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Abstract— 5G is envisioned to simultaneously provide diverse 
service types with heterogeneous needs under very different 
application scenarios and business models. Therefore, network 
slicing is included as a key feature of the 5G architecture to allow 
sharing a common infrastructure among different tenants, such as 
mobile communication providers, vertical market players, etc. In 
order to provide the Radio Access Network (RAN) with network 
slicing capabilities, mechanisms that efficiently distribute the 
available capacity among the different tenants while satisfying 
their needs are required. For this purpose, this paper proposes a 
multi-agent reinforcement learning approach for RAN capacity 
sharing. It makes use of the Deep Q-Network algorithm in a way 
that each agent is associated to a different tenant and learns the 
capacity to be provided to this tenant in each cell while ensuring 
that the service level agreements are satisfied and that the 
available radio resources are efficiently used. The consideration of 
multiple agents contributes to a better scalability and higher 
learning speed in comparison to single-agent approaches.  In this 
respect, results show that the policy learnt by the agent of one 
tenant can be generalised and directly applied by other agents, 
thus reducing the complexity of the training and making the 
proposed solution easily scalable, e.g., to add new tenants in the 
system. The proposed approach is well aligned with the on-going 
3GPP standardization work and guidelines for the 
parametrization of the solution are provided, thus enforcing its 
practical applicability.  

Keywords—RAN Slicing; Capacity Sharing, Multi-Agent 
Reinforcement Learning, Deep Q-Network.  

I. INTRODUCTION  
One of the main features of the 5G architecture is network 

slicing, which allows the creation of multiple end-to-end logical 
networks (i.e., network slices) on top of the same physical 
infrastructure, so that each slice can be optimised to the 
requirements (e.g., data rates, latency, availability and 
reliability) of specific service and application domains (e.g., 
public safety, industrial, corporate). Each network slice can then 

be allocated to a different tenant (e.g., a communication 
provider, a mobile virtual network operator (MVNO), a vertical 
industry player), who can use it to provide services to its own 
users [1][2]. The network slice allocated to each tenant includes 
a 5G core subnet instance and a Radio Access Network (RAN) 
subnet instance, denoted as RAN slice.  

The deployment of RAN slices on a Next Generation (NG)-
RAN infrastructure needs to deal with the management of the 
common pool of radio resources available in the existing cells in 
order to provide multiple and diverse RAN behaviours and, at 
the same time, to fulfil the requirements of the different services 
[3]. This management needs to consider that the traffic 
requirements of a RAN slice vary with time and can be different 
in each cell. To deal with all these variations, the amount of radio 
resources allocated to each RAN slice in each cell needs to be 
dynamically modified through capacity sharing mechanisms that 
ensure both the fulfilment of the RAN slice requirements and an 
efficient use of the available radio resources. This dynamic 
capacity sharing is the main problem addressed by this paper.  

A. Related Work  
The problem of capacity sharing in RAN slicing scenarios has 

been addressed by some prior works using different techniques 
and under different assumptions. The capacity sharing from a 
single cell perspective has been considered in [4]-[8]. 
Specifically, the problem is addressed in [4] by defining an 
exponential smoothing model, while in [5] it is formulated as an 
optimisation problem based on Karush Kuhn Tucker (KKT) 
conditions, and in [6] a biconvex problem is solved considering 
jointly the radio resources, caching and backhaul capacities in 
the RAN slicing process. Moreover, [7] and [8] establish the 
capacity provided to each tenant in a cell based on market-
oriented models that aim at maximising the infrastructure 
provider’s revenue. Other solutions address the problem of 
capacity sharing in multi-cell scenarios by using heuristic 
approaches [9]-[12]. In particular, capacity sharing is modelled 
in [9] as a winner bid problem solved by means of dynamic 
programming, while [10] uses an integer mathematical program 
and proposes a low complexity heuristic algorithm for 
associating resources to users. In turn, [11] proposes a fisher 
market game and [12] an iterative algorithm that adjusts the per-
cell capacity provided to each tenant to be used for admission 
control.  

Given the complexity of 5G networks and the inherent 
dynamic uncertainty of the wireless environment, 
Reinforcement Learning (RL) methods are potential candidates 
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to deal with the capacity sharing problem, as they allow 
optimising dynamic decision-making problems in real time [13]. 
Among these methods, Deep Reinforcement Learning (DRL) 
approaches, which combine deep neural networks (DNNs) with 
RL, are particularly promising due to their capability to support 
large state and action spaces. The success of DRL started with 
the Deep Q-Network (DQN) [14] that combines DNN with Q-
learning and since its launch successive extensions have been 
proposed such as Double DQN (DDQN) [15] and prioritized 
experience replay [16], among others, which mainly aim at 
enhancing the speed of learning and the stability of DQN but at 
the cost of increasing the complexity of the solution and the 
number of hyperparameters to configure [17]. Moreover, going 
beyond Q-learning, DNN have also been applied to other RL 
approaches, like the policy gradient-based methods used for 
continuous action spaces, such as the Deep Deterministic Policy 
Gradients (DDPG) algorithm [18], or the actor-critic algorithms, 
such as the Asynchronous Advantage Actor Critic (A3C) 
algorithm [19].  

DRL methods have already been used to approach the 
capacity sharing problem in multi-cell RAN slicing scenarios in 
some previous works [20]-[30]. In [20] and [21] the aggregated 
capacity reserved to each slice at network level is provided, 
respectively, by means of DQN and Deterministic Policy 
Gradients (DPG) combined with K-Nearest Neighbours (K-
NN). A similar problem is addressed in [22] through Generative 
adversarial network (GAN)-DDQN. In turn, [23] and [24] 
provide the cell capacity share by first computing the aggregate 
capacity reserved to each slice at network level using a DQN 
agent associated to each slice and, then, applying a heuristic 
algorithm to obtain the cell capacity for each slice. Similarly, 
[25] provides the aggregate capacity allocated to each tenant at 
network level by means of a DQN agent and, then, the cell 
capacity for each tenant is computed by a knapsack algorithm. 
In [26], a DQN agent is used to assign the cell capacity to all 
tenants in a single cell with virtualised Device to Device (D2D) 
communications. In [27] the RAN slice configuration and PRB 
allocation in a cell is performed by a two-level hierarchy scheme 
by using, respectively, DDPG and DDQN agents. The allocation 
of the cell capacity to all tenants in a single cell when 
considering DQN, DDQN and DDPG-based agents is assessed 
in [28]. Moreover, [29] and [30] propose an Ape-X-based 
approach to solve the capacity sharing problem, where the 
capacity provided to each slice in a single cell is provided by a 
different actor and all the actors base their policy on a common 
learner.  

While the DRL-based capacity sharing approaches in [20]-
[22] and [26]-[28] propose a single-agent to provide the joint 
solution for all the tenants, the approaches in [23]-[25], [29] and 
[30] tackle the problem as a Multi-Agent Reinforcement 
Learning (MARL) approach [31]. In MARL, multiple agents 
interact with a common environment in order to learn each 
agent’s policy according to RL methods. The use of MARL to 
tackle the capacity sharing problem by associating one agent to 
each tenant exhibits relevant advantages with respect to a single-
agent approach that allocates the capacity to all the tenants. On 

the one hand, it is more scalable as it allows easily 
adding/removing new tenants in the scenario simply by 
adding/removing the corresponding agent and without 
modifying the structure of the DNN, which in the single-agent 
case would depend on the number of tenants. On the other hand, 
it increases the speed of learning, since the dimensions of the 
state-action spaces are more reduced as the agent only needs to 
account for the states and actions related to the tenant and the 
training of the different agents can be performed independently 
of the others. The benefits of MARL have been exploited in 
[23]-[25], where each agent determines the aggregated assigned 
capacity over all the cells to a tenant, as well as in [29] and [30], 
where each agent determines the capacity assigned to a tenant in 
a single cell. However, none of the previous works have 
proposed a MARL capacity sharing solution where an agent is 
able to directly provide the capacities assigned to its associated 
tenant in the different cells in a multi-cell scenario. This is 
relevant for the management of RAN slices in multi-cell 
scenarios from a system-level perspective because, on the one 
hand, Service Level Agreements (SLA) are defined for 
geographical areas covering multiple cells and, on the other 
hand, the traffic of one tenant across the different cells may 
exhibit time and space heterogeneities. Therefore, it is important 
that an agent learns how to make joint decisions for multiple 
cells and this paper intends to fill this gap. Besides, another gap 
to be filled is that the previous MARL-based approaches in [23]- 
[25] provide limited insights about multi-agent design features 
that are relevant from a practical perspective, such as the 
interaction between the different agents or the training-related 
aspects of the multi-agent approach. Only the work in [29] and 
[30] provides some details in this respect for the Ape-X solution, 
but being restricted to the operation on a single cell basis. 

B. Main Contributions 
In this paper, a MARL capacity sharing solution for multi-

tenant and multi-cell scenarios is proposed, where the capacities 
to be provided to each tenant in the different cells are obtained 
by associating one DQN agent to each tenant. The main 
contributions and novelties with respect to previous works are 
summarized in the following:  

• In the proposed MARL approach a DQN agent learns the 
policy for jointly assigning the capacities to be provided to 
a tenant in the different cells of the scenario. This is a 
difference with respect to prior multi-agent approaches in 
which an agent either assigns the capacity for a single cell, 
[29] and [30],  or assigns the aggregate capacity for all cells, 
[23]-[25]. Furthermore, a synchronous and cooperative 
operation of the different agents is considered in the 
proposed solution since their decisions are performed at the 
same time and each agent is designed to find a solution that 
benefits jointly all the tenants. This also constitutes a 
relevant difference with respect to other approaches, such 
as [23] and [24]. 

• The proposed MARL approach addresses the capacity 
sharing when considering the SLA for each tenant as an 
aggregate across the multiple cells in the scenario in order 
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to capture the total amount of capacity to be provided to 
each tenant. Instead, other approaches such as [20]- [30]  
just consider the SLA specified in terms of the QoS 
parameters defined at user level, but without enforcing any 
aggregate capacity per tenant. In this way, the definition of 
the state in the MARL solution proposed here includes the 
parameters of the SLA, which allows the agents to adapt to 
different SLA requirements without the need of performing 
a new training when the SLA values change, as required in 
[23]-[26]. 

• A key feature of the proposed solution is that the policy 
learning process can be conducted by a single agent and 
then the learnt policy can be generalised and directly 
applied by the other agents, thus reducing the complexity of 
training in multi-agent scenarios. This leads to a scalable 
solution where e.g., the addition of a new tenant does not 
require any re-training. To the authors’ best knowledge, 
little effort has been conducted by previous works on 
capacity sharing to address these training-related aspects in 
detail. In this respect, [29] and [30] use Ape-X for learning 
a single policy that jointly uses the experiences of multiple 
tenants. Instead, the general policy considered in the present 
paper can be learnt based on the experiences of a single 
tenant, thus simplifying the learning process. 

• The practicality of the proposed approach is enforced with 
respect to previous capacity sharing solutions by 
formulating the solution as a Self-Organising Network 
(SON) function, which is integrated in a RAN slicing 
management framework well aligned with the on-going 
3GPP standardisation work on management and 
orchestration of network slicing [32]-[34].  

A first approach of the proposed model was firstly introduced 
in our recent conference paper [35]. This paper substantially 
extends this previous work. First, it provides a complete and 
detailed description of the algorithm, which has been 
reformulated with a new definition of the state that facilitates the 
capability of generalising the learnt policies and a new definition 
of the reward to better capture the SLA fulfilment and resource 
utilisation targets. Moreover, the solution has been aligned with 
3GPP standardisation by reformulating it as a SON function. 
Finally, this paper provides an extensive set of results to 
demonstrate the generalisation capability of the learnt policies, 
to analyse the impact of the configuration parameters of the 
MARL approach and to assess the performance in relation to the 
optimum solution.  

The rest of the paper is organised as follows. Section II 
presents the system model and formulates the problem of 
capacity sharing in a multi-cell scenario and Section III 
describes the proposed multi-agent DQN approach. Based on 
this, Section IV describes the considered scenario for evaluation, 
assesses the capability of the agents in the MARL solution to 
learn a general policy applicable by other tenants and discusses 
the scalability of the solution when adding a new tenant in the 
scenario. An analysis of the impact of different model parameter 
configurations on the achieved performance and an analysis of 

the optimality of the solution closes this section.  Finally, Section 
V summarises the conclusions and future work.  

II. SYSTEM MODEL AND PROBLEM DEFINITION 
Let us consider an Infrastructure Provider (InP) that owns a 

NG-RAN infrastructure, which is composed of N cells with 
diverse deployment characteristics (i.e., cell radius, transmission 
power, frequency of operation). Assuming 5G New Radio (NR) 
technology, each cell n has a total of Wn Physical Resource 
Blocks (PRBs) with a PRB bandwidth Bn, which provide a total 
cell capacity cn (b/s), defined as cn=Wn·Bn·Sn,, where Sn is the 
average spectral efficiency at cell n. Then, the total system 
capacity C is obtained by aggregating cn for all the cells 
n=1…N. The InP shares its NG-RAN infrastructure among K 
tenants by providing each tenant k with a RAN Slice Instance 
(RSI), which corresponds to the Network Slice Subnet Instance 
(NSSI) for the RAN part in the 3GPP terminology.  

In order to satisfy the service requirements, a SLA is 
established between the InP and each of the tenants. Based on 
this SLA, the following requirements are established for the  
k-th tenant:   

• Scenario Aggregated Guaranteed Bit Rate (SAGBRk): the 
aggregated capacity to be provided across all cells to tenant 
k, if requested.  

• Maximum Cell Bit Rate (MCBRk,n): Maximum bit rate that 
can be provided to tenant k in cell n. This parameter is 
defined by the InP to avoid that a single tenant uses all the 
capacity in a cell under highly extreme heterogeneous spatial 
load distributions of tenants demanding excessive capacity 
in certain cells.  

These requirements are considered in the creation process of 
each RSI and its fulfilment is responsibility of the InP. For this 
purpose, it relies on the RSI Lifecycle Management (LCM) for 
creating, modifying, optimising and terminating RSIs. 
According to the 3GPP management model [32], the RSI LCM 
falls under the scope of the Network Slice Subnet Management 
Function (NSSMF) for the RAN part of a network slice, denoted 
hereafter as RAN NSSMF.  

The RAN NSSMF is in charge of the correct operation and 
dynamic configuration of the RSIs. In particular, this paper 
considers the capacity sharing function as part of the RAN 
NSSMF to optimise the amount of radio resources (and 
associated capacity) to be provided to each RSI, which is a 
challenging task. This provided capacity needs to be 
dynamically updated depending on the RSI traffic demands, 
which are not homogeneous among the different cells in the NG-
RAN and they can fluctuate over the time. Therefore, the 
capacity sharing solution considered in this paper is designed as 
a SON function that automatically and dynamically adjusts the 
capacity provided to each RAN slice across the different cells. 
Indeed, this vision is aligned with the recent study conducted at 
3GPP on the SON functionalities for 5G [33]. This study 
identifies the so-called cross-slice network resource 
optimization use case intended to optimise the allocation of 
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physical and virtual resources across multiple network slice 
instances. Therefore, the proposed approach in this paper can be 
regarded as a specific solution to this use case for the RAN.  

 Specifically, the proposed capacity sharing SON function 
dynamically tunes the capacity share for each tenant in time 
steps of duration Δt (in the order of minutes) in order to adapt to 
the spatial and temporal traffic variations among the different 
cells, minimise SLA breaches (i.e., violations) in the system and 
optimise the resource utilisation of the different cells in the 
system. The capacity share σk(t) of tenant k in time step t is 
defined as σk(t)=[ σk,1(t),…, σk,n(t), …, σk,N(t)], where each 
component σk,n(t) corresponds to the proportion of the total 
capacity (i.e. proportion of the total PRBs Wn) in cell n provided 
to that tenant during time step t and ranges 0≤σk,n(t)≤ MCBRk,n/cn. 
Note that the capacity share solution in a cell cannot exceed the 
total capacity of the cell, so that ∑ σk,n(t)K

k=1 ≤1. The capacity 
share σk(t) needs to be upgraded periodically on a per-minutes 
basis in order to adapt to the traffic demands. Following the 
current 5G Network Resource Model (NRM) defined by 3GPP 
[32] the capacity share can be configured on a cell using the 
RRMPolicyRatio attribute, which specifies the percentage of 
radio resources (e.g., PRBs) to be allocated on a per-slice basis. 
The basic abbreviations and notations of the proposed capacity 
sharing SON function are summarized in Table I. 

III. MULTI-AGENT DQN APPROACH 
The capacity sharing SON function has been addressed as a 

MARL approach in order to deal with the complexity of the 
computation of σk(t) in multi-cell scenarios. In the proposed 
approach, each RL agent is associated to a tenant k in the system 
and centrally learns the policy πk to tune σk(t) dynamically by 
interacting with the environment. The selected RL method for 
deriving the policy πk at the k-th agent is the DQN algorithm due 
to three main reasons. First, DQN has been designed to support 
high dimension state and action spaces, which is achieved with 
the use of DNN. This is convenient for the capacity sharing 
problem since the consideration of multiple cells and the 
randomness in the traffic demands in each of the cells can result 
in large state and action spaces. Second, the learning in DQN is 
performed by bootstrapping, i.e., the policy is progressively 
updated by considering single samples of experience instead of 
considering all the samples until reaching a certain goal or 
finishing an episode, like in Monte Carlo simulations [36]. This 
is suitable for the case of capacity sharing since a continuous 
learning of πk is desired, rather than in episodes. Third, in 
relation to other DRL approaches such as DDQN or DDPG, 
preliminary results in a previous study [28] showed that, despite 
having differences in terms of the practicality of the 
implementation (e.g., speed of the training process, number of 
hyperparameters to configure, etc.), their performance in a 
single-agent and single-cell scenario was very similar to that of 
DQN. In this respect, DQN was considered as a good design 
choice, considering the trade-off between practicality and 
achieved performance.  

The scheme of the proposed solution is shown in Fig.  1. The 
proposed capacity sharing SON function falls within the scope  

TABLE I. LIST OF ABBREVIATIONS AND NOTATIONS 

Abbreviation/ 
Notation Definition 

NG-RAN Next-Generation- Radio Access Network. 
MARL Multi-Agent Reinforcement Learning. 
DNN Deep Neural Network. 
DQN Deep Q-Network. 
SLA Service Level Agreement. 
SON Self-Organising Network. 
InP Infrastructure Provider. 
N Total number of cells. 

PRB Physical Resource Block. 
Wn Total number of PRBs. 
Bn PRBs' bandwidth. 
cn Total cell capacity. 
Sn Average spectral efficiency. 
C System capacity. 
K Total number of tenants. 

SAGBRk Scenario Aggregated Guaranteed Bit Rate. 
MCBRk,n Maximum Cell Bit Rate. 

RSI RAN Slice Instance. 
NSSMF Network Slice Subnet Management Function. 

Δt Duration of a time step. 
σk(t) Capacity share of tenant k in time step t. 

σk,n(t) 
Proportion of cn of cell n provided to tenant k 
during time step t. 

πk Policy learnt by the agent associated to tenant k. 
ok,n(t) Offered load of tenant k in cell n.  
ρk,n(t) Resource usage of tenant k in cell n. 
Tk(t) Aggregated throughput of tenant k across all cells.  
sk(t) State of tenant k in time step t. 
sk,n(t) State of tenant k in cell n in time step t. 
ak(t) Action selected for tenant k in time step t. 
ak,n(t) Action selected for tenant k in cell n in time step t. 

Δ Action increase step. 
rk(t) Reward obtained by tenant k in time step t. 

ρn
A(t) Fraction of available PRBs not used by any tenant 

in the cell. 

𝜎n
A(t) Available capacity share in cell n not assigned to 

any tenant. 
δk

(1)(t), δk
(2)(t) Reward factors. 

φ1, φ2 Reward factors’ weights. 

Ok(t) 
Aggregated offered load of tenant k across all 
cells.  

O(t) Aggregated offered load of all tenants in all cells.  

βk(t) 
Guaranteed capacity not required by other tenants 
at time step t. 

γ Discount factor. 
Qk(sk,ak,θk) Q-network associated to tenant k with weights θk. 

Dk
l  Experience dataset of agent associated to tenant k 

with length l. 
U(Dk

l ) Mini-batch of experiences. 

πk
ε  ε-Greedy policy with probability of selecting a 

random action ε.  
L(𝜃k) Average mean squared error loss. 
𝜏 Learning rate. 

ek,j Experience j of tenant k. 
Ak(t) Assigned capacity to tenant k at time step t. 
Rk Average reward of tenant k. 
SSk Average SLA satisfaction of tenant k. 
U Average system utilization. 
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Fig.  1. MARL solution scheme 

of the RAN NSSMF of the 3GPP management system. The 
function is composed of K DQN agents, each one associated to 
one tenant. The InP provides as input the service profile 
parameters associated to each tenant, which include the SLA 
parameters. Moreover, the SON function includes a monitoring 
module, which collects performance measurements of the 
tenants in the different cells and provides them to the processing 
module. The performance measurements of each tenant can be 
obtained in each time step e.g., using the NSSI performance data 
file reporting service defined in [34] through Performance 
Management (PM) services interface. The performance 
measurements considered here for tenant k include: 

• Offered load (ok,n(t)): Requested capacity by the tenant in the 
n-th cell during the last time step, i.e. period (t-Δt,t]. This 
parameter is obtained by aggregating the capacity 
requirement by all the users in cell n that belong to tenant k. 

• Resource usage (ρk,n(t)): Fraction of PRBs occupied by the  
k-th tenant in the n-th cell during the last time step. It is 
computed as min(σk,n(t), ok,n(t)/cn). 

• Throughput (Tk(t)): Aggregated throughput experienced by 
tenant k across all cells during the last time step. This is 
obtained by aggregating the throughput in each cell n given 
by min(ok,n(t), σk,n(t)·cn).   

Furthermore, a pre-processing module is also proposed to be 
included within the SON function, which computes the inputs to 

each DQN agent based on the performance measurements 
provided by the monitoring module and on the allocated capacity 
share σk(t-1) during the last time step t-1.     

Then, at each time step t, the DQN agent associated to tenant 
k obtains the state sk(t) of the environment. Based on sk(t), the 
agent selects an action ak(t) according to the trained policy πk by 
the DQN agent. Once all the actions for all the agents have been 
obtained, the capacity sharing computation module computes 
the resulting σk(t) for all the tenants, avoiding unfeasible σk(t) 
solutions (e.g., allocation of more capacity than available in a 
cell). Next, the computed capacity sharing values σk(t) are 
communicated to the different cells in the NG-RAN 
environment through 3GPP interfaces for NSSI provisioning 
management services [37]. Moreover, the k-th agent is also 
provided with the reward signal rk(t) as a result of the last 
performed action ak(t-1), which jointly with the sk(t) are used for 
training the DQN agent associated to tenant k. The specific 
definitions of the state, action and reward signals in the proposed 
DQN agents and the operation of the capacity sharing 
computation module are described in the following.  

A. State 
The state obtained by the k-th tenant’s agent at time t from 

the network environment is denoted as sk(t) = [sk,1(t),…, sk,n(t), 
…,sk,N(t), SAGBRk/C , 	∑ SAGBRk'

K
k'=1,k'≠k /C ], where each 

component  sk,n(t) corresponds to the state of the tenant in cell n, 
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given by < ρk,n(t), ρn
A(t) , σk,n(t-1),𝜎n

A(t-1) , MCBRk,n/cn >. The 
component ρn

A(t) is the fraction of available PRBs not used by 
any tenant in the cell, that is:  

ρn
A(t)=1-! ρk,n(t)

K

k=1
 (1) 

Similarly, 𝜎n
A(t) is the available capacity share in cell n not 

assigned to any tenant, given by:  

𝜎n
A(t)=1-! σk,n(t)

K

k=1
 (2) 

B. Action 
At time t, the k-th tenant’s agent selects the joint action ak(t)= 

[ak,1(t), …, ak,n(t), …, ak,N(t)], which is composed of the cell-
specific actions ak,n(t) for each cell n=1...N. The cell-specific 
action determines the variation in the capacity share σk,n(t) to be 
applied in the following time step t in cell n. In order to achieve 
a gradual tuning of the capacity share, the cell-specific action 
can take three possible values ak,n(t)ϵ{Δ,0,-Δ}, corresponding to 
increasing the capacity share in a step of Δ, maintaining it or 
decreasing it in a step of Δ. Consequently, the action space for 
ak(t) corresponds to all the possible combination vectors of the 
three possible action values for each of the cells, which results 
in 3N possible actions for each tenant. It is worth noting that other 
approaches in which the cell-specific action could take more 
than three possible values could also be feasible. However, they 
would imply a much larger action space, and thus, a longer 
process for learning the policy πk. The actions ak(t) are provided 
to the capacity sharing computation module to obtain the 
resulting capacity share solution σk(t), as detailed in Section 
III.E.  

C. Reward 
In order to assess to what extent the last action ak(t-1) was 

adequate for the previous state sk(t-1), a reward rk(t) is provided 
to the k-th tenant agent, which is defined as:  

rk(t)=δk
(1)(t)

φ1·δk
(2)(t)

φ2 (3) 

which considers two main factors, δk
(1)(t) and δk

(2)(t), defined in 
the following, and their corresponding weights, φ1 and φ2. These 
weights φ1 and φ2 are assumed to be defined by the InP according 
to its own criteria in establishing the importance of the factors 
δk

(1)(t) and δk
(2)(t).  

The first factor, denoted as δk
(1)(t) , intends to promote the 

satisfaction of the SLA of tenant k and the provisioning of 
enough capacity to satisfy its offered load. It is defined as:  

δk
(1)(t)= 

=

⎩
⎪
⎨

⎪
⎧ Tk(t)

Ok(t)
if  O(t)≤C

min(
Tk(t)

min(SAGBRk+βk(t),Ok(t))
,1) Otherwise

 
(4) 

where Ok(t) corresponds to the aggregated offered load of tenant 
k among all the cells at time step t, bounded by the MCBRk,n of 
each of the cells, given by:  

Ok(t)=- min(ok,n(t),MCBRk,n)
N

n=1
 (5) 

Moreover, O(t) in (4) corresponds to the aggregated offered 
load Ok(t) of all tenants at time step t while βk(t) captures the 
guaranteed capacity not required by other tenants at time step t, 
given by: 

βk(t)=- max(SAGBRk' -Ok'(t),0)
K

k'=1
k'≠k

 (6) 

which reaches βk(t)=0 when the offered load Ok(t) of all the 
tenants is higher or equal than their SAGBRk.  Based on these 
parameters, the definition of δk

(1)(t) in (4) considers two different 
situations. The first condition in (4) considers the situation when 
there is enough capacity to satisfy the offered load of all the 
tenants O(t) and, hence, δk

(1)(t) is given by the ratio between the 
throughput obtained by tenant k and its offered load, being 
maximum, i.e., δk

(1)(t)=1, when the throughput equals the offered 
load. In turn, the second condition in (4) considers the situation 
when the total system capacity C is not enough to satisfy the 
offered load requirement of all the tenants O(t). In this situation, 
δk
(1)(t) is given by the ratio between the throughput of tenant k 

and the minimum between its offered load and its SAGBRk 
increased by the unused capacity left by the other tenants βk(t). 

Then, in this case δk
(1)(t) will be maximum (i.e., δk

(1)(t)=1) when 
the throughput equals the offered load Ok(t) or, in the case that 
the offered load is higher than SAGBRk +	βk(t) when at least the 
throughput ensures this later value.   

The fact that the definition of δk
(1)(t)  depends on the 

aggregated offered load of all tenants O(t) contributes to a 
collaborative behaviour between tenants, as in situations of 
overload this factor will promote actions that allow assuring the 
SLA of all tenants, avoiding those actions that would only 
benefit the k-th tenant at the cost of degrading the performance 
of the rest. 

The second factor in the reward, δk
(2)(t), aims at measuring the 

degree of capacity overprovisioning and is defined by the ratio 
between the system throughput provided to the k-th tenant Tk(t) 
and its provided capacity during the last time step, that is:  

δk
(2)(t)=

Tk(t)
∑ cn·σk,n(t-1)N

n=1
 (7) 

D. DQN Agent 
The DQN agent of tenant k centrally learns the policy πk that 

determines the actions to be executed in each cell. The proposed 
DQN agent executes the DQN algorithm of [14] but 
particularised to the state, action and reward signals previously 
introduced.  
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The objective of DQN, as a value-based RL algorithm, is to 
find the optimal policy πk* that maximises the discounted 
cumulative future reward dk(t), computed as:  

  dk(t)=! γjrk(t+j+1)
∞

j=0

 (8) 

where γ is the discount factor, which ranges 0≤ γ ≤1, used to 
place more emphasis on immediate rewards. Finding πk* can be 
performed by obtaining the optimal action-value function  
Qk*(sk,ak), which is the maximum expected discounted 
cumulative reward starting at time step t from sk, taking the 
action ak and following the policy πk:  

Qk
*(sk,	ak)= max

πk
E $dk(t)%

sk(t)=sk
ak(t)=ak

πk

& (9) 

This last expression can be decomposed into the Bellman 
Equation, which allows expressing Qk*(sk,ak) in a recursive 
form: 

Qk
*(sk,	ak) = 

=E .rk(t+1)+γ max
ak'

 Qk
*(sk(t+1),ak')/

sk(t)=sk
ak(t)=ak

0 
(10) 

According to Qk*(sk, ak), the optimal policy can be found by 
selecting a(k) greedily for each state sk that is:  

πk*=argmaxakQk
*(sk,ak) (11) 

Generally, RL algorithms approximate the optimal  
Qk*(sk, ak) by updating the approximated function Qk(sk, ak) 
iteratively based on the time difference (TD) error at each time 
t. The TD error is defined as the difference between 
rk(t+1)+γ max

ak'
 Qk

*(sk(t+1),ak'), denoted as TD target, and the 

approximated value Qk(sk,ak). In the case of DQN, a non-linear 
approximation of Qk*(sk,ak) is performed by using a DNN, 
denoted as Q-network, with weights θk, so that Qk*(sk,ak) » 
Qk(sk,ak,θk). The inputs of the Q-network are the different 
components of the state sk, while the outputs correspond to the 
values of Qk(sk,ak,θk) for each possible action ak. Therefore, the 
policy πk selects the action that maximises the output of the Q-
network as:   

πk= argmax
ak

Qk(sk,ak,𝜃k) (12) 

The use of a DNN to approximate Qk*(sk,ak) allows dealing 
with large state and action spaces. However, the use of non-
linear approximation functions such as DNNs can imply 
instabilities or even divergence in the learning process due to:  
(i) correlations in sequential observations; (ii) correlations 
between action-values Qk(sk,ak,θk) and the TD-target; (iii) the 
fact that small updates of Qk(sk,ak,θk) may change the policy, 
dramatically, which can lead to changes of the distribution of the 
data collected from the environment. In order to avoid these 
effects, a DQN agent is composed of different elements, listed 
in the following:  

• Evaluation DNN (Qk(sk,ak,θk)): corresponds to the main 
approximation function of the expected reward function 
Qk(sk,ak). This function is trained off-line and is used to 
extract the policy πk to select the actions to be performed in 
the environment. When starting the learning process, the 
weights θk are initialised randomly.   

• Target DNN (Qk(sk,ak,q k -)): this is another Q-network with 
the same structure as the evaluation DNN but with weights  
qk-. It is used to obtain the TD-Target as rk(t)+γ max

ak'
 

Qk(sk(t),ak',𝜃k
-). Instead of updating the weights qk- every 

time step, they are updated every M time steps with the 
weights of the evaluation DNN qk-=qk. Consequently, the 
computation of the TD error, which depends on the target 
DNN, is no longer dependant on rapidly fluctuating 
estimates of the Q-values, as the target DNN only changes 
every M time steps but remains fixed the rest of the time.   

• Experience Dataset (Dk
l ): a dataset Dk

l  of length l is used to 
store the experiences of each agent. The stored experience 
for the agent associated to tenant k at time step t is 
represented by the experience tuple < sk(t-1) , 
ak(t-1),rk(t),sk(t) >. The use of the dataset allows randomly 
selecting mini-batches of experiences U(Dk

l ) with length J to 
update of the weights θk of the evaluation DNN. The use of 
Dk

l  and the random minibatches for the learning of 
Qk(sk,ak,θk) is called Experience Replay and has several 
benefits. First, randomly selecting experiences from the 
dataset Dk

l  breaks the temporal correlations in the training 
data, which may lead to inefficient learning. Second, past 
experiences can be reused, allowing for a greater data 
efficiency. Third, when not using experience replay and 
updating Qk(sk,ak,θk) on-policy, i.e. based on real time 
experiences, the current values of Qk(sk,ak,θk) determine the 
action that will lead to the next state, which will be used to 
update θk and will determine all the future experiences. This 
may lead to unwanted feedback loops where the values 
Qk(sk,ak,θk) can get stuck in poor local minimum or diverge. 
This effect is smoothed when using experience replay, since 
the data used for training is averaged over many of the 
previous states.  

The training operation of the different DQN agents in the 
MARL solution has been summarized in Algorithm 1. The 
process of training of each DQN agent can be split into two main 
processes: the data collection (lines 4-13 of Algorithm 1) and the 
update of the weights θk of the evaluation DNN (lines 14-22 of 
Algorithm 1). 

For the DQN agent associated to tenant k, the process of data 
collection consists in gathering experiences from the network 
environment and storing them in the experience dataset Dk

l , 
which is performed in time steps of Dt. For each time step t, the 
DQN agent observes the state of the environment sk(t) and, 
accordingly, triggers an action ak(t) based on an ε-Greedy policy 
πk

ε  that chooses actions according to (12) with probability 1- ε  
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Algorithm 1. MARL DQN training 
1 Initialize DNN counter m=0. 
2 For t=0… MaxNumberOfTrainingSteps 
3   For k=0…K 
4     Collect global state sk(t) by obtaining sk,n(t) for n=1…N cells. 
5     Generate random ε’ (ε’=1 for the initial steps). 
6     If ε’<ε 
7       Choose randomly action ak(t). 
8     Else 
9       Obtain action according to πk  in (12). 
10     End if 
11     Obtain reward rk(t) as a result of last action ak(t-1). 
12     If Dl(k) is full (l samples are stored), remove the oldest one. 
13     Store experience < sk(t-1), ak(t-1), rk(t), sk(t) > in Dk

l . 
14     Randomly sample a minibatch of experiences U(Dk

l ) from Dk
l  of  

    length J. 
15     Compute the loss function L(𝜃k) by (13). 
16     Compute the mini-batch gradient descent	∇L(𝜃k)  by (14). 
17     Update weights θk of evaluation DNN by (15). 
18     If m==M 
19       Update the weights of target DNN qk

-=qk and set m=0. 
20     Else 
21       m=m+1 
22     End if 
23   End for 
24   Compute σk(t) for k=1…K by applying Algorithm 2 for all cells. 
25  End for 
 

and a random action with probability ε. By using the ε-Greedy 
policy πk

ε , the agent can explore new states that would not be 
visited, which improves the learning behaviour of the policy πk.  
Moreover, the reward rk(t) is obtained, which assesses the 
suitability of the last performed action ak(t-1) for the last state 
sk(t-1). Then, the experience < sk(t-1), ak(t-1), rk(t), sk(t) > is 
stored in the dataset Dk

l . When the dataset Dk
l  is full (i.e., l 

experiences are stored), old experiences are removed from the 
dataset to save new ones. Note that during the initial steps of the 
data collection, the actions are selected completely randomly 
(i.e., ε=1 is considered in the πk

ε) from the environment in order 
to explore several states and start filling the dataset Dk

l  with 
experiences. 

The process of updating the weights 𝜃k  of the evaluation 
DNN is based on the experiences stored in the experience 
dataset. For each update of Qk(sk,ak,θk), a minibatch of J 
experiences U(Dk

l ) is firstly selected from the dataset Dk
l . This 

selection is performed by randomly choosing experiences  
ek,j=< sk,j , ak,j , rk,j , sk,j*  > for j=1…J. Then, Qk(sk,ak,θk) is 
updated based on the mini-batch gradient descent of U(Dk

l ). For 
this purpose, the average mean squared error (MSE) loss over all 
the J experiences ek,j in U(Dk

l ), denoted as L(𝜃k ), is firstly 
computed as:  

	 L(𝜃k)= Eek,j ∈ U(Dk
l )[(rk,j+γ maxak$Qk(sk,j*,ak′,𝜃k

-)- 

Qk(sk,j, ak,j,𝜃k))
2] 

(13) 

Then, the mini-batch gradient descent of L(𝜃k), denoted as 
∇L(𝜃k), is obtained by differentiating L(𝜃k) with respect to θk, 
which yields:  

 ∇L(𝜃k)=Eek,j ∈ U(Dk
l )[5rk,j+γ maxak$Qk(sk,j*,ak′,𝜃k

-)- 

Qk(sk,j, ak,j,𝜃k)6∇θQk(sk,j, ak,j,𝜃k)] 
(14) 

Finally, the weights in the Qk(sk,ak,θk) network are updated 
according to:  

𝜃k→𝜃k+ τ∇L(𝜃k) (15) 

where 𝜏 is the learning rate. After each update of θk, the obtained 
Qk(sk,ak,θk) can be used by the ε-Greedy policy to trigger actions 
in the network environment. Moreover, during the update of 
weights θk, the DQN agent has a counter m of the number of time 
steps since the last target DNN update and, when m=M, the 
weights in the target DNN are updated as  
θk -= θk and m is initialised again. 

E. Capacity Sharing computation 
In the considered MARL approach, the DQN agents 

associated to the different tenants in the system interact with a 
common network environment in a collaborative and 
coordinated manner in order to trigger the actions that the 
capacity sharing computation module will use to configure the 
capacity share σk(t) of each tenant.  

Initially, the capacity shares of each tenant in each of the cells 
σk,n(t=0) are initialised proportionally to the SAGBRk of the 
tenant, according to: 

σk,n(t=0)=SAGBRk/(! SAGBRk')

K

k'=1

 (16) 

Then, σk,n(t) is dynamically tuned according to the selected 
actions ak(t) by each agent at each time step.  Even though the 
process of data collection by each DQN agent is performed 
independently of the others, the different DQN agents trigger 
their actions and store the experiences synchronously. At each 
time step t, each agent k is provided with its state sk(t) and 
accordingly selects an action ak(t) as previously explained. Next, 
the capacity sharing computation module gathers the selected 
actions ak(t) by all the agents and computes the resulting 
capacity share solution σk(t). Specifically, the capacity share of 
tenant k at cell n, σk,n(t), is updated according to:  

σk,n(t)=$σk,n(t-1)+ak,n(t)
if 0≤σk,n(t-1)+ak,n(t)≤

≤
MCBRk,n

cn
σk,n(t-1) Otherwise

 (17) 

The formulation of (17) assures that σk,n(t) is within its bounds 
and considers that the last capacity share value σk,n(t-1) is 
maintained when ak,n(t) forces σk,n(t) to be out of its bounds.  

In some special situations, the fact that the actions of each 
tenant are triggered independently can lead to capacity sharing 
solutions that excess the total cell capacity in some cells (i.e. 
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∑ σk,n(t)K
k=1 >1 ). When this occurs in any cell, the capacity 

sharing computation module obtains the capacity shares in the 
cell by executing Algorithm 2. The algorithm firstly applies the 
actions of tenants aiming at decreasing or maintaining the 
capacity share in the cell (i.e., ak,n(t) ϵ{-Δ,0}) and computes the 
resulting available cell capacity 𝜎n

A(t) (lines 1-2). If there is no 
available capacity (i.e., 𝜎n

A(t)=0), the actions of tenants willing 
to increase its capacity in the cell are not applied (lines 3-4). In 
turn, when there is available capacity (i.e., 𝜎n

A(t)>0), the capacity 
share is obtained by distributing 𝜎n

A(t) among those tenants with 
ak,n(t)= Δ proportionally to their SAGBRk value as long as they 
are not already provided with more than SAGBRk (lines 5-6)  
according to:  

σk,n(t)=σk,n(t-1)+
𝜎n

A(t)·SAGBRk

∑ SAGBRk'
K

k'=1
at(k',n)=∆,

Tt(k')≤SAGBRk'

 
(18) 

Algorithm 2. Capacity sharing computation for cell n for cell 
capacity excess situations 
1 Compute σk,n(t) of tenants with ak,n(t) ϵ{-Δ,0} according to (17). 
2 Compute available cell capacity share 𝜎n

A(t) according to (2). 
3 If 𝜎n

A(t)=0 
4   Set σk,n(t)= σk,n(t-1) of tenants with ak,n(t)=Δ. 
5 Else 

6 
  Compute σk,n(t) by distributing 𝜎n

A(t) among tenants with   
  ak,n(t)=Δ and Tk(t)≤ SAGBRk proportionally to their SAGBRk  
  according to (18). 

7 End if 

IV. PERFORMANCE EVALUATION 
This section evaluates the proposed capacity sharing SON 

function by assessing its performance in a scenario with given 
offered loads. First, after describing the considered scenario in 
section IV.A and the Key Performance Indicators (KPIs) in 
section IV.B, the capability of the agent of one tenant to learn a 
general policy applicable to any other tenant in the system is 
assessed in section IV.C. This is followed by a discussion of the 
scalability of the solution by adding a new tenant in the 
considered scenario for evaluation in section IV.D. Finally, the 
impact of different model parameter configurations on the 
achieved performance is provided in section IV.E and an 
analysis on the optimality of the SON function is included in 
section IV.F.  

A. Considered scenario 
The assumed scenario comprises a NG-RAN infrastructure 

with five cells that serve the users of two different tenants, 
denoted as Tenant 1 and Tenant 2. The configuration of the 
scenario is presented in Table II, including the cells 
configuration and the SLA parameters established for each 
tenant.  

The model has been developed in Python by using the library 
TF-Agents [38], which provides tools for the development of 
DRL models, including DQN. The developed model has been 
trained according to the parameters of Table III. The dataset 
considered for training is composed of 1400 synthetically 

generated offered load patterns of Tenant 1 and Tenant 2 in the 
different cells during one day, considering different 
combinations of SAGBRk values for both tenants.  

After the model has been trained, the resulting policies πk are 
evaluated using the offered load patterns shown in Fig. 2. The 
figure plots the aggregated offered loads among all the cells of 
Tenant 1, O1(t), and Tenant 2, O2(t), during one day. The figure 
also includes the values of SAGBR1 and SAGBR2, the total 
system capacity C and the aggregated offered loads of both 
tenants O(t). Note that the offered loads of both tenants exceed 
their SAGBRk at some point during the day and the system 
offered load O(t) is higher than C during the time period from 
900 min to 1300 min. Moreover, a uniform distribution of the 
load among the different cells has been considered.  

Regarding the complexity of the proposed approach, it has 
been assessed in terms of the execution time of the MARL model 
over a machine with 2 CPU AMD Opteron 4386 operating with 
Ubuntu 18.04, configured to use 2 cores and 8G RAM. 
Specifically, the execution of one trained DQN agent in one time 
step during evaluation stage lasts 3.8 ms on average, which is a 
sufficiently low value that would enable the operation in a 
practical system. Concerning the training stage, it is obtained 
that the execution of a time step lasts approximately 36 ms. The 
larger duration of the time step in the training stage compared to 
the evaluation stage is motivated by the additional operations 
required during the training for updating the weights of the 
DNNs. 

TABLE II. SCENARIO CONFIGURATION 

Parameter Value 
Number of tenants (K) 2 
Number of cells (N) 5 
PRB Bandwidth (Bn) 360 kHz 

Number of cell available PRBs 
(Wn ) 65 PRBs 

Average spectral efficiency (Sn) 5 b/s/Hz 
Total cell capacity (cn) 117 Mb/s 

Total system capacity (C) 585 Mb/s 

SAGBRk 
Tenant 1 351Mb/s (corresponding to 60% of C) 
Tenant 2 234Mb/s (corresponding to 40% of C) 

MCBRk,n 
Tenant 1 93.6 Mb/s (corresponding to 80% of cn) Tenant 2 

TABLE III. MARL MODEL PARAMETERS 

Parameter Value 
Initial collect steps 5000 

Maximum number of time 
steps for training 2·106 

Experience Replay buffer 
maximum length (l) 107 

Mini-batch size (J) 256 
Learning rate (𝜏) 0.0001 

Discount factor(γ) 0.9 
ɛ value (ɛ-Greedy) 0.1 

DNN configuration 
Input layer: 17 nodes 

1 full connected layer: 100 nodes 
Output layer: 243 nodes 

Reward 
weights  

φ1 0.5 
φ2 0.4 

Time step 
duration Δt 3 min 

Action step Δ 0.03 
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Fig. 2. Offered loads of Tenant 1 and 2 during a day. 

B. Key Performance Indicators  
In this section, different KPIs are defined in order to assess 

the performance of the model:  

• Assigned capacity to tenant k at time step t (Ak(t)): It is 
measured in bps and is obtained from the capacity share σk(t) 
provided by the SON function and the capacity of each cell 
cn as: 

	Ak(t) =- cn·σk,n(t)
N

n=1

 (19) 

• Average reward of tenant k (Rk): It is computed as the 
average of the reward rk(t) obtained by the tenant over a 
duration of G time steps.  

	Rk=
1
G
- rk(t)
G-1

t=0

 (20) 

• Average SLA satisfaction of tenant k (SSk): It measures the 
average of the ratio between the provided throughput Tk(t) 
to tenant k and the minimum between the aggregated 
offered load of the tenant Ok(t) and its SAGBRk value over a 
duration of G time steps, that is: 

 SSk = 
1
G!min'

Tk(t)
min(Ok(t), SAGBRk)

,1(
G-1

t=0

 (21) 

which ranges 0≤SSk≤1, taking SSk=0 value when the SLA is 
not satisfied and SSk=1 when it is fully satisfied. Note that 
the definition of SSk considers that when Ok(t) is lower than 
the SAGBRk, Ok(t) needs to be provided, whereas in the case 
that Ok(t) is greater than SAGBRk, at least SAGBRk needs to be 
provided.  

• Average system utilization (U): It is computed as the average 
ratio between the aggregated throughput provided to all 
tenants and the total system capacity C over a duration of G 
time steps, that is:  

	U=
1
G
-

1
C
- Tk(t)

K

k=1

G-1

t=0

 (22) 

C. Generalization of the learnt policies 
According to the proposed approach, the DQN agent of each 

tenant learns its own policy during the training and then this 
policy is applied during the evaluation. However, considering 
that the training of the different tenants has been done under very 
different situations of their own load and the load of the others 
and for different SLA parameters, in this section, we intend to 
analyse to what extent there are significant differences between 
the policies learnt by the different tenants. In this way, the main 
goal is to assess whether it is possible or not to generalise a 
policy leant by one tenant so that it can be also used by another 
tenant. 

To conduct the analysis, the capacity sharing solution for the 
offered loads of Fig. 2 is obtained under two different policy 
application modes. In Mode A, the DQN agent of each tenant 
applies its trained policy, i.e., the DQN agent of  
Tenant 1 applies policy π1, and the DQN agent of Tenant 2 
applies policy π2. Both policies are the ones obtained after 
200·104 training steps. In turn, Mode B considers that the DQN 
agents of both Tenant 1 and Tenant 2 apply the same policy π1 
learnt for Tenant 1.  

Fig.  3 presents the temporal evolution of the offered load of 
Tenant 2 against its assigned capacity A2(t) for policy application 
Mode A and Mode B. In addition, the SAGBR2 of Tenant 2 is 
included. The assigned capacity for both policy application 
modes generally adapts to the offered load for all the situations 
where the total offered load O(t) (seen in Fig. 2) does not exceed 
the system capacity C. In turn, when O(t) exceeds the system 
capacity, the assigned capacity to Tenant 2 is kept in the SAGBR2 
value. The figure shows that very little differences are observed 
in the assigned capacity A2(t) when applying the policies 
according to Mode A and Mode B.  

Moreover, to quantitatively assess the differences between 
both modes, Table IV provides the average reward Rk and the 
SLA satisfaction SSk for Tenant 1 and Tenant 2 in addition to the 
average system utilisation U. The obtained values show that the 
achieved performance for both policy application modes is very 
similar, with differences lower than 1% for all the analysed 
KPIs. 

 

 
Fig.  3. Offered load vs assigned capacity for Tenant 2 for tenant policy 
application Mode A and B. 
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TABLE IV. KPIS FOR BOTH POLICY APPLICATION MODES 

Policy application mode Mode A Mode B 

Average reward 
Tenant 1 (R1) 0.9673 0.9674 
Tenant 2 (R2) 0.9541 0.9483 

SLA Satisfaction  
Tenant 1 (SS1) 0.9725 0.9742 
Tenant 2 (SS2) 0.9705 0.9577 

Average utilisation (U) 0.8885 0.8861 

First, it is worth pointing out that for the case of Tenant 1 there 
are some slight differences in Table IV although the policy 
applied for this tenant is the same in both modes. The reason is 
that the actions taken by the DQN agent of Tenant 2, which can 
be slightly different when changing the applied policy, impact 
on the state seen by the DQN agent of Tenant 1 and, thus, on the 
selected actions by this Tenant. In any case, the impact of these 
different actions on the performance is negligible as seen in the 
table. 

Concerning Tenant 2, the reason that similar behaviour is 
obtained for policy application Mode A and Mode B is that, 
although the training of policies π1 and π2 has been performed 
independently for both tenants, this has considered a dataset 
composed of several offered load situations, exploring different 
complementarities between the two tenants, jointly with diverse 
combinations of SAGBRk and MCBRk,n values. This allows the 
agents to learn equivalent policies that can be generalised to 
many offered load situations and SLA requirements. This 
observation has important positive implications on the 
practicality of the proposed approach, because it means that a 
single training process carried out by one DQN agent using a 
dataset that covers a wide range of offered load situations and 
SLA requirements can be sufficient to obtain a policy that is 
valid for multiple tenants. As a consequence, a reduction of the 
complexity of the training process will be achieved in a multi-
agent scenario. Moreover, this also facilitates the scalability of 
the model to add new tenants in the scenario, because the 
addition of a tenant can be done without retraining the previous 
learnt policies, as it will be studied in the next sub-section. 

D. Addition of a new tenant 
Following the generalization capability of the trained policies 

that has been observed in previous section, this section aims at 
assessing the association of already trained policies to new 
tenants that are added in the scenario, without neither training 
new policies for the new tenants nor retraining (i.e., training 
again) the policies from the existing tenants. To this end, a new 
tenant, denoted as Tenant 3, is introduced to the scenario of 
Table II. Instead of performing a separate training for the new 
Tenant 3, the previously trained policy for Tenant 1, π1, is used 
for this new tenant as well as for Tenant 1 and 2. Since the 
SAGBRk of Tenants 1 and 2 use the total system capacity of 
Table II, in order to support the new tenant, the capacity in the 
system is extended by increasing the cell bandwidth from 25 
MHz to 30 MHz. As a result, the number of PRBs in each cell is 
increased to Wn=78 PRBs, providing a total cell capacity cn 
=143.2 Mb/s and, thus, a total system capacity of C =716 Mb/s. 
The SLA established for Tenant 3 considers SAGBR3=93.6 Mb/s 
and MCBR3,n=114.56 Mb/s, corresponding to 80% of the cell 

capacity. The SAGBRk of Tenant 1 and 2 remain the same as in 
Table II, whereas the MCBRk,n of those tenants is updated to 
MCBR1,n=MCBR2,n= 114.56Mb/s given that the cell capacity has 
increased.  

The offered loads considered for evaluation during one day 
are plotted in Fig. 4 together with the SAGBRk values, the 
aggregated offered load in the system O(t) and the total system 
capacity C. The offered loads of Tenant 1 and Tenant 2, O1(t) 
and O2(t), are the same as in Fig. 2, and the offered load of 
Tenant 3, O3(t), presents lower values than the other tenants, 
reaching its higher values at t=570 min and t=880 min when its 
SAGBR3 is exceeded. Despite introducing Tenant 3, the total 
offered load of the three tenants only slightly exceeds the system 
capacity from t=1000 min to t=1200 min.  

Fig. 5 shows the offered loads Ok(t) against the assigned 
capacity Ak(t) of Tenant 1, 2 and 3, in addition to their SAGBRk 
values. Since most of time there is enough capacity to fulfil the 
offered load of the three tenants, the offered loads are satisfied 
nearly all the day. When the overall offered load O(t) exceeds 
the system capacity, the tenants that required more capacity than 
their SAGBRk are assigned with lower capacity than their offered 
load, such as Tenant 2 from t=1035 min to t=1115 min. In the 
case of Tenant 3, the offered load O3(t) is generally satisfied the 
tenants or the need of re-training when the capacity in the system 
changes. These results also provide evidence of the advantage of 
a multi-agent approach with respect to a single-agent approach, 
where a single agent manages all the since in the periods when 
the O3(t) is larger than SAGBR3, there is enough capacity in the  
  

 
Fig. 4. Offered load of Tenant 1, 2 and 3 during a day.  

 
Fig. 5. Offered load vs assigned capacity for Tenant 1, 2 and 3.  

0
100
200
300
400
500
600
700
800

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

M
b/

s

Time (min)

Offered loads

O₁(t) O₂(t) O₃(t) O(t)
SAGBR₁ SAGBR₂ SAGBR₃ C

0
50

100
150
200
250
300
350
400
450
500

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

M
b/

s

Time (min)

Ok(t) vs Ak(t) 

O₁(t) O₂(t) O₃(t) SAGBR₁ SAGBR₂
SAGBR₃ A₁(t) A₂(t) A₃(t) 



 12 

system to satisfy all the tenants. These results show qualitatively 
that the policy learnt by one tenant is general enough to properly 
assign the capacity to the other tenants according to their offered 
loads and SLA requirements and, additionally, performs 
satisfactorily in front of changes in the system capacity, since 
the internal parameters of the DQN agent (i.e., state, reward 
factors, actions, etc.) are defined in relative values. This 
highlights the capability of scaling of the proposed solution, as 
the trained policies can be used by new tenants in the scenario 
without the need of performing a separated training for each of 
tenants and the addition of a new tenant would imply the training 
of the whole solution again. Moreover, this would require a 
larger training duration due to the larger state and action spaces 
resulting from the additional state and action dimensions for the 
new tenant. Instead, in the proposed approach, a new tenant can 
be added just by associating an already trained policy.  

To further illustrate the scaling capability of the proposed 
approach, the performance achieved when applying the policy 
π1 for all tenants is compared against the case of applying the 
policies π1, π2 and π3 specifically trained for each tenant. To this 
end, policies π1, π2 and π3 have been trained according to model 
parameters detailed in Table III by considering the scenario with 
Tenant 3 and extended capacity. Table V includes the resulting 
average SLA satisfaction SSk and the average reward for Tenant 
1, 2 and 3 and the average system utilisation U when applying 
the specifically trained polices for each tenant, and when 
applying the policy π1. Once again, the achieved values for the 
different assessed indicators for both cases are really close, 
presenting differences below 1.5% for all indicators. This 
highlights the scaling capability of the proposed approach since 
the application of a previously trained policy is able to adapt to 
the offered loads of the new tenant and the loads of the other 
tenants when the system capacity increases.   

Regarding the achieved values for the different analysed 
performance indicators in Table V, although high values are 
obtained for all the tenants, Tenant 1 achieves the highest, 
closely followed by Tenant 2, and Tenant 3 presents the lowest 
values. The reason is that the offered load values of Tenant 3 are 
much lower than the ones for Tenant 1 and Tenant 2, and thus, 
the analysed performance indicators are more affected by the 
increases and decreases in steps of Δ. This means that decreasing 
the assigned capacity of Tenant 1 by Δ=0.03 has a lower impact 
on Rk and SSk of Tenant 1 than for Tenant 3. Since the offered 
load levels of Tenant 2 are similar to the ones of Tenant 1, lower 

TABLE V. PERFORMANCE PARAMETERS 

Applied policy Tenant- specific 
policies Tenant 1 policy 

Average 
reward 

Tenant 1 (R1) 0.964 0.967 
Tenant 2 (R2) 0.939 0.949 
Tenant 3 (R3) 0.873 0.859 

SLA 
Satisfaction 

Tenant 1 (SS1) 0.986 0.979 
Tenant 2 (SS2) 0.957 0.961 
Tenant 3 (SS3) 0.901 0.893 

Average utilisation (U) 0.843 0.845 

differences are obtained between them as a result of this effect. 
Therefore, in order to achieve higher performance values for 
Tenant 3, lower values of Δ would be more appropriate since 
they would have a lower impact on the assessed parameters. This 
reveals that the selection of Δ needs to jointly consider the traffic 
type and levels of all tenants in order to choose a value that best 
satisfies all of them given the clear impact of Δ on the achieved 
performance, as is studied in the following section. 

E. Impact of action and time step 
This section aims at analyzing the impact of the values of time 

step duration Δt and action increment/decrement step Δ on the 
proposed SON function. For this purpose, the policy π1 of 
Tenant 1 has been trained in the scenario of Table II by 
considering different parameter configurations. The assessed 
configurations include all the combinations between time step 
Δt={1, 3, 5, 15}min and action increment/decrement step 
Δ={0.01, 0.02, 0.03, 0.05, 0.07, 0.09}. The rest of the parameters 
used for training are those specified in Table III .  

First, the impact Δt and Δ on the training evolution process is 
studied. To this end, the policy π1 for Tenant 1 obtained by the 
training every 104 time steps has been evaluated by applying it 
on the offered load of Tenant 1 of Fig. 2. This allows capturing 
how the training process progressively updates the learnt policy 
when increasing the number of training steps. Fig. 6 and Fig. 7 
show the evolution of the average reward R1 of Tenant 1 for 
Δt={1, 3, 5, 15}min when considering, respectively, a small  
 

 
Fig. 6. Average aggregated reward every 10000 time steps during the training 
for Δ=0.01 and Δt={1,3,5,15} min.  

 
Fig. 7 Average aggregated reward every 10000 time steps during the training 
for Δ=0.07 and Δt={1,3,5,15} min 
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action step Δ=0.01 and a large action step Δ=0.07. For both 
values of Δ, higher average reward is achieved when reducing 
Δt, since the policy is triggered more frequently and thus it can 
more easily react to changes. However, evident differences are 
observed between the training evolution when using Δ=0.01 and 
Δ=0.07. For Δ=0.07, the average reward presents an initial 
period of around 50·104 training time steps where it increases 
and presents high fluctuations until the average reward stabilises 
to a value in the range between 0.94 and 0.96 depending on Δt 
and the fluctuations decrease drastically, reflecting that the 
algorithm has achieved convergence. Instead, for Δ=0.01, the 
average reward keeps increasing during the whole analysed 
training period and it exhibits larger fluctuations than for 
Δ=0.07, so convergence takes longer. The reason is that with low 
values of Δ, the actions at each time step have a low impact on 
the next state and the reward obtained, so the training has more 
difficulties to converge.  

Fig.  8 depicts the average reward R1 of Tenant 1 obtained 
between 100·104 and 200·104 training time steps for the different 
analysed combinations of Δt and Δ. The highest reward is 
observed for Δt=1 min and the reward decreases when 
increasing Δt. Regarding the effect of the action step Δ, the 
highest reward is achieved for Δ=0.02 for Δt=1 min while the 
maximum is achieved for Δ=0.03 for the rest of time step 
durations and, for higher values than 0.03, a decreasing trend is 
observed, since large values of Δ make more difficult the 
adjustment of the assigned capacity to the offered load of Tenant 
1 in Fig. 2. These results together with the fluctuations obtained 
in Fig. 6 and Fig. 7 reveal that a trade-off exists when selecting 
the value of Δ: a higher reward is achieved for low values of Δ 
but at the cost of slower convergence. In addition, Fig.  8 shows 
that the combination of large values of Δt with low values of Δ 
(e.g., Δ=0.01 and Δt=15 min) lead to poor performance as those 
combinations do not allow adapting to the dynamics of the 
offered load. 

Finally, the impact of Δ and Δt on the performance metrics is 
analysed in Table VI. It presents the average SLA satisfaction 
SSk and system utility U obtained for different values of Δ and 
Δt when applying the trained policies for Tenant 1 after 200·104 
training time steps to the offered loads of Tenant 1 and Tenant 2 
in Fig. 2. Focusing on the average SLA satisfaction, the capacity 
sharing SON function achieves high values above 0.9 for both 
tenants and all the combinations of Δ and Δt. Higher values are 
generally obtained for combinations with low values of Δ and 
  

 
Fig.  8. Average aggregated reward between 100·104 and 200·104 training 
time steps for the different considered configurations. 

Δt, since they adapt better to the changes in the offered loads. 
Also, a decreasing trend in the SLA satisfaction is observed 
when increasing Δ for values of Δ beyond 0.03. Comparing the 
SLA satisfaction obtained for Tenant 1 and Tenant 2, slight 
differences are obtained between them. About the impact of Δ 
and Δt on the average system utilization U, similar effects than 
in the case of the SLA satisfaction are obtained, achieving the 
highest values for Δ=0.02 for all values of Δt in exception of 
Δt=15 min, which the maximum is achieved for Δ=0.03, and 
being the utilization reduced when increasing Δ beyond the 
maximum.   

Based on the obtained results, it is concluded that the selection 
of the Δ and Δt values has a clear impact on the training 
evolution of the policies and their achieved performance and an 
adequate selection of these values that jointly considers the 
specific traffic dynamics of the different tenants is fundamental 
for ensuring an accurate learning process and a good 
compromise between the different KPIs achieved by the 
capacity sharing SON function. 

F. Optimality analysis   
In this section, the optimality of the capacity sharing SON 

function is analyzed by comparing its performance to the 
optimum. The optimum has been obtained by an exhaustive 
search algorithm that evaluates in each time step all the possible 
values of capacity share σk(t) of Tenant 1 and Tenant 2, 
discretized in steps of Δ, and selects the one that achieves the 
maximum aggregate reward of both tenants. To assess the 
optimality in a wide range of offered load situations, results have 
been obtained for a set of 240 offered load temporal 

TABLE VI. KPIS FOR THE DIFFERENT COMBINATIONS OF ∆ AND ∆t  

Action step 
value (∆) 

Average SLA satisfaction Average system Utilisation (U) Tenant 1 (SS1) Tenant 2 (SS2) 
∆t=1min ∆t=3min ∆t=5min ∆t=15min ∆t=1min ∆t=3min ∆t=5min ∆t=15min ∆t=1min ∆t=3min ∆t=5min ∆t=15min 

0.01 0.972 0.972 0.960 0.933 0.961 0.976 0.958 0.971 0.877 0.879 0.848 0.823 
0.02 0.984 0.978 0.982 0.956 0.972 0.976 0.974 0.969 0.897 0.894 0.884 0.855 
0.03 0.982 0.974 0.973 0.975 0.973 0.958 0.966 0.979 0.894 0.886 0.881 0.883 
0.05 0.981 0.973 0.973 0.960 0.956 0.944 0.946 0.958 0.885 0.878 0.873 0.856 
0.07 0.963 0.970 0.968 0.959 0.934 0.935 0.916 0.949 0.861 0.869 0.863 0.865 
0.09 0.942 0.960 0.952 0.961 0.919 0.908 0.908 0.922 0.822 0.848 0.843 0.850 
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patterns of one day duration, which include diverse offered load 
behaviours with diverse complementarities between the offered 
loads of Tenant 1 and Tenant 2. For each pattern, results have 
been obtained using the scenario configuration in Table II and 
by applying the trained policy π1 of Tenant 1 to both tenants. For 
each pattern, results are obtained in terms of the optimality ratio, 
which is defined as the average of the aggregate reward of 
Tenant 1 and Tenant 2 obtained with the SON function divided 
by the average optimum reward over all the time steps in an 
offered load pattern.   

Fig.  9 presents the evolution of the optimality ratio during 
the training process for the offered load pattern of Fig. 2. This 
has been obtained by evaluating the policy π1 every 5·104 
training steps and computing the optimality ratio. It is observed 
that, initially, the optimality ratio increases abruptly with the 
number of training steps and, after approximately 5·104 training 
steps, it achieves values higher than 0.94. Then, it increases 
slowly with the number of training steps and stabilises to a value 
of around 0.97, corresponding to the situation when the 
algorithm has converged. The figure also reflects that no 
significant improvements are obtained by increasing the number 
of training steps beyond 50·104.  

To analyze the optimality ratio under a broader range of 
situations, Fig. 10 shows the Cumulative Density Function 
(CDF) of the optimality ratios obtained for the different offered 
load patterns with the policy learnt after 200·104 time steps. 
Results reveal that the optimality ratio for all the analysed 
offered load patterns range between 0.94 and 0.98. Moreover, it 
has been obtained that the average optimality ratio is 0.96.  
Overall, results reveal that the proposed MARL approach 
achieves a behaviour very close to the optimum and highlight 
the capability of the trained policy π1 to adapt to diverse offered 
loads. It is also worth noting that this near optimal results are 
obtained with very small execution times of the trained policy, 
as previously discussed in section IV.A, while the exhaustive 
search method requires to assess all the combinations for each 
time step, which is highly time consuming and requires 
execution times higher in several orders of magnitude than the 
MARL approach.  

V. CONCLUSIONS AND FUTURE WORK 
This paper has presented a capacity sharing approach for 

multi-tenant and multi-cell scenarios. The proposed solution 
consists in a collaborative multi-agent reinforcement learning 
approach, where each agent is based on the Deep Q-Network 
(DQN) technique. The different DQN agents, which interact 
with a common network environment in a coordinated and 
cooperative manner, provide the capacity to be assigned to their 
associated tenant in each of the cells of the network environment 
in order to satisfy the Service Level Agreement (SLA) of the 
tenant and making an efficient use of the available resources. 
The approach has been contextualised within the 3GPP 
management framework and has been proposed as a Self-
Organizing Network (SON) function.  

  

 
Fig.  9. Optimality ratio during training 

 
Fig. 10.  Cumulative Density Function (CDF) of optimality ratio.  

The behaviour of the proposed capacity sharing SON 
function has been assessed in a multi-cell scenario with two 
tenants by considering different parameter configurations of the 
multi-agent reinforcement learning solution, which differ in the 
values of actions and the time step that the actions are triggered. 
Results have shown that: (i) The capacity sharing SON function 
satisfactorily adapts the capacity assigned to each tenant to their 
traffic and SLA requirements; (ii) The policies learnt by the 
agents associated to each tenant are generalizable to any tenant, 
given that the dataset used for training is composed of a wide 
range of traffic requirement situations and SLA requirements; 
(iii) The proposed approach is easily scalable to deal with the 
addition of new tenants simply by associating to the new tenant 
a new DQN agent with a previously learnt policy and to support 
the operation when the system capacity changes. (iv) The values 
of actions and the time step need to be jointly configured to 
better adapt to the variability characteristics of the traffic 
requirements of the different tenants in order to improve the 
SLA satisfaction and maximise the utilisation of the available 
resources. (v) The trained policies are able to provide results 
very close to the optimum when they are applied to diverse 
offered load patterns, with observed optimality ratios ranging 
between 0.94 and 0.98.  

Overall, the results presented here reflect the potential and 
adequacy of the proposed DQN-based multi-agent approach for 
capacity sharing. However, research efforts on deep 
reinforcement learning have provided new advanced 
techniques, such as DDQN or DDPG, which have also shown a 
promising behaviour in terms of convergence when being 
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applied to capacity sharing in a single-cell and single-agent 
scenario [28]. Therefore, it is worth considering as future work 
the detailed assessment and comparison of these techniques 
against the DQN-based approach of this paper in multi-cell and 
multi-agent scenarios, taking into account both performance 
and practicality aspects.  
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