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Abstract— Self-Organising Networks (SON) are seen as one of the hottest topics in telecommunication 
network research and development, eagerly awaited by network operators to achieve a reduction in 
operational expenditures. However, there are still many challenges and difficulties when moving from the SON 
concept to practical implementation. In this context, this paper firstly provides a general formulation of the 
automated optimisation problem and a detailed description of the main challenges and difficulties ahead. 
Then, a generic multi-cell multi-objective self-optimisation methodology based on genetic algorithms is 
proposed. The proposed framework is formulated in detail for a joint coverage and overlap optimisation 
problem in a multi-cell scenario. A case study using real measurements of a UMTS network deployed in a 
medium-size European city is presented to illustrate the proposed methodology. In the presented case study, 
the pilot power, the antenna tilt and the antenna azimuth of the different cells are optimised according to 
certain cell coverage and cell overlap targets. Results reveal that the genetic-based approach is able to provide 
optimised solutions that efficiently achieve the desired targets accounting for inter-cell coupling effects. 

Keywords: Automatic optimisation, self-optimisation, pilot power, antenna tilt, antenna azimuth, genetic 
algorithms. 

I. Introduction. 

Third-generation (3G) mobile networks based on Universal Mobile 
Telecommunications System (UMTS) technology are one of the most widely deployed 
cellular networks in the world. Due to the increasing demand for wideband services in a 
competitive market, network operators are always investing large budgets to deploy and 
upgrade their networks. The increasing density of small cells (with the introduction of 
femto-cells) and the necessity to reduce costs clearly indicate that the process of 
network deployment and reconfiguration/optimisation must be carried out more 
efficiently. In this respect a Self-Organising Network (SON) is defined [1] as a 
communication network which supports self-x functionalities, enabling the automation 
of operational tasks, and thus minimizing human intervention. Self-organisation 
functionalities should be able not only to reduce the manual effort involved in network 
management, but also to enhance the performance of the wireless network. Several key 
notions of the self-organising concept can be found in the literature [2]. As an example, 
Spilling et al. introduced the idea that a self-organising network may be seen as an 
adaptive functionality that detects changes in the network and makes intelligent 
decisions to minimise or maximise the effect of these changes [3]. On the other hand, 
Yanmaz et al. defined it as a system that allows the cooperation of different nodes in 
response to changes in the environment in order to achieve certain goals [4]. The SON 
concept is seen as a way to reduce operational expenditures (OPEX) by automating 
functionalities (such as network optimisation) usually performed manually with 
extensive human work time.  Furthermore, SON may also reduce capital expenditures 
(CAPEX), e.g. to minimise the number of sites to be initially deployed, still ensuring 
the requested coverage with the expected quality of service for the subscribers. For 
these reasons, the application of the SON concept is even much more attractive for the 
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deployment and optimisation of future mobile networks such as Long Term Evolution 
(LTE)[5]. Consequently, SON has received a lot of attention in recent years. Self-
organisation of wireless networks includes self-configuration (covering pre-operational 
phases such as planning and deployment), self-optimisation (optimisation during 
operational phase), and self-healing (recovering from faults such as the failure of a cell 
or site). Within each of these areas, several use cases with individual goals and 
requirements have been defined in [6]-[11]. Related to self-optimisation, which can be 
seen as an advanced automated optimisation, some contributions in the field of 
admission control and handover parameter optimisation, coverage and capacity 
optimisation, interference coordination and load balancing can be found in the literature 
[12][13]. 
 
The SON concept at the largest extent of a totally automatic network, able to operate 
with minimum human intervention, is quite ambitious and challenging, so that it can be 
anticipated that SON will continue as a hot research topic in coming years requiring 
further research efforts to facilitate its practical implementation, covering the long way 
from the current manual configuration/optimisation in 3G networks to reach a pure SON. 
This process will require changes on all aspects of an operator’s radio engineering 
department (operational procedures, O&M software tools, radio engineer’s skills, etc.). 
There are different ways to implement SON solutions. In the case of centralised 
solutions, the SON functionality resides in small number of entities at a high level in the 
architecture, i.e. the Network Manager (NM) or the Domain Manager (DM) in the 3GPP 
context [14]. Node-Bs do not take independent actions apart from the exchange of Key 
Performance Indicators (KPI), measurements and signalling messages with the central 
node in charge of the SON process (NM or DM). In the distributed SON case, the self-
organising functionalities reside in many locations at a low level in the architecture (e.g. 
Node-Bs). A combination of the distributed and centralised solutions, denoted as Hybrid 
SON solution, may be useful when many SON tasks can be performed by the Node-Bs 
but some tasks (especially complex tasks where many cells are affected) need to be 
managed in a central node.     
 
Focusing on the optimisation of a wireless network, two different aspects can be 
distinguished [15]: RF optimisation, which is in charge of optimising the setting of RF 
parameters (such as pilot power, antenna down-tilt, etc.) and service parameters 
optimisation, which includes the setting of admission and congestion control thresholds, 
maximum downlink power per connection, events to change to compressed mode, 
channel switching, etc. The self-optimisation process can be seen as the automatic 
determination of the most adequate values of several network configuration parameters 
in order to optimise the network performance in terms of specific targets such as the 
avoidance of coverage holes, reduction of cell overshooting effects, etc. [15]. The 
configuration of a cell typically involves a multiplicity of different options (e.g. the 
number of possible antenna azimuth values times the number of possible antenna tilts 
times the number of possible transmitted pilot power values, etc.). Furthermore, due to 
inter-cell coupling effects, the changes done in one cell may influence on the 
performance observed in the area of another cell. Correspondingly, when considering 
large cellular networks consisting of hundreds of cells, the resulting number of possible 
network configurations increases dramatically [16]. As a consequence, the use of self-
optimisation algorithms becomes necessary since it is very hard for an engineer to cope 
manually with this level of complexity.  
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A wide range of possible optimisation strategies have been proposed in the literature in 
order to find the optimum or at least some acceptable sub-optimum solution for a 
particular optimisation problem. The selection of the optimisation strategy typically 
depends on the complexity of the problem, the time available to develop and implement 
the optimisation technique and the necessity to obtain solutions with an optimum 
objective value. Some simple optimisation methodologies such as greedy algorithms, 
local search techniques or Tabu Search have been commonly used for optimisation [17]-
[19]. In turn, other methodologies such as simulated annealing, genetic algorithms or 
particle swarm algorithms provide in general better solutions at the expense of 
increasing the computation time and the algorithm complexity [20]-[22]. Several works 
that make use of these algorithms for the optimisation of mobile communication 
networks can be found in the literature [23]-[28]. As an example, simulated annealing is 
used in [23] for an automated optimisation of the main antenna configuration 
parameters. In [24] an optimisation strategy based on combining reinforcement learning 
and fuzzy logic is proposed to optimise tilt settings. Genetic optimisation techniques are 
based on an iterative process inspired by natural evolution [21][22]. These evolution 
principles allow obtaining better solutions as the number of iterations increase. In 
contrast to other search methods, which work with only one current solution at a time, 
genetic algorithms keep a collection of several possible solutions and work on all of 
them in a single iteration. This helps the algorithm to provide an extensive exploration 
of the search space and, as a consequence, it can rapidly locate good solutions. Genetic 
algorithms have been widely used in different areas of research for the optimisation of 
complex systems. Recent works in the field of mobile communications network 
optimisation raise the use of genetic algorithms as a promising framework [25]-[27].  
 
Within this context, the first contribution of this paper is to provide a general framework 
for the self-optimisation process in a wireless cellular network. Then, the second 
contribution is the formulation of a generic automatic optimisation strategy based on 
genetic algorithms considering multiple optimisation targets in a multi-cell scenario. 
The third contribution is the formulation in detail of the optimisation for the cell 
coverage and cell overlap targets and its evaluation in a case study using real 
measurements obtained from a UMTS network. In contrast to previous works, mostly 
based on theoretical/simulation approaches that make use of network models, the use of 
real measurements obtained from e.g. drive tests, measurement reports, etc., can provide 
the optimisation techniques with a more accurate network characterisation. Although it 
is envisaged that the SON concept will be implemented in future mobile communication 
systems such as LTE, the availability of real data in UMTS and the lessons learnt from 
real UMTS case studies may constitute a solid basis for the future development and 
implementation of LTE SON. The rest of the paper is organised as follows. Section II 
presents the general framework for the proposed self-optimisation process making use 
of real network measurements and describes the proposed genetic algorithm. Section III 
particularises the proposed framework for the optimisation of cell coverage and cell 
overlap and Section IV shows the obtained results in a real scenario. Finally, 
conclusions are summarised in Section V. 
 

II.- Proposed Self-Optimisation Framework. 
 
A general network consisting of N cells with P tuneable parameters per cell is 
considered. Then, the network configuration is represented by the PN matrix ψ=[ψp,n] 
where the term ψp,n denotes the value of the p-th tuneable parameter of the n-th cell. The 
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proposed self-optimisation procedure is illustrated in Figure 1 and consists in a 
continuous loop that interacts with the real network based on observations and actions 5, 
in order to determine the most adequate network configuration ψ to simultaneously 
achieve M optimisation targets. At the observation phase, certain measurements are 
collected from the network. The available set of measurements, corresponding to the 
current network configuration ψ, is denoted as (ψ)={q,n(ψ)} and consists of specific 
metrics q=1,...,Q associated to the different cells n=1,..., N. From a general perspective, 
these metrics can come from measurement reports provided by mobile terminals, from 
network statistics and counters measured by the different network elements, or from 
drive-tests using a test mobile equipped with network monitoring software that follows 
predetermined routes. Then, each metric q,n(ψ) can be a vector of different samples, 
where each sample is a different value of the same metric associated in general to 
different time instants and/or different geographical positions.  
 
The self-optimisation framework will process the observed measurements in accordance 
to a set of M optimisation targets specified by the operator policies (e.g. avoidance of 
coverage holes, reduction of cell overshooting, optimisation of the cell overlap among 
cells, etc.) to detect if any of these targets is not properly fulfilled with the current 
configuration ψ. If this occurs, the self-optimisation procedure will perform an 
optimisation search to find a new optimised network configuration ψ’. The action will 
then consist in setting the configuration parameters of the different cells according to 
the new network configuration ψ’. 
 
Figure 2 depicts the general processes involved in the self-optimisation block. This 
process is carried out in a centralised way in which the measurements done by the mobile 
equipments and the different Node-Bs are collected in a central node (e.g. the DM or the 
NM in the 3GPP architecture [14]) which is in charge of running the self-optimisation 
process. Then, the network performance monitoring stage analyses the collected set of 
measurements (ψ) in accordance with the M operator specific optimisation targets. This 
process is carried out for each cell and the result will be the MN performance matrix 
S(ψ)=[Sm,n(ψ)] in which the term Sm,n(ψ) (0≤ Sm,n(ψ)≤1) reflects the performance 
obtained by the n-th cell in terms of the m-th optimisation target with the current network 
configuration ψ. The higher the value of Sm,n(ψ), the more likely that the m-th target is 
not sufficiently optimised in the n-th cell. Based on the elements of matrix S(ψ) a trigger 
condition will be evaluated to decide if the measured performance is sufficiently 
satisfactory or if the network needs to be further optimised. In case the network 
performance is satisfactory, the current configuration ψ is kept and no changes in the 
network will be carried out. Otherwise, the optimisation search will be executed to find a 
better configuration ψ’. In this case, when the optimisation search phase is finished and 
the new configuration ψ’  is determined, the new network configuration parameters are 
sent to the corresponding Node-Bs. In the following, the network performance 
monitoring and the optimisation search processes will be further elaborated. 
 

A. Network Performance Monitoring. 
 
An expansion of the network performance monitoring block depicted in Figure 2 is 
provided in Figure 3. The process is executed on a cell by cell basis, to obtain for each 
cell n=1,..,N the performance indicators Sm,n(ψ) associated to each m=1,...,M 
optimisation target and thus building matrix S(ψ). The steps shown in Figure 3 
correspond to the performance monitoring of the n-th cell with respect to the m-th 
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optimisation target. The process starts with the filtering of the measurement set (ψ). It 
consists in selecting the subset of measurements f(ψ,m,n) with the metrics and samples 
that are relevant to the evaluation of the m-th target in the n-th cell under analysis. 
Measurements in this subset are then evaluated to check the fulfilment of a number of 
statistical conditions cm,j j=1,...,Jm  for the m-th optimisation target. Each condition 
evaluates a given metric (or combination of metrics) against a specific threshold. Based 
on the result of these evaluations the performance indicator is computed as: 
 

    , , ,
1

, ,
mJ

j
m n m m n j f

j

S R m n   


    (1) 

 
where Rm,n,j(f) denotes the result of evaluating cm,j for the n-th cell and is a normalised 
soft-value 0≤Rm,n,j ≤1. In turn, j

m  are the weights given to each condition depending on 

specific operator policies. These weights are normalised so that their summation for all 
j=1,...,Jm  equals 1. Finally, considering all the N analysed cells and M optimisation 
targets, the matrix S(ψ)=[Sm,n(ψ)] can be built as output of the performance monitoring 
process. 
 

B. Optimisation search process. 
 
The optimisation search problem can be formulated as the search of the network 
configuration parameters in matrix ψ=[ψp,n] that optimise the network performance given 
by matrix S(ψ). This is a multi-cell and multi-objective problem since N cells and M 
optimisation targets are involved. In general, optimisation targets can be partly 
contradictory (e.g. an increase in the transmitted power devoted to the pilot channel may 
improve coverage but may cause an increase in the cell overlap and interference [29]). 
For this reason, the network operator has to specify a trade-off criterion among the 
different optimisation goals. There are two general approaches to multi-objective 
optimisation [30]. The first one is to combine the different individual optimisation 
objectives into a single composite function (based on utility theory, weighted sum 
method, etc.). The other approach is to determine the Pareto optimal set of solutions. A 
solution belongs to the Pareto optimal set if there is no other solution in the solution 
space that has better performance for at least one target and the same (or better) 
performance for the rest of targets [30]. In real wireless networks consisting on hundreds 
of cells with several tuneable parameters per cell and many optimisation targets, the 
complexity of the optimisation problem may become extremely high. For this reason, the 
option of treating the problem by means of Pareto optimisation becomes extremely 
expensive from a computational point of view. Then, the most usual approach in these 
situations is the former approach in which a joint objective or cost function is defined as 
a linear combination of the different quality measures with certain weights m assigned to 
each m-th optimisation target, given by: 
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The optimum solution is thus given by the configuration matrix ψ* that minimises the 
cost, that is:  
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 * arg min C


      (3) 

 
In the following, a description of the proposed optimisation search methodology using 
genetic algorithms is presented. The overall procedure is shown in Figure 4. The genetic 
optimisation algorithm uses as inputs the current network configuration ψ, the set of 
measurements (ψ) obtained with this configuration and the M optimisation targets.  
 
Genetic algorithms are based on the analysis of a set of NPOP possible solutions each one 
corresponding to a network configuration matrix, denoted as ψi i=1,...,NPOP. Following 
certain rules that mimic the genetic evolution, these solutions are varied in the 
successive iterations of the algorithm based on their associated performance. Each of 
the possible solutions ψi is called chromosome or individual, and each configuration 
parameter of an individual (i.e. each one of the elements ψi

p,n of the network 
configuration matrix ψi) is called gene. All the NPOP individuals considered in a given 
iteration, constitute the population of the genetic algorithm while each iteration is called 
generation. When the optimisation search is triggered, the algorithm starts with the 
initialisation of the NPOP individuals of the population corresponding to the first 
generation. The current network configuration is one of these individuals (i.e. ψ1=ψ). 
For the rest of individuals i=2,...,NPOP the network configuration parameters are chosen 
randomly with uniform distribution within a certain defined search space for each 
parameter that includes constraints in terms of maximum and minimum values and 
resolution in the parameter adjustment. A correct definition of the search space is 
fundamental to assure an exhaustive analysis of all the potentially good solutions 
without increasing too much the algorithm computation time. For each of the 
individuals the algorithm needs to evaluate the corresponding performance matrix S(ψi). 
Given that it is not feasible to perform the modification of the network configuration in 
real time according to ψi and obtain the corresponding measurements (ψi), the 
evaluation of S(ψi) is based on an estimation of how the currently available 
measurements would change when setting the network configuration to ψi. This is done 
by a process that takes as input the analysed configuration ψi and the current 
measurements (ψ) and uses a transformation model f{·} to relate each network 
configuration parameter with the specific metrics. As a result, the estimated 
measurements *(ψi) are obtained. This estimation process is a critical point since it 
requires an adequate modelling of the network to anticipate the effect of a modification 
of a parameter over the considered metrics. Using the estimated measurements *(ψi), 
the process estimates the performance S(ψi) that would be obtained with the 
configuration ψi following the steps that were presented in sub-section II.A (see Figure 
3). Finally, the associated cost C(ψi) of individual ψi is computed according to (2) using 
the elements of matrix S(ψi).  
 
Once all the individuals in the initial generation have been evaluated, the algorithm 
determines the individual with minimum cost. If this minimum cost is below or equal to 
a certain threshold Th_Cost, the individual is proposed as the solution of the genetic 
algorithm and the algorithm is finished. Otherwise, if the maximum number of 
iterations has not been reached, the algorithm proceeds with a new generation and 
creates NPOP new individuals by applying the selection, recombination and mutation 
operators over the individuals of the previous generation. These operators model the 
evolution process using some rules that help the algorithm to provide better solutions as 
the generations evolve [22]. They are described in the following: 
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- Selection operator: It determines which individuals of the current generation are 
chosen for the creation of the individuals in the following generation. Among the 
existing possibilities for this selection process, the one considered here is the so-called 
“cost proportional selection” (sometimes referred to as roulette-wheel selection) [31]. In 
this methodology, two individuals are chosen randomly following a selection 
probability depending on the cost of each individual, so that better individuals (i.e. those 
with lower cost) are selected with higher probability. In particular, an individual i with 
configuration matrix ψi, is selected with a probability given by: 
 





POPN

j
j

i

S

C

C
iP

1 )(

1
)(

1

)(




    (4) 

- Recombination operator: This process consists in making a combination of the 
different genes (i.e. the network configuration parameters) of the two individuals 
selected in the previous step (called parents) to generate two new individuals (called 
children). The rationality of this process is to search for new solutions similar to the 
best individuals of the previous generation by combining their genes. The 
recombination process considered here is the so-called “1-point crossover” [22], 
illustrated in Figure 5. Considering the genes of the two parents denoted as ψi and ψj,  a 
crossover point is defined randomly and all the genes beyond this crossover point are 
swapped between both parents to obtain the children ψi* and ψj*. 
- Mutation operator: This is used to make small random changes in the genes (i.e. 
configuration parameters) of the two individuals obtained after recombination. The 
probability of performing a mutation in a given gene is 1/Ngenes where Ngenes=PN is the 
number of genes in the individual. As a result, very few genes of an individual are 
usually modified in the mutation. When a gene is selected for mutation, the new value is 
either an increase or a decrease (with equal probability) in one resolution unit within the 
defined search space of the configuration parameter corresponding to the selected gene. 

 
Note that, as a result of the selection, recombination and mutation process, a total of two 
new individuals will be obtained. Then the process is repeated NPOP/2 times until getting 
the NPOP individuals of the new generation. With the newly generated NPOP individuals, 
the algorithm executes again the evaluation procedure and computes the associated 
costs. The procedure is repeated iteratively until reaching a configuration with a cost 
below the specific threshold Th_Cost, thus providing a recommendation for a new 
parameterisation, or until reaching a maximum number of iterations. In the later case, it 
means that the algorithm has not been able to provide a sufficiently optimized solution 
by adjusting the configuration parameters ψ and other solutions (e.g. deployment of a 
new cell) should be considered.   
 

III.- Multi-cell coverage and overlap self-optimisation. 
 
The general framework presented in section II is particularised for the case where two 
optimisation targets (M=2) are considered in a UMTS network: m=1 is the optimisation 
of cell coverage and m=2 is the optimisation of cell overlap. The coverage of a cell is 
related to the ability to establish a communication in the cell’s service area. Cell overlap 
exists in the areas where access to the network is possible through multiple cells. A 
certain degree of cell overlap is useful to facilitate the handover process. However, a 

Page 7 of 37

http://mc.manuscriptcentral.com/nem

International Journal of Network Management

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

large overlapping may generate excessive interference and soft handover overheads. 
The proposed solution in this section focuses on the Capacity and Coverage 
Optimisation (CCO) use case defined in 3GPP. For this use case, the centralised SON 
process may be located either in the DM (Domain Manager) or in the NM (Network 
Manager) [14]. 
 
A. Considered metrics. 

In the following, it is assumed that the metrics q,n(ψ) in the whole set of available 
measurements (ψ) are organised in samples. Each sample k corresponds to a different 
value of the same metric obtained in a different geographical position and will be 
denoted in the following as q,n(ψ,k). This would be the case when the metrics are 
obtained either from measurement reports or from drive tests carried out by mobile 
terminals equipped with e.g. a Global Positioning System (GPS). 
 
The metrics q,n q=1,…, Q that are considered relevant for the optimisation of cell 
coverage and cell overlap in the n-th cell are the following [32]: 

- 1,n(ψ,k): CPICH RSCP (Common Pilot Channel Received Signal Code Power): 
This metric is the measured received power at the mobile terminal from the CPICH 
channel of cell n in the geographical position of sample k. 
- 2,n(ψ,k): This is the Active Set list of a mobile connected to cell n in the 
geographical position of sample k. In UMTS terminology, the set of cells that the 
mobile is simultaneously connected to during soft handover is denoted as the Active 
Set (AS). The AS is updated dynamically according to measurements of the CPICH 
RSCP of the different cells and has a specified maximum size ASmax.  
- 3,n(ψ,k): UE (User Equipment) transmitted power: This metric is the power 
transmitted by the mobile terminal while in connected mode to cell n in the 
geographical position of sample k. 
- 4,n(ψ,k,n*): CPICH Ec/Io degradation: This is the reduction in the received CPICH 
energy per chip over total received power spectral density for cell n associated to the 
downlink interference coming from neighbouring cell n*. In order to isolate the RF 
considerations from traffic effects, this paper evaluates this degradation in terms of the 
Ec/Io that would be measured if no traffic existed and only pilot channels were 
transmitted. In the Appendix I, the way to compute this metric is presented. 
 
 

B. Configuration parameters. 

The list of configuration parameters ψp,n that are known for each cell n are the following 
ones: 

- ψ1,n: CPICH transmitted power by the n-th cell. 
- ψ2,n: Antenna tilt of the n-th cell, corresponding to the angle of the main beam of the 
antenna relative to the horizontal plane. 
- ψ3,n: Antenna azimuth of the n-th cell, corresponding to the pointing direction of the 
main beam in the horizontal antenna pattern. 
- ψ4,n: Cell location coordinates. 
- ψ5,n: Antenna height of the n-th cell with respect to the ground level. 
- ψ6,n: List of neighbour cells of cell n, denoted as neigh(n). 
- ψ7,n: Soft Handover margin for cell n. It is used to decide when the cell has to be 
added to the AS of a given mobile. More specifically, it is a threshold relative to the 
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highest CPICH RSCP among the cells currently in the AS, denoted as RSCPbest. Then, 
cell n will be added to the AS when its RSCP is above RSCPbest (dBm)-ψ7,n(dB) and 
the maximum number of allowed cells ASmax has not been exceeded. 
 

C. Cell coverage: Performance Monitoring. 

Following the general process of Figure 3 for the analysis of the cell coverage 
(optimisation target m=1) for the n-th cell, it firstly selects the subset of measurements 
and samples to be considered, f(ψ,1,n), out of the whole set of input measurements 
available for the overall optimisation process, (ψ). Among the possible metrics listed 
in section III.A, the selected ones for the coverage analysis are 1,n’(ψ,k), 2,n’(ψ,k) and 
3,n’(ψ,k) corresponding to any cell n’{n,neigh(n)} including the cell n under study and 
all its neighbour cells. For a given cell, the samples to be analysed are selected in this 
paper according to Voronoi’s tessellation 33 that consists in associating each sample to 
its closest cell taking into account the geographical location of the sample and the 
locations and pointing directions of the different cells. Then, the subset of 
measurements f(ψ,1,n) is composed by the samples of metrics 1,n’(ψ,k), 2,n’(ψ,k) and 
3,n’(ψ,k) associated to locations in which the n-th cell is the closest cell [32]. The 
performance evaluation step is executed on the subset f(ψ,1,n) by checking the 
fulfilment of the following J1=6 statistical conditions: 

- c1,1: It evaluates the probability that the CPICH RSCP of the n-th cell under study is 

below a threshold RSCPcov in the selected samples. Then, the condition is fulfilled if 
Prob(1,n(ψ,k)<RSCPcov)>ThRSCP. 
- c1,2: Same as c1,1, but considering a lower threshold RSCPcov1, that is 
Prob(1,n(ψ,k)<RSCPcov1)>ThRSCP1. 
- c1,3: Same as c1,1, but considering a lower threshold RSCPcov2 compared to c1,2, that is 
Prob(1,n(ψ,k)<RSCPcov2)>ThRSCP2. 
- c1,4: It evaluates the probability that the CPICH RSCP is below RSCPcov for all 
neighbour cells n’n, that is Prob(1,n’(ψ,k)<RSCPcov n’n)>ThRSCP3. 
- c1,5: It evaluates the probability that the uplink transmit power is above a certain 
threshold PT

* in the selected samples. This condition is fulfilled if 
Prob(3,n(ψ,k)>PT

*)>ThPT. 
-  c1,6: It evaluates the probability that, in a given sample k, a cell n’ should be in the 
AS but it is not, i.e. Prob((n’2,n(ψ,k)) AND (1,n’(ψ,k) > RSCPbest(ψ,k)- ψ7,n’) AND 
(number of cells in 2,n(ψ,k) <ASmax) n’)>ThAS.   

 
Based on the result of evaluating each condition c1,j for the n-th cell, the term 
R1,n,j(f(ψ,1,n)) used in equation (1) to determine the values of S1,n(ψ) in matrix S(ψ) is 
computed. In the simplest case, the value R1,n,j(f(ψ,1,n)) could be 1 or 0 depending on 
whether the j-th condition is fulfilled or not. However, this would lead to a low 
granularity in the resulting values of S1,n(ψ). Correspondingly, in this paper a more 
sophisticated computation method has been used taking into account the spatial 
distribution of the samples where the conditions are fulfilled. Further details about the 
computation of R1,n,j(f(ψ,1,n)) are given in Appendix II.A. 
 
D. Cell overlap: Performance Monitoring. 

Let consider now the cell overlap (optimisation target m=2) generated by the n-th cell. In 
this case, the set of filtered measurements f(ψ,2,n) contains the samples of metrics 
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1,n’(ψ,k), 2,n’(ψ,k) and 4,n’(ψ,k,n) associated to locations outside the theoretical 
coverage area of cell n (based on Voronoi’s tesellation) in which cell n is detected with a 
CPICH RSCP 1,n(ψ,k) higher than RSCPbest(ψ,k)-ψ7,n. The metrics are obtained for any 
cell n’ measured in these locations. 
 
The performance evaluation for the cell overlap optimisation target is executed over the 
filtered measurements f(ψ,2,n) by checking the fulfilment of the following J2=3 
statistical conditions: 

- c2,1: Let consider a sample k and denote as v the closest cell to the location of this 
sample based on Voronoi’s tessellation. Then, this condition evaluates the probability 
that the CPICH RSCP of cell v (1,v) is higher than the coverage threshold (RSCPcov) 
in the selected set of samples, that is Prob(1,v(ψ,k)>RSCPcov)>ThRSCP(%). Note that, 
since 1,n(ψ,k)>RSCPbest(ψ,k)-ψ7,n, if 1,v(ψ,k)>RSCPcov, it reflects that cell v is 
received at a proper level in the position of sample k and also cell n is observed at a 
sufficiently high level (i.e., cell n is overlapping cell v in that position).    
- c2,2: It evaluates the CPICH Ec/Io degradation in the cell v due to the n-th cell.  This 
is formulated as Prob(4,v(ψ,k,n)>Ec/Iodeg)>Thdeg-overlap. 
- c2,3: It checks if cell n generating the overlap is not included in the AS at a sample k, 
that is Prob(n  2,v(ψ,k))>ThAS.  

 
Based on the result of evaluating each condition c2,j for the n-th cell, the term 
R2,n,j(f(ψ,2,n)) which is used in equation (1) to determine the values of S2,n(ψ) in matrix 
S(ψ) is computed. Details on how the term R2,n,j(f(ψ,2,n)) is computed are given in 
Appendix II.B. 
 
E. Optimisation search. 

Among the list of configuration parameters per cell ψp,n, the self-optimisation procedure 
in this paper focuses on the tuning of ψ1,n (CPICH transmitted power), ψ2,n (antenna tilt) 
and ψ3,n (antenna azimuth), which are some of the most usual tuned parameters during 
network optimisation [15]. 
 
The tuning of the CPICH transmitted power ψ1,n in UMTS networks is crucial to control 
the cell coverage and the size of the overlap regions among cells. A too low value of 
CPICH transmitted power may cause coverage holes while a too high value may 
generate excessive cell overlap and interference. Pilot power can be adjusted remotely 
and avoids additional costly site visits by technical personnel. The tuning of the tilt ψ2,n 
is another usual approach to control the coverage. When increasing the tilt, less power is 
received in the neighbouring cells thus reducing the inter-cell interference. However, 
this can be at the expense of introducing some coverage problems at the cell edge, so a 
trade-off exists in the appropriate tilt setting. In modern radio networks, remote 
electrical tilt antennas are used to ease tilt changes and reduce reconfiguration costs. 
Finally, changing the antenna azimuth ψ3,n can also help in re-adjusting the cell 
coverage footprint. For practical reasons, i.e., to limit the number of possible solutions 
and reduce the computation time to find the optimum or close-to-optimal solution, the 
following constraints are defined on the solution search space: 
 

- The CPICH transmitted power can vary between 25dBm and 35dBm in steps of 
1dB. 
- The antenna tilt can vary between 0º and 10º in steps of 1º. 
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- The antenna azimuth can vary between -25º and +25º with respect to the original 
antenna orientation in steps of 5º. 

 
As stated in section II.B, the optimisation search algorithm needs to estimate how the 
network measurements would change for the different network configurations that are 
evaluated. Thus, the estimated measurements *(ψi) are obtained applying a 
transformation function f{·} over the available measurements (ψ). In this paper, and 
without loss of generality, the transformation model makes use of the linear relationship 
existing between RSCP, CPICH transmit power and antenna gain. Then, for a 
measurement in a certain position, an increase/reduction in the transmit power will lead 
to the same increase/reduction in the RSCP, and the same occurs with an 
increase/reduction in the antenna gain due to a modification of the antenna azimuth or 
tilt. Correspondingly, when adjusting the CPICH transmitted power, this transformation 
consists in modifying the RSCP in the real measurements with the same increase or 
decrease applied to the CPICH transmit power. In turn, the transformation of the RSCP 
after a change in the antenna tilt or antenna azimuth of the n-th cell is done using the n-th 
cell location coordinates ψ4,n, the n-th cell antenna height with respect to the ground level 
ψ5,n and the geographical coordinates of each measurement, together with the antenna 
radiation pattern. Making use of this information and doing simple geometrical 
computations, the increase or reduction in antenna gain in the direction of the 
measurement position observed after the tilt or azimuth adjustment can be computed. 
Then, this increase or reduction is directly added to the current RSCP value to obtain the 
transformed value. It is worth mentioning that other more sophisticated transformation 
models could also be considered in the proposed methodology if more detailed 
information about the environment is available, such as data terrain information, 
geometrical and electrical characteristics of the buildings in the area, etc. 
 

IV.- Results 
 

The performance of the proposed self-optimisation methodology is illustrated with a 
case study in an urban area of a European city. The case study considers a region 
covered by N=18 cells distributed in 6 tri-sectorial Node-Bs. Each cell is identified as 
Cell_n (n=1…N) as shown in Figure 6. The network measurements are collected by 
means of drive test measurements carried out along certain streets as indicated in Figure 
6. These measurements consist of the different metrics q,n, described in section III.A 
associated to different positions depending on the route. The geographical coordinates 
of each measurement are also obtained. During the network performance monitoring 
phase, these measurements are processed according to the algorithms described in 
sections III.C and III.D. In case the optimisation search is triggered, the genetic 
algorithm described in sections II.B and III.E is executed to evaluate the different 
configurations. The considered parameters for the network performance monitoring and 
the optimisation search processes are given in Table 1. For the case of the RSCP 
threshold setting the values have been based on [15], while the rest of algorithm 
parameters have been set after performing several tests. 
 
The result of the network performance monitoring stage identifies some regions where 
coverage and overlap targets are not properly optimised (see Figure 7). The Voronoi 
regions which represent the theoretical coverage regions are represented in Figure 7. 
Furthermore, Table 2 shows the values of the terms Sm,n for each cell for both 
optimisation targets. The trigger condition of the optimisation process is that the total 
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cost C(ψ) as a result of the network performance monitoring stage is above 0.1. In the 
considered case this condition is fulfilled and then the optimisation search process is 
executed. 
 
In order to illustrate the performance of the algorithm, in this particular case study the 
algorithm only adjusts the network configuration parameters of Cell_9, Cell_10, 
Cell_14 and Cell_18 (see Figure 7). The population size in the considered genetic 
algorithm is initially set to NPOP=20. The algorithm is finished either when a solution 
with cost C(ψ)=0 is found or when a maximum of 30 generations have been run, as 
indicated in the parameters of Table 1. For a better understanding of the effects of the 
different tuneable parameters, three different cases are discussed in the following 
depending on the parameters that are adjusted. 
 

A. Only the pilot power is adjusted. 
 
In this case, the optimisation search algorithm only makes adjustments of the CPICH 
power ψ1,n in the four considered cells, while the antenna tilt and azimuth are not 
changed. Table 3 shows the initial configuration parameters and the final solution found 
by the genetic algorithm. To illustrate the evolution of the genetic algorithm to reach the 
final solution, two intermediate solutions are also presented. For each configuration, the 
total cost C(ψ) defined in (2) and the individual contributions of the coverage C1(ψ) and 
overlap C2(ψ) to the total cost are presented. As the configuration is changed (see Table 
3), the terms Sm,n of some cells and optimisation targets are reduced and consequently, 
the total cost is also reduced. Although it is not shown in the paper for the sake of 
brevity, it has been observed that the reduction in the cost achieved by intermediate 
solution 1 (associated to the increase in the pilot power ψ1,14) occurs thanks to totally 
removing the coverage holes in Cell_14 and Cell_10 while reducing the value of S1,18 in 
Cell_18. In turn, the subsequent cost reduction achieved by intermediate solution 2 
(associated to a pilot power decrease in the parameter ψ1,9) is achieved thanks to totally 
removing the overlap caused by Cell_9 to Cell_18. The final solution found by the 
algorithm additionally increases the pilot power ψ1,18 to enhance coverage in Cell_18 and 
correspondingly the total cost. Figure 8 presents the estimated network performance 
associated to the configuration provided by the final solution of the genetic algorithm. 
The comparison with Figure 7 illustrates the improvements: the overlap situation is 
solved and almost all the detected coverage holes are completely removed (i.e with the 
final solution found, only the term S1,18=0.029 is different from zero). It is worth 
mentioning that an exhaustive search among all possible solutions in this particular case 
has revealed that there is no other solution that reduces the value of S1,18=0.029 (i.e. the 
solution found is the only one that belongs to the Pareto optimal set) and, a as a 
consequence, it can be said that the obtained solution is the optimum one, which 
validates the algorithm performance. 
 
B. The pilot power and the antenna tilt are adjusted. 

 
In this case, the optimisation algorithm makes adjustments in both pilot power ψ1,n and 
antenna tilt ψ2,n, keeping unchanged the antenna azimuth. Table 4 presents the solution 
found in this case. Notice that this solution is the same that was obtained in the case 
when only the pilot power was changed. Consequently, in this scenario, including the 
antenna tilt adjustment does not provide any additional improvement in terms of cost 
reduction.  
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C. The pilot power, the antenna tilt and the antenna azimuth are adjusted. 
 
In this case, the optimisation algorithm makes adjustments in the pilot power ψ1,n, 
antenna tilt ψ2,n and azimuth ψ3,n in the four considered tuneable cells. Table 5 presents 
the configuration found in this case in comparison with the original configuration. In 
this case, the genetic algorithm decided to adjust the antenna azimuth of the different 
cells, pointing them to the location of the coverage hole in Cell_18 that persisted when 
only the pilot power was changed (as seen in Figure 8). Also some antenna tilts are 
adjusted to avoid possible coverage/overlap problems due to the previous antenna 
azimuth adjustments. Note that, in this case, the solution found solves all the problems 
initially identified in Figure 7 and, as a consequence, the cost of this solution is reduced 
to zero. Note that, in this case, the solution found is also the only one in the Pareto 
optimal set since Sm,n=0 for all combinations of m and n. To further analyse the 
configuration adjustments made by the proposed methodology, Figure 9 presents the 
Cumulative Distribution Function (CDF) of the CPICH RSCP in the coverage hole 
detected in Cell_18 (see Figure 7) before and after optimisation. Notice the increase in 
CPICH RSCP achieved in both Cell_18 and Cell_14 thanks to the pilot power and 
antenna parameter adjustments (tilt and azimuth). As a consequence, the coverage hole 
detected in this region is removed. 
 
On the other hand, Figure 10 shows the CDF of the CPICH RSCP in the region with 
overlap caused by Cell_9 to Cell_18 (see Figure 7). Note that before executing the 
optimisation search algorithm, the observed CPICH RSCP of Cell_9 in this region is 
considerably higher than that of Cell_18, reflecting the overlap situation. The 
adjustments made by the proposed methodology solve the overlap by reducing the 
CPICH RSCP of Cell_9 and increasing that of Cell_18 as shown in Figure 10. 
Concerning the algorithm convergence and the computational cost, Figure 11 presents 
the evolution of the minimum, the average and the maximum cost for the individuals 
evaluated in each generation. All three statistics progressively decrease as the number of 
generations increase and the optimum solution with cost equal to zero is found after 9 
generations of 40 population members each. This reflects that the algorithm is able to 
achieve a fast convergence in this scenario in which the solution search space contains 
1112 combinations (there are 4 cells x 3 parameters/cell=12 tuneable parameters, each 
one taking 11 possible values). In any case, it is worth mentioning that the number of 
generations required for finding the optimum solution is very much dependent on the 
specific scenario, so that increasing the number of tuneable parameters and/or the 
number of tuneable cells, would increase the required number of generations.  
 
The impact of the population size (NPOP) on the computational complexity of the genetic 
algorithm is evaluated in the following. The number of individuals analysed by the 
algorithm before reaching convergence is taken as a representative indicator of this 
complexity, since the larger this value is, the larger the execution time will be. Figure 
12 presents this indicator as a function of NPOP. An optimum solution (with cost equal to 
zero) is found in all the cases but, as shown, the population size is an important 
parameter to be adjusted in order to guarantee a fast algorithm convergence. With a low 
value of NPOP the solution space may not be properly explored, leading to a slow 
convergence and increased complexity. On the contrary, if a too high value of NPOP is 
chosen, the genetic algorithm needs too much time to evaluate all the individuals in a 
generation which also leads to a slow convergence. One of the clear advantages of 
genetic algorithms with respect to other optimisation search algorithms is that the 
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individuals of a given generation can be evaluated independently. As a consequence, 
this allows the parallelisation of the procedure using multiple processors, leading to 
considerably high reductions in the computation time. 
 

V.- Conclusions. 
 
This paper has presented a general framework for the self-optimisation process in a 
wireless cellular network. It is composed of two main stages, namely the performance 
monitoring based on real measurements collected by the network and the optimisation 
search to identify the most adequate solution by configuring different tuneable network 
parameters. This second stage follows an automatic multi-cell and multi-objective 
optimisation methodology based on genetic algorithms. The framework and the 
methodology have been formulated first from a quite general and technology agnostic 
perspective and it has then been particularised to the multi-cell coverage and overlap 
self-optimisation for UMTS. A case study using real data of a UMTS network deployed 
in a medium-size European city has been presented to illustrate the capabilities of the 
proposed framework in a specific scenario. Results reflect the influence of the 
progressive inclusion of several tuneable parameters in the optimisation search. It has 
been obtained that, when the pilot power and antenna parameters (tilt and azimuth) are 
varied, the algorithm is able to find an optimal solution that solves the coverage and 
overlap problems identified in the considered scenario. An evaluation of the 
convergence and computational complexity of the proposed algorithm has also been 
provided, by analysing the adequate setting of the population size to enable a proper 
exploration of the solution search space. 
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Appendix I. 
 
In order to evaluate the degradation in terms of Ec/Io caused by the interference of a 
neighbouring cell, let consider a situation where cell n* generates intercellular 
interference to cell n. The CPICH Ec/Io observed by a mobile equipment connected to 
cell n in the geographical position of sample k is defined as: 
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Where 1,i(ψ,k) corresponds to the CPICH RSCP of the i-th cell, PR,traffic,i(ψ,k) is the 
received power corresponding to the information sent in the rest of channels of the i-th 
cell and PN represents the noise power. Note that this metric depends on the total power 
sent in the traffic channels which in general cannot be determined by means of drive 
tests. Then, the proposed alternative metric 4,n(ψ,k,n*) makes use instead of the Ec/Io 
in the hypothetical case when no traffic existed and only pilot channels were transmitted 
(PR,traffic,i=0). This can be easily obtained from the values of CPICH RSCP available in 
the set of measurements ψ as follows: 
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Then, metric 4,n(ψ,k,n*) reflecting the impact of the interference caused by cell n* to 
cell n is defined as the ratio between the value of (Ec/Io)n,wt(ψ,k,n*) that would be 
observed in cell n if cell n* was not present, with respect to the value actually observed 
(Ec/Io)n,wt (ψ,k). That is: 
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Note that the last part of equation (7), obtained through some algebraic operations of the 
first part, allows determining this degradation in the Ec/Io of cell n simply by 
computing the Ec/Io without traffic in cell n* using (6). 

 
 

Appendix II. 
 

A. Computation of R1,n,j(f(ψ,1,n)) for the cell coverage optimisation target. 
 
As previously explained in section II.C, the filtered set f(ψ,1,n) comprises the samples 
associated to geographical locations in which cell n is the closest cell. Then, for the first 
condition c1,1, R1,n,1(f(ψ,1,n)) equals 1 if the condition is fulfilled and 0 if it is not 
fulfilled, taking into consideration all the samples in the filtered set f(ψ,1,n). Before 
applying the rest of conditions c1,j, , j=2, ..., 6, the algorithm selects only the samples that 
fulfil 1,n(ψ,k)<RSCPcov and groups those samples that correspond to adjacent 
geographical locations. Then, conditions c1,j, , j=2, ..., 6 are applied separately for each 
group g. Specifically, the value r1,n,j(g) equals 1 if condition j is fulfilled for group g and 
0 otherwise. The resulting value of R1,n,j(f(ψ,1,n)) for j=2,..., 6 is obtained as: 
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where  G(f(ψ,1,n)) is the number of groups, Ng(f(ψ,1,n)) the number of samples of 
group g and NS(f(ψ,1,n)) the total number of samples in the filtered measurement set 
f(ψ,1,n). 
 
B. Computation of R2,n,j(f(ψ,2,n)) for the cell overlap optimisation target. 
 

In this case, the samples of the filtered set f(ψ,2,n) correspond to locations outside the 
theoretical coverage area of cell n in which this cell is detected with a CPICH RSCP 
above RSCPbest(ψ,k)-ψ7,n. Then, the algorithm groups those samples that correspond to 
adjacent geographical locations and the different conditions c2,j, j=1,..3 are applied 
separately for each group. Let r2,n,j(g) equal 1 if condition j is fulfilled for group g and 0 
otherwise, and let G(f(ψ,2,n)) be the number of groups, Ng(f(ψ,2,n)) the number of 
samples of group g and NS(f(ψ,2,n)) the total number of samples in the filtered 
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measurement set f(ψ,2,n). The resulting value of R2,n,j(f(ψ,2,n)) for j=1,..., 3 is 
obtained as: 
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Figure 1.- Network self-optimisation loop.  
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Figure 2.- Self-optimisation stages.  
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Figure 3.- Performance monitoring process  
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Figure 4.- Optimisation search based on the genetic algorithm.  
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Figure 5.- Example of 1-point crossover  
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Table 1.- Considered parameters  
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Figure 6.- Regions with available measurements  
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Figure 7.- Regions where coverage and overlap are not properly optimised.  
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Table 2.- Values of the different Sm,n before optimisation.  
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Table 3.- Results of the self-optimisation methodology when only the pilot power is tuned.  
176x67mm (96 x 96 DPI)  

 

 

Page 27 of 37

http://mc.manuscriptcentral.com/nem

International Journal of Network Management

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 8.- Outcome of the solution found when adjusting only the pilot power.  
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Table 4.- Results of the self-optimisation methodology when both pilot power and antenna tilt are tuned.  
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Table 5.- Results of the genetic algorithm when pilot power, antenna tilt and antenna azimuth are tuned.  
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Figure 9.- RSCP in the coverage hole in Cell_18.  

135x88mm (96 x 96 DPI)  

 

 

Page 31 of 37

http://mc.manuscriptcentral.com/nem

International Journal of Network Management

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 10.- CDF of the RSCP in the region with overlap.  
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Figure 11.- Algorithm convergence.  
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Figure 12.- Impact of the population size (NPOP)  
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