the SON principles to the 

RNP problem is proposed to meet the challenging requirements 
of 5G. In particular, this work tackles the RNP problem in the 

context of 5G considering the following: (i) capacity 
provisioning will be one of the most challenging issues for 

network equipment providers ; (ii) the multi-tenancy feature 
will introduce additional complexity to the planning process  

since multiple capacity conformance specifications over the 

spatial and temporal domains will be defined; and (iii) SCs will 
be considered as the main driver to satisfy the traffic demand 

because they are a less expensive and easy-to-deploy 
alternative to macrocells. Deploying SCs entails strong 

implications in the way that the spectrum planning (or channel 
allocation) is carried out, since the newly deployed SCs will 

interfere other co-channel SCs. Nevertheless, the spectrum 
planning problem can be solved in a more localized fashion 

than in macrocell deployments, because of the smaller size of 

SCs and the usage of high carrier frequencies, which facilitate 
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extensive spatial reuse. Thus, the proposed framework 
advocates a more systematic and efficient way of RNP without 

requiring vast computational resources. In this respect, when 
network measurements, call traces and/or geo-located data are 

available, the models to characterize network performance and 

traffic estimation can exploit them. The framework also 
reduces the gap between planning and optimization work by 

defining a unified approach where the potential solutions are 
intended to satisfy the traffic demand while minimizing 

capacity overprovisioning in the network. 

The remainder of this paper is organized as follows. In 

Section II the literature related to RNP is discussed. In Section 

III the system model is  presented. Section IV describes the 
proposed architecture and analyzes the multi-tenancy feature 

from a planning perspective. Results are discussed in Section 
V. Finally, Section VI provides some concluding remarks. 

II. RELATED WORK 

The RNP problem has been widely investigated in 
macrocell scenarios [10-11]. With the arrival of SCs, the RNP 

problem has been addressed in the context of Heterogeneous 
Networks, where the cross-tier interference between macrocells 

and SCs has been crucial for an efficient deployment [12-17]. 
However, focusing on the SC-layer, there is a lack of studies on 

the joint optimization of SC location planning and spectrum 
planning. In general, spectrum planning (or channel allocation) 

is seen as a separate issue that is solved only when the location 

of the SCs is already known. 

RNP as an optimization problem has commonly been 

approached as a two-phase process, where the first phase (also 
referred to as dimensioning) has to determine the minimum 

number of cells to satisfy signal coverage, system capacity and 
cost constraints, while the second phase tries to find the 

optimal cell locations [10][12][18-19]. Eliminating redundant 

base stations can be considered in the method as a third phase 
[11], or it can be the fundamental basis of the planning method 

[16]. Another approach is based on iteratively adding a cell 
which has the highest increment of an utility function among 

the set of candidate locations until network capacity reaches a 
target value [20-21]. Note that, in this case, the a priori 

dimensioning phase is not required. In general, the number of 

cells to deploy is estimated as the total traffic demand of the 
considered area divided by the average capacity of a cell. In SC 

networks, the SCs can use different number and different set of 
channels, which also may change over time. Consequently, the 

estimation of cell capacity is not as simple as in macrocell 
networks, where the frequency reuse is typically one. This 

issue obviously affects the accuracy of the estimation of the 
number of cells. Thus, to avoid relying on this number, in this 

paper, the iterative approach of adding SCs has been selected. 

The success of RNP depends to some extent on the model 
that is used to characterize the network performance, typically 

Monte-Carlo simulations [10][22] or stochastic processes [23-
25]. These models can be utilized to develop either proactive or 

reactive planning strategies. Recently, the energy consumption 
of base stations has also been modeled to provide energy-

efficient planning solutions [20][23][26-27]. From a more 

practical perspective, existing commercial planning tools (such 
as those mentioned in [19]) provide operators with multitude of 

capabilities for efficient RNP, including realistic traffic maps 

and accurate propagation models. However, there is very little 
open information about methodology and principles due to the 

confidential and proprietary nature of these solutions . Lastly, 
the RNP of multi-tenant networks has received little attention 

in the literature [28]. 

From the perspective of 5G, network slicing represents a 
fundamental feature to accommodate traffic demands in multi-

tenant networks without significantly increas ing operational 
and infrastructure costs [29]. Specifically, network slicing 

consists of partitioning a common physical infrastructure into 
multiple logical networks. The challenges that arise from 

introducing this feature in 5G networks have been addressed in 

several works [29-30]. The architectural issues for enforcing 
slices in mobile networks have been studied in [31-32], while 

the algorithmic aspects have been investigated in [33]. In that 
work, an algorithm for dynamic resource sharing across slices 

taking into account user association decisions has been 
proposed. To enable network slicing in mobile networks, 

various technologies such as Network Function Virtualization 

(NFV), Software-Defined Networks (SDN) and cloud 
computing have been considered [34]. In this respect, the 

allocation of virtualized network functions, the network 
programmability and the centralized coordination are key 

aspects for the adoption of network slicing and the diverse 
requirements of 5G mobile networks. 

With network slicing, a much more efficient utilization of 

network resources is achieved in multi-tenant networks. 
However, when traffic volumes increase and the current 

infrastructure is not enough to meet the required capacity, 
investing on new resources remains as the only solution to this 

issue. While the above references focus on network slicing to 
optimize the resource usage during the network operation, this 

paper proposes a framework to update the network 
infrastructure during the (re-)planning phase. Such a 

framework was initially introduced in [35], where the SC 

location problem and spectrum planning were approached as a 
joint problem. This paper further develops this initial work 

introducing the following contributions and novelties : 

 A novel implementation of the SC planning and spectrum 

allocation processes is considered. Specifically, when a new 
SC has to be deployed, the channel allocation process is 

performed through an iterative process to try a variable 

number of allocated channels. 

 New scenarios are adopted to evaluate a greater variety of 

planning actions, such as removing a channel in a SC. 

 An exhaustive temporal analysis of the proposed planning 

strategies is performed to evaluate the re-planning phase. 
This phase takes place after deploying a new tenant and it is 

especially effective when the tenant’s demand is a priori 
unknown. 

 The proposed capacity planning method is evaluated 
against the state-of-the-art, where the spectrum allocation is 

commonly seen as an independent function that is executed 

only when the location of the SCs is already known. 

III. SYSTEM MODEL 

Let us assume a scenario where a certain infrastructure 
provider owns a RAN comprised of SCs. The SCs are intended 

to meet the high capacity requirements  in localized areas. The 
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provider offers at time t  such a RAN to a certain number 
( )tM  

of tenants, so that the tenants’ customers can get access to the 

tenant’s service. Let denote as 
( )

,

t

i mD  the traffic demand (in 

Mbps) of tenant m in SC i at time t , calculated as the sum of 

the traffic from all the users attached to SC i. The tenants’ 

traffic 
( )

,

t

i mD  can be aggregated into a new variable, ( )t

iD , 

which provides the total traffic demand in SC i, i.e.: 

( )

( ) ( )

,

1

.

tM
t t

i i m

m

D D


                                (1) 

Let also 
( )

,

t

u md  be the traffic demand (in Mbps) of tenant m in 

the uth pixel of the scenario ( u U ). The metric ( )t

ud  is 

computed in a similar way to (1) in order to determine the total 
traffic at the pixel-level.  

 The geographical area of interest is divided into a set U of 
grid points, called pixels. A subset 

CU U  of these locations 

are candidate site locations for SCs. A typical placement of a 

SC site is below rooftops. However, in many cases, the 
selection of potential sites depends on how easily they can be 

acquired and backhauled, e.g. if there exists line of sight to a 
nearby hub. In this respect, an adequate filter of unaffordable 

site locations to determine the subset UC will reduce 
computational complexity of the later planning process. 

Finally, let ( )t

S CU U  be the subset of site locations  with 

deployed SCs at time t . 

The transmit power and the allocated bandwidth of the ith 

SC are denoted by ( )t

iP  and ( )t

iB , respectively. The transmit 

power is configured such that it provides a certain Signal-to-
Interference-plus-Noise Ratio (SINR) at the targeted coverage 

range [36]. With respect to the carrier frequency, SCs are 
assumed to be deployed in higher frequencies than the 1~2 

GHz, such as e.g. the 5 GHz considered by the 3GPP as a 
feasible solution [36]. The frequency band is partitioned into a 

set  1,..., KF f f  of K orthogonal channels  of bandwidth B. 

The subset of channels allocated to SC i at time t  is given by 
( )t

iF F . Therefore, the total bandwidth allocated to SC i is 

expressed as ( ) ( )t t

i iB F B  , where   denotes cardinality. 

 The capacity of SC i is given by: 

( )( ) ( ) ,
tt t

ii iC B SE                                (2) 

where 
( )t

iSE  represents the average spectral efficiency 

achievable at SC i. In general, the spectral efficiency depends 
on the radio access technology and the SINR conditions. 

 To determine areas in the network with a lack of capacity 
and areas with spare capacity, the required bandwidth becomes 

a key metric in the planning process. Specifically, this metric at 

the pixel-level can be determined from the traffic demand and 
the spectral efficiency as follows: 

( )
( )

, ( )
.

( )

t
t u

i u t

i

d
B

SE u
                               (3) 

In a similar way, ( )t

iB  represents the required bandwidth on a 

cell basis. 

IV. FUNCTIONAL ARCHITECTURE 

This section focuses on elaborating a reference framework 

for multi-tenant management from the perspective of network 
planning. The proposed model is depicted in Fig. 1. The 

network, represented in the bottom of the figure, is 

characterized by the network configuration, which is given by 
( )t

SU  and ( )t

iF . The network performance can be seen as a 

source of relevant information for the planning process. In 
particular, it provides a collection of metrics related to the past 

and actual traffic demand and also to the quality of the offered 
services. The information can be given at either the SC-level or 

pixel-level. In the former case, the metrics are derived from cell 
counters and they are typically known as Key Performance 

Indicators (KPIs). In the latter case, the information is derived 

from call traces, which contain geo-located measurements from 
users. 

The functional architecture of Fig. 1 includes two main 
entities described in the following. These entities can be part of 

the management systems such as the Element Manager (EM) 
or the Network Manager (NM) [37]. 

A. Multi-tenancy management entity 

The multi-tenancy management entity acts as an interface 

between the tenants and the network planning tool of the 
network provider. From the perspective of planning, the SLA 

defines the contracted capacity ˆ
mA  (in Mbps) that tenant m 

demands to the network provider. Normally, it is expressed in 

terms of aggregate (or average) values over relatively coarse 
time and space scales. The SLA may also include some other 

Fig. 1. Functional architecture. 
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guarantees, e.g. related to QoS metrics.  

For network planning purposes, the SLA has to be 

expressed in smaller time and space scales that can be more 
easily used when taking planning decisions . In particular, the 

contracted capacity ˆ
mA  is translated into a set of detailed 

planning specifications 
( )

,

t

m iA  that depend on SC i and time t . 

To do this, the current or predicted traffic demand in the 

network can be employed. This process, which ensures that the 
contracted capacity is provided, depends exclusively on the 

network provider’s side. As a consequence, the SLA is 
simplified and tenants are excluded from gaining a detailed 

picture of the network infrastructure. 

Each time a set of detailed planning specifications are 
generated, the multi-tenancy management entity sends this 

information to the self-planning entity, which will use them to 
determine whether the infrastructure needs to be updated or 

not. This situation typically occurs when a new tenant is 
aggregated or an ongoing tenant updates the SLA. In the 

former case, the traffic demand of the tenant is unknown, while 

in the latter case it depends on the geographical area where the 
contracted capacity is modified. For example, if an ongoing 

tenant extends its service coverage (e.g. according to business 
plans) to a new geographical area that is owned by the 

infrastructure provider, the traffic demand of the tenant in this 
area is unknown. On the contrary, if the tenant modifies the 

contracted capacity (i.e. due to an increase in traffic demand) 

within the limits of the current service coverage area, the 
temporal and spatial distributions of the traffic demand are 

already known in this case. 

 Depending on whether the traffic demand of the tenant is 

unknown or not, the detailed planning specifications are 
generated in a different way. 

In the first case (i.e. traffic demand is unknown), 
( )

,

t

m iA  is 

calculated based on the temporal and spatial variations of the 

traffic demand from other tenants. Specifically, the temporal 

variation of the traffic demand is mainly given by the traffic 
fluctuations that take place over one day’s time. Such a 

temporal pattern is typically repeated over different days. An 

example sequence of total tenants’ traffic demand 
( )tD  during 

several days is illustrated in Fig. 2, where T  stands for the 

one-day period and 
Bt  is the busy hour. Based on this, let ( )Bt

mA  

be the detailed planning specification at the busy hour, which 

can be estimated from ˆ
mA  and from the time variations of the 

other tenants’ traffic demand as follows: 

( )
( ) ˆ .

B

B

t
t

m m

D
A A

D
                               (4) 

Regarding the spatial variations of the traffic demand, the 

contracted capacity at the busy hour ( )Bt

mA  is distributed among 

the number ( )t

SU  of deployed SCs taking into account the 

following condition:  

( )

( ) ( )

, ,B B

t
S

t t

m m i

i U

A A


                                   (5) 

where ( )

,
Bt

m iA  is the contribution of the contracted capacity in SC 

i. Depending on the spatial correlation that can be expected 
between the tenant’s traffic demand and the actual network’s 

traffic demand, the detailed planning specifications per cell for 
tenant m can be formulated in different ways:  

 Uniform distribution. In case that the spatial traffic 
demand of the new tenant is unknown, an even 

distribution of traffic is assumed. Estimation can be 

conducted at the SC-level (6) or pixel-level (7): 

( )
( )

, ( )
,

B

B

t
t m

m i t

S

A
A

U
                               (6) 

( )
( )

, ,
B

B

t
t m

m u

A
A

U
                               (7) 

where ( )

,
Bt

m uA  stands for the contracted capacity at the uth 

pixel and U  is the total number of pixels in the area. If 

uniform distribution at the SC-level is adopted, the values 

of ( )

,
Bt

m uA  at pixel u are obtained considering a uniform 

distribution of traffic within the service area of the 
corresponding SC. On the other hand, when estimation is 

at the pixel-level, the value of
( )

,
Bt

m iA  in SC i is obtained 

from aggregating the values of ( )

,
Bt

m uA  only for pixels 

served by SC i. Note that this value may be different to 
that obtained from using (6).  

 Correlated distribution. In case that the correlation 
between the traffic demand for the new tenant and the 

already existing tenants is  expected, areas with higher 
traffic demand of other tenants will receive a greater 

contribution of ( )Bt

mA . Such an estimation can also be 

conducted at either SC- or pixel-level. In the former case, 

using the information on KPIs that measure 
( )Bt

iD  in SC i 

as an estimation of the spatial traffic demand of tenant m, 

the detailed planning specification is given by: 

( )

( )
( ) ( )

, ( )
.

B

B B

B

t
S

t
t t i

m i m t

p

p U

D
A A

D


 


                       (8) 

In the latter case, the traffic measurements at the pixel-
level are taken from call traces that provide geo-located 

information for each user in an automatic way. Thus, the 
specification is calculated as: 

Fig. 2. Example of normalized traffic demand over three days. 
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( )
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, ( )
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B

B B

B

t

t
t t u

m u m t

v

v U

d
A A
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where ( )Bt

ud  is the total traffic demand in the uth pixel of 

the scenario. 

In the second case (i.e. traffic demand is known), the 

temporal and spatial variations of the traffic demand of tenant 
m are considered for the generation of the detailed planning 

specifications over such domains. In particular, if the traffic 

demand is given at the SC-level, ( )Bt

iD  is replaced by ( )

,
Bt

i mD  in 

(8). If, on the contrary, the traffic demand is given at the pixel-

level, ( )Bt

ud  is replaced by ( )

,
Bt

u md  in (9). 

B. Self-planning entity 

 According to Fig. 1, the detailed planning specifications, 
( )

,

t

m iA , are used by the self-planning entity, whose aim is 

twofold. The first objective is to check whether or not the 
deployed network capacity fits the tenants’ demand. The 

second is to provide the required changes in the network layout 

and channel allocation, given by ( 1)t

SU   and ( 1)t

iF   

respectively, in case there is a lack of capacity. The self-
planning entity follows an automated approach characterized 

by running an iterative process that is executed during the 

network operation assuming that a set of SCs have already 
been deployed. Thus, the currently deployed infrastructure is 

incrementally adapted to the evolving tenants’ requirements to 
make capacity expansion smoother, less costly and faster. The 

proposed approach is applied to smaller regions that are 
covered by a subset (or cluster) of SCs, so that dimensioning 

and planning tasks are accelerated and simplified. As a result, 
dimensioning and planning can be regarded as an automated 

function that can be easily integrated into the SON framework. 

This approach contrasts with the traditional planning, which 
employs longer timescales to accommodate larger capacity 

needs over the whole network’s geographical area. 
Nevertheless, both traditional and SON-based planning are 

complementary approaches to drive network expansion at 
different time scales. 

1) Capacity conformance monitoring 
This module watches over the network to determine when 

the network infrastructure has to be reconfigured in order to 
meet the tenant’s traffic demand while minimizing over-

provisioning. The required bandwidth in the SCs can vary due 

to high tenant’s actual traffic demand ( )

,

t

i mD , the addition or 

removal of new tenants (i.e. variations in 
( )tM ) or changes in 

the planning specification ( )

,

t

m iA . Also, if the process is executed 

proactively, the predicted traffic demand can be considered. To 
this end, the traffic forecasting entity provides the predicted 

traffic demand in time t at the SC-level (which can be 
computed from historical data using statistical models ) as input 

in the self-planning entity. The proactive response is key as 
long as the deployment of new infrastructure may require 

substantial time compared to the evolution of the traffic 
demand. Thus, the traffic forecasting entity predicts the traffic 

growths on a relatively long-term time scale (e.g. weeks, 

months). As a result, the system is able to anticipate the need 
for more SCs and/or spectrum. 

 The capacity conformance is conducted in terms of the 

required bandwidth ( )t

iB% by SC i, which can be estimated as: 

 
( )

( ) ( ) ( )

, ,( )
1

1
min , .

tM
t t t

i i m m it
mi

B D A
SE 

 %               (10) 

In case of working with variables at the pixel-level, the 
translation to the SC-level is a simple aggregation of data per 

cell. If the traffic demand of tenant m at SC i is below the 

SLA’s planning specification, 
( )

,

t

i mD  is used to provide cost-

effective dimensioning, since the SC’s bandwidth would fit the 
actual required bandwidth. If, on the contrary, the traffic 

demand exceeds the SLA’s planning specification, the required 

bandwidth is then limited by 
( )

,

t

m iA . To compute ( )t

iB%  in 

practice, variable 
( )t

iSE  can be estimated from the transmitted 

data volume ( )t

iv  (measured in bits) under full-buffer 

conditions and the amount of resource elements ( )t

in  (measured 

in s Hz ) that have been used for transmission in SC i, i.e.: 

( )
( )

( )
.

t
t

i
i

t

i

v
SE

n
                                 (11) 

With respect to variable 
( )

,

t

i mD , it can be estimated as follows: 

( )

,( )

, ,

t

i mt

i m

v
D

T
                                 (12) 

where 
( )

,

t

i mv  is the total data volume (in bits) transferred in SC i 

during time T (see Fig. 2) for tenant m. 

 The bandwidth of SC i, ( )t

iB , is dimensioned so that the 

required bandwidth ( )t

iB%  is satisfied at the busy hour 
Bt , 

which is calculated as: 

 ( )arg max ,   1,..., .B it B t T t



   %             (13) 

According to this, the capacity conformance monitoring 
module triggers the capacity dimensioning and planning  

module if the following condition is fulfilled for any of the 

deployed SCs in L consecutive periods of T duration: 

( ) ( )B Bt t

i iB F B  %                             (14) 

where [0,1]  is an adjustable parameter that determines the 

ability to support some variations in the traffic demand with 

respect to the estimated value. Note that an increase in 
( )Bt

iB%  

does not always trigger the condition in (14), since there can be 

spare capacity in the SCs. This situation can occur when: (i) the 
network capacity has been intentionally overprovisioned; (ii) 

the traffic demand has been overestimated when planning 

tenants for the first time; (iii) the traffic demand of any tenant 
has decreased over time; or (iv) a certain SLA has been 

modified. 

 Lastly, note that, if the total traffic demand of any tenant 

exceeds the contracted capacity, the capacity conformance 
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monitoring module should communicate the multi-tenancy 
management entity the need of reviewing (or negotiating) the 

SLA in order to meet the traffic demand. 

2) Capacity dimensioning and planning 
 This module aims to determine the optimal solution (i.e. an 

updated RAN) to cope with the varying traffic demand. A 

candidate solution is represented by 
( )ˆ t

SU  and 
( )ˆ t

iF , which 

represent a modified version of the actual network deployment 

and spectrum allocation, respectively. The required bandwidth 

of the candidate solution, 
( )ˆ t

iB , is obtained from the network 

performance model, which emulates the behavior of the 
network with a certain layout and configuration. Unlike the SC 

bandwidth (measured in steps of B  MHz), 
( )ˆ t

iB  is a continuous 

variable that depends on the traffic demand and the spectral 
efficiency. 

The dimensioning and planning is modeled as an iterative 
process, initiated after satisfying (14), where a set of conditions 

are sequentially checked at each time step in order to trigger 
specific planning actions  (i.e. adding/removing a channel and 

deploying/relocating a SC). Such actions are accumulated 

during the planning process and, after that, the infrastructure 
provider is notified about the changes in the network to be 

implemented. The execution of planning actions depends on 
the limited budget of possible network changes that can be 

taken in a specific period. This means that the infrastructure 
provider is responsible for deciding when communicating the 

changes to the infrastructure deployment team according to 

other regulation and economic factors. Such a problem has 
been studied in [28]. 

 The planning process is summarized in Algorithm 1, where 
SC

maxN  is the maximum number of SCs that can be deployed in 

the area of interest, 
maxK  is the maximum number of channels 

that can be allocated in a SC and , [0,1]    are adjustable 

parameters. In detail, in steps 1-20, the planning process  
focuses on extending the capacity in areas with a lack of 

capacity, while in steps 21 to 31, this process aims at 

minimizing the capacity overprovisioning. Note that actions 
such as removing channels or SCs where traffic has decreased 

significantly may result in reduced interference, increased 
quality and/or capacity. During the execution of this process, a 

certain planning action (e.g. adding a channel) can be canceled 
due to the execution of the opposite action (e.g. removing a 

channel) depending on the actions carried out between the two 

(e.g. a channel added in steps 1-6 may no longer be needed if a 
SC is later on added in steps 7-20). The channel selection in a 

SC is performed so that the SC-to-SC distance between the 
given SC and the closest neighboring SC using the same 

channel is the maximum possible. This process is summarized 
in Algorithm 2. In addition, when a planning action is selected 

the network performance model is launched to obtain the value 

of required bandwidth, 
( )ˆ t

iB , corresponding to the new network 

configuration. In case a new SC has to be deployed, 
( )ˆ t

iB  is 

calculated for each candidate site in the area of interest. Then, 

the site with the lowest required bandwidth is selected. 

 

Algorithm 1 Capacity dimensioning and planning 

1: // Adding a channel 

2: While ( ) ( )ˆ ˆ | Bt t

j jj B F B     and ( )ˆ t

j maxF K  

3:   Set ( ) ( )ˆ ˆ 1t t

j jF F  ; 

4:   ( )ˆ t

jF = Channel_Selection(
( )ˆ t

SU , ( )ˆ t

iF ,  j ); 

5: 
  ( )ˆ Bt

iB =Network_Performance_Model(
( )ˆ t

SU , ( )ˆ t

iF ) 

  
( )ˆ t

Si U  ; 

6: End 
7: // Deploying a SC 

8: While ( )ˆ | B

(t)

St

j SC

max max

U
j B B

N / K
    and 

(t) SC

S maxU N  

9:  0k  ;  // k : number of allocated channels  

10:   Do 
11:      Set 1k k  ; 

12:      For all ( )ˆ t

Cx U  do: 

13:        Set  ( ) ( )ˆ ˆt t

S SU U x   ; 

14:        ( )ˆ t

xF  = Channel_Selection(
( )ˆ t

SU  , ( )ˆ t

iF , x ); 

15: 

       
( )ˆ Bt

iB = Network_Performance_Model(
( )ˆ t

SU  ,… 

         ( ) ( )ˆ ˆ,t t

i xF F  )   
( )ˆ t

Si U   ; 

16:      End For 

17: 
     Select x* with objective: 

( )

( )

ˆ

ˆmin B

t
S

t

i

i U

B


 ; 

18:   While ( )

*
ˆ Bt

xB k B     and 
maxk K ; 

19: 
  Set  ( ) ( )ˆ ˆ *t t

S SU U x  ,  ( ) ( )ˆ ˆ \ *t t

C CU U x , 

  
( ) ( )

* *
ˆ ˆt t

x xF F  ; 
( ) ( )ˆ ˆB Bt t

i iB B  
( )ˆ t

Si U   

20: End 
21: // Removing a channel 

22: While  ( ) ( )ˆ | 1Bt t

j jj B F B      and ( )ˆ 1t

jF   

23:   Set ( ) ( )ˆ ˆ 1t t

j jF F  ; 

24:   ( )ˆ t

jF = Channel_Selection(
( )ˆ t

SU , ( )ˆ t

iF ,  j ); 

25: 
  

( )ˆ Bt

iB =Network_Performance_Model(
( )ˆ t

SU , ( )ˆ t

iF ) 

  
( )ˆ t

Si U  ; 

26: End 
27: // Removing a SC 

28: While ( )ˆ | Bt

jj B B    

29:   Set  ( ) ( )ˆ ˆ \t t

S SU U j ,  ( ) ( )ˆ ˆt t

C CU U j  ; 

30: 
  

( )ˆ Bt

iB =Network_Performance_Model(
( )ˆ t

SU , ( )ˆ t

iF ) 

  
( )ˆ t

Si U  ; 

31: End 
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32: 
Set 

( ) ( )ˆt t

S SU U , 
( ) ( )ˆt t

C CU U  ; 
( ) ( )ˆt t

i iF F , 

( )ˆ t

Si U   

 

 Algorithm 1 is designed such that the deployment of new 
SCs is carried out gradually as the traffic demand grows  and 

new channels are allocated. According to this , as the number of 
deployed SCs gets closer to the saturation point (given by 

(t) SC

S maxU N ), the threshold in the first condition of step 8 that 

is used to deploy new SCs approaches the value of maximum 

amount of allocable bandwidth in a SC (i.e. 
maxK B ). 

 Regarding the computational complexity of Algorithm 1, it 
is worth highlighting that, as long as the dimensioning and 

planning are rather long-term processes, computational 

complexity is not a first-order requirement to consider. 
However, to limit the complexity when the number of SCs 

increases, the considered geographical area could be divided 
into smaller regions so that Algorithm 1 is applied to each of 

them independently. 

 From an economic perspective, each kind of planning 

action entails a different cost for the infrastructure provider. In 
particular, adding or removing channels  represents the cheapest 

solution since it can be executed remotely. On the opposite side 

is the deployment of new SCs, which requires investing on new 
infrastructure. The infrastructure provider can be interested in 

balancing the priority of these two planning actions according 
to its financial objectives . This can be done in the proposed 

algorithm by tuning 
SC

maxN , which is the parameter that has a 

direct impact on the deployment costs . 

 

Algorithm 2 Channel selection 

1: Inputs: 
( )ˆ t

SU ,  ( )ˆ t

iF ,  x: targeted SC; 

2: Initialize: 
( )ˆ t

xF   ; 

3: Do: 

4:     Calculate ( , )s x y ; // s: distance between x and y 

5:      ( ) ( )ˆ ˆ( , )   
( , )

Inf

t t

j x y

j

s x y if f F F
s x y

otherwise

  
 



 

6:     ( ) min ( , ),      j j j
y

s x s x y f F   ; 

7: 
    arg max ( )j

j

i s x ; 

8:     Set  ( ) ( )ˆ ˆt t

x x iF F f  ;     \ iF F f ; 

 9: While ( )ˆ t

xF k ; 

 

 The parameter 
maxK  is also adjustable and it determines the 

interference levels that are allowed in the network. For 
example, by setting the maximum value, all the SCs can use all 

the channels. However, a high value of this parameter may not 
be recommended as it would result in excessive interference 

levels, making the solution spectrally inefficient. Likewise, a 

too low value of this parameter should be avoided since it 
entails a waste of spectrum and an increased cost due to a faster 

deployment of SCs. 

 The parameters   and   determine the amount of spare 

capacity that is retained by the infrastructure provider in the 
SCs e.g. to absorb eventual peaks of traffic demand. They are 

jointly configured to avoid recursive channel allocations and 

releases in the SCs. 

 Lastly, the parameter   establishes the sensitivity of the 

planning action related to relocation of SCs that support 

marginal amount of traffic. This situation happens, for 

example, when a tenant’s contract expires leaving a large 
amount of spare capacity in the SCs. 

3) Network performance model 
 To evaluate the candidate solutions, a network performance 
model is required. The objective of this model is to compute 

the required bandwidth in the network to satisfy a certain 
traffic demand. As observed in Fig. 1, the inputs of the model 

are the traffic demand (either actual or predicted), the average 

spectral efficiency and the candidate network configuration. 

In the model, the transmit power ( )ˆ t

iP  for each SC of the 

candidate solution is determined by:  

( ) ( ) ( )

,
ˆ ˆ( )t t t

i N PL i edge i edgeP P G u F SINR                  (15) 

where 
NP  is the noise power measured in one channel, 

( ) ( )

, ( )t t

PL i edgeG u is the path gain (loss) from SC i to pixel ( )t

edgeu  

located at the cell-edge and 
edgeSINR  represents the target 

value at such a distance. The range of ( )t

iP  is limited by the 

maximum allowed transmit power, 
maxP . The cell-edge is a 

function of the inter-site distance (ISD), which is given by the 
distance to the closest adjacent SC. 

 The received power ( )

,
ˆ ( )t

RX iP u  at pixel u when served by SC 

i using a single channel is given by: 

( ) ( )

,
ˆ ˆ( ) ( ).t t

RX i i iP u P G u                             (16)  

where ( )iG u  is the overall gain between SC i and pixel u, 

expressed as the sum of individual gains (losses) including the 

antenna gain and the path loss. 

 The users are served by the SC from which they receive the 

strongest received power. In this way, the function ( )ˆ ( )t u  

returns the SC that serves the users in pixel u (i.e. it defines the 

service area of every SC). Formally, it is defined as: 

( ) ( )

,
ˆˆ ( ) arg max ( ).t t

RX i
i

u P u                         (17) 

Such a function facilitates the conversion between the SC and 

pixel domains in the model. 

 The ( )

, ( )t

i kSINR u  at pixel u when served by SC i using 

channel k  is expressed as: 
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( )

,( )

,

( ) ( ) ( )

,

\

ˆ ( )
( ) ,

ˆ( ) ( )
S

t

RX it

i k

t t t

j j RX j N

j U i

P u
SINR u

k P u P 



 

    
 


    (18) 

where ( ) ( )t

j k  indicates whether channel k  is allocated to SC j 

(with value 1) or not (0) and ( )t

j  is the average load. 

Computing the SINR requires to solve a system of non-linear 
equations due to the load-coupling, i.e. the load of a cell is a 

function of the load levels of other cells [38]. To simplify this 

procedure, the average load  ( )t

j  in SC j is approximated by:  

( )

( )

( 1)
min ,1 ,

t

jt

j t

j

D

C




 
   

 

                              (19) 

where ( 1)t

jC   is the capacity of SC j at the previous time step. 

The average ( )iSINR u  at pixel u when served by SC i is given 

by: 

( )

( ) ( )

,( )
ˆ

1
( ) ( ),

ˆ t
i

t t

i i kt
k Fi

SINR u SINR u
F 

              (20) 

 Then, the spectral efficiency ( ) ( )t

iSE u  at pixel u is obtained 

by:  

( ) ( )( ) ( ( ))t t

i RAT iSE u f SINR u                    (21) 

where ( )RATf   is a function that depends on the radio access 

technology (e.g. LTE). From the spectral efficiency and the 

traffic demand at the pixel-level, the required bandwidth 
( )

,

t

i uB  

is calculated based on (3). Lastly, this information can be 

aggregated on a cell basis using the function ( )ˆ ( )t u  as 

follows: 

( )

( ) ( )

,
ˆ| ( )

.
t

t t

i i u

u i u

B B


                             (22) 

V.  PERFORMANCE EVALUATION 

A. Simulation scenario 

An urban SC scenario with dimensions 0.4 km × 0.4 km 

and a grid resolution of 5 m has been considered. To represent 
the areas where deploying SCs is possible, e.g. no backhaul and 

site acquisition constraints, 2% of the points (or pixels) in the 

scenario have been randomly selected as candidate site 
locations. The actual network layout and the traffic demand at 

the busy hour in the situation before the consideration of the 
new tenant are represented in Fig. 3, where the triangles 

represent the location of the three deployed SCs and the values 
in brackets are the number of allocated channels. Color scale 

indicates the traffic demand density, which is non-uniformly 

distributed over the considered area. The traffic demands 
supported by SCs 1-3 are 8.8, 5.6 and 5.0 Mbps, respectively. 

The network performance model has been implemented 
according to Section IV.B. Table I summarizes the main 

parameters of this model. The transmit power ( )t

iP  is 

configured for each SC to have 9edgeSINR   dB at 
3

2  of the 

ISD [36]. The spectral efficiency function SE(SINR) used to 

compute the average spectral efficiency 
( )t

iSE  at SC i 

depending on the SINR at each pixel is obtained from Section 

A.1 in [39] with 4.4maxSE   b/s/Hz. 

Parameter Configuration 

Deployment scenario Urban, small cells, 0.4km x 0.4km 
Operating frequency 5 GHz 
Channel bandwidth 20 MHz 

Cell bandwidth 4 channels 

Propagation (path loss) ITU InH model [40] 
SC antenna directivity omni-directional 

SC antenna height 6 m 

UE antenna height 1.5 m 
SC antenna gain 2 dBi 

UE thermal noise -174 dBm/Hz 

UE noise figure 9 dB 
UE minimum SINR -10 dB 
SC TX power range [10-24] dBm 

From a network planning perspective, the parameters used 
in the capacity conformance monitoring module to trigger the 

planning actions are configured as: 0.95  , 0.7   and 

0.05  . Parameter   is configured assuming moderate 

traffic variations over the expected values. However, 

depending on the provider’s deployment policies, this 
parameter can be configured with a lower value in order to 

provide higher levels of spare capacity in the SCs and thus 

leaving some room for coping with unexpected traffic 
variations. Regarding parameters    and  , a reasonable 

configuration of such parameters has been considered in this 
work to react to traffic variations while, at the same time, 

limiting the number of “re-planning” actions and targeting an 
efficient resource utilization. In addition, the maximum number 

of allocated channels per SC is set to 3maxK  , while the 

maximum number of SCs that can be deployed in the 

considered area is set to 10SC

maxN  . 

B. Analysis of the network planning solutions 

Let assume that the SLA of the new tenant is  translated to a 

specification at the busy hour of 
( ) 100Bt

mA   Mbps. At this 

initial stage, the new tenant’s spatial traffic demand distribution 

is assumed to be unknown, so the planning is carried out using 

Fig. 3. Traffic demand and network deployment in the initial situation (before 
new tenant’s arrival). 

T ABLE I. SIMULATION PARAMETERS 
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the detailed planning specifications from the methods 

explained in Section IV.A. Thus, the total traffic demand is 
calculated as the actual traffic demand from existing tenants 

plus the estimated new tenant’s demand. After generating the 

detailed planning specifications, it is observed that in the 
capacity conformance monitoring  module condition (14) is 

satisfied for the three deployed SCs, so that the capacity 
dimensioning and planning  module is launched. 

Fig. 4(a-d) show the results of the planning process for 
different sets of detailed planning specifications  corresponding 

to the methods of Section IV.A. 

For the uniform distribution at the SC-level method, Fig. 

4(a) shows that, given that SC 2 has the smallest service area, 

the traffic demand per pixel in this SC is estimated to be 
slightly higher than in SC 1 and 3. Then, the capacity 

dimensioning and planning  module adds 6 new SCs, three of 
which are located in the right upper corner of the scenario, 

where the traffic density is higher. 

The correlated distribution at the SC-level method is 

represented in Fig. 4(b). This method estimates that SC 3, 

which initially carried less traffic (i.e. 5.0 Mbps), is the cell that 
receives proportionally less traffic from the new tenant. 

Therefore, compared to the method of Fig. 4(a), additional SCs 
such as SC 9 are not required in the service area of SC 3. 

Instead, the number of channels allocated to SC 3 is increased 
by one. 

For the method based on uniform distribution at the pixel-

level, illustrated in Fig. 4(c), the results are quite similar to the 
first method since both methods approximate the uniform 

distribution. The only difference is that SC 4 is placed a bit 
more to the right.  

The last method [see Fig. 4(d)], based on correlated 
distribution at the pixel-level, produces the largest variations in 

the traffic demand per pixel. Consequently, SCs 5 and 7 are 
placed in, or close to, the area with high traffic density, so that 

part of the traffic is offloaded from SC 1, having this cell three 

channels allocated after the planning. Besides, unlike other 

methods, additional SCs are not required in the service area of 
SC 3 because a lower traffic density is assumed in this region. 

C. Analysis of the network operation with the new tenant  

This section evaluates the solutions of the planning 

algorithm when the new tenant’s service is operative and the 
actual traffic demand at the busy hour of the new tenant is  

spatially distributed as illustrated in Fig. 5, where two cases are 

distinguished. In the former [Fig. 5(a)], the new tenant’s spatial 
traffic demand exhibits quite high correlation with already 

existing tenants, whose spatial traffic distribution is represented 
in Fig. 3. Specifically, using Pearson’s coefficient, both traffic 

distributions are 90% correlated. In the latter case [Fig. 5(b)], 
the distributions are only 15% correlated.  

Let assume now that the network has been deployed as 
dictated by the planning [i.e. with the real network layouts  as 

illustrated in Fig. 4(a-d)] and let consider the real traffic 

demand of the new tenant shown in Fig. 5. In that case, Table 

II shows the required bandwidth ( )t

iB%  and the cell bandwidth 

B  in each SC considering the actual traffic demand for the two 

levels of correlation with the different planning methods . The 
last row in the table shows values aggregated over all the SCs. 

The notation in the table is X/Y where X represents the 

required bandwidth and Y the cell bandwidth. As a reference 
for comparison with the methods discussed in Fig. 4, the table 

also includes the result of the network planning taking as input 
the real traffic of the new tenant (shown in Fig. 5). The 

deployments for this case are shown in Fig. 6. 

In general, the method that fits better the traffic demand (in 

this case, the reference approach) will minimize the required 

resources without generating a loss of traffic. However, 
according to Table II, this does not necessarily mean a lower 

value of total required bandwidth. For example, the methods 
based on uniform distribution provide the lowest values;  

however, this happens because these methods deploy a greater 
number of SCs in the scenario, as reflected in Fig. 4(a) and (c). 

Given the minimum number of deployed SCs (i.e. 8), the 
reference case obtains the lowest value of total required 

bandwidth. With respect to the methods based on correlated 

distribution, the method with SC-level resolution results in a 
lower total required bandwidth since its network layout is more 

similar to the reference case, as previously stated. Regarding 
the two methods based on uniform distribution, the results in 

terms of required bandwidth are very close to each other 
because of the similarity of their network layouts.  

Another aspect from Table II (see numbers highlighted in 

bold) is that the required bandwidth in some SCs exceeds (or 
nearly exceeds) the cell bandwidth, meaning that some traffic 

Fig. 4. Network deployment and estimated traffic demand using the detailed 

planning specifications: (a) Based on uniform distribution at the SC-level, 
(b) Based on correlated distribution at the SC-level, (c) Based on uniform 
distribution at the pixel-level, and (d) Based on correlated distribution at 
the pixel-level. 

Fig. 5. Traffic demand of the new tenant: (a) 90% correlated with network’s 
traffic demand; (b) 15% correlated with network’s traffic demand.  
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might be lost. These cases are more evident in the case of 15% 
correlated traffic due to the poorer match between the network 

layout and the spatial distribution of traffic demand. In the case 

of 90% correlated traffic, only the methods based on correlated 
distribution provide insufficient bandwidth or they are close to 

it. However, this lack of bandwidth (about 1 MHz) is marginal 
compared to the channel bandwidth. In addition, the 

deployment has been carried out with only 8 SCs, so that the 
cost of the solution is cheaper than other methods. 

 

Cor. 
[%] 

SC 

REFERENCE 
(ACTUAL 
TRAFFIC 
KNOWN) 

UNIFORM 
SC-LEVEL 

CORR. 
SC-LEVEL 

UNIFORM 
PX-LEVEL 

CORR. 
PX-LEVEL 

90 

1 30/60 32/40 30/40 29/40 38/60 
2 18/40 23/40 28/40 19/40 14/20 
3 43/60 25/40 48/60 24/40 53/60 

4 28/60 23/60 23/60 32/60 24/40 
5 35/60 17/40 29/40 19/40 41/40 
6 16/40 24/40 22/40 22/40 37/60 
7 36/40 36/40 39/40 36/40 28/40 

8 9/20 10/20 10/20 10/20 8/20 
9 -- 10/40 -- 10/40 -- 
tot 215/380 200/360 229/340 201/360 243/340 

15 

1 24/40 21/40 19/40 19/40 38/60 
2 22/40 20/40 24/40 16/40 15/20 

3 42/60 31/40 53/60 33/40 66/60 
4 28/60 21/60 20/60 30/60 30/40 
5 14/40 19/40 35/40 22/40 69/40 
6 30/60 23/40 20/40 22/40 36/60 
7 27/40 48/40 55/40 49/40 38/40 
8 19/40 7/20 7/20 7/20 6/20 

9 -- 9/40 -- 9/40 -- 
tot 206/380 199/360 233/340 207/360 298/340 

 

D. Re-planning the new tenant during tenant’s operation 

Once the new tenant’s service is operative, condition (14) is 

evaluated again to determine whether there exists a lack of 
capacity or not. If so, the capacity dimensioning and planning  

module is relaunched to provide a new network configuration. 
In our experiment, this happens for the SCs whose statistics in 

Table II are represented in bold.  

For the methods based on uniform distribution, it is noted 

that, in case of 90% correlated traffic, there is no lack of 
capacity. However, in case of 15% correlated traffic, SC 7 

satisfies condition (14) and therefore a new planning stage is 

launched. As a result of the re-planning process, it is obtained 
that the network layout is not modified, but SCs 4 and 7 

increase the number of channels by one, while SC 9 decreases 

it by one. 

With respect to the methods based on correlated 

distribution, Fig. 7 shows the network layout after the re-
planning process for 90% and 15% correlated traffic. As 

observed, both the network layout and bandwidth assignment 

have changed. In case of 90% correlated traffic [Fig. 7(a) and 
(b)], a new SC (i.e. SC9) is deployed in the left upper side of 

the scenario to relieve traffic from congested SCs. This new SC 
also produces changes in the bandwidth assignment, which can 

be observed by comparing the numbers in parentheses in Fig. 
4(b) and (d) with those of Fig. 7(a) and (b), respectively. In 

total, there are three changes (i.e. adding or removing a 

channel) in each case.  

In case of 15% correlated traffic [Fig. 7(c) and (d)], a new 

SC (i.e. SC9) is deployed in the center of the scenario, where 
the traffic density is higher. With respect to the channel 

assignment, the changes can be observed by comparing Fig. 
4(b) and (d) with Fig. 7(c) and (d), respectively.  

Table III shows a comparative analysis between the 

network layouts before and after the re-planning process for 
each analyzed method. For a high level of correlated traffic 

(90%), the best methods (without considering the reference) are 
the two based on correlated distribution, since they utilize the 

lowest number of channels (i.e. 15 and 17), provided that the 
number of deployed SCs is 9 for all methods. Note that these 

two solutions are achieved through a two-step process that 

comprises planning and re-planning (where an additional SC is 
deployed). If the method employs pixel-level resolution, there 

is also a bandwidth shortage (about 1 MHz), which might lead 
to a small loss of traffic. For this reason, the method based on 

correlated distribution at the SC-level is a better solution when 
the new tenant’s traffic is not fully correlated with already 

existing tenants.  

For a low level of correlated traffic (15%), it is observed 

that all the methods result in bandwidth shortage before the re-

planning stage, since the network layouts do not fit properly the 
traffic demand. Such an effect is more pronounced for the 

methods based on correlated distribution, especially when 

T ABLE II. ACTUAL REQ. BW [MHZ] AND CELL BW [MHZ] FOR 90 AND 15% 

CORRELATED TRAFFIC 

Fig. 6. Network deployment with real tenant’s traffic demand for: (a) 90% 
correlated traffic; (b) 15% correlated traffic. 

Fig. 7. Network deployment with real tenant’s traffic demand for: (a) 90% 
correlated traffic, method based on correlated distribution at the SC-level; 

(b) 90% correlated traffic, method based on correlated distribution at the 
pixel-level: (c) 15% correlated traffic, method based on correlated 
distribution at the SC-level; (d) 15% correlated traffic, method based on 
correlated distribution at the pixel-level. 
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pixel-level resolution is used. In this latter case, because of the 
bad traffic estimation, the number of channels assigned after 

re-planning represents the worst case (i.e. 20). In case of the 
SC-level resolution, there is a bandwidth shortage of 15 MHz. 

However, this method eliminates the lack of bandwidth by 

adding a new SC in an optimal location during the re-planning 
phase, while the other methods that previously deployed more 

SCs are unable to improve the solution. 

It is clear that the pixel-level methods do not leverage the 

higher spatial resolution when the traffic correlation is low, as 
they have to employ the greatest number of channels. Thus, the 

best methods (excluding the reference) in terms of minimum 

number of channels are the two methods with SC-level 
resolution. An important difference between them is the 

amount of traffic that could be lost before the re-planning 
stage. Thus, although one method requires less amount of 

resources, it might lead to higher traffic losses. 

 

Cor. 
[%] Method 

#SCs #channels Req. BW 
[MHz] 

BW 
shortage 
[MHz] 

Bef Aft Bef Aft Bef Aft Bef Aft 

90 

REFERENCE 8 8 19 19 215 215 0 0 
UNIFORM 
SC-LEVEL 

9 9 18 18 200 200 0 0 

CORR. 
SC-LEVEL 

8 9 17 15 229 210 0 0 

UNIFORM 
PX-LEVEL 

9 9 18 18 201 201 0 0 

CORR. 
PX-LEVEL 

8 9 17 17 243 215 1 0 

15 

REFERENCE 8 8 19 19 206 206 0 0 
UNIFORM 
SC-LEVEL 

9 9 18 17 199 205 8 0 

CORR. 
SC-LEVEL 

8 9 17 16 233 215 15 0 

UNIFORM 
PX-LEVEL 

9 9 18 18 207 198 9 0 

CORR. 
PX-LEVEL 

8 9 17 20 298 228 35 0 

 

E. Comparison with the state-of-the-art 

As explained in Section II, various approaches to solve the 

RNP problem have been proposed in the literature. In this 
paper, the selected approach, summarized in Algorithm 1, is 

based on an iterative approach where a certain planning action 

(such as deploying a new SC or adding a channel) is executed 
at each step. Previous works based on iterative approach [20-

21] reduce the set of planning actions at each step to  
determining the location of the SC ([20]) and, optionally, in 

heterogeneous networks, selecting the optimal bandwidth 
allocation with respect to the macrocell layer ([21]). However, 

the problem of bandwidth allocation in the SC layer (i.e. with 

respect other SCs) has not been addressed in those works. 

Based on the above considerations, a state-of-the-art 

(SOTA) method has been developed to compare the 
performance with the proposed Algorithm 1. Specifically, the 

SOTA method implements the iterative approach in [20-21]. 
Unlike Algorithm 1, this method only comprises the planning 

action of deploying a new SC. Since the actions of adding or 

removing a channel are not available during the planning 
process, the number of allocated channels per SC must be 

constant. Lastly, channel selection is performed according to 
Algorithm 2. 

The SOTA method has been evaluated under two distinct 
contexts. One takes as input the real traffic of the new tenant in 

the same way that Algorithm 1 was evaluated as a reference in 
Section V.C (see Table II). The other combines Algorithm 1 

with the best planning method of Section IV.A used to derive 

the detailed planning specifications. According to the 
evaluations in Section V.A-D, the best solution corresponds to 

the method based on correlated distribution at the SC-level, 
since it employed the least amount of network resources. The 

study has been performed with two different values of the 
number of channels per SC, i.e. 2 and 3 channels. This 

constraint is only applied to the newly deployed SCs in the 

scenario, because the SOTA method does not consider the 
possibility of changing the number of allocated channels in 

existing SCs. In addition, evaluations are carried out for the 
two levels of traffic correlation (90 and 15%) used in previous  

sections. 

Table IV shows the required bandwidth and the cell 

bandwidth in each SC for the SOTA method under the above-

explained conditions (the notation is the same as in Table II). 
The values in the table correspond to the situation when the 

updated network is operative and carries actual traffic from the 
new tenant. Compared to Algorithm 1 (see Table II), it is 

observed that, in general, the number of SCs is larger with the 
SOTA method. In addition, since the same (constant) 

bandwidth is allocated for all the newly deployed SCs, the total 

number of allocated channels is also larger. This highlights that 
the possibility of changing the number of channels per SC (e.g. 

by considering a larger set of possible planning actions to 
choose from as in Algorithm 1) is much more effective than 

limiting the cell bandwidth to a constant value and just 
considering the addition of new SCs as in the SOTA method. A 

closer look at Table IV reveals that, when three channels per 
SC are allocated, the SOTA method based on correlated 

distribution at the SC-level employs, as expected, a larger 

amount of resources (10 SCs) than if the actual traffic is known 
(8-9 SCs). However, when the cell bandwidth is limited to two 

channels, the amount of resources in both cases is the same (10 
SCs). In turn, the method proposed in this paper is able to 

support the traffic with only 8 SCs (see Table II), thus 
outperforming the SOTA method with both 2 and 3 channels.  

VI. CONCLUSION 

In this paper, the cell planning problem for small cell multi-
tenant networks has been studied. From the perspective of 

infrastructure providers, the automation of procedures is a key 
consideration due to the complexity of managing diverse 

tenants’ capacity requirements. In the proposed scheme, these 
requirements are translated into a set of detailed planning 

specifications over the spatial/temporal domains . Then, the 

planning process is modeled following a SON approach, where 
a condition to detect capacity issues is periodically checked in 

order to trigger particular planning actions, such as 
adding/removing a channel or deploying/relocating a SC. 

The proposed framework has been evaluated in a scenario 
in which a new tenant is added in the network. To derive the 

set of planning specifications of the new tenant, different 

methods are considered depending on the expected correlation 
with the actual traffic demand in the network and the spatial 

resolution of the traffic measurements. The evaluation has been 

T ABLE III. NETWORK DEPLOYMENT BEFORE AND AFTER RE-PLANNING 
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carried out for two different traffic correlation levels. Results 
show that the detailed planning specifications based on 

correlated distribution with a spatial resolution at the SC-level 
employ the least amount of network resources. This is  because 

the differences between the estimated and actual traffic demand 

make the use of higher spatial resolutions less effective. The 
specifications based on uniform distribution require a larger 

amount of resources to meet the traffic demand even if the new 
tenant’s traffic and network’s traffic are poorly correlated. In 

addition, the proposed capacity and dimens ioning scheme 
(Algorithm 1) has been compared with existing planning 

solutions, which do not consider the spectrum planning in the 

SC-layer. Results show that the existing solutions require a 
larger number of deployed SCs for serving the same traffic 

than the proposed approach. 

 

Cor. 
[%] 

SC 

SOTA-2CH 
(ACTUAL 
TRAFFIC 
KNOWN) 

SOTA-3CH 
(ACTUAL 
TRAFFIC 
KNOWN) 

SOTA-2CH 
+ CORR. 

SC-LEVEL 

SOTA-3CH 
+ CORR. 

SC-LEVEL 

90 

1 27/40 30/40 20/40 23/40 
2 13/40 22/40 26/40 24/40 
3 20/40 22/40 12/40 14/40 

4 16/40 16/60 19/40 16/60 
5 45/40 34/60 23/40 17/60 
6 28/40 22/60 25/40 18/60 

7 9/40 22/60 33/40 27/60 
8 8/40 14/60 8/40 6/60 
9 8/40 16/60 8/40 9/60 

10 19/40 -- 10/40 8/60 
tot 193/400 198/480 184/400 162/540 

15 

1 22/40 31/40 13/40 15/40 
2 8/40 38/40 23/40 20/40 
3 23/40 25/40 17/40 19/40 

4 31/40 40/60 15/40 13/60 
5 45/40 22/60 26/40 20/60 
6 17/40 35/60 24/40 17/60 

7 7/40 16/60 44/40 35/60 
8 8/40 8/60 6/40 4/60 
9 14/40 -- 10/40 12/60 

10 12/40 -- 10/40 8/60 
tot 187/400 215/420 188/400 163/540 

As future work, it is planned to further analyze the 

proposed planning methodology for ongoing tenants whose 
traffic demand varies significantly over time. In particular, 

when the traffic demand of a certain tenant decreases, planning 

actions such as channel releases and SC relocations become 
effective solutions to minimize capacity over-provisioning in 

the network. In addition, more sophisticated combinatory 
optimization will be investigated for solving the problem.  
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