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Abstract—Software-defined radio (SDR) is an emerging concept that leverages the design of software-defined and hardware-

independent signal processing chains for radio communications. It introduces flexibility to wireless systems, facilitating the dynamic

switch from one radio access technology to another or, in other words, the de and reallocation of computing resources from one SDR

application to another. This paper introduces an SDR computing resource management framework. It accounts for several SDR

system characteristics, including real-time computing requirements, limited computing resources, and heterogeneous multiprocessor

platforms. The framework features the tw-mapping, a dynamic mapping algorithm that is apt for many cost functions and radio

scenarios. The cost function proposal dynamically manages the available computing resources to satisfy the SDR computing

constraints. Two SDR scenarios, based on representative SDR platforms and processing chains, and the corresponding simulation

results demonstrate the framework’s relevance and suitability for SDRs.

Index Terms—Computing resource management, framework, heterogeneous computing, mapping, scheduling, software-defined

radio (SDR), system modeling.
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1 INTRODUCTION

THE software radio concept was introduced in the mid-1990s
and characterizes those transmitters and receivers

(transceivers) that implement the entire signal processing
chain in software [1], [2]. Software-defined radio (SDR) can
be considered a generalization of software radio because it
characterizes a transceiver that implements one or more
signal processing blocks in software [3]. SDR introduces
flexibility to wireless systems: It permits the adjustment or
switching of a terminal’s radio access technology (RAT)
implementation to adapt to changes in the radio environ-
ment of today and tomorrow.

For about a decade, SDR-related research along the
whole line between the mobile terminal (MT) transceiver
and the core network has been ongoing [4], [5], [6], [7]. It is
motivated by the evolution of information technology: The
introduction of new RATs, such as the universal mobile
telecommunications system (UMTS) or the IEEE 802.11
family of wireless local area networks, the required
compatibility with the existing ones, including global
system for mobile communications (GSM) and general
packet radio service (GPRS), and the increasing demand for
new and differentiated user services call for flexible
transceiver solutions.

For the above reasons, the flexibility of general-purpose
processors (GPPs), digital signal processors (DSPs),

field-programmable gate arrays (FPGAs), picoArrays [8],
networks-on-chip (NoCs) [9], or multiprocessor systems-on-
chip (MP-SoCs) [10] is gaining interest over the energy
efficiency of application-specific integrated circuits (ASICs)
[11], [12], [13]. State-of-the-art reconfigurable devices,
including arrays of processors, offer high computing
capacities at moderate power consumptions. This permits
the extension of the digital and reconfigurable radio part
while reducing the analog and nonreconfigurable circuits.

An SDR processing chain (SDR application or waveform)
is the part of an SDR transceiver that is implemented in
software. It may be understood as a set of concurrent
processes that continuously process and propagate real-
time data. Such a processing chain is not specifically
tailored, but, rather, executable on any general-purpose
platform with sufficient computing capacity. Because of
these similarities between future SDR applications and
platforms and today’s general-purpose computing applica-
tions and platforms, we consider general-purpose comput-
ing methods practical for SDR systems. We particularly
believe that the introduction of appropriate mapping and
scheduling techniques, which are essential for the dynamic
switch between RATs, will leverage the design of SDR
platforms and applications. Mapping describes the process
of assigning software modules to hardware resources,
whereas scheduling determines the execution times of these
modules. We consider them as two complementary
methods for computing resource management.

Wireless or SDR systems, however, reveal specific
aspects, essentially regarding flexibility and efficiency,
which have not been jointly considered so far in hetero-
geneous computing. These are given as follows:

1. time slot based division of the transmission medium
(radio time slot),

2. continuous data transmission and reception,
3. RAT-specific quality-of-service (QoS) targets,
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4. real-time computing requirements and limited com-
puting resources,

5. different computing constraints and loads for dif-
ferent RATs or radio conditions,

6. dynamic reconfiguration of the protocol stack, either
partial or total, and

7. heterogeneous multiprocessor platforms.

The possibility of dynamically reconfiguring an SDR
platform provides full flexibility in adapting an SDR
application’s computing requirements to the momentary
radio environment and QoS demands. This requires
extending the available computing resource management
approaches toward a framework that links the computing
with the radio resources.

This paper introduces an SDR computing resource
management framework that facilitates the interrelation
between SDR computing resources and wireless systems. It
is capable of dynamically allocating the necessary amount
of the available computing resources in real time in order to
ensure reliable radio communications at adequate QoS
levels. The framework trades off performance for flexibility,
allowing for different management policies. This way, it can
face changes in the radio and computing environments.
None of the known related contributions provide the
necessary degree of flexibility to properly handle the
reconfiguration process of SDR platforms.

The rest of this paper is organized as follows: Section 2
examines this paper’s context, its scope, and related work.
Section 3 introduces an SDR computing system modeling
for the computing resource management of Section 4, which
features a novel mapping algorithm and cost function.
Section 5 presents two SDR scenarios and simulation results
and Section 6 provides the conclusions.

2 CONTEXT AND RELATED WORK

The SDR computing context principally consists of hetero-
geneous multiprocessor platforms, either base stations (BSs)
or MTs, and software-defined digital signal processing
chains. MTs are very limited in computing and energy
resources, flexibility, and support for concurrent RAT
implementations. On the contrary, the computing resources
of BSs are less limited, their power consumption is not a
constraint, and the number of concurrent RAT implementa-
tions can be as high as desired. Nevertheless, the potentially
large number of users and the platforms’ high degrees of
flexibility, modularity, and reconfigurability make comput-
ing resource management at BSs equally important though
more complex than that at MTs.

2.1 Problem Formulation

The problem consists of defining a flexible framework that
interfaces the SDR computing resources on one side and the
wireless system, represented by the SDR computing
requirements, on the other. The framework should be able
to efficiently and dynamically map precedence-constrained
SDR applications to SDR platforms while meeting all SDR
computing constraints. These constraints are, primarily, the
SDR applications’ real-time computing requirements, defined
by the minimum bit rate and maximum latency demands, and
the SDR platforms’ limited computing resources.

2.2 Related Work

The literature contains a plentitude of contributions to
multiprocessor mapping and scheduling in heterogeneous
computing. These works address a wide variety of
problems in general and special-purpose computing con-
texts. Many contributions jointly tackle the mapping and
scheduling problems and present optimal or suboptimal
solutions following different objectives: [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], for example, aim at
minimizing the schedule length or communication over-
head, [25], [26], [27], [28], [29], [30] focus on meeting real-
time deadlines, whereas [24], [31], [32], [33], [34] pursue
additional or other objectives. The following paragraphs
depict some of these articles in more detail.

Different scheduling techniques to execute an applica-
tion as fast as possible are presented in [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24]. Apart from minimizing
the scheduling length, [24] also minimizes the application’s
failure probability.

Peng et al. [25] and Hou and Shin [26] address the
problem of optimally allocating periodic tasks which are
subject to task precedence and timing constraints to
processing nodes in a distributed real-time system. The
efficient local scheduling of tasks in a real-time multi-
processor system is the topic in [27]. If a task’s deadline
cannot be met on a particular processing node, this task can
be sent to another node [28]. The task model, which is
identical in both papers, accounts for worst-case computa-
tion times, deadlines, and resource requirements; no
precedence constraints are assumed.

A list scheduling framework for the runtime stabilization
of static and dynamic tasks with hard and soft deadlines,
respectively, is described in [29]. Moreira et al. [30] address
hard real-time streaming applications and assume a
scenario where jobs enter and leave a certain homogeneous
multiprocessor system at any time during operation. It
combines global resource allocation (admission control)
with local resource provisioning (scheduling).

Multirate and cyclic dependencies between tasks are
dealt with in [31]. It presents a strategy that binds multiple
synchronous data-flow graphs (SDFGs) with throughput
constraints to a heterogeneous MP-SoC.

A performance measurement framework for quantifying
the success of a resource management system is the topic in
[32], whereas [33] tackles the problem of robust resource
allocation in dynamic real-time systems. A robust resource
allocation would ideally avoid reconfiguration due to
runtime parameter variations. Seven different problems
and their solutions are finally discussed in [34]. These
include optimal job scheduling techniques [34, pp. 99-112]
and a design methodology that minimizes contention with
minimum communication resources [34, pp. 174-190].

The SDR computing resource management context
requires flexibility and efficiency at the same time. It is
not an optimization problem with a fixed objective, unique
platform, or predefined constraints. The constraints are a
function of the (highly varying) radio environment and just
have to be met. Speeding up an SDR application is,
particularly, not necessary. Moreover, to properly handle
the radio link timing requirements, this framework treats
processing time as just another limited computing resource.
Nevertheless, concepts such as global mapping, followed by
local scheduling [30] and robust resource allocation [33], are
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practical in SDR. The latter is relevant for partial reconfi-
gurations, which we do not specifically address in this
paper.

3 SDR COMPUTING SYSTEM MODELING

This section introduces a modeling that accounts for several
SDR-specific system characteristics. Section 3.1 discusses the
computing resource management facilities that constitute the
basis for the system models of Section 3.2. Section 3.3
describes the mechanisms that facilitate meeting the SDR
computing constraints of Section 2.1. Finally, Section 3.4
exemplifies the modeling. Some definitions follow.

Definition 1. An SDR application is comprised of a chain of
RAT-specific SDR functions which characterize the software-
defined processing layers of a transmitter or receiver or both.

Definition 2. An SDR function is a signal processing block,
such as a modulator or an equalizer. It is not necessarily
implemented as one monolithic piece of binary code but rather
as a composition of SDR processes.

Definition 3. An SDR process is the smallest manageable unit
and symbolizes an indivisible binary code.

Although the rest of this paper addresses SDR functions,
the framework may work as well on the basis of SDR
processes or a mix of SDR functions and processes.

3.1 Computing Resource Management Facilities

3.1.1 Abstractions and Metrics

An SDR platform represents an MT or a BS. These platforms
are comprised of a few or many heterogeneous processing
devices, such as FPGAs, DSPs, and GPPs, which commu-
nicate with each other. An FPGA’s prime resource is the
logic area for parallel processing, which can be converted to
multiply-accumulate operations (MACs) per time unit
when using well-defined benchmarks (filter, FFT, and so
forth). DSP, GPP, and NoC performances are typically
given in million instructions per second (MIPS).

We assume that a hardware abstraction layer (HAL),
middleware, or execution environment provides the neces-
sary hardware abstractions to supply a pseudohomoge-
neous computing environment on top of a heterogeneous
computing platform. The Platform and Hardware Abstrac-
tion Layer (PHAL) [35] can provide such an environment. It
is also capable of synchronizing the execution on all
processors at a suitable time granularity. Note that opting
for or against hardware abstractions is a trade-off between
programmability, or flexibility, and efficiency. SDR requires
a flexible usage of computing resources. Therefore, this
framework assumes the availability of hardware abstrac-
tions, which is not the topic of this paper.

We consider processing powers and bandwidth capacities
to be the principal computing resources in SDR. Hence, the
processing powers and the interprocessor bandwidths
abstract an SDR platform. Mitola proposed characterizing
all platform features, including the processing powers and
bandwidths, in equivalent million operations per second
(MOPS) [1]. We adopt this unit for characterizing the
processing powers. Similarly, we quantify any communica-
tion facility in megabits per second (Mbps).

The processing requirements are a function of the
processor that finally executes the software module, the

module’s particular implementation and bit precision, the
optimization level (speed versus memory or area), and the
performance demand. The interprocessor bandwidth re-
quirement is, basically, a function of the bit precision and
the data rate. Despite these dependencies, we use the same
metrics to characterize the computing requirements of SDR
application. The different implementations need to be
available to the execution environment which provides
their computing requirements in MOPS and Mbps to the
computing resource management framework.

3.1.2 Time Slot Division and Pipelining

Data that is transmitted or received over the wireless link
needs to be processed for as long as there is data to transmit or
receive. An SDR application will typically execute during the
entire user session, even though there might be periods where
no user data is transmitted. The fact that an SDR application
may be replaced by another during a single user session does
not affect this continuous data processing. We thus propose
breaking up the continuous execution into periodic execu-
tions by dividing the computing resource time in equidistant
computing time slots and the SDR application in pipelining
stages. Fig. 1 illustrates this.

The introduction of the computing time slot, time slot
from here on, allows us to identify a processor’s computing
capacity on time slot basis. This provides the basic
mechanism for an efficient computing resource manage-
ment and is especially useful for satisfying the maximum
latency demands of SDR applications (Section 3.3).

The pipelined execution of an SDR application estab-
lishes that, in any time slot, all SDR functions process and
propagate some part of the data. That is, the same
processing and data transfers repeat each time slot on a
different data portion (Fig. 1). This introduces synchroniza-
tion requirements, which PHAL can satisfy [35]. Pipelining
also introduces latency, which must be maintained within
the radio service and QoS-dependent limits. Section 3.3
explains how to achieve this.

From the above discussion, we derive the new units
million operations per time slot (MOPTS) and megabits per
time slot (MBPTS) as tts �MOPS and tts �Mbps, where tts is
the time slot duration that is specified in Section 3.3.
MOPTS and MBPTS synchronize the available computing
resources with the time slot management and are the basic
units for the system models that follow.
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Fig. 1. Illustration of the time slot division and pipelining.



3.2 System Models

3.2.1 Resource Models

The resource models comprise the device and communication
models.

CC ¼ ðC1; C2; . . . ; CNÞ ½MOPTS� ð1Þ

represents the device model and absorbs the proces-
sing capacities of processors P1 to PN . The total
processing capacity CT of a processing platform is
then CT ¼ C1 þ C2 þ � � � þ CN . Devices are labeled in order
of decreasing processing capacities.

We consider an interconnection network that consists of
unidirectional communication lines between the platform’s
devices. The communication model features matrix BB,
which is defined as

BB ¼

B11 B12 � � � B1N

B21 B22 � � � B2N

..

. ..
. . .

. ..
.

BN1 BN2 � � � BNN

0
BBBB@

1
CCCCA

¼

1 B12 � � � B1N

B21 1 � � � B2N

..

. ..
. . .

. ..
.

BN1 BN2 � � � 1

0
BBBB@

1
CCCCA ½MBPTS�:

ð2Þ

Element B12, for instance, specifies the available bandwidth
per time slot of the directed communication link between P1

and P2. We assume direct memory access (DMA) or pointer
transfers, where processor internal bandwidths are suffi-
ciently high to be modeled as infinite. The sum of all
elements in (2) excluding those on the main diagonal is
equal to the platform’s total bandwidth capacity BT.
Parameter CON finally captures the relation between the
number of nonzero elements in B that are not on the main
diagonal and ðN2 �NÞ. It describes the topology, or
connectivity, of an SDR platform.

3.2.2 Processing Models

The processing models consist of the function, data flow, and
stage models. An SDR application is comprised of the M SDR
functions f1; f2; . . . ; fM . The function model

cc ¼ ðc1; c2; . . . ; cMÞ ½MOPTS� ð3Þ

provides their processing requirements. An SDR applica-
tion’s processing requirement cT is then the sum of the
SDR functions’ processing requirements, that is,
cT ¼ c1 þ c2 þ � � � þ cM .

We model SDR function chains as directed acyclic graphs
(DAGs) and apply a logical numbering: If fj sends data to
fi, then j < i [36].

The data-flow model characterizes the data flow between
SDR functions. It features matrix bb, defined as

bb ¼

b11 b12 � � � b1M

b21 b22 � � � b2M

..

. ..
. . .

. ..
.

bM1 bM2 � � � bMM

0
BBBB@

1
CCCCA

¼

0 b12 � � � b1M

0 0 � � � b2M

..

. ..
. . .

. ..
.

0 0 � � � 0

0
BBBB@

1
CCCCA ½MBPTS�:

ð4Þ

Element bji is the minimum bandwidth that is necessary
for sending a certain amount of data from fj to fi
ðj; i 2 1; 2; . . . ;MÞ. As discussed in Section 3.1.1, cc and bb are
a function of the processor type, the optimization level, and
so forth. Therefore, cc and bb for each one of the platform’s
processors should be available to the framework. Without
loss of generality and to improve its readability, this paper
treats cc and bb as if they were the same for all processors of a
given platform.

The sum of all elements in (4) defines the SDR application’s
total bandwidth requirement bT. Parameter con is obtained
as the number of nonzero elements in bb divided by
ðM2 �MÞ=2. It thus quantifies the connectivity of a
processing chain, relating the number of arcs of the
corresponding task graph to the maximum possible number
of arcs in an M-node DAG.

The direct predecessors (successors) of fi are all those
SDR functions that correspond to nonzero entries in the
ith column (row) of bb. Hence, columns (rows) of all 0s
indicate source (sink) functions [36]. This leads to the stage
model ss, given as

ss ¼ ðs1; s2; . . . ; sMÞ: ð5Þ

Vector ss is obtained by first assigning all source functions to
pipelining stage 1. An SDR function fi is assigned to
pipelining stage si ¼ x ðx > 1Þ if it receives data from no
other SDR function than from those in stages x� 1; x�
2; . . . ; 1 and if at least one of its direct predecessors is in
stage x� 1. The number of pipelining stages nts is then
nts ¼ sM .

3.3 Meeting the SDR Computing Constraints

The computing resource management facilities of Section 3.1
and the system models of Section 3.2 permit mapping an
SDR application to an SDR platform on the basis of a single
time slot. A feasible mapping reserves no more than 100
percent of any available computing resource.

We assume that coprocessors facilitate the concurrent
data processing and data propagation on all processor’s
inputs and outputs. Many related contributions, such as
[15], [16], [17], make this assumption. Since repetitive
operations on data samples and continuous outputs, often
one per execution cycle, characterize digital signal proces-
sing, we may further assume that the software and
hardware facilitate the immediate propagation of processed
data samples. PHAL finally manages the synchronized
execution on all processors and provides pipelining and
buffering mechanisms, among others, for the proper and
timely data delivery.

The usually complex scheduling process can, on the basis
of a feasible mapping and under the above assumptions, be
simplified to N independent local scheduling tasks.
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Particularly, a processor’s local scheduler is capable of
organizing the execution sequence of the corresponding
SDR functions’ portions and their data transfers within the
given time slot boundaries (feasible schedule, see Fig. 1). This
ensures that the input data of any SDR application’s module
or set of modules is processed according to its arrival rate so
that no data is accumulated anywhere in the processing
chain, meeting the minimum bit rate requirement.

The time slot duration tts times the number of time
slots nts is the pipelining latency in case of a feasible
schedule on each processor. We specify tts as

tts ¼
Lmax

nts
½SPTS� ð6Þ

to meet the maximum allowable latency Lmax, where SPTS
stands for seconds per time slot. This latency is a function of
the tolerable end-to-end delay of a radio communication
link due to the service and QoS agreements between the

radio service provider and the user. We assume that tts is
large enough for the (efficient) execution of any SDR
function in the processing chain.

3.4 Modeling Examples

Fig. 2 shows four processing platforms. Three (pseudo)
homogeneous processors and a homogeneous communica-
tion network characterize SDR platform I (Fig. 2a). Platform II
differs from I in that its interprocessor bandwidths are
heterogeneous (Fig. 2b). Platforms III and IV are equivalent
to platforms I and II except for the heterogeneous
processors (Figs. 2c and 2d).
P1, P2, and P3 stand for three processors or three tightly

coupled clusters of processors. The picoArray PC101, for
example, embeds 430 heterogeneous processors with a total
processing power of 206,000 MIPS [8].

Fig. 3 depicts the functional diagram of the digital signal
processing chain at the physical layer of a software-defined
UMTS downlink receiver. It is comprised of 24 SDR
functions from the digital down conversion to the cyclic
redundancy check (CRC) [37]. The computing requirements
are estimates from [37], [38], [39] and available implementa-
tions using the TMS320C6416 DSP and the Code Composer
Studio from Texas Instruments [40]. In particular, the
number of MACs of an SDR function’s implementation
times the sampling rate fs specifies the SDR function’s
processing requirement. A bandwidth requirement is the
product between the fs and the bit precision of 2 � 16 bits for
the real and the imaginary components.

Figs. 4 and 5 show the corresponding system models. We
consider Lmax ¼ 10 ms (the UMTS radio link uses 10 ms
long frames to synchronize the data transmission with its
reception) and obtain a time slot duration of tts ¼ 0:01=17 ¼
0:588 � 10�3 SPTS (6), where 17 is the number of stages nts
due to Fig. 5b.

4 SDR COMPUTING RESOURCE MANAGEMENT

Because different optimization criteria are conceivable in
SDR, such as meeting real-time computing constraints in
hard to meet conditions or optimizing energy consumption,
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Fig. 3. Functional diagram and computing requirements of a UMTS downlink receiver.



we suggest a general-purpose mapping algorithm. The
tw-mapping (Section 4.1) is such an algorithm. It can execute
different cost functions and be dynamically adjusted to
changes in the radio environment.

Section 4.2 introduces a cost function that manages the
limited SDR computing resources. Section 4.3 analytically
analyzes the tw-mapping’s computing complexity before
presenting an SDR computing resource management ex-
ample in Section 4.4. Section 5 provides more insights on
the efficiency of this approach and the trade-off between the
tw-mapping’s performance and computing complexity in
simulated SDR environments.

4.1 The tw-mapping

The tw-mapping is a windowed dynamic programming
algorithm, where w indicates the window size. Before

proceeding with its description, we introduce some concepts
first: The tw-mapping diagram contains a matrix of N �M
(row � column) t-nodes (Fig. 6). A t-node is identified as
ðPkðlÞ; fiÞ and absorbs the mapping of SDR function fi to
processorPkðlÞ. Any t-node at step i (column i in the tw-mapping
diagram) connects to all t-nodes at step iþ 1. The sequence of
processors ½Pkð0Þ Pkð1Þ . . .PkðwÞ�i identifies thew-path, a path of
lengthw, which is associated with t-node ðPkð1Þ; fiÞ.Pkð0Þ is the
w-path’s origin processor at step i� 1 and PkðwÞ is the
destination processor at step iþ w� 1. Hence, ½P1 P1 PN P1�2
depicts the bold 3-path in Fig. 6. It is associated with t-node
ðP1; f2Þ. Table 1 contains the most important variables and
expressions that appear in the rest of this paper.

The tw-mapping algorithm (Fig. 7) can be divided into
three parts: processing at step 1 (lines 1 and 2 in Fig. 7),
processing at steps i ¼ 2; 3; . . . ;M � wþ 1 (lines 3-18), and
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postprocessing (lines 19 and 20). The tw-mapping and thus its

description do not assume a particular cost function.

4.1.1 Part I: Processing at Step 1

The first part of the algorithm addresses SDR function f1. For

any processor Pkð0Þ, the tw-mapping ðw � 1Þ premaps f1 to

Pkð0Þ and stores the premapping cost CTðPkð0Þ; f1Þ at t-node

ðPkð0Þ; f1Þ (lines 1 and 2). The term premapping indicates that

the final SDR application mapping is not known until it has

processed, or premapped, all of its SDR functions.

4.1.2 Part II: Processing at Steps i ¼ 2; 3; . . . ;M � wþ 1

The t1-mapping analyzes the N ingoing edges, or 1-paths,

of t-node ðPkð1Þ; fiÞ. These are ½P1 Pkð1Þ�i; ½P2 Pkð1Þ�i; . . . and

½PN Pkð1Þ�i (line 5). Edge ½Pkð0Þ Pkð1Þ�i is assigned the weight

WT½Pkð0Þ Pkð1Þ�i (line 6). This weight represents the

cost of premapping SDR function fi to processor Pkð1Þ

while considering the preceding decisions, which are

provided by the edge’s origin t-node ðPkð0Þ; fi�1Þ.
The t1-mapping computes the accumulated cost
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Fig. 6. The tw-mapping diagram.

TABLE 1
Description and Ranges of Variables and Expressions

1 Argument ranges are given in parentheses.



CT½Pkð0Þ Pkð1Þ�i ¼ CTðPkð0Þ; fi�1Þ þWT½Pkð0Þ Pkð1Þ�i (line 12,

bold) for each edge. Edge ½Pkð0Þ� Pkð1Þ�i is obtained from

kð0Þ� ¼ argmin
kð0Þ¼1;2;...;N

CT Pkð0ÞPkð1Þ
� �

i

n o
ð7Þ

and represents the premapping decision at t-node ðPkð1Þ; fiÞ.
(The function arg minfxg returns the argument(s) that leads

to the minimum value of x.) The algorithm finally high-

lights edge ½Pkð0Þ� Pkð1Þ�i (line 14, bold) and stores its

accumulated cost at t-node ðPkð1Þ; fiÞ (line 15).
The tw-mapping ðw > 1Þ analyzes the Nw w-paths that

are associated with t-node ðPkð1Þ; fiÞ. Any of these w-paths

originates at a t-node at step i� 1, runs through ðPkð1Þ; fiÞ,
and terminates at a t-node at step iþ w� 1. The algorithm
computes the corresponding accumulated costs due to
lines 5-12. It then solves

kð0Þ�; kð2Þ�; . . . ; kðwÞ�f g ¼

argmin
kðlÞ¼1;2;...;N ;8l6¼1

CT Pkð0ÞPkð1ÞPkð2Þ . . .PkðwÞ
� �

i

n o
;

ð8Þ

which returns the indices of thew-path that has the minimum

accumulated cost. In the case where i < M � wþ 1, the

tw-mapping ðw > 1Þ highlights edge ½Pkð0Þ� Pkð1Þ�i and stores

the corresponding accumulated cost at t-node ðPkð1Þ; fiÞ
(lines 13-15). Otherwise, it highlights the entire w-path

½Pkð0Þ� Pkð1Þ Pkð2Þ� . . .PkðwÞ� �M�wþ1 and stores its accumulated
cost at t-node ðPkð1Þ; fM�wþ1Þ (lines 16-18).

All N t-nodes at step i (line 4) can be processed in parallel.
Once finished with their processing, the tw-mapping ðw � 1Þ
proceeds with step iþ 1 in the case where i < M � wþ 1
and with part III otherwise (line 3).

4.1.3 Part III: Postprocessing

Part III of the algorithm postprocesses the premapping
decisions of parts I and II. The tw-mapping ðw � 1Þ first
highlights the t-node at step M � wþ 1 that holds the
minimum cost (line 19). Starting at this t-node, it then
backtracks (forward and backtracks in the case where
w > 1) the tw-mapping diagram along the highlighted edges
while highlighting all t-nodes that are traversed (line 20).
This results in M highlighted t-nodes which specify the
mapping proposal due to the particular problem, cost
function, and window size.

Sections 4.1.2 and 4.1.3 indicate that w controls the level
of locality (local versus global scope) of the premapping
decisions: The t1-mapping is based on local decisions. It
however maintains N premappings at each step, one per
t-node, which may result in N (partially) different mapping
options (bold expressions in Fig. 7).

At the other extreme, the tM�1-mapping examines all
NM possible mappings of M functions to N processors.
More precisely, it computes the accumulated ðM � 1Þ-path
costs of all NM�1 different ðM � 1Þ-paths that traverse
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Fig. 7. tw-mapping—pseudocode (the bold expressions describe the t1-mapping).



t-node ðPkð1Þ; f2Þ (lines 5-12) and selects the one of minimum
cost (lines 17 and 18). It does so for all N t-nodes at step 2
(line 4). The algorithm then highlights t-node ðPkð1Þ� ; f2Þ (line
19) and forwards and backtracks the tw-mapping diagram to
obtain the final mapping (line 20). It finds an optimal
solution for the given problem and cost function.

Parameter w also controls the trade-off between comput-
ing efficiency and mapping performance: The higher the
window size, the higher the algorithm’s complexity (Sec-
tion 4.3), but the better the mapping results (Section 5).

4.2 Cost Function Proposal

We propose a cost function that properly manages the
limited computing resources of SDR platforms under hard
real-time conditions, where the computing resources con-
strain the SDR application mapping. WT½Pkðl�1Þ PkðlÞ�h
therefore defines the cost function as a superposition
between the computation and the communication costs:

WT Pkðl�1Þ PkðlÞ
� �

h
¼

WTcomp Pkðl�1Þ PkðlÞ
� �

h
þWTcomm Pkðl�1Þ PkðlÞ

� �
h
;
ð9aÞ

WTcomp Pkðl�1Þ PkðlÞ
� �

h
¼

ch=C
ðkðlÞ;hÞ
kðlÞ ; if ch=C

ðkðlÞ;hÞ
kðlÞ � 1;

1; otherwise;

(
ð9bÞ

WTcomm Pkðl�1Þ PkðlÞ
� �

h
¼

Ph�1

j¼1

bjh=B
ðkðlÞ;hÞ
P ðfjÞPkðlÞ ; if bjh=B

ðkðlÞ;hÞ
P ðfjÞPkðlÞ � 18j;

1; otherwise:

8><
>:

ð9cÞ

Any t-node ðPkðlÞ; fiÞ stores the remaining processing
powers CCðkkðllÞ;iiÞ and bandwidths BBðkkðllÞ;iiÞ as a function of
the preceding premapping decisions. The cost function
first computes the premapping costs at t-nodes
ðP1; f1Þ; ðP2; f1Þ; . . . ; and ðPN; f1Þ using the right-hand side
of (9b). For each t-node ðPkð0Þ; f1Þ, the processing require-
ment c1 of SDR function f1 is then subtracted from the
corresponding initial processing power Ckð0Þ. This updates
the remaining processing powers at all t-nodes at step 1.

Before processing edge ½Pkðl�1Þ PkðlÞ�h, CCðkkðllÞ;hhÞ and BBðkkðllÞ;hhÞ

are initialized with CCðkkðll�1Þ;hh�1Þ and BBðkkðll�1Þ;hh�1Þ. The algo-

rithm then calculates WT½Pkðl�1Þ PkðlÞ�h before updating

CCðkkðllÞ;hhÞ and BBðkkðllÞ;hhÞ. In particular, ch is subtracted from

C
ðkðlÞ;hÞ
kðlÞ after computing WTcomp½Pkðl�1Þ PkðlÞ�h (9b).BBðkkðllÞ;hhÞ, on

the other hand, is dynamically updated, subtracting any

required bandwidth bjh from the corresponding entry in

BBðkkðllÞ;hhÞ just after adding bjh=f�g to WTcomm½Pkðl�1Þ PkðlÞ�h (9c).

4.3 Complexity Analysis

4.3.1 General Formulation

The computing complexity of the tw-mapping depends on
the applied cost function. For a general formulation, we
assume that the complexity of calculating the cost of
premapping fi to PkðlÞ is constant and not a function of i
or kðlÞ. Let this complexity be the complexity of the cost
function (ccf). The computing complexity at t-node

ðPkðlÞ; fiÞ, i 2 2; 3; . . . ;M � wþ 1, can then be given as
the geometric sum

ðN þN2 þ . . .þNwÞ � ccf ¼ N �N
w � 1

N � 1
� ccf: ð10Þ

It indicates the computing effort associated with lines 5-11
in the pseudocode of Fig. 7. There are N t-nodes per step
(line 4) and M � w steps in total (line 3). Thus,

complexityðtw-mappingÞ � ðM � wÞ �N2 �N
w � 1

N � 1
� ccf:

ð11Þ

Equation (11) takes into account the bulk processing of
the tw-mapping, neglecting the complexity that is associated
with the operations of parts I and III (lines 1-2 and 19-20 in
Fig. 7) and the add-compare-store operations (lines 12-18).
Assuming ccf ¼ 1, the tw-mapping’s complexity order
becomes

complexity-orderðtw-mappingÞ ¼ OðM �Nwþ1Þ: ð12Þ

Equation (12) indicates that the tw-mapping is not
computing efficient in the case where the number of
processors N is high. We therefore suggest (dynamically)
dividing a large array of processors into smaller clusters of
N 0 processors and applying the algorithm on each cluster.
Without loss of generality, this paper assumes a small
N ¼ N 0.

4.3.2 Cost Function Specific Formulation

The computing complexity of cost function (9) is not
constant throughout the mapping process. Assuming no
code optimizations, the number of MACs characterizes the
complexity of part II of the tw-mapping under cost function
(9) as

complexityðtw-mappingð9ÞÞ �

N2 �
Xw
k¼1

Nk�1 � ðM � wÞðM � wþ 2kþ 1Þ
2

:
ð13Þ

We equate the right-hand side of (11) with the right-hand
side of (13) and obtain

Nw � 1

N � 1
� ccf ¼

Xw
k¼1

Nk�1 �M � wþ 2kþ 1

2
: ð14Þ

We can then derive the following: If we substitute ccf for
ðM þ wþ 1Þ=2, (11) becomes an upper bound formulation
for complexity ðtw-mappingð9ÞÞ; it is exact for w ¼ 1 and a
very close approximation otherwise. For N ¼ 3, M ¼ 24,
and w ¼ 3, for instance, this upper bound deviates from the
complexity due to (13) by 2.8 percent.

4.4 Resource Management Examples

Fig. 8 illustrates part II of the t1- and t2-mapping algorithms.
It shows the processing at t-node ðP2; f2Þ while mapping the
SDR application model of Fig. 5 to the SDR platform model
of Fig. 4 using cost function (9). Previously, and corre-
sponding to part I of the tw-mapping, the costs of
premapping f1 to each one of the three processors were
obtained as 0.0087, 0.013, and 0.026 and stored at t-nodes
ðP1; f1Þ, ðP2; f1Þ, and ðP3; f1Þ. These t-nodes also store the
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remaining processing powers CCðkkðllÞ;1Þ and bandwidths

BBðkkðllÞ;1Þ ¼ BB.
As explained in Section 4.1.2, the tw-mapping evaluates

Nw w-paths. The tables in Fig. 8 contain the accumulated

w-path costs CT½��2 in the format of line 12 in Fig. 7. Both

algorithms highlight edge ½P2 P2�2, resulting from the

minimum-cost 1 and 2-paths ½P2 P2�2 and ½P2 P2 P2�2,

respectively. The accumulated cost of 0.0629 and the

remaining processing and bandwidth resources, CCð2;2Þ ¼
ð8:82; 5:51; 2:94Þ and BBð2;2Þ ¼ BB, are finally stored at t-node

ðP2; f2Þ.
Due to Section 4.1.3, we obtain the final tw-mapping by

traversing the t-nodes along the highlighted edges starting

at the minimum-cost t-node at step ðM � wþ 1Þ. Fig. 9

indicates that this is t-node ðP3; f23Þ for this example and

w ¼ 2, with the costs stored at t-nodes ðP1; f23Þ, ðP2; f23Þ, and

ðP3; f23Þ being 4.3706, 4.3633, and 4.3600, respectively. Then,

f1; f2; . . . ; f6; f8; f10; and f11 are mapped to P1, f7 and f9 to

P2, and f12; f13; . . . ; f24 to P3 (Fig. 9). Due to space

limitations, we only mention that the t1-mapping solution

differs from this mapping proposal and has a slightly

higher cost of 4.3891.

5 SIMULATIONS

This section attempts to evaluate the entire framework.
After introducing the reference mapping algorithms in
Section 5.1, we present the simulation results of two SDR
scenarios in Sections 5.2 and 5.3.

5.1 Reference Mapping Algorithms

It is not feasible to adapt previously introduced algorithms
to the SDR computing resource management context, as
described in this paper, and to evaluate their performance
within our framework. Because using these algorithms is
impractical [18], we implement a baseline approach. Its
simplicity makes it applicable to realistic scenarios, which
are often very complex. Each baseline result is complemen-
ted with the optimal solution, obtained from an exhaustive
search.

The greedy or g-mapping is a local mapping approach
that does not require any postprocessing. The algorithm
first maps SDR function f1 to

P �1 ¼ Pkð0Þ� jCT Pkð0Þ� ; f1

� �
� CT Pkð0Þ; f1

� �
8kð0Þ

n o
; ð15Þ

which represents the processor associated with the mini-
mum mapping cost.
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Fig. 8. Part II of the tw-mapping examples: Processing at t-node ðP2; f2Þ for (a) w ¼ 1 and (b) w ¼ 2.

Fig. 9. Part III of the t2-mapping example.



In the second part of the g-mapping process, the
algorithm analyzes the outgoing edges from the active
t-node at step i ði 2 1; 2; . . . ;M � 1Þ, selects the one of
minimum mapping cost, and passes the accumulated cost
to the resulting active t-node at step iþ 1. The g-mapping
thus maintains only one active t-node per step, making it
one order of magnitude—or N times—less complex than
the t1-mapping.

Fig. 10 indicates part of the g-mapping solution to the
problem of Section 4.4. The complete solution consists of
mapping f1; f2; . . . ; f6; f8; f10; f11; f13; f15; and f16 to P1, f7

and f9 to P2, and f12; f14; f17; f18; . . . ; and f24 to P3. Its cost is
4.4022 (Fig. 10).

5.2 SDR Scenario I: UMTS Task Graph

A future SDR platform will be subject to the dynamic
reconfiguration of the different layers in the protocol stack
that define the radio functionality. Hence, the amount of
available computing resources may significantly differ from
one configuration to another. To simulate this, we propose
scaling a platform’s computing resources as follows: sfC
scales the processing capacities and sfB the interprocessor
communication bandwidths. We obtain sfC and sfB from

ðc-load; b-loadÞ ¼ cT

sfC � CT
;

bT

sfB �BT

� 	
; ð16Þ

where c-load 2 0:2; 0:35; . . . ; 0:95 and b-load 2 0:75; 1:25; . . . ;
3. c-load specifies the relation between the total processing
requirement cT of the SDR application and the total
processing power ðsfC � CTÞ of an SDR platform. b-load
relates the total bandwidth demand bT of the SDR
application to a platform’s bandwidth capacity ðsfB � BTÞ.

The SDR application corresponds to the UMTS downlink
receiver of Fig. 3; Fig. 5 shows its modeling. The scenario
considers the four SDR platforms of Fig. 2. Fig. 4 illustrates
the system models of SDR platform IV.

Fig. 11 contains the simulation results. A square in each
subfigure represents a particular ðc-load; b-loadÞ tuple,
which specifies the mapping problem. Its shading indicates
whether the corresponding g- or tw-mapping result is
optimal, suboptimal, or infeasible. A mapping is optimal
for a particular problem and cost function if there exists no
other mapping with an inferior mapping cost. An optimal,
suboptimal, or infeasible result indicates that the cost of the
optimal mapping is x percent of the algorithm’s mapping
cost, where x ¼ 100, 0 < x < 100, and x ¼ 0 describe the

three cases. A cross marks a situation where none of the
324 different mappings are feasible. We call this an impossible
mapping situation.

From Fig. 11, we derive a platform’s flexibility: SDR
platform III is the most flexible because of the relatively
few impossible mapping situations. Platforms I and II are
much less flexible because more processing or bandwidth
resources are needed to feasibly solve many of the given
mapping problems.

We find that the tw-mapping ðw ¼ 1; 2; 3Þ is more robust
against c-load and b-load variations than the g-mapping. The
most critical difference between the algorithms is observed
for SDR platform II: While the tw-mapping achieves feasible
results for all possible mapping situations, the g-mapping
fails in nine cases (black squares in Fig. 11b). Also, the
number of optimal tw-mapping results is considerably
higher than the number of optimal g-mappings (white
squares in Fig. 11). We conclude that the t1-mapping
feasibly solves all but one solvable mapping problem,
whereas the g-mapping fails in 10 cases. The t4- and
t5-mapping algorithms feasibly map the resource situation
ðc-load; b-loadÞ ¼ ð0:95; 1:25Þ. Their results are not shown
due to space limitations.

Neither the t4- nor the t5-mapping algorithms achieve
optimal results for all of the simulated resource conditions of
architecture II. The t2-mapping, on the other hand, achieves
optimal results for (almost) all conditions of architectures I,
III, and IV. The great complexity reduction of the t2-mapping
with respect to the optimal t23-mapping is very important in
dynamic reconfiguration scenarios. For example, the fre-
quent initializations and terminations of sessions we cur-
rently find in BSs require a computing efficient mapping
approach that is able to provide the desired performance. A
feasible solution may be sufficient here, whereas an optimal
solution could be desirable in another scenario. This leads to
the following two conclusions:

1. There is a relation between the platform architecture
and the tw-mapping performance.

2. The tw-mapping with small w is able to solve any
possible mapping situation of this scenario.

The execution times of the g-, t1-, t2-, t3-, t4-, and
t5-mapping implementations are approximately 10, 50, 150,
430, 1,200, 3,500 �s on a 2.4 GHz GPP. The relations between
these execution times are 1:5:15:43:120:350, which is in line
with the corresponding relations between the approximate
algorithms’ complexities due to Section 5.1 and (13),
897:2,691:10,494:33,453:101,160:300,447 or 1:3:12:37:113:335.

5.3 SDR Scenario II: Random Task Graphs

An SDR platform will be dynamically reconfigured from
one RAT or RAT implementation to another. This dyna-
mism may even affect a single user session. An infeasible
reconfiguration (infeasible mapping) would then mean a
lost session.

The scenario considers four MTs; Fig. 2 shows their
computing architectures and resources. Each terminal is
reconfigured 50,000 times. A reconfiguration of an SDR
platform consists of the demapping of the old SDR
application and the mapping of the new one (total
reconfiguration). We randomly generate 50,000 DAGs
based of the following parameters:
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. the number of nodes per DAG is M ¼ 18,

. the connectivity of a DAG is con ¼ 0:15,

. the processing demands are uniformly distributed in
½1; 2; . . . ; 2;500� MOPS, and

. the bandwidth demands are uniformly distributed
in ½1; 2; . . . ; 500� Mbps.

These DAGs should be understood as different SDR

applications that represent different RATs or RAT varia-

tions; 99.3 percent of them require more than 50 percent of a

platform’s total processing resources and 75 percent in the

mean. The connectivity indicates the probability of con-

necting, or drawing an arc between, any two nodes in a

DAG. We allow disconnected graphs (a graph consisting

of two or more connected subgraphs [36]), which model

parallel subfunctions. Irrespective of the particular DAG,

we specify the time slot duration tts as 0:5 � 10�3 SPTS. Then,
the latency of any of these SDR applications will be at most
18 � 0:5 ms ¼ 9 ms (6).

The performance metric is the percentage of infeasible
mappings. Fig. 12 illustrates the outcomes. (Since we
discard those 0.7 percent of the DAGs that require more
processing resources than available, the exhaustive search
for a feasible mapping would lead to a negligible number of
infeasible mappings.) We observe that, for any platform, the
number of unfeasibly t1-mapped DAGs is about half the
number of unfeasibly g-mapped DAGs.

Fig. 12 furthermore shows that the higher the window
size the better the result. If we set the limit to 7.5 percent
infeasible mappings, we can say that the t1-mapping is
appropriate for SDR platform I, the t2-mapping for plat-
forms II and IV, whereas a window size of 3 is necessary for
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Fig. 11. (a)-(d) g-, (e)-(h) t1-, (i)-(l) t2-, and (m)-(p) t3-mapping results for SDR platforms I-IV.



platform III. If the limit is 5 percent, the t3-mapping is
appropriate for all platforms, whereas a limit of 2.5 percent
requires at least the t4-mapping in the case of platform IV
and the t5-mapping otherwise. The g-mapping, which cannot
feasibly map 13-24 percent of the DAGs, is far from suitable
for any reasonable performance limit. These results qualify
the algorithms’ performances. Despite the more general
simulation setup, we can make similar conclusions as for
SDR scenario I.

6 CONCLUSIONS

The constant evolution of radio access technologies, (multi-
media) services, and computing devices, among others,
make the wireless environment highly dynamic and
unpredictable. SDR facilitates the reconfiguration of radio
equipment, introducing flexibility to wireless communica-
tions; hence the need for computing resource management
in SDR and a framework that can deal with real-time
constraints and changing QoS demands of wireless systems.

Our proposal consists of two parts: an SDR computing
system modeling that facilitates the SDR computing resource
management. The system modeling accounts for the limited
computing resources of SDR platforms and the real-time
requirements of SDR applications. The resource manage-
ment features a mapping algorithm and a cost function: The
tw-mapping is a windowed dynamic programming ap-
proach that is apt for many cost functions or mapping
policies. The cost function proposal dynamically manages
an SDR platform’s computing resources to satisfy an SDR
application’s computing and, thus, service requirements.

We have simulated two relevant SDR scenarios. The
results have demonstrated the appropriateness of the
entire framework. Moreover, we could observe that the
tw-mapping, as opposed to the g-mapping, achieves feasible
and even optimal results for window sizes as small as 1, 2,
or 3. These scenarios have also revealed that the tw-mapping
is fast enough for real implementations, predictable in
terms of computing costs and mapping results, and suitable
for different waveforms and platforms.

In future work, we will introduce other cost functions to
manage additional computing or computing-related

resources, such as memory or energy. We will simulate
more SDR scenarios and analyze how to adjust the window
size w to the particular problem. We will study the impact
of hardware abstractions on the performance of SDR
applications before addressing the implementation of our
framework within the PHAL execution environment.
Finally, the SDR computing resource management needs
to be coordinated with the radio resource management.
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