
 1

A Multi-Agent Reinforcement Learning Approach for
Capacity Sharing in Multi-tenant Scenarios

I.Vilà, J. Pérez-Romero, O.Sallent, A.Umbert

Abstract— 5G is envisioned to simultaneously provide diverse
service types with heterogeneous needs under very different
application scenarios and business models. Therefore, network
slicing is included as a key feature of the 5G architecture to allow
sharing a common infrastructure among different tenants, such as
mobile communication providers, vertical market players, etc. In
order to provide the Radio Access Network (RAN) with network
slicing capabilities, mechanisms that efficiently distribute the
available capacity among the different tenants while satisfying
their needs are required. For this purpose, this paper proposes a
multi-agent reinforcement learning approach for RAN capacity
sharing. It makes use of the Deep Q-Network algorithm in a way
that each agent is associated to a different tenant and learns the
capacity to be provided to this tenant in each cell while ensuring
that the service level agreements are satisfied and that the
available radio resources are efficiently used. The consideration of
multiple agents contributes to a better scalability and higher
learning speed in comparison to single-agent approaches. In this
respect, results show that the policy learnt by the agent of one
tenant can be generalised and directly applied by other agents,
thus reducing the complexity of the training and making the
proposed solution easily scalable, e.g., to add new tenants in the
system. The proposed approach is well aligned with the on-going
3GPP standardization work and guidelines for the
parametrization of the solution are provided, thus enforcing its
practical applicability.

Keywords—RAN Slicing; Capacity Sharing, Multi-Agent
Reinforcement Learning, Deep Q-Network.

I. INTRODUCTION
One of the main features of the 5G architecture is network

slicing, which allows the creation of multiple end-to-end logical
networks (i.e., network slices) on top of the same physical
infrastructure, so that each slice can be optimised to the
requirements (e.g., data rates, latency, availability and
reliability) of specific service and application domains (e.g.,
public safety, industrial, corporate). Each network slice can then

be allocated to a different tenant (e.g., a communication
provider, a mobile virtual network operator (MVNO), a vertical
industry player), who can use it to provide services to its own
users [1][2]. The network slice allocated to each tenant includes
a 5G core subnet instance and a Radio Access Network (RAN)
subnet instance, denoted as RAN slice.

The deployment of RAN slices on a Next Generation (NG)-
RAN infrastructure needs to deal with the management of the
common pool of radio resources available in the existing cells in
order to provide multiple and diverse RAN behaviours and, at
the same time, to fulfil the requirements of the different services
[3]. This management needs to consider that the traffic
requirements of a RAN slice vary with time and can be different
in each cell. To deal with all these variations, the amount of radio
resources allocated to each RAN slice in each cell needs to be
dynamically modified through capacity sharing mechanisms that
ensure both the fulfilment of the RAN slice requirements and an
efficient use of the available radio resources. This dynamic
capacity sharing is the main problem addressed by this paper.

A. Related Work
The problem of capacity sharing in RAN slicing scenarios has

been addressed by some prior works using different techniques
and under different assumptions. The capacity sharing from a
single cell perspective has been considered in [4]-[8].
Specifically, the problem is addressed in [4] by defining an
exponential smoothing model, while in [5] it is formulated as an
optimisation problem based on Karush Kuhn Tucker (KKT)
conditions, and in [6] a biconvex problem is solved considering
jointly the radio resources, caching and backhaul capacities in
the RAN slicing process. Moreover, [7] and [8] establish the
capacity provided to each tenant in a cell based on market-
oriented models that aim at maximising the infrastructure
provider’s revenue. Other solutions address the problem of
capacity sharing in multi-cell scenarios by using heuristic
approaches [9]-[12]. In particular, capacity sharing is modelled
in [9] as a winner bid problem solved by means of dynamic
programming, while [10] uses an integer mathematical program
and proposes a low complexity heuristic algorithm for
associating resources to users. In turn, [11] proposes a fisher
market game and [12] an iterative algorithm that adjusts the per-
cell capacity provided to each tenant to be used for admission
control.

Given the complexity of 5G networks and the inherent
dynamic uncertainty of the wireless environment,
Reinforcement Learning (RL) methods are potential candidates

Manuscript submitted November 16, 2020. Revised March 3, 2021, April
30, 2021 and June 23, 2021. Accepted July 16, 2021. This work has been
supported by the Spanish Research Council and FEDER funds under SONAR
5G grant (ref. TEC2017-82651-R), by the European Commission’s Horizon
2020 5G-CLARITY project under grant agreement 871428 and by the
Secretariat for Universities and Research of the Ministry of Business and
Knowledge of the Government of Catalonia under grant 2020FI_B2 00075.

Copyright (c) 2021 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

The authors are with the Department of Signal Theory and
Communications, Universitat Politècnica de Catalunya (UPC), 08034
Barcelona, Spain (e-mail: irene.vila.munoz@upc.edu; jordi.perez-
romero@upc.edu; sallent@tsc.upc.edu; anna.umbert@upc.edu).

 2

to deal with the capacity sharing problem, as they allow
optimising dynamic decision-making problems in real time [13].
Among these methods, Deep Reinforcement Learning (DRL)
approaches, which combine deep neural networks (DNNs) with
RL, are particularly promising due to their capability to support
large state and action spaces. The success of DRL started with
the Deep Q-Network (DQN) [14] that combines DNN with Q-
learning and since its launch successive extensions have been
proposed such as Double DQN (DDQN) [15] and prioritized
experience replay [16], among others, which mainly aim at
enhancing the speed of learning and the stability of DQN but at
the cost of increasing the complexity of the solution and the
number of hyperparameters to configure [17]. Moreover, going
beyond Q-learning, DNN have also been applied to other RL
approaches, like the policy gradient-based methods used for
continuous action spaces, such as the Deep Deterministic Policy
Gradients (DDPG) algorithm [18], or the actor-critic algorithms,
such as the Asynchronous Advantage Actor Critic (A3C)
algorithm [19].

DRL methods have already been used to approach the
capacity sharing problem in multi-cell RAN slicing scenarios in
some previous works [20]-[30]. In [20] and [21] the aggregated
capacity reserved to each slice at network level is provided,
respectively, by means of DQN and Deterministic Policy
Gradients (DPG) combined with K-Nearest Neighbours (K-
NN). A similar problem is addressed in [22] through Generative
adversarial network (GAN)-DDQN. In turn, [23] and [24]
provide the cell capacity share by first computing the aggregate
capacity reserved to each slice at network level using a DQN
agent associated to each slice and, then, applying a heuristic
algorithm to obtain the cell capacity for each slice. Similarly,
[25] provides the aggregate capacity allocated to each tenant at
network level by means of a DQN agent and, then, the cell
capacity for each tenant is computed by a knapsack algorithm.
In [26], a DQN agent is used to assign the cell capacity to all
tenants in a single cell with virtualised Device to Device (D2D)
communications. In [27] the RAN slice configuration and PRB
allocation in a cell is performed by a two-level hierarchy scheme
by using, respectively, DDPG and DDQN agents. The allocation
of the cell capacity to all tenants in a single cell when
considering DQN, DDQN and DDPG-based agents is assessed
in [28]. Moreover, [29] and [30] propose an Ape-X-based
approach to solve the capacity sharing problem, where the
capacity provided to each slice in a single cell is provided by a
different actor and all the actors base their policy on a common
learner.

While the DRL-based capacity sharing approaches in [20]-
[22] and [26]-[28] propose a single-agent to provide the joint
solution for all the tenants, the approaches in [23]-[25], [29] and
[30] tackle the problem as a Multi-Agent Reinforcement
Learning (MARL) approach [31]. In MARL, multiple agents
interact with a common environment in order to learn each
agent’s policy according to RL methods. The use of MARL to
tackle the capacity sharing problem by associating one agent to
each tenant exhibits relevant advantages with respect to a single-
agent approach that allocates the capacity to all the tenants. On

the one hand, it is more scalable as it allows easily
adding/removing new tenants in the scenario simply by
adding/removing the corresponding agent and without
modifying the structure of the DNN, which in the single-agent
case would depend on the number of tenants. On the other hand,
it increases the speed of learning, since the dimensions of the
state-action spaces are more reduced as the agent only needs to
account for the states and actions related to the tenant and the
training of the different agents can be performed independently
of the others. The benefits of MARL have been exploited in
[23]-[25], where each agent determines the aggregated assigned
capacity over all the cells to a tenant, as well as in [29] and [30],
where each agent determines the capacity assigned to a tenant in
a single cell. However, none of the previous works have
proposed a MARL capacity sharing solution where an agent is
able to directly provide the capacities assigned to its associated
tenant in the different cells in a multi-cell scenario. This is
relevant for the management of RAN slices in multi-cell
scenarios from a system-level perspective because, on the one
hand, Service Level Agreements (SLA) are defined for
geographical areas covering multiple cells and, on the other
hand, the traffic of one tenant across the different cells may
exhibit time and space heterogeneities. Therefore, it is important
that an agent learns how to make joint decisions for multiple
cells and this paper intends to fill this gap. Besides, another gap
to be filled is that the previous MARL-based approaches in [23]-
[25] provide limited insights about multi-agent design features
that are relevant from a practical perspective, such as the
interaction between the different agents or the training-related
aspects of the multi-agent approach. Only the work in [29] and
[30] provides some details in this respect for the Ape-X solution,
but being restricted to the operation on a single cell basis.

B. Main Contributions
In this paper, a MARL capacity sharing solution for multi-

tenant and multi-cell scenarios is proposed, where the capacities
to be provided to each tenant in the different cells are obtained
by associating one DQN agent to each tenant. The main
contributions and novelties with respect to previous works are
summarized in the following:

• In the proposed MARL approach a DQN agent learns the
policy for jointly assigning the capacities to be provided to
a tenant in the different cells of the scenario. This is a
difference with respect to prior multi-agent approaches in
which an agent either assigns the capacity for a single cell,
[29] and [30], or assigns the aggregate capacity for all cells,
[23]-[25]. Furthermore, a synchronous and cooperative
operation of the different agents is considered in the
proposed solution since their decisions are performed at the
same time and each agent is designed to find a solution that
benefits jointly all the tenants. This also constitutes a
relevant difference with respect to other approaches, such
as [23] and [24].

• The proposed MARL approach addresses the capacity
sharing when considering the SLA for each tenant as an
aggregate across the multiple cells in the scenario in order

 3

to capture the total amount of capacity to be provided to
each tenant. Instead, other approaches such as [20]- [30]
just consider the SLA specified in terms of the QoS
parameters defined at user level, but without enforcing any
aggregate capacity per tenant. In this way, the definition of
the state in the MARL solution proposed here includes the
parameters of the SLA, which allows the agents to adapt to
different SLA requirements without the need of performing
a new training when the SLA values change, as required in
[23]-[26].

• A key feature of the proposed solution is that the policy
learning process can be conducted by a single agent and
then the learnt policy can be generalised and directly
applied by the other agents, thus reducing the complexity of
training in multi-agent scenarios. This leads to a scalable
solution where e.g., the addition of a new tenant does not
require any re-training. To the authors’ best knowledge,
little effort has been conducted by previous works on
capacity sharing to address these training-related aspects in
detail. In this respect, [29] and [30] use Ape-X for learning
a single policy that jointly uses the experiences of multiple
tenants. Instead, the general policy considered in the present
paper can be learnt based on the experiences of a single
tenant, thus simplifying the learning process.

• The practicality of the proposed approach is enforced with
respect to previous capacity sharing solutions by
formulating the solution as a Self-Organising Network
(SON) function, which is integrated in a RAN slicing
management framework well aligned with the on-going
3GPP standardisation work on management and
orchestration of network slicing [32]-[34].

A first approach of the proposed model was firstly introduced
in our recent conference paper [35]. This paper substantially
extends this previous work. First, it provides a complete and
detailed description of the algorithm, which has been
reformulated with a new definition of the state that facilitates the
capability of generalising the learnt policies and a new definition
of the reward to better capture the SLA fulfilment and resource
utilisation targets. Moreover, the solution has been aligned with
3GPP standardisation by reformulating it as a SON function.
Finally, this paper provides an extensive set of results to
demonstrate the generalisation capability of the learnt policies,
to analyse the impact of the configuration parameters of the
MARL approach and to assess the performance in relation to the
optimum solution.

The rest of the paper is organised as follows. Section II
presents the system model and formulates the problem of
capacity sharing in a multi-cell scenario and Section III
describes the proposed multi-agent DQN approach. Based on
this, Section IV describes the considered scenario for evaluation,
assesses the capability of the agents in the MARL solution to
learn a general policy applicable by other tenants and discusses
the scalability of the solution when adding a new tenant in the
scenario. An analysis of the impact of different model parameter
configurations on the achieved performance and an analysis of

the optimality of the solution closes this section. Finally, Section
V summarises the conclusions and future work.

II. SYSTEM MODEL AND PROBLEM DEFINITION
Let us consider an Infrastructure Provider (InP) that owns a

NG-RAN infrastructure, which is composed of N cells with
diverse deployment characteristics (i.e., cell radius, transmission
power, frequency of operation). Assuming 5G New Radio (NR)
technology, each cell n has a total of Wn Physical Resource
Blocks (PRBs) with a PRB bandwidth Bn, which provide a total
cell capacity cn (b/s), defined as cn=Wn·Bn·Sn,, where Sn is the
average spectral efficiency at cell n. Then, the total system
capacity C is obtained by aggregating cn for all the cells
n=1…N. The InP shares its NG-RAN infrastructure among K
tenants by providing each tenant k with a RAN Slice Instance
(RSI), which corresponds to the Network Slice Subnet Instance
(NSSI) for the RAN part in the 3GPP terminology.

In order to satisfy the service requirements, a SLA is
established between the InP and each of the tenants. Based on
this SLA, the following requirements are established for the
k-th tenant:

• Scenario Aggregated Guaranteed Bit Rate (SAGBRk): the
aggregated capacity to be provided across all cells to tenant
k, if requested.

• Maximum Cell Bit Rate (MCBRk,n): Maximum bit rate that
can be provided to tenant k in cell n. This parameter is
defined by the InP to avoid that a single tenant uses all the
capacity in a cell under highly extreme heterogeneous spatial
load distributions of tenants demanding excessive capacity
in certain cells.

These requirements are considered in the creation process of
each RSI and its fulfilment is responsibility of the InP. For this
purpose, it relies on the RSI Lifecycle Management (LCM) for
creating, modifying, optimising and terminating RSIs.
According to the 3GPP management model [32], the RSI LCM
falls under the scope of the Network Slice Subnet Management
Function (NSSMF) for the RAN part of a network slice, denoted
hereafter as RAN NSSMF.

The RAN NSSMF is in charge of the correct operation and
dynamic configuration of the RSIs. In particular, this paper
considers the capacity sharing function as part of the RAN
NSSMF to optimise the amount of radio resources (and
associated capacity) to be provided to each RSI, which is a
challenging task. This provided capacity needs to be
dynamically updated depending on the RSI traffic demands,
which are not homogeneous among the different cells in the NG-
RAN and they can fluctuate over the time. Therefore, the
capacity sharing solution considered in this paper is designed as
a SON function that automatically and dynamically adjusts the
capacity provided to each RAN slice across the different cells.
Indeed, this vision is aligned with the recent study conducted at
3GPP on the SON functionalities for 5G [33]. This study
identifies the so-called cross-slice network resource
optimization use case intended to optimise the allocation of

 4

physical and virtual resources across multiple network slice
instances. Therefore, the proposed approach in this paper can be
regarded as a specific solution to this use case for the RAN.

 Specifically, the proposed capacity sharing SON function
dynamically tunes the capacity share for each tenant in time
steps of duration Δt (in the order of minutes) in order to adapt to
the spatial and temporal traffic variations among the different
cells, minimise SLA breaches (i.e., violations) in the system and
optimise the resource utilisation of the different cells in the
system. The capacity share σk(t) of tenant k in time step t is
defined as σk(t)=[σk,1(t),…, σk,n(t), …, σk,N(t)], where each
component σk,n(t) corresponds to the proportion of the total
capacity (i.e. proportion of the total PRBs Wn) in cell n provided
to that tenant during time step t and ranges 0≤σk,n(t)≤ MCBRk,n/cn.
Note that the capacity share solution in a cell cannot exceed the
total capacity of the cell, so that ∑ σk,n(t)K

k=1 ≤1. The capacity
share σk(t) needs to be upgraded periodically on a per-minutes
basis in order to adapt to the traffic demands. Following the
current 5G Network Resource Model (NRM) defined by 3GPP
[32] the capacity share can be configured on a cell using the
RRMPolicyRatio attribute, which specifies the percentage of
radio resources (e.g., PRBs) to be allocated on a per-slice basis.
The basic abbreviations and notations of the proposed capacity
sharing SON function are summarized in Table I.

III. MULTI-AGENT DQN APPROACH
The capacity sharing SON function has been addressed as a

MARL approach in order to deal with the complexity of the
computation of σk(t) in multi-cell scenarios. In the proposed
approach, each RL agent is associated to a tenant k in the system
and centrally learns the policy πk to tune σk(t) dynamically by
interacting with the environment. The selected RL method for
deriving the policy πk at the k-th agent is the DQN algorithm due
to three main reasons. First, DQN has been designed to support
high dimension state and action spaces, which is achieved with
the use of DNN. This is convenient for the capacity sharing
problem since the consideration of multiple cells and the
randomness in the traffic demands in each of the cells can result
in large state and action spaces. Second, the learning in DQN is
performed by bootstrapping, i.e., the policy is progressively
updated by considering single samples of experience instead of
considering all the samples until reaching a certain goal or
finishing an episode, like in Monte Carlo simulations [36]. This
is suitable for the case of capacity sharing since a continuous
learning of πk is desired, rather than in episodes. Third, in
relation to other DRL approaches such as DDQN or DDPG,
preliminary results in a previous study [28] showed that, despite
having differences in terms of the practicality of the
implementation (e.g., speed of the training process, number of
hyperparameters to configure, etc.), their performance in a
single-agent and single-cell scenario was very similar to that of
DQN. In this respect, DQN was considered as a good design
choice, considering the trade-off between practicality and
achieved performance.

The scheme of the proposed solution is shown in Fig. 1. The
proposed capacity sharing SON function falls within the scope

TABLE I. LIST OF ABBREVIATIONS AND NOTATIONS

Abbreviation/
Notation Definition

NG-RAN Next-Generation- Radio Access Network.
MARL Multi-Agent Reinforcement Learning.
DNN Deep Neural Network.
DQN Deep Q-Network.
SLA Service Level Agreement.
SON Self-Organising Network.
InP Infrastructure Provider.
N Total number of cells.

PRB Physical Resource Block.
Wn Total number of PRBs.
Bn PRBs' bandwidth.
cn Total cell capacity.
Sn Average spectral efficiency.
C System capacity.
K Total number of tenants.

SAGBRk Scenario Aggregated Guaranteed Bit Rate.
MCBRk,n Maximum Cell Bit Rate.

RSI RAN Slice Instance.
NSSMF Network Slice Subnet Management Function.

Δt Duration of a time step.
σk(t) Capacity share of tenant k in time step t.

σk,n(t)
Proportion of cn of cell n provided to tenant k
during time step t.

πk Policy learnt by the agent associated to tenant k.
ok,n(t) Offered load of tenant k in cell n.
ρk,n(t) Resource usage of tenant k in cell n.
Tk(t) Aggregated throughput of tenant k across all cells.
sk(t) State of tenant k in time step t.
sk,n(t) State of tenant k in cell n in time step t.
ak(t) Action selected for tenant k in time step t.
ak,n(t) Action selected for tenant k in cell n in time step t.

Δ Action increase step.
rk(t) Reward obtained by tenant k in time step t.

ρn
A(t) Fraction of available PRBs not used by any tenant

in the cell.

𝜎n
A(t) Available capacity share in cell n not assigned to

any tenant.
δk

(1)(t), δk
(2)(t) Reward factors.

φ1, φ2 Reward factors’ weights.

Ok(t)
Aggregated offered load of tenant k across all
cells.

O(t) Aggregated offered load of all tenants in all cells.

βk(t)
Guaranteed capacity not required by other tenants
at time step t.

γ Discount factor.
Qk(sk,ak,θk) Q-network associated to tenant k with weights θk.

Dk
l Experience dataset of agent associated to tenant k

with length l.
U(Dk

l) Mini-batch of experiences.

πk
ε ε-Greedy policy with probability of selecting a

random action ε.
L(𝜃k) Average mean squared error loss.
𝜏 Learning rate.

ek,j Experience j of tenant k.
Ak(t) Assigned capacity to tenant k at time step t.
Rk Average reward of tenant k.
SSk Average SLA satisfaction of tenant k.
U Average system utilization.

 5

Fig. 1. MARL solution scheme

of the RAN NSSMF of the 3GPP management system. The
function is composed of K DQN agents, each one associated to
one tenant. The InP provides as input the service profile
parameters associated to each tenant, which include the SLA
parameters. Moreover, the SON function includes a monitoring
module, which collects performance measurements of the
tenants in the different cells and provides them to the processing
module. The performance measurements of each tenant can be
obtained in each time step e.g., using the NSSI performance data
file reporting service defined in [34] through Performance
Management (PM) services interface. The performance
measurements considered here for tenant k include:

• Offered load (ok,n(t)): Requested capacity by the tenant in the
n-th cell during the last time step, i.e. period (t-Δt,t]. This
parameter is obtained by aggregating the capacity
requirement by all the users in cell n that belong to tenant k.

• Resource usage (ρk,n(t)): Fraction of PRBs occupied by the
k-th tenant in the n-th cell during the last time step. It is
computed as min(σk,n(t), ok,n(t)/cn).

• Throughput (Tk(t)): Aggregated throughput experienced by
tenant k across all cells during the last time step. This is
obtained by aggregating the throughput in each cell n given
by min(ok,n(t), σk,n(t)·cn).

Furthermore, a pre-processing module is also proposed to be
included within the SON function, which computes the inputs to

each DQN agent based on the performance measurements
provided by the monitoring module and on the allocated capacity
share σk(t-1) during the last time step t-1.

Then, at each time step t, the DQN agent associated to tenant
k obtains the state sk(t) of the environment. Based on sk(t), the
agent selects an action ak(t) according to the trained policy πk by
the DQN agent. Once all the actions for all the agents have been
obtained, the capacity sharing computation module computes
the resulting σk(t) for all the tenants, avoiding unfeasible σk(t)
solutions (e.g., allocation of more capacity than available in a
cell). Next, the computed capacity sharing values σk(t) are
communicated to the different cells in the NG-RAN
environment through 3GPP interfaces for NSSI provisioning
management services [37]. Moreover, the k-th agent is also
provided with the reward signal rk(t) as a result of the last
performed action ak(t-1), which jointly with the sk(t) are used for
training the DQN agent associated to tenant k. The specific
definitions of the state, action and reward signals in the proposed
DQN agents and the operation of the capacity sharing
computation module are described in the following.

A. State
The state obtained by the k-th tenant’s agent at time t from

the network environment is denoted as sk(t) = [sk,1(t),…, sk,n(t),
…,sk,N(t), SAGBRk/C , 	∑ SAGBRk'

K
k'=1,k'≠k /C], where each

component sk,n(t) corresponds to the state of the tenant in cell n,

RAN NSSMF
Capacity Sharing SON function

3GPP Management System

3GPP PM services

Capacity
sharing

com
putation

3GPP NSSI provisioning management services

ak(t)

a1(t)

aK(t)

…

Cell 1 Cell n Cell N
σ1,1(t)… σK,1(t) σ1,n(t)… σK,n(t) σ1,N(t)… σK,N(t)

NG-RAN infrastructure

Monitoring
Performance
measurements for
tenant k = 1…K

… …

InP
Service Profile

tenant k= 1…K
Tenant k
SAGBRk
MCBRk,n

Cell level

System level
Tk(t)

ok,n(t)
ρk,n(t)

Tenant k

Pre-processing

σ1(t-1)… σK(t-1)

Policy π1
s1(t)
r1(t)

DQN Agent Tenant 1
Training Policy extraction

Policy πk
sk(t)
rk(t)

DQN Agent Tenant k
Training Policy extraction

Policy πK
sk(t)
rK(t)

DQN Agent Tenant K
Training Policy extraction

…

T1(t) … TK(t)

 6

given by < ρk,n(t), ρn
A(t) , σk,n(t-1),𝜎n

A(t-1) , MCBRk,n/cn >. The
component ρn

A(t) is the fraction of available PRBs not used by
any tenant in the cell, that is:

ρn
A(t)=1-! ρk,n(t)

K

k=1
 (1)

Similarly, 𝜎n
A(t) is the available capacity share in cell n not

assigned to any tenant, given by:

𝜎n
A(t)=1-! σk,n(t)

K

k=1
 (2)

B. Action
At time t, the k-th tenant’s agent selects the joint action ak(t)=

[ak,1(t), …, ak,n(t), …, ak,N(t)], which is composed of the cell-
specific actions ak,n(t) for each cell n=1...N. The cell-specific
action determines the variation in the capacity share σk,n(t) to be
applied in the following time step t in cell n. In order to achieve
a gradual tuning of the capacity share, the cell-specific action
can take three possible values ak,n(t)ϵ{Δ,0,-Δ}, corresponding to
increasing the capacity share in a step of Δ, maintaining it or
decreasing it in a step of Δ. Consequently, the action space for
ak(t) corresponds to all the possible combination vectors of the
three possible action values for each of the cells, which results
in 3N possible actions for each tenant. It is worth noting that other
approaches in which the cell-specific action could take more
than three possible values could also be feasible. However, they
would imply a much larger action space, and thus, a longer
process for learning the policy πk. The actions ak(t) are provided
to the capacity sharing computation module to obtain the
resulting capacity share solution σk(t), as detailed in Section
III.E.

C. Reward
In order to assess to what extent the last action ak(t-1) was

adequate for the previous state sk(t-1), a reward rk(t) is provided
to the k-th tenant agent, which is defined as:

rk(t)=δk
(1)(t)

φ1·δk
(2)(t)

φ2 (3)

which considers two main factors, δk
(1)(t) and δk

(2)(t), defined in
the following, and their corresponding weights, φ1 and φ2. These
weights φ1 and φ2 are assumed to be defined by the InP according
to its own criteria in establishing the importance of the factors
δk

(1)(t) and δk
(2)(t).

The first factor, denoted as δk
(1)(t) , intends to promote the

satisfaction of the SLA of tenant k and the provisioning of
enough capacity to satisfy its offered load. It is defined as:

δk
(1)(t)=

=

⎩
⎪
⎨

⎪
⎧ Tk(t)

Ok(t)
if O(t)≤C

min(
Tk(t)

min(SAGBRk+βk(t),Ok(t))
,1) Otherwise

(4)

where Ok(t) corresponds to the aggregated offered load of tenant
k among all the cells at time step t, bounded by the MCBRk,n of
each of the cells, given by:

Ok(t)=- min(ok,n(t),MCBRk,n)
N

n=1
 (5)

Moreover, O(t) in (4) corresponds to the aggregated offered
load Ok(t) of all tenants at time step t while βk(t) captures the
guaranteed capacity not required by other tenants at time step t,
given by:

βk(t)=- max(SAGBRk' -Ok'(t),0)
K

k'=1
k'≠k

 (6)

which reaches βk(t)=0 when the offered load Ok(t) of all the
tenants is higher or equal than their SAGBRk. Based on these
parameters, the definition of δk

(1)(t) in (4) considers two different
situations. The first condition in (4) considers the situation when
there is enough capacity to satisfy the offered load of all the
tenants O(t) and, hence, δk

(1)(t) is given by the ratio between the
throughput obtained by tenant k and its offered load, being
maximum, i.e., δk

(1)(t)=1, when the throughput equals the offered
load. In turn, the second condition in (4) considers the situation
when the total system capacity C is not enough to satisfy the
offered load requirement of all the tenants O(t). In this situation,
δk
(1)(t) is given by the ratio between the throughput of tenant k

and the minimum between its offered load and its SAGBRk
increased by the unused capacity left by the other tenants βk(t).

Then, in this case δk
(1)(t) will be maximum (i.e., δk

(1)(t)=1) when
the throughput equals the offered load Ok(t) or, in the case that
the offered load is higher than SAGBRk +	βk(t) when at least the
throughput ensures this later value.

The fact that the definition of δk
(1)(t) depends on the

aggregated offered load of all tenants O(t) contributes to a
collaborative behaviour between tenants, as in situations of
overload this factor will promote actions that allow assuring the
SLA of all tenants, avoiding those actions that would only
benefit the k-th tenant at the cost of degrading the performance
of the rest.

The second factor in the reward, δk
(2)(t), aims at measuring the

degree of capacity overprovisioning and is defined by the ratio
between the system throughput provided to the k-th tenant Tk(t)
and its provided capacity during the last time step, that is:

δk
(2)(t)=

Tk(t)
∑ cn·σk,n(t-1)N

n=1
 (7)

D. DQN Agent
The DQN agent of tenant k centrally learns the policy πk that

determines the actions to be executed in each cell. The proposed
DQN agent executes the DQN algorithm of [14] but
particularised to the state, action and reward signals previously
introduced.

 7

The objective of DQN, as a value-based RL algorithm, is to
find the optimal policy πk* that maximises the discounted
cumulative future reward dk(t), computed as:

 dk(t)=! γjrk(t+j+1)
∞

j=0

 (8)

where γ is the discount factor, which ranges 0≤ γ ≤1, used to
place more emphasis on immediate rewards. Finding πk* can be
performed by obtaining the optimal action-value function
Qk*(sk,ak), which is the maximum expected discounted
cumulative reward starting at time step t from sk, taking the
action ak and following the policy πk:

Qk
*(sk,	ak)= max

πk
E $dk(t)%

sk(t)=sk
ak(t)=ak

πk

& (9)

This last expression can be decomposed into the Bellman
Equation, which allows expressing Qk*(sk,ak) in a recursive
form:

Qk
*(sk,	ak) =

=E .rk(t+1)+γ max
ak'

 Qk
*(sk(t+1),ak')/

sk(t)=sk
ak(t)=ak

0
(10)

According to Qk*(sk, ak), the optimal policy can be found by
selecting a(k) greedily for each state sk that is:

πk*=argmaxakQk
*(sk,ak) (11)

Generally, RL algorithms approximate the optimal
Qk*(sk, ak) by updating the approximated function Qk(sk, ak)
iteratively based on the time difference (TD) error at each time
t. The TD error is defined as the difference between
rk(t+1)+γ max

ak'
 Qk

*(sk(t+1),ak'), denoted as TD target, and the

approximated value Qk(sk,ak). In the case of DQN, a non-linear
approximation of Qk*(sk,ak) is performed by using a DNN,
denoted as Q-network, with weights θk, so that Qk*(sk,ak) »
Qk(sk,ak,θk). The inputs of the Q-network are the different
components of the state sk, while the outputs correspond to the
values of Qk(sk,ak,θk) for each possible action ak. Therefore, the
policy πk selects the action that maximises the output of the Q-
network as:

πk= argmax
ak

Qk(sk,ak,𝜃k) (12)

The use of a DNN to approximate Qk*(sk,ak) allows dealing
with large state and action spaces. However, the use of non-
linear approximation functions such as DNNs can imply
instabilities or even divergence in the learning process due to:
(i) correlations in sequential observations; (ii) correlations
between action-values Qk(sk,ak,θk) and the TD-target; (iii) the
fact that small updates of Qk(sk,ak,θk) may change the policy,
dramatically, which can lead to changes of the distribution of the
data collected from the environment. In order to avoid these
effects, a DQN agent is composed of different elements, listed
in the following:

• Evaluation DNN (Qk(sk,ak,θk)): corresponds to the main
approximation function of the expected reward function
Qk(sk,ak). This function is trained off-line and is used to
extract the policy πk to select the actions to be performed in
the environment. When starting the learning process, the
weights θk are initialised randomly.

• Target DNN (Qk(sk,ak,q k -)): this is another Q-network with
the same structure as the evaluation DNN but with weights
qk-. It is used to obtain the TD-Target as rk(t)+γ max

ak'

Qk(sk(t),ak',𝜃k
-). Instead of updating the weights qk- every

time step, they are updated every M time steps with the
weights of the evaluation DNN qk-=qk. Consequently, the
computation of the TD error, which depends on the target
DNN, is no longer dependant on rapidly fluctuating
estimates of the Q-values, as the target DNN only changes
every M time steps but remains fixed the rest of the time.

• Experience Dataset (Dk
l): a dataset Dk

l of length l is used to
store the experiences of each agent. The stored experience
for the agent associated to tenant k at time step t is
represented by the experience tuple < sk(t-1) ,
ak(t-1),rk(t),sk(t) >. The use of the dataset allows randomly
selecting mini-batches of experiences U(Dk

l) with length J to
update of the weights θk of the evaluation DNN. The use of
Dk

l and the random minibatches for the learning of
Qk(sk,ak,θk) is called Experience Replay and has several
benefits. First, randomly selecting experiences from the
dataset Dk

l breaks the temporal correlations in the training
data, which may lead to inefficient learning. Second, past
experiences can be reused, allowing for a greater data
efficiency. Third, when not using experience replay and
updating Qk(sk,ak,θk) on-policy, i.e. based on real time
experiences, the current values of Qk(sk,ak,θk) determine the
action that will lead to the next state, which will be used to
update θk and will determine all the future experiences. This
may lead to unwanted feedback loops where the values
Qk(sk,ak,θk) can get stuck in poor local minimum or diverge.
This effect is smoothed when using experience replay, since
the data used for training is averaged over many of the
previous states.

The training operation of the different DQN agents in the
MARL solution has been summarized in Algorithm 1. The
process of training of each DQN agent can be split into two main
processes: the data collection (lines 4-13 of Algorithm 1) and the
update of the weights θk of the evaluation DNN (lines 14-22 of
Algorithm 1).

For the DQN agent associated to tenant k, the process of data
collection consists in gathering experiences from the network
environment and storing them in the experience dataset Dk

l ,
which is performed in time steps of Dt. For each time step t, the
DQN agent observes the state of the environment sk(t) and,
accordingly, triggers an action ak(t) based on an ε-Greedy policy
πk

ε that chooses actions according to (12) with probability 1- ε

 8

Algorithm 1. MARL DQN training
1 Initialize DNN counter m=0.
2 For t=0… MaxNumberOfTrainingSteps
3 For k=0…K
4 Collect global state sk(t) by obtaining sk,n(t) for n=1…N cells.
5 Generate random ε’ (ε’=1 for the initial steps).
6 If ε’<ε
7 Choose randomly action ak(t).
8 Else
9 Obtain action according to πk in (12).
10 End if
11 Obtain reward rk(t) as a result of last action ak(t-1).
12 If Dl(k) is full (l samples are stored), remove the oldest one.
13 Store experience < sk(t-1), ak(t-1), rk(t), sk(t) > in Dk

l .
14 Randomly sample a minibatch of experiences U(Dk

l) from Dk
l of

 length J.
15 Compute the loss function L(𝜃k) by (13).
16 Compute the mini-batch gradient descent	∇L(𝜃k) by (14).
17 Update weights θk of evaluation DNN by (15).
18 If m==M
19 Update the weights of target DNN qk

-=qk and set m=0.
20 Else
21 m=m+1
22 End if
23 End for
24 Compute σk(t) for k=1…K by applying Algorithm 2 for all cells.
25 End for

and a random action with probability ε. By using the ε-Greedy
policy πk

ε , the agent can explore new states that would not be
visited, which improves the learning behaviour of the policy πk.
Moreover, the reward rk(t) is obtained, which assesses the
suitability of the last performed action ak(t-1) for the last state
sk(t-1). Then, the experience < sk(t-1), ak(t-1), rk(t), sk(t) > is
stored in the dataset Dk

l . When the dataset Dk
l is full (i.e., l

experiences are stored), old experiences are removed from the
dataset to save new ones. Note that during the initial steps of the
data collection, the actions are selected completely randomly
(i.e., ε=1 is considered in the πk

ε) from the environment in order
to explore several states and start filling the dataset Dk

l with
experiences.

The process of updating the weights 𝜃k of the evaluation
DNN is based on the experiences stored in the experience
dataset. For each update of Qk(sk,ak,θk), a minibatch of J
experiences U(Dk

l) is firstly selected from the dataset Dk
l . This

selection is performed by randomly choosing experiences
ek,j=< sk,j , ak,j , rk,j , sk,j* > for j=1…J. Then, Qk(sk,ak,θk) is
updated based on the mini-batch gradient descent of U(Dk

l). For
this purpose, the average mean squared error (MSE) loss over all
the J experiences ek,j in U(Dk

l), denoted as L(𝜃k), is firstly
computed as:

	 L(𝜃k)= Eek,j ∈ U(Dk
l)[(rk,j+γ maxak$Qk(sk,j*,ak′,𝜃k

-)-

Qk(sk,j, ak,j,𝜃k))
2]

(13)

Then, the mini-batch gradient descent of L(𝜃k), denoted as
∇L(𝜃k), is obtained by differentiating L(𝜃k) with respect to θk,
which yields:

 ∇L(𝜃k)=Eek,j ∈ U(Dk
l)[5rk,j+γ maxak$Qk(sk,j*,ak′,𝜃k

-)-

Qk(sk,j, ak,j,𝜃k)6∇θQk(sk,j, ak,j,𝜃k)]
(14)

Finally, the weights in the Qk(sk,ak,θk) network are updated
according to:

𝜃k→𝜃k+ τ∇L(𝜃k) (15)

where 𝜏 is the learning rate. After each update of θk, the obtained
Qk(sk,ak,θk) can be used by the ε-Greedy policy to trigger actions
in the network environment. Moreover, during the update of
weights θk, the DQN agent has a counter m of the number of time
steps since the last target DNN update and, when m=M, the
weights in the target DNN are updated as
θk -= θk and m is initialised again.

E. Capacity Sharing computation
In the considered MARL approach, the DQN agents

associated to the different tenants in the system interact with a
common network environment in a collaborative and
coordinated manner in order to trigger the actions that the
capacity sharing computation module will use to configure the
capacity share σk(t) of each tenant.

Initially, the capacity shares of each tenant in each of the cells
σk,n(t=0) are initialised proportionally to the SAGBRk of the
tenant, according to:

σk,n(t=0)=SAGBRk/(! SAGBRk')

K

k'=1

 (16)

Then, σk,n(t) is dynamically tuned according to the selected
actions ak(t) by each agent at each time step. Even though the
process of data collection by each DQN agent is performed
independently of the others, the different DQN agents trigger
their actions and store the experiences synchronously. At each
time step t, each agent k is provided with its state sk(t) and
accordingly selects an action ak(t) as previously explained. Next,
the capacity sharing computation module gathers the selected
actions ak(t) by all the agents and computes the resulting
capacity share solution σk(t). Specifically, the capacity share of
tenant k at cell n, σk,n(t), is updated according to:

σk,n(t)=$σk,n(t-1)+ak,n(t)
if 0≤σk,n(t-1)+ak,n(t)≤

≤
MCBRk,n

cn
σk,n(t-1) Otherwise

 (17)

The formulation of (17) assures that σk,n(t) is within its bounds
and considers that the last capacity share value σk,n(t-1) is
maintained when ak,n(t) forces σk,n(t) to be out of its bounds.

In some special situations, the fact that the actions of each
tenant are triggered independently can lead to capacity sharing
solutions that excess the total cell capacity in some cells (i.e.

 9

∑ σk,n(t)K
k=1 >1). When this occurs in any cell, the capacity

sharing computation module obtains the capacity shares in the
cell by executing Algorithm 2. The algorithm firstly applies the
actions of tenants aiming at decreasing or maintaining the
capacity share in the cell (i.e., ak,n(t) ϵ{-Δ,0}) and computes the
resulting available cell capacity 𝜎n

A(t) (lines 1-2). If there is no
available capacity (i.e., 𝜎n

A(t)=0), the actions of tenants willing
to increase its capacity in the cell are not applied (lines 3-4). In
turn, when there is available capacity (i.e., 𝜎n

A(t)>0), the capacity
share is obtained by distributing 𝜎n

A(t) among those tenants with
ak,n(t)= Δ proportionally to their SAGBRk value as long as they
are not already provided with more than SAGBRk (lines 5-6)
according to:

σk,n(t)=σk,n(t-1)+
𝜎n

A(t)·SAGBRk

∑ SAGBRk'
K

k'=1
at(k',n)=∆,

Tt(k')≤SAGBRk'

(18)

Algorithm 2. Capacity sharing computation for cell n for cell
capacity excess situations
1 Compute σk,n(t) of tenants with ak,n(t) ϵ{-Δ,0} according to (17).
2 Compute available cell capacity share 𝜎n

A(t) according to (2).
3 If 𝜎n

A(t)=0
4 Set σk,n(t)= σk,n(t-1) of tenants with ak,n(t)=Δ.
5 Else

6
 Compute σk,n(t) by distributing 𝜎n

A(t) among tenants with
 ak,n(t)=Δ and Tk(t)≤ SAGBRk proportionally to their SAGBRk
 according to (18).

7 End if

IV. PERFORMANCE EVALUATION
This section evaluates the proposed capacity sharing SON

function by assessing its performance in a scenario with given
offered loads. First, after describing the considered scenario in
section IV.A and the Key Performance Indicators (KPIs) in
section IV.B, the capability of the agent of one tenant to learn a
general policy applicable to any other tenant in the system is
assessed in section IV.C. This is followed by a discussion of the
scalability of the solution by adding a new tenant in the
considered scenario for evaluation in section IV.D. Finally, the
impact of different model parameter configurations on the
achieved performance is provided in section IV.E and an
analysis on the optimality of the SON function is included in
section IV.F.

A. Considered scenario
The assumed scenario comprises a NG-RAN infrastructure

with five cells that serve the users of two different tenants,
denoted as Tenant 1 and Tenant 2. The configuration of the
scenario is presented in Table II, including the cells
configuration and the SLA parameters established for each
tenant.

The model has been developed in Python by using the library
TF-Agents [38], which provides tools for the development of
DRL models, including DQN. The developed model has been
trained according to the parameters of Table III. The dataset
considered for training is composed of 1400 synthetically

generated offered load patterns of Tenant 1 and Tenant 2 in the
different cells during one day, considering different
combinations of SAGBRk values for both tenants.

After the model has been trained, the resulting policies πk are
evaluated using the offered load patterns shown in Fig. 2. The
figure plots the aggregated offered loads among all the cells of
Tenant 1, O1(t), and Tenant 2, O2(t), during one day. The figure
also includes the values of SAGBR1 and SAGBR2, the total
system capacity C and the aggregated offered loads of both
tenants O(t). Note that the offered loads of both tenants exceed
their SAGBRk at some point during the day and the system
offered load O(t) is higher than C during the time period from
900 min to 1300 min. Moreover, a uniform distribution of the
load among the different cells has been considered.

Regarding the complexity of the proposed approach, it has
been assessed in terms of the execution time of the MARL model
over a machine with 2 CPU AMD Opteron 4386 operating with
Ubuntu 18.04, configured to use 2 cores and 8G RAM.
Specifically, the execution of one trained DQN agent in one time
step during evaluation stage lasts 3.8 ms on average, which is a
sufficiently low value that would enable the operation in a
practical system. Concerning the training stage, it is obtained
that the execution of a time step lasts approximately 36 ms. The
larger duration of the time step in the training stage compared to
the evaluation stage is motivated by the additional operations
required during the training for updating the weights of the
DNNs.

TABLE II. SCENARIO CONFIGURATION

Parameter Value
Number of tenants (K) 2
Number of cells (N) 5
PRB Bandwidth (Bn) 360 kHz

Number of cell available PRBs
(Wn) 65 PRBs

Average spectral efficiency (Sn) 5 b/s/Hz
Total cell capacity (cn) 117 Mb/s

Total system capacity (C) 585 Mb/s

SAGBRk
Tenant 1 351Mb/s (corresponding to 60% of C)
Tenant 2 234Mb/s (corresponding to 40% of C)

MCBRk,n
Tenant 1 93.6 Mb/s (corresponding to 80% of cn) Tenant 2

TABLE III. MARL MODEL PARAMETERS

Parameter Value
Initial collect steps 5000

Maximum number of time
steps for training 2·106

Experience Replay buffer
maximum length (l) 107

Mini-batch size (J) 256
Learning rate (𝜏) 0.0001

Discount factor(γ) 0.9
ɛ value (ɛ-Greedy) 0.1

DNN configuration
Input layer: 17 nodes

1 full connected layer: 100 nodes
Output layer: 243 nodes

Reward
weights

φ1 0.5
φ2 0.4

Time step
duration Δt 3 min

Action step Δ 0.03

 10

Fig. 2. Offered loads of Tenant 1 and 2 during a day.

B. Key Performance Indicators
In this section, different KPIs are defined in order to assess

the performance of the model:

• Assigned capacity to tenant k at time step t (Ak(t)): It is
measured in bps and is obtained from the capacity share σk(t)
provided by the SON function and the capacity of each cell
cn as:

	Ak(t) =- cn·σk,n(t)
N

n=1

 (19)

• Average reward of tenant k (Rk): It is computed as the
average of the reward rk(t) obtained by the tenant over a
duration of G time steps.

	Rk=
1
G
- rk(t)
G-1

t=0

 (20)

• Average SLA satisfaction of tenant k (SSk): It measures the
average of the ratio between the provided throughput Tk(t)
to tenant k and the minimum between the aggregated
offered load of the tenant Ok(t) and its SAGBRk value over a
duration of G time steps, that is:

 SSk =
1
G!min'

Tk(t)
min(Ok(t), SAGBRk)

,1(
G-1

t=0

 (21)

which ranges 0≤SSk≤1, taking SSk=0 value when the SLA is
not satisfied and SSk=1 when it is fully satisfied. Note that
the definition of SSk considers that when Ok(t) is lower than
the SAGBRk, Ok(t) needs to be provided, whereas in the case
that Ok(t) is greater than SAGBRk, at least SAGBRk needs to be
provided.

• Average system utilization (U): It is computed as the average
ratio between the aggregated throughput provided to all
tenants and the total system capacity C over a duration of G
time steps, that is:

	U=
1
G
-

1
C
- Tk(t)

K

k=1

G-1

t=0

 (22)

C. Generalization of the learnt policies
According to the proposed approach, the DQN agent of each

tenant learns its own policy during the training and then this
policy is applied during the evaluation. However, considering
that the training of the different tenants has been done under very
different situations of their own load and the load of the others
and for different SLA parameters, in this section, we intend to
analyse to what extent there are significant differences between
the policies learnt by the different tenants. In this way, the main
goal is to assess whether it is possible or not to generalise a
policy leant by one tenant so that it can be also used by another
tenant.

To conduct the analysis, the capacity sharing solution for the
offered loads of Fig. 2 is obtained under two different policy
application modes. In Mode A, the DQN agent of each tenant
applies its trained policy, i.e., the DQN agent of
Tenant 1 applies policy π1, and the DQN agent of Tenant 2
applies policy π2. Both policies are the ones obtained after
200·104 training steps. In turn, Mode B considers that the DQN
agents of both Tenant 1 and Tenant 2 apply the same policy π1
learnt for Tenant 1.

Fig. 3 presents the temporal evolution of the offered load of
Tenant 2 against its assigned capacity A2(t) for policy application
Mode A and Mode B. In addition, the SAGBR2 of Tenant 2 is
included. The assigned capacity for both policy application
modes generally adapts to the offered load for all the situations
where the total offered load O(t) (seen in Fig. 2) does not exceed
the system capacity C. In turn, when O(t) exceeds the system
capacity, the assigned capacity to Tenant 2 is kept in the SAGBR2
value. The figure shows that very little differences are observed
in the assigned capacity A2(t) when applying the policies
according to Mode A and Mode B.

Moreover, to quantitatively assess the differences between
both modes, Table IV provides the average reward Rk and the
SLA satisfaction SSk for Tenant 1 and Tenant 2 in addition to the
average system utilisation U. The obtained values show that the
achieved performance for both policy application modes is very
similar, with differences lower than 1% for all the analysed
KPIs.

Fig. 3. Offered load vs assigned capacity for Tenant 2 for tenant policy
application Mode A and B.

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

M
b/

s

Time (min)

Offered Load

O₁(t) O₂(t) O(t) SAGBR₁ SAGBR₂ C

0
50

100
150
200
250
300
350
400
450
500

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

M
b/

s

Time (min)

O2(t) vs A2(t) - Tenant 2

A₂(t) - Mode A A₂(t) - Mode B O₂(t) SAGBR₂

 11

TABLE IV. KPIS FOR BOTH POLICY APPLICATION MODES

Policy application mode Mode A Mode B

Average reward
Tenant 1 (R1) 0.9673 0.9674
Tenant 2 (R2) 0.9541 0.9483

SLA Satisfaction
Tenant 1 (SS1) 0.9725 0.9742
Tenant 2 (SS2) 0.9705 0.9577

Average utilisation (U) 0.8885 0.8861

First, it is worth pointing out that for the case of Tenant 1 there
are some slight differences in Table IV although the policy
applied for this tenant is the same in both modes. The reason is
that the actions taken by the DQN agent of Tenant 2, which can
be slightly different when changing the applied policy, impact
on the state seen by the DQN agent of Tenant 1 and, thus, on the
selected actions by this Tenant. In any case, the impact of these
different actions on the performance is negligible as seen in the
table.

Concerning Tenant 2, the reason that similar behaviour is
obtained for policy application Mode A and Mode B is that,
although the training of policies π1 and π2 has been performed
independently for both tenants, this has considered a dataset
composed of several offered load situations, exploring different
complementarities between the two tenants, jointly with diverse
combinations of SAGBRk and MCBRk,n values. This allows the
agents to learn equivalent policies that can be generalised to
many offered load situations and SLA requirements. This
observation has important positive implications on the
practicality of the proposed approach, because it means that a
single training process carried out by one DQN agent using a
dataset that covers a wide range of offered load situations and
SLA requirements can be sufficient to obtain a policy that is
valid for multiple tenants. As a consequence, a reduction of the
complexity of the training process will be achieved in a multi-
agent scenario. Moreover, this also facilitates the scalability of
the model to add new tenants in the scenario, because the
addition of a tenant can be done without retraining the previous
learnt policies, as it will be studied in the next sub-section.

D. Addition of a new tenant
Following the generalization capability of the trained policies

that has been observed in previous section, this section aims at
assessing the association of already trained policies to new
tenants that are added in the scenario, without neither training
new policies for the new tenants nor retraining (i.e., training
again) the policies from the existing tenants. To this end, a new
tenant, denoted as Tenant 3, is introduced to the scenario of
Table II. Instead of performing a separate training for the new
Tenant 3, the previously trained policy for Tenant 1, π1, is used
for this new tenant as well as for Tenant 1 and 2. Since the
SAGBRk of Tenants 1 and 2 use the total system capacity of
Table II, in order to support the new tenant, the capacity in the
system is extended by increasing the cell bandwidth from 25
MHz to 30 MHz. As a result, the number of PRBs in each cell is
increased to Wn=78 PRBs, providing a total cell capacity cn
=143.2 Mb/s and, thus, a total system capacity of C =716 Mb/s.
The SLA established for Tenant 3 considers SAGBR3=93.6 Mb/s
and MCBR3,n=114.56 Mb/s, corresponding to 80% of the cell

capacity. The SAGBRk of Tenant 1 and 2 remain the same as in
Table II, whereas the MCBRk,n of those tenants is updated to
MCBR1,n=MCBR2,n= 114.56Mb/s given that the cell capacity has
increased.

The offered loads considered for evaluation during one day
are plotted in Fig. 4 together with the SAGBRk values, the
aggregated offered load in the system O(t) and the total system
capacity C. The offered loads of Tenant 1 and Tenant 2, O1(t)
and O2(t), are the same as in Fig. 2, and the offered load of
Tenant 3, O3(t), presents lower values than the other tenants,
reaching its higher values at t=570 min and t=880 min when its
SAGBR3 is exceeded. Despite introducing Tenant 3, the total
offered load of the three tenants only slightly exceeds the system
capacity from t=1000 min to t=1200 min.

Fig. 5 shows the offered loads Ok(t) against the assigned
capacity Ak(t) of Tenant 1, 2 and 3, in addition to their SAGBRk
values. Since most of time there is enough capacity to fulfil the
offered load of the three tenants, the offered loads are satisfied
nearly all the day. When the overall offered load O(t) exceeds
the system capacity, the tenants that required more capacity than
their SAGBRk are assigned with lower capacity than their offered
load, such as Tenant 2 from t=1035 min to t=1115 min. In the
case of Tenant 3, the offered load O3(t) is generally satisfied the
tenants or the need of re-training when the capacity in the system
changes. These results also provide evidence of the advantage of
a multi-agent approach with respect to a single-agent approach,
where a single agent manages all the since in the periods when
the O3(t) is larger than SAGBR3, there is enough capacity in the

Fig. 4. Offered load of Tenant 1, 2 and 3 during a day.

Fig. 5. Offered load vs assigned capacity for Tenant 1, 2 and 3.

0
100
200
300
400
500
600
700
800

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

M
b/

s

Time (min)

Offered loads

O₁(t) O₂(t) O₃(t) O(t)
SAGBR₁ SAGBR₂ SAGBR₃ C

0
50

100
150
200
250
300
350
400
450
500

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

M
b/

s

Time (min)

Ok(t) vs Ak(t)

O₁(t) O₂(t) O₃(t) SAGBR₁ SAGBR₂
SAGBR₃ A₁(t) A₂(t) A₃(t)

 12

system to satisfy all the tenants. These results show qualitatively
that the policy learnt by one tenant is general enough to properly
assign the capacity to the other tenants according to their offered
loads and SLA requirements and, additionally, performs
satisfactorily in front of changes in the system capacity, since
the internal parameters of the DQN agent (i.e., state, reward
factors, actions, etc.) are defined in relative values. This
highlights the capability of scaling of the proposed solution, as
the trained policies can be used by new tenants in the scenario
without the need of performing a separated training for each of
tenants and the addition of a new tenant would imply the training
of the whole solution again. Moreover, this would require a
larger training duration due to the larger state and action spaces
resulting from the additional state and action dimensions for the
new tenant. Instead, in the proposed approach, a new tenant can
be added just by associating an already trained policy.

To further illustrate the scaling capability of the proposed
approach, the performance achieved when applying the policy
π1 for all tenants is compared against the case of applying the
policies π1, π2 and π3 specifically trained for each tenant. To this
end, policies π1, π2 and π3 have been trained according to model
parameters detailed in Table III by considering the scenario with
Tenant 3 and extended capacity. Table V includes the resulting
average SLA satisfaction SSk and the average reward for Tenant
1, 2 and 3 and the average system utilisation U when applying
the specifically trained polices for each tenant, and when
applying the policy π1. Once again, the achieved values for the
different assessed indicators for both cases are really close,
presenting differences below 1.5% for all indicators. This
highlights the scaling capability of the proposed approach since
the application of a previously trained policy is able to adapt to
the offered loads of the new tenant and the loads of the other
tenants when the system capacity increases.

Regarding the achieved values for the different analysed
performance indicators in Table V, although high values are
obtained for all the tenants, Tenant 1 achieves the highest,
closely followed by Tenant 2, and Tenant 3 presents the lowest
values. The reason is that the offered load values of Tenant 3 are
much lower than the ones for Tenant 1 and Tenant 2, and thus,
the analysed performance indicators are more affected by the
increases and decreases in steps of Δ. This means that decreasing
the assigned capacity of Tenant 1 by Δ=0.03 has a lower impact
on Rk and SSk of Tenant 1 than for Tenant 3. Since the offered
load levels of Tenant 2 are similar to the ones of Tenant 1, lower

TABLE V. PERFORMANCE PARAMETERS

Applied policy Tenant- specific
policies Tenant 1 policy

Average
reward

Tenant 1 (R1) 0.964 0.967
Tenant 2 (R2) 0.939 0.949
Tenant 3 (R3) 0.873 0.859

SLA
Satisfaction

Tenant 1 (SS1) 0.986 0.979
Tenant 2 (SS2) 0.957 0.961
Tenant 3 (SS3) 0.901 0.893

Average utilisation (U) 0.843 0.845

differences are obtained between them as a result of this effect.
Therefore, in order to achieve higher performance values for
Tenant 3, lower values of Δ would be more appropriate since
they would have a lower impact on the assessed parameters. This
reveals that the selection of Δ needs to jointly consider the traffic
type and levels of all tenants in order to choose a value that best
satisfies all of them given the clear impact of Δ on the achieved
performance, as is studied in the following section.

E. Impact of action and time step
This section aims at analyzing the impact of the values of time

step duration Δt and action increment/decrement step Δ on the
proposed SON function. For this purpose, the policy π1 of
Tenant 1 has been trained in the scenario of Table II by
considering different parameter configurations. The assessed
configurations include all the combinations between time step
Δt={1, 3, 5, 15}min and action increment/decrement step
Δ={0.01, 0.02, 0.03, 0.05, 0.07, 0.09}. The rest of the parameters
used for training are those specified in Table III .

First, the impact Δt and Δ on the training evolution process is
studied. To this end, the policy π1 for Tenant 1 obtained by the
training every 104 time steps has been evaluated by applying it
on the offered load of Tenant 1 of Fig. 2. This allows capturing
how the training process progressively updates the learnt policy
when increasing the number of training steps. Fig. 6 and Fig. 7
show the evolution of the average reward R1 of Tenant 1 for
Δt={1, 3, 5, 15}min when considering, respectively, a small

Fig. 6. Average aggregated reward every 10000 time steps during the training
for Δ=0.01 and Δt={1,3,5,15} min.

Fig. 7 Average aggregated reward every 10000 time steps during the training
for Δ=0.07 and Δt={1,3,5,15} min

0.75
0.77
0.79
0.81
0.83
0.85
0.87
0.89
0.91
0.93
0.95
0.97

0 20 40 60 80 100 120 140 160 180 200

R 1

Number of training time steps(x104)

Training evolution for ∆= 0.01

∆=0.01 ∆t=1min ∆=0.01 ∆t=3min ∆=0.01 ∆t=5min ∆=0.01 ∆t=15min

0.75
0.77
0.79
0.81
0.83
0.85
0.87
0.89
0.91
0.93
0.95
0.97

0 20 40 60 80 100 120 140 160 180 200

R 1

Number of training time steps(x104)

Training evolution for ∆= 0.07

∆=0.07 ∆t=1min ∆=0.07 ∆t=3min ∆=0.07 ∆t=5min ∆=0.07 ∆t=15min

 13

action step Δ=0.01 and a large action step Δ=0.07. For both
values of Δ, higher average reward is achieved when reducing
Δt, since the policy is triggered more frequently and thus it can
more easily react to changes. However, evident differences are
observed between the training evolution when using Δ=0.01 and
Δ=0.07. For Δ=0.07, the average reward presents an initial
period of around 50·104 training time steps where it increases
and presents high fluctuations until the average reward stabilises
to a value in the range between 0.94 and 0.96 depending on Δt
and the fluctuations decrease drastically, reflecting that the
algorithm has achieved convergence. Instead, for Δ=0.01, the
average reward keeps increasing during the whole analysed
training period and it exhibits larger fluctuations than for
Δ=0.07, so convergence takes longer. The reason is that with low
values of Δ, the actions at each time step have a low impact on
the next state and the reward obtained, so the training has more
difficulties to converge.

Fig. 8 depicts the average reward R1 of Tenant 1 obtained
between 100·104 and 200·104 training time steps for the different
analysed combinations of Δt and Δ. The highest reward is
observed for Δt=1 min and the reward decreases when
increasing Δt. Regarding the effect of the action step Δ, the
highest reward is achieved for Δ=0.02 for Δt=1 min while the
maximum is achieved for Δ=0.03 for the rest of time step
durations and, for higher values than 0.03, a decreasing trend is
observed, since large values of Δ make more difficult the
adjustment of the assigned capacity to the offered load of Tenant
1 in Fig. 2. These results together with the fluctuations obtained
in Fig. 6 and Fig. 7 reveal that a trade-off exists when selecting
the value of Δ: a higher reward is achieved for low values of Δ
but at the cost of slower convergence. In addition, Fig. 8 shows
that the combination of large values of Δt with low values of Δ
(e.g., Δ=0.01 and Δt=15 min) lead to poor performance as those
combinations do not allow adapting to the dynamics of the
offered load.

Finally, the impact of Δ and Δt on the performance metrics is
analysed in Table VI. It presents the average SLA satisfaction
SSk and system utility U obtained for different values of Δ and
Δt when applying the trained policies for Tenant 1 after 200·104
training time steps to the offered loads of Tenant 1 and Tenant 2
in Fig. 2. Focusing on the average SLA satisfaction, the capacity
sharing SON function achieves high values above 0.9 for both
tenants and all the combinations of Δ and Δt. Higher values are
generally obtained for combinations with low values of Δ and

Fig. 8. Average aggregated reward between 100·104 and 200·104 training
time steps for the different considered configurations.

Δt, since they adapt better to the changes in the offered loads.
Also, a decreasing trend in the SLA satisfaction is observed
when increasing Δ for values of Δ beyond 0.03. Comparing the
SLA satisfaction obtained for Tenant 1 and Tenant 2, slight
differences are obtained between them. About the impact of Δ
and Δt on the average system utilization U, similar effects than
in the case of the SLA satisfaction are obtained, achieving the
highest values for Δ=0.02 for all values of Δt in exception of
Δt=15 min, which the maximum is achieved for Δ=0.03, and
being the utilization reduced when increasing Δ beyond the
maximum.

Based on the obtained results, it is concluded that the selection
of the Δ and Δt values has a clear impact on the training
evolution of the policies and their achieved performance and an
adequate selection of these values that jointly considers the
specific traffic dynamics of the different tenants is fundamental
for ensuring an accurate learning process and a good
compromise between the different KPIs achieved by the
capacity sharing SON function.

F. Optimality analysis
In this section, the optimality of the capacity sharing SON

function is analyzed by comparing its performance to the
optimum. The optimum has been obtained by an exhaustive
search algorithm that evaluates in each time step all the possible
values of capacity share σk(t) of Tenant 1 and Tenant 2,
discretized in steps of Δ, and selects the one that achieves the
maximum aggregate reward of both tenants. To assess the
optimality in a wide range of offered load situations, results have
been obtained for a set of 240 offered load temporal

TABLE VI. KPIS FOR THE DIFFERENT COMBINATIONS OF ∆ AND ∆t

Action step
value (∆)

Average SLA satisfaction Average system Utilisation (U) Tenant 1 (SS1) Tenant 2 (SS2)
∆t=1min ∆t=3min ∆t=5min ∆t=15min ∆t=1min ∆t=3min ∆t=5min ∆t=15min ∆t=1min ∆t=3min ∆t=5min ∆t=15min

0.01 0.972 0.972 0.960 0.933 0.961 0.976 0.958 0.971 0.877 0.879 0.848 0.823
0.02 0.984 0.978 0.982 0.956 0.972 0.976 0.974 0.969 0.897 0.894 0.884 0.855
0.03 0.982 0.974 0.973 0.975 0.973 0.958 0.966 0.979 0.894 0.886 0.881 0.883
0.05 0.981 0.973 0.973 0.960 0.956 0.944 0.946 0.958 0.885 0.878 0.873 0.856
0.07 0.963 0.970 0.968 0.959 0.934 0.935 0.916 0.949 0.861 0.869 0.863 0.865
0.09 0.942 0.960 0.952 0.961 0.919 0.908 0.908 0.922 0.822 0.848 0.843 0.850

0.88

0.9

0.92

0.94

0.96

0.98

0.01 0.03 0.05 0.07 0.09

R 1

∆

Average Reward Tenant 1 (R1)

∆t=1min ∆t=3min ∆t=5min ∆t=15min

 14

patterns of one day duration, which include diverse offered load
behaviours with diverse complementarities between the offered
loads of Tenant 1 and Tenant 2. For each pattern, results have
been obtained using the scenario configuration in Table II and
by applying the trained policy π1 of Tenant 1 to both tenants. For
each pattern, results are obtained in terms of the optimality ratio,
which is defined as the average of the aggregate reward of
Tenant 1 and Tenant 2 obtained with the SON function divided
by the average optimum reward over all the time steps in an
offered load pattern.

Fig. 9 presents the evolution of the optimality ratio during
the training process for the offered load pattern of Fig. 2. This
has been obtained by evaluating the policy π1 every 5·104
training steps and computing the optimality ratio. It is observed
that, initially, the optimality ratio increases abruptly with the
number of training steps and, after approximately 5·104 training
steps, it achieves values higher than 0.94. Then, it increases
slowly with the number of training steps and stabilises to a value
of around 0.97, corresponding to the situation when the
algorithm has converged. The figure also reflects that no
significant improvements are obtained by increasing the number
of training steps beyond 50·104.

To analyze the optimality ratio under a broader range of
situations, Fig. 10 shows the Cumulative Density Function
(CDF) of the optimality ratios obtained for the different offered
load patterns with the policy learnt after 200·104 time steps.
Results reveal that the optimality ratio for all the analysed
offered load patterns range between 0.94 and 0.98. Moreover, it
has been obtained that the average optimality ratio is 0.96.
Overall, results reveal that the proposed MARL approach
achieves a behaviour very close to the optimum and highlight
the capability of the trained policy π1 to adapt to diverse offered
loads. It is also worth noting that this near optimal results are
obtained with very small execution times of the trained policy,
as previously discussed in section IV.A, while the exhaustive
search method requires to assess all the combinations for each
time step, which is highly time consuming and requires
execution times higher in several orders of magnitude than the
MARL approach.

V. CONCLUSIONS AND FUTURE WORK
This paper has presented a capacity sharing approach for

multi-tenant and multi-cell scenarios. The proposed solution
consists in a collaborative multi-agent reinforcement learning
approach, where each agent is based on the Deep Q-Network
(DQN) technique. The different DQN agents, which interact
with a common network environment in a coordinated and
cooperative manner, provide the capacity to be assigned to their
associated tenant in each of the cells of the network environment
in order to satisfy the Service Level Agreement (SLA) of the
tenant and making an efficient use of the available resources.
The approach has been contextualised within the 3GPP
management framework and has been proposed as a Self-
Organizing Network (SON) function.

Fig. 9. Optimality ratio during training

Fig. 10. Cumulative Density Function (CDF) of optimality ratio.

The behaviour of the proposed capacity sharing SON
function has been assessed in a multi-cell scenario with two
tenants by considering different parameter configurations of the
multi-agent reinforcement learning solution, which differ in the
values of actions and the time step that the actions are triggered.
Results have shown that: (i) The capacity sharing SON function
satisfactorily adapts the capacity assigned to each tenant to their
traffic and SLA requirements; (ii) The policies learnt by the
agents associated to each tenant are generalizable to any tenant,
given that the dataset used for training is composed of a wide
range of traffic requirement situations and SLA requirements;
(iii) The proposed approach is easily scalable to deal with the
addition of new tenants simply by associating to the new tenant
a new DQN agent with a previously learnt policy and to support
the operation when the system capacity changes. (iv) The values
of actions and the time step need to be jointly configured to
better adapt to the variability characteristics of the traffic
requirements of the different tenants in order to improve the
SLA satisfaction and maximise the utilisation of the available
resources. (v) The trained policies are able to provide results
very close to the optimum when they are applied to diverse
offered load patterns, with observed optimality ratios ranging
between 0.94 and 0.98.

Overall, the results presented here reflect the potential and
adequacy of the proposed DQN-based multi-agent approach for
capacity sharing. However, research efforts on deep
reinforcement learning have provided new advanced
techniques, such as DDQN or DDPG, which have also shown a
promising behaviour in terms of convergence when being

0.7
0.72
0.74
0.76
0.78
0.8
0.82
0.84
0.86
0.88
0.9
0.92
0.94
0.96
0.98

1

0 20 40 60 80 100 120 140 160 180 200

Op
tim

al
ity

 R
at

io

Number of training steps (x104)

Optimality Ratio during training

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
CD

F

Optimality ratio

CDF of Optimality Ratio

 15

applied to capacity sharing in a single-cell and single-agent
scenario [28]. Therefore, it is worth considering as future work
the detailed assessment and comparison of these techniques
against the DQN-based approach of this paper in multi-cell and
multi-agent scenarios, taking into account both performance
and practicality aspects.

REFERENCES
[1] P. Rost, et al. “Mobile network architecture evolution toward 5G,” in

IEEE Communication Magazine, May, 2016.
[2] K. Samdanis, X. Costa-Perez and V. Sciancalepore, "From network

sharing to multi-tenancy: The 5G network slice broker," in IEEE
Communications Magazine, vol. 54, no. 7, pp. 32-39, July 2016.

[3] R. Ferrús, O. Sallent, J. Pérez-Romero, R. Agustí, “On 5G Radio Access
Network Slicing: Radio Interface Protocol Features and Configuration”,
IEEE Communications Magazine, May, 2018, pp.184-192.

[4] A. S. D. Alfoudi, S. H. S. Newaz, A. Otebolaku, G. M. Lee and R. Pereira,
"An Efficient Resource Management Mechanism for Network Slicing in
a LTE Network," in IEEE Access, vol. 7, pp. 89441-89457, 2019

[5] D. Marabissi and R. Fantacci, "Highly Flexible RAN Slicing Approach
to Manage Isolation, Priority, Efficiency," in IEEE Access, vol. 7, pp.
97130-97142, 2019.

[6] P. L. Vo, M. N. H. Nguyen, T. A. Le and N. H. Tran, "Slicing the Edge:
Resource Allocation for RAN Network Slicing," in IEEE Wireless
Communications Letters, vol. 7, no. 6, pp. 970-973, Dec. 2018.

[7] J. Pérez-Romero, O. Sallent, R. Ferrús and R. Agustí, "Profit-Based
Radio Access Network Slicing for Multi-tenant 5G Networks," 2019
European Conference on Networks and Communications (EuCNC),
Valencia, Spain, 2019, pp. 603-608.

[8] Ö. U. Akgül, I. Malanchini and A. Capone, "Dynamic Resource Trading
in Sliced Mobile Networks," in IEEE Transactions on Network and
Service Management, vol. 16, no. 1, pp. 220-233, March 2019.

[9] J. Shi, H. Tian, S. Fan, P. Zhao and K. Zhao, "Hierarchical Auction and
Dynamic Programming Based Resource Allocation (HA&DP-RA)
Algorithm for 5G RAN Slicing," 2018 24th Asia-Pacific Conference on
Communications (APCC), Ningbo, China, 2018, pp. 207-212.

[10] J. Gang and V. Friderikos, "Optimal resource sharing in multi-tenant 5G
networks," 2018 IEEE Wireless Communications and Networking
Conference (WCNC), Barcelona, 2018, pp. 1-6.

[11] P. Caballero, A. Banchs, G. De Veciana and X. Costa-Pérez, "Network
Slicing Games: Enabling Customization in Multi-Tenant Mobile
Networks," in IEEE/ACM Transactions on Networking, vol. 27, no. 2, pp.
662-675, April 2019.

[12] J. Pérez-Romero, O. Sallent, R. Ferrús and R. Agustí, "Self-optimized
admission control for multitenant radio access networks," 2017 IEEE
28th Annual International Symposium on Personal, Indoor, and Mobile
Radio Communications (PIMRC), Montreal, QC, 2017, pp. 1-5.

[13] Z. Xiong, Y. Zhang, D. Niyato, R. Deng, P. Wang and L. Wang, "Deep
Reinforcement Learning for Mobile 5G and Beyond: Fundamentals,
Applications, and Challenges," in IEEE Vehicular Technology Magazine,
vol. 14, no. 2, pp. 44-52, June 2019.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp.
529–533, 2015.

[15] H. van Hasselt, et. al, “Deep Reinforcement Learning with Double Q-
Learning,” in Thirtith AAAI Conference on Artificial Intelligence (AAAI-
16), USA, 2016.

[16] T. Shaul, et. al, “Prioritized experience replay,” 4th International
Conference on Learning Representations (ICLR 2016), USA, 2016.

[17] M. Hessel, et. al, “Rainbow: Combining Improvements in Deep
Reinforcement Learning,” Thirty-Second AAAI Conference on Artificial
Intelligence (AAAI-2018), USA, 2018.

[18] T. P. Lillicrap, et. al, “Continuous control with deep reinforcement
learning,” arXiv:1509.02971, Sep. 2015.

[19] V. Mnih, et. al, “Asynchronous Methods for Deep Reinforcement
Learning,” 33th International Conference on Machine Learning (ICML
2016), USA, 2016.

[20] R. Li et al., "Deep Reinforcement Learning for Resource Management in
Network Slicing," in IEEE Access, vol. 6, pp. 74429-74441, 2018.

[21] C. Qi, Y. Hua, R. Li, Z. Zhao and H. Zhang, "Deep Reinforcement
Learning With Discrete Normalized Advantage Functions for Resource
Management in Network Slicing," in IEEE Communications Letters, vol.
23, no. 8, pp. 1337-1341, Aug. 2019.

[22] Y. Hua, R. Li, Z. Zhao, X. Chen and H. Zhang, "GAN-Powered Deep
Distributional Reinforcement Learning for Resource Management in
Network Slicing," in IEEE Journal on Selected Areas in
Communications, vol. 38, no. 2, pp. 334-349, Feb. 2020.

[23] G. Sun, Z. T. Gebrekidan, G. O. Boateng, D. Ayepah-Mensah and W.
Jiang, "Dynamic Reservation and Deep Reinforcement Learning Based
Autonomous Resource Slicing for Virtualized Radio Access Networks,"
in IEEE Access, vol. 7, pp. 45758-45772, 2019.

[24] G. Sun, K. Xiong, G. O. Boateng, D. Ayepah-Mensah, G. Liu and W.
Jiang, "Autonomous Resource Provisioning and Resource Customization
for Mixed Traffics in Virtualized Radio Access Network," in IEEE
Systems Journal, vol. 13, no. 3, pp. 2454-2465, Sept. 2019.

[25] T. Li, X. Zhu and X. Liu, "An End-to-End Network Slicing Algorithm
Based on Deep Q-Learning for 5G Network," in IEEE Access, vol. 8, pp.
122229-122240, 2020.

[26] G. Sun, G. O. Boateng, D. Ayepah-Mensah, G. Liu and J. Wei,
"Autonomous Resource Slicing for Virtualized Vehicular Networks With
D2D Communications Based on Deep Reinforcement Learning," in IEEE
Systems Journal, vol. 14, no. 4, pp. 4694-4705, Dec. 2020.

[27] J. Mei, X. Wang, K. Zheng, G. Bondreau, A. Bin, H. Abou-zeid,
“Intelligent Radio Access Network Slicing for Service Provisioning in
6G: A Hierarchical Deep Reinforcement Learning Approach,” in IEEE
Transactions on Communications (Early Access), June, 2021.

[28] V. García, “Deep reinforcement learning based approaches for capacity
sharing in radio access network slicing,” Master Thesis, Universitat
Politècnica de Catalunya, July, 2020.

[29] Y. Abiko, T. Saito, D. Ikeda, K. Ohta, T. Mizuno and H. Mineno,
"Flexible Resource Block Allocation to Multiple Slices for Radio Access
Network Slicing Using Deep Reinforcement Learning," in IEEE Access,
vol. 8, pp. 68183-68198, 2020.

[30] Y. Abiko, T. Saito, D. Ikeda, K. Ohta, T. Mizuno and H. Mineno, "Radio
Resource Allocation Method for Network Slicing using Deep
Reinforcement Learning," 2020 International Conference on Information
Networking (ICOIN), 2020, pp. 420-425.

[31] L. Busoniu, R. Babuska, B. De Schutter, “Multi-agent reinforcement
learning: An overview,” Chapter 7 in Innovations in Multi-Agent Systems
and Applications – 1 (D. Srinivasan and L.C. Jain, eds.), vol. 310 of
Studies in Computational Intelligence, Berlin, Germany: Springer, pp.
183–221, 2010.

[32] 3GPP TS 28.541 v 17.3.0, “Management and orchestration; 5G Network
Resource Model; Stage 2 and 3 (Release 17),” June 2021.

[33] 3GPP TR 28.861 v1.1.0, “Telecommunication management; Study on the
Self-Organizing Networks (SON) for 5G networks (Release 16),” Dec.
2019.

[34] 3GPP TS 28.550 v16.7.0, “Management and orchestration; Performance
assurance (Release 16),” Dec. 2020.

[35] I. Vilà, J. Pérez-Romero, O. Sallent, A. Umbert, “A Novel Approach for
Dynamic Capacity Sharing in Multi-tenant Scenarios,” 2020 IEEE 31st
International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC), London, United Kingdom, 2020, pp. 1-6.

[36] K. Arulkumaran, M. P. Deisenroth, M. Brundage and A. A. Bharath,
"Deep Reinforcement Learning: A Brief Survey," in IEEE Signal
Processing Magazine, vol. 34, no. 6, pp. 26-38, Nov. 2017.

[37] 3GPP TS 28.531 v17.0.0, “Management and orchestration; Provisioning
(Release 16),” June 2021.

[38] S. Guadarrama, et. al (2018). TF-Agents: A library for Reinforcement
learning in TensorFlow. Available at:
https://github.com/tensorflow/agents.

 16

 Irene Vilà received her B.E. degree in
Telecommunication Systems
Engineering and her M.E. degree in
Telecommunication Engineering from
the Universitat Politècnica de Catalunya
(UPC), Barcelona, in 2015 and 2017,
respectively. In 2018, she joined the
Mobile Communication Research Group
(GRCM) of the Department of Signal

Theory and Communications (TSC) at UPC where she is
currently a PhD student, supported with an FI AGAUR grant
by the Government of Catalunya. Her current research interests
include Radio Access Network (RAN) Slicing, network
virtualization and the application of artificial intelligence and,
particularly, machine learning to radio resource management.

Jordi Pérez-Romero. is a professor in
the Dept. of Signal Theory and
Communications of the Universitat
Politècnica de Catalunya (UPC) in
Barcelona, Spain, where he received a
degree in telecommunications
engineering in 1997 and the Ph.D. degree
in 2001. He has been working in the field
of wireless communication systems, with

a particular focus on radio resource management, cognitive
radio networks and network optimization. He has been
involved in different European projects with different
responsibilities, such as researcher, work package leader, and
Project Responsible, has participated in different projects for
private companies and has contributed to the 3GPP and ETSI
standardization bodies. He has published more than 250 papers
in international journals and conferences, three books and has
contributed to seven book chapters. He has an h-index of 31 in
Google Scholar. He serves as an Associate Editor for IEEE
Vehicular Technology Magazine and EURASIP Journal on
Wireless Communications Networks.

Oriol Sallent is a Professor at the
Universitat Politècnica de Catalunya
(UPC) in Barcelona. He has participated
in a wide range of european and national
projects, with diverse responsibilities as
Principal Investigator, Coordinator and
Workpackage Leader. He regularly
serves as a consultant for a number of
private companies. He has been
involved in the organization of many

different scientific activities, such as Conferences, Workshops,
Special Issues in renowed international journals, etc. He has
contributed to standardisation bodies such as 3GPP, IEEE and
ETSI. He is co-author of 13 books and has published 250+
papers, mostly in high-impact IEEE journals and renowed
international conferences. His research interests include 5G
RAN (Radio Access Network) planning and management,
artificial intelligence-based radio resource management,
virtualisation of wireless networks, cognitive management in
cognitive radio networks and dynamic spectrum access and
management among others.

Anna Umbert received the Engineering
and PhD degrees in Telecommunications
from the Universitat Politècnica de
Catalunya (UPC) in 1998 and 2004
respectively. She joined UPC in 2001 as
an Assistant Professor, and became
Associate Professor in 2017 which is her
current status. Her research interest is
focused in radio resource and QoS

management in the context of heterogeneous wireless
networks, cognitive management in cognitive radio networks,
dynamic spectrum access and management, self-organised
networks and network optimisation. Since 1997 she has
participated in several projects founded by both public and
private organisations. She has published more than 50 papers
in international journals and conferences.

