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ABSTRACT

In this contribution, the optimised deployment of both spectrum and energy resources scarcely available in the mobile
multiple access systems has been analysed, with special attention to the impact of the filter design on the energy efficiency
(EE) of code division multiple access networks. Putting into perspective two conflicting metrics, namely throughput max-
imisation and power consumption minimisation, the distributed EE utility function is formulated. We also show that the
best EE versus spectral efficiency trade-off is achievable when each node allocates exactly the power necessary to attain
the maximum EE. In order to demonstrate the validity of our analysis, a low-complexity energy-spectral-efficient algo-
rithm based on distributed instantaneous signal-to-interference-plus-noise ratio level is developed, and the impact of single
and multi-user detection filters on the EE–spectral efficiency trade-off is extensively analysed by numerical simulation.
Copyright © 2013 John Wiley & Sons, Ltd.

*Correspondence

T. Abrão, Department of Electrical Engineering, State University of Londrina, Londrina, Parana 86051-970, PO Box 6001, Brazil.
E-mail: abrao@ieee.org; taufik@uel.br

Received 20 February 2013; Revised 5 June 2013; Accepted 6 June 2013

1. INTRODUCTION

Resource allocation techniques, mainly power optimisa-
tion, are becoming increasingly important in wireless sys-
tem design, because battery technology evolution has not
followed the explosive demand of mobile devices and envi-
ronmental issues. Resource allocation problems in wireless
networks are systematically treated in [1, Ch.4-6], aiming
to maximise the sum of utilities of link rates for best-effort
traffic. The methodology in [1, Ch.4-6] consists in identify-
ing a class of utility functions for which the power control
problem can be converted into an equivalent convex opti-
misation problem. The convexity property is a key ingre-
dient in the development of powerful and efficient power
control algorithms (PCAs).

One of the most interesting ways of dealing with the
power allocation problem is the energy-efficiency (EE)
approach [2–4], which aims to maximise the transmitted
data per energy unit (measured in bits per Joule) and is
closely related to green communication techniques [5].

Recent works in the field include the EE problem formu-
lation in the context of multiple access networks, such as
orthogonal frequency division multiple access (OFDMA)
[4, 6] and code division multiple access (DMA) (CDMA)
[3, 7], with particular interest in multi-carrier CDMA sys-
tems. The energy-efficient approach to CDMA system sce-
narios can include the jointly spreading-code and receiver
optimisation [8]. On the receiver side, multi-user detection
techniques could be included in order to reduce the multi-
ple access interference (MAI) effects [7,9]. As pointed out
by Chen et al. [10], one of the most important trade-offs
in green wireless communications is EE versus spectral
efficiency (EE–SE) trade-off; the goal consists in balanc-
ing these two important metrics. In this context, one of the
most important issues is the characterisation of the EE–
SE trade-off in multi-user environments, such as OFDMA,
CDMA and multi-carrier CDMA. In [11], the authors
demonstrate that the EE–SE trade-off gap in OFDMA sys-
tems is reduced when interference increases, assuming
some restrictions in users power and position.
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The EE–SE trade-off through the use of designed
utility functions and distributed mechanisms have been
studied in [12]. In this context, the user’s utility is a func-
tion of throughput and average transmission power, where
throughput is assumed to be a sigmoidal function of signal-
to-interference-plus-noise ratio (SINR), while power
consumption function is admitted affine. The EE–SE opti-
misation problem has been formulated as a game, where
each user, being selfish and rational, acts to maximise its
utility in response to the SINR by adjusting its transmis-
sion power. The resulting mechanism is a distributed power
control scheme that can incline towards energy-efficient
or spectrally efficient operating points depending on the
choice of utility function.

The relationship between EE and quality of service
(QoS) in wireless networks has been investigated recently
in various works. In [13], the authors show that there exist
fundamental trade-offs between EE and quality of experi-
ence (QoE) for users with different traffics when transmis-
sion power and circuit power consumptions, interference
and network bandwidth have been considered.

Because SE is a monotonic increasing function of the
transmitting power level, in multiple access CDMA sys-
tems, which are limited by interference level, the SE is
also constrained by the maximum transmitted power avail-
able at each network node. As a consequence, although
the sum rate capacity (proportional to SE) increases with
the number of active users, the level of interference gen-
erated, induced by new users sharing the same bandwidth,
increases. Hence, on the one hand, the total network power
consumption grows in order to achieve the optimum SINR,
while, on the other hand, the EE is reduced in terms
of transmitted bits per Joule units. One way to reduce
the generated interference by the non-cooperative game
approach is the use of pricing techniques [14]. Hence,
users are stimulated to allocate less power, which implies
lower interference.

This work proposes a power control procedure based on
the optimised deployment of two main resources scarcely
available in multiple access mobile terminals (MTs),
that is, spectrum and energy, considering direct sequence
CDMA (DS/CDMA) systems. Besides, the EE–SE trade-
off behaviour is extensively characterised under differ-
ent interference level scenarios. From the analysis of two
conflicting metrics, namely throughput maximisation and
power consumption minimisation, the distributed EE cost
function is formulated as a non-cooperative game. Indeed,
the overall EE of the network depends on the behaviour of
each single user; thus, power control can be properly mod-
elled as a non-cooperative game [15][8] [16] [11]. In this
work, a non-cooperative game is applied to describe and
to solve the EE–SE trade-off in wireless communication
scenarios.

We also investigate the impact of multi-user detection
schemes, motivated by the fact that the gap between the
optimal EE and the maximal SE is reduced when the MAI
increases. Because those detectors can mitigate the MAI
from other users, their deployment could result in more

energy-efficient systems. Furthermore, the paper shows
that the best EE–SE trade-off is achievable when each
node allocates exactly the power necessary to attain the
maximum EE, while SE is determined by the attainable
rate in each node. In order to demonstrate the validity
of the proposal, a low-complexity energy-spectral-efficient
algorithm based on distributed instantaneous SINR level
is developed.

The main contributions of this work are threefold: (i)
analysing the energy and spectral efficiencies in CDMA
systems from the perspective of the two conflicting
metrics, throughput maximisation and power level con-
sumption minimisation; (b) evaluating the impact of the
filter receiver choice over EE–SE trade-off; (c) discussing
the peak power constraint on the performance and EE-SE
trade-off as well. This paper is organised as follows. In
Section 2, we define the system model. The EE–SE opti-
misation problem formulation is given in Section 3, and
in Section 4, we discuss the effects of MAI on the EE–
SE trade-off. In Section 5, we propose two algorithms to
implement distinct metrics of the EE–SE trade-off opti-
misation; discussion on the numerical results is offered in
Section 6. Finally, Section 7 brings the main conclusions.

2. NETWORK SYSTEM MODEL
For analysis simplicity, initially we assumed a single cell
uplink DS/CDMA network with K MTs. However, the
extension for multi-cell multi-carrier multiple access sys-
tems is straightforward [17,18]. TheN -dimensional vector
representing the equivalent baseband received signal in the
base station (BS) can be described as follows:

yD
KX
kD1

p
pkhkbksk C � (1)

where bk is the modulated symbol; hk D jhk je
†hk is

the complex channel gain between the kth user and BS,
assumed constant during the symbol period; sk is the kth
user spreading code vector with length N D rc=r , repre-
senting the processing gain given by the ratio between chip
rate (rc) and symbol rate (r); and finally, � represents the
thermal noise, assumed to be additive white Gaussian noise
(AWGN), with zero-mean and covariance matrix given by
�2IN . We assume that fading is slow, flat and constant
during optimisation window.

The SINR is defined by the ratio between the received
signal power to the sum of interfering power plus back-
ground noise, measured after demodulation. In DS/CDMA,
this ratio depends on the detection strategy. Considering
the adoption of linear receivers, the SINR is given by [7]
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represents the MAI power level,

Trans. Emerging Tel. Tech. 26:670–685 (2015) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/ett

671



Á. R. C. Souza et al.

sk D
1p
N
Œc1; c2; � � � ; cN �

T ; ci D Uf�1; 1g is the kth user

pseudo-noise spreading code, with .sT
k

sk/ D 1, and dk is
theN -dimensional vector representing the receive filter for
the kth user; .�/T denotes the transpose operator.

To perform detection, we consider single-user and multi-
user strategies. For the single-user detection (SuD), we
deploy matched filter (MF). For this receiver, the filter
vector dk is defined as the kth user spreading code, and
the interference power is regarded as background noise,
which limits the system performance, because CDMA sys-
tems are limited by the interference level. Hence, the SINR
expression for MF can be written as follows:

�MF
k D
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j¤k
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�
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�2
C �2

k

D
pkhk
IMF
k

(3)

where Ik is the MAI plus background noise.
For the multi-user approach, we consider linear

multi-user detectors [19], such as decorrelator (DEC),
zero-forcing and the minimum mean square error
(MMSE). Linear multi-user detectors are useful to power
optimisation algorithms because the resulting SINR is
deterministic, unlike heuristic-based methods, and that is
important to find the minimum power to achieve the target
SINR. Besides the better performance, the MMSE detector
demands the amplitude matrix of all users, and we con-
sider a distributed solution; thus, DEC detector has been
deployed, which presents a slight inferior performance
regarding the MMSE detector, but it depends only on the
spreading codes (sk) and the correlation matrix R [7]. Both
parameters are constant during the PCA execution, which
requires just one transmission at the beginning of algorithm
iterations. The DEC filter is given by

DDEC D Œd1 d2 � � � dk � � � dK �D SR�1 (4)

Hence, the SINR achieved is

�DEC
k
D

pkhk
�2dT

k
dk
D
pkhk
IDEC
k

(5)

2.1. Quality of service requirements

In order to guarantee the QoS, a minimum data rate Rk;min
must be provided for each user by system network service,
being an important requirement to be guaranteed. The max-
imum achievable data rate can be obtained with Shannon
capacity equation [20–22], given by

Ck D w log2.1C �k/ Œbits=s� (6)

where w is the multiple access bandwidth.
Because the capacity in Equation (6) is a theoretical

boundary, that is, the maximal achievable rate, it is relevant
to include a gap factor capable to describe the limitations
and imperfections in real communication systems, such as

modulation effects. Hence, the Shannon capacity equation
can be re-written as an approximation for the attainable
data rate given a gap between the theoretical capacity curve
and the real data rate [22]. Equivalently, this gap can be
expressed through an effective SINR reduction:

Cgap
k
D w log2.1C �k � �k/; 8k Œbit=s� (7)

where �k D�
1:5

ln.5 BERk/
; with �k 2 Œ0I 1Œ

BERk is the maximum tolerable bit error rate by the kth
user [23]. Thus, the SE is obtained from Equation (7):

�k D log2.1C �k � �k/; 8k

�
bit

s �Hz

�
(8)

Hence, the attainable data rate is readily obtained from
the Shannon capacity, Equation (7), with appropriate detec-
tor filter:

Rk D w log2
�
1C �k � �

filter
k

�
; (9)

where �filter
k

is given herein by Equation (3) or (5).
From Equation (9), the minimum data rate for the kth

link, Rk;min, which is able to guarantee the QoS, consider-
ing maximum tolerable BER for that service, can be easily
mapped into the minimum SINR:

�k;min D .2
Rk;min=w � 1/=�k 8k D 1; : : : ; K (10)

In the next section, the EE–SE optimisation problem in
multiple access networks is formulated taking into account
many system parameters and functions, such as transmitted
packets, circuit power consumption, SINR, error probabil-
ity, energy and SE functions and efficiency function, as
well as single and multi-user filter detection schemes.

3. PROBLEM FORMULATION

In an MAI limited communication system, the kth user
selfishly (non-cooperative approach) allocates his own
transmit power pk and receive filter strategy (single-user
or multi-user detection strategy) in order to maximise his
own EE function, expressed by [24]:

�k D rk
L

M

f .�k/

pk C pc

�
bit

Joule

�
; 8k D 1; : : : ; K

(11)
where rk in bits per second is the transmission data rate,
which, in practice, is less than the attainable rate; M is the
number of bits in each transmitted data packet; L is the
number of information bits contained in each data packet;
pk is the transmission power; pc is the circuit power
consumption; and f .�k/ is the efficiency function, which
approximates the probability of error-free packet reception,
because the attainable data rate and the transmission data
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rate are related by the probability of correct reception [24].
When no coding is used, the efficiency function can be
approximated by [8]

f .�k/D .1� BERk/
M � .1� e��k /M (12)

Besides, the efficiency function approximation in
Equation (12) was adopted in order to work with a well-
behaved utility function; that is, this function has the desir-
able properties at the limiting points �k D 0 and �k D 1
[7, 25], while holding the same shape as the original utility
function f .�k/D .1� BERk/

M [24].
It is worth noting that both transmission power and cir-

cuit power consumptions are very important factors for
energy-efficient communications. While pk is used for
reliable data transmission, circuit power pc represents the
average energy consumption of electronics devices and cir-
cuitry [4]. Furthermore, the kth SINR admits different def-
initions depending on system type, detection strategy (SuD
or LMuD), spreading sequence type and so forth. Note that
�k in Equation (11) is measured in bits per Joule, which
represents the number of successful bit transmissions that
can be made for each energy unit drained from the battery
and effectively used for transmission.

In a more general context, we can define the concept
of global EE function as the ratio of the total achievable
capacity over the total power transmission consumption:

N� D

PK
kD1 `krkf .�k/

PTot

�
bit

Joule

�
(13)

where PTot D pcC
PK
kD1 %kpk , and `k D

�
L
M

�
k

, where

%k > 1 is the power amplifier inefficiency associated to the
kth transmitter.

3.1. Distributed non-cooperative energy
efficiency power optimisation game

The network EE depends on the behaviour of all users;
thus, the power control problem can be properly mod-
elled as a non-cooperative game [15]. In the context of a
non-cooperative power control game,

G D ŒK; fAkg ; fukg� (14)

where K D f1; 2; : : : ; Kg is the set of active users;
fAkg D Œ0; Pmax� is the strategy set for the kth user, with
Pmax being the maximum allowed power for transmission;
and the utility functions fukg are performed by the EE
function �k .

Considering the power allocation for the kth user, pk ,
the power vector of other users (interfering users) can be
denoted as [7]:

p�k D Œp1; p2; : : : ; pk�1; pkC1; : : : ; pK � (15)

Hence, given the power allocation of all interfering users,
p�k , the best response of the power allocation for the kth
user, pk , can be expressed as follows:

pbest
k
D qk.p�k/D arg max

pk
uk.pk ;p�k/ (16)

where uk is given by Equation (11), and qk.p�k/ is called
the kth best-response function.

Finally, the problem for distributed EE under non-
cooperative game perspective can be posed as follows:

arg max
pk

�k D arg max
pk

`krk
f .�k/

pk C pc

s.t. 06 pk 6 Pmax

(17)

whose solution consists in adopting the best-response strat-
egy for the kth user. Indeed, the best-response strategy
consists in obtaining the maximum EE individually for
each user, as posed by Equation (16). Hence, we can find
the optimum operation point by taking the first and second
derivative tests, given the interfering power vector p�k .

3.2. Best signal-to-interference-plus-noise
ratio response for single-user detection and
linear multi-user detectors filters

The power allocation for kth user can be expressed as

pk D �k
Ifilter
k

hk
D �keI filter

k ; (18)

where eIMF
k D IMF

k
=hk is the normalised interference plus

noise at the MF output andeI DEC
k D IDEC

k
=hk for DEC.

The first derivative of EE function �k (17) regarding pk
is equivalent to taking the first derivative of �k regarding
�k [7], which results in

@�k

@�k
D

@

@�k

(
`k
.1� e��k /M log.1C �k�k/

�keIk C pc
)

(19)

with efficiency function given by Equation (12).
Hence, the optimal SINR for the kth user, ��

k
, in terms

of EE–SE trade-off is obtained by finding the solution of
@�k=@�k D 0 (maximisation point), admitting the nor-
malised MAI eIk fixed. This condition is equivalent to
solving function (20) regarding �k .

Me��k log2.1C �k�k/C
�k.1� e

��k /

.1C �k�k/ ln 2
D

eIk log2.1C �k�k/.1� e
��k /

.�keIk C pc/
(20)

In order to guarantee that Equation (20) has only one
maximiser, we introduce the concept of quasiconcavity,
defined as follows[25]:
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Definition 1 (Quasiconcavity). A function z that maps a
convex set of n-dimensional vectors D into a real number,
i.e., Rn 7! R, is quasiconcave if for any x1; x2 2 D; x1 ¤
x2,

z.�x1C .1� �/x2/>min fz.x1/; z.x2/g (21)

where � 2 .0; 1/. The function z is said to be strictly
quasiconcave if

z.�x1C .1� �/x2/ >min fz.x1/; z.x2/g (22)

The proof of the strictly quasiconcavity of uk is
described in the Appendix, and the result is described by
the next lemma:

Lemma 1 (Strictly quasiconcavity of uk). The utility
function uk.pk ;p�k/ is strictly quasiconcave in pk .

This result is very important in the proof of existence
and uniqueness of the system equilibrium, as discussed in
the Appendix. With this lemma, we can guarantee that the
utility function in Equation (17) has only one maximiser,*

that is, the optimum SINR ��
k

point where @�k=@�k D 0;
otherwise, if ��

k
> �max

k
for some k, where �max

k
is the

SINR associated to the maximum available power alloca-
tion, Pmax, then Pmax will be deployed by the kth user, and
the maximiser of the utility function could not be attained
[25] [7] [8].

4. INTERFERENCE IMPACT ON THE
ENERGY EFFICIENCY–SPECTRAL
EFFICIENCY TRADE-OFF

In this section, we present a trade-off analysis between
non-cooperative energy-efficient and spectral-efficient
power control schemes.† This trade-off is determined by
the MAI level, which accounts for gap ƒ among the max-
imal EE and the optimum SE (only attainable with infinity
power allocation). In realistic interference-aware systems,
the increasing number of active users causes an increase of
system capacity and simultaneously an increment in MAI.
As a consequence, the SE of the system is able to increase
accordingly. Defining this gap as the difference of the SE
attainable at the maximal EE point (�EE

k
) and that obtained

deploying the maximal available power (i.e. the maximal
achievable SE, �SE

k
), we have

ƒD �.�SE
k
/� �.�EE

k /

�
bit

s �Hertz

�
(23)

*�k D 0 also is a solution for Equation (20), but because 8pk 2

.0;Pmax�; �k > 0, we can see that �k D 0 is a global minimum.
†Besides the fact that in low power regime the EE and SE are not

conflicting metrics, our interest is in medium and high power regime,

and in this operation condition, these two metrics are, in general,

conflicting.
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Figure 1. Cell geometry with increasing interference level, I _
d��interf; �> 2.

On the other hand, it will be shown that gap ƒ could
be reduced when the interference level increases. Thus, in
order to quantify this effect, we define the network topol-
ogy as described in Figure 1, where a user of interest
ui is positioned in the internal circumference of radius
d D 50m, while the other (interfering) users uj are located
in the external circumference of radius dinterf, with both
of the circumferences centred at the BS. To obtain differ-
ent levels of MAI, we combine different numbers of active
users (K) with different external radius values dinterf, as
well as the average channel condition of the interest and
interfering users. In this sense, let us define the coupling
network parameter:

ˇk D
hhki

hhj i
; k W interest userI j ¤ k W interfering users

where h�i is the temporal average operator. With the pro-
posed topology, we can create scenarios with increasing
interference level: increasing the system loading as well
as reducing the distance between interfering users and
the BS, which implies higher ˇk . Hence, the max-EE
and the opt-SE behaviour were characterised in terms of
d��interf; 	> 2.

Figure 2 and Table I presents the EE–SE trade-off for
different system configurations, considering K D Œ3; 6; 9�

users, dinterf D Œ200; 100; 80� m and N D 15. In
Figure 2, the curves with markers ‘C’ refer to the right-
hand side y-axis, that is, the allocated power (proportional
to the achieved SINR) versus SE (bits per second/Hertz),
while the curves without markers refer to the left-hand
side y-axis, relating the EE in bits per Joule versus the
achieved SE. Plots (a), (b) and (c) of Figure 2 refer to the
results obtained with MF detector, while plot (d) depicts
the simulation results obtained with DEC multi-user detec-
tor, which carried on the same curves for all dinterf values
in the considered range of Œ80I 200� m. Table II highlights
notable values found in Figure 2, such as the maximal
achievable SE and its respective utility function.
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(a) (b)

(c) (d)

Figure 2. Energy efficiency–spectral efficiency (EE–SE) trade-off considering different interfering scenarios and filters: (a) matched
filter (MF), dinterf D 200 m, ˇk D 0:25; (b) MF, dinterf D 100 m, ˇk D 0:50; (c) MF, dinterf D 80 m, ˇk D 0:63; (d) decorrelator (DEC), dinterf 2

Œ80I 200� m.

Table I. Notable values for the results of Figure 2: SE at maximum EE and its respective utility function value; maximal achievable
SE and its respective utility function value; and the SE gap ƒ.

�.�EE
k / uk.�

EE
k / �.�SE

k / uk.�
EE
k / ƒ

Scenario [b/s/Hz] [b/J] [b/s/Hz] [b/J] [b/s/Hz]

(a) K D 3 MF DEC MF DEC MF DEC MF DEC MF DEC

dint D 200 m 4.4302 16.4198 3:8087 � 108 1:8676 � 109 6.5244 20.7916 2:7163 � 108 8:6563 � 108 2.0942 4.3718
dint D 100 m 3.1704 16.4317 2:3355 � 108 1:8693 � 109 4.5891 20.8065 1:9106 � 108 8:6625 � 108 1.4187 4.3748
dint D 80 m 2.9139 16.4508 1:9374 � 108 1:8715 � 109 4.0008 20.8256 1:6657 � 108 8:6705 � 108 1.0869 4.3748

(b) K D 6 MF DEC MF DEC MF DEC MF DEC MF DEC

dint D 200 m 3.4017 16.1843 2:6112 � 108 1:8382 � 109 4.9805 20.5324 2:0736 � 108 8:5484 � 108 1.5788 4.3481
dint D 100 m 2.7083 16.1963 1:3597 � 108 1:8399 � 109 3.1130 20.5473 1:2952 � 108 8:5546 � 108 0.4047 4.3510
dint D 80 m 2.5777 16.2154 1:0320 � 108 1:8420 � 109 2.5777 20.5664 1:0320 � 108 8:5626 � 108 0 4.3510

(c) K D 9 MF DEC MF DEC MF DEC MF DEC MF DEC

dint D 200 m 3.0203 15.7009 2:1261 � 108 1:7781 � 109 4.2823 20.0027 1:7829 � 108 8:3279 � 108 1.2620 4.3018
dint D 100 m 2.4889 15.7158 9:6933 � 107 1:7798 � 109 2.4889 20.0176 9:6933 � 107 8:3341 � 108 0 4.3018
dint D 80 m 1.9951 15.7320 3:6446 � 107 1:7819 � 109 1.9951 20.0367 3:6446 � 107 8:3420 � 108 0 4.3047

SE, spectral efficiency; EE, energy efficiency; MF, matched filter; DEC, decorrelator.
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Table II. EE–SE trade-off analysis.

Parameters Adopted values

DS/CDMA optimal power allocation

Noise Power Pn D�90 dBm
Processing Gain N D 15
Maximum power per user Pmax D 10 dBm
No. of mobile terminals K 2 f2I 10g
No. of base station BS D 1
Interest user distance d D 50 m
Interfering users distance dinterf D Œ80;100;200� m
Packet size M D 80 bits
Data bits LD 50 bits
SINR gap �k D 0:651
Circuit power pc D 7 dBm
Bandwidth wD 106 Hz

Channel gain

Path loss _ d�2

Fading coefficients Rayleigh distribution
mean over 5000 realisations

Verhulst PCA

Convergence factor ˛D 0:5
No. of iterations Nit D 500

EE, energy efficiency; SE, spectral efficiency; DS/CDMA,
direct sequence code division multiple access; SINR, signal-
to-interference-plus-noise ratio; PCA, power control algo-
rithm.

As can be seen from Figure 2(a), (b) and (c) under MF
SuD, gap ƒ and the EE are severely reduced when the
system loading increases and the interfering users distance
dinterf decreases. For example, when dinterf D 200 m, the
EE is almost halved for the interest user when the num-
ber of active users is increased from K D 3 to K D 9.
Likewise, when K D 6, the EE is also halved when the
interfering users distance is reduced from dinterf D 200 m
to dinterf D 100 m. In terms of gap ƒ, when the MAI
increases, ƒ is reduced, tending to be zero for higher
system loadings and lower interfering users distance, as
pointed out for K D 6 in Figure 2 (a)–(c), when dinterf
decreases from 200 to 80 m, respectively.

Furthermore, in order to corroborate those conclusions
and to determine the impact of the MAI on the EE problem,
we analyse the impact of linear multi-user filter deploy-
ment, represented by DEC multi-user detector. We anal-
ysed the performance under the same system scenario
adopted with the MF single-user detector, and surpris-
ingly, we found approximately the same gap ƒ and EE for
DEC, as can be concluded from Table I and Figure 2(d).
Now, comparing the EE and SE performance from Fig-
ure 2(a)–(c), with Figure 2(d), both EE and SE are seen to
be degraded with the MF detector when the system loading
increases and dinterf decreases. Considering the best and
worst cases of K and dinterf, while the MF-based system is

Figure 3. Optimum energy efficiency signal-to-interference-
plus-noise ratio (SINR) versus normalised interference. M D 80

and � D 0:651.

reduced by a factor of 10 from K D 3 and dinterf D 200 m
to K D 9 and dinterf D 80 m, the EE for DEC is almost the
same for both configurations. Also, the EE is at least 4.9
times greater for DEC when compared with that obtained
with MF. Finally, as the SINR achieved with DEC filter,
Equation (5), does not depend on the power level of inter-
fering users, the EE is almost the same for any interfering
users position, which is corroborated by our simulations.

4.1. Circuit power consumption, multiple
access interference and optimum
signal-to-interference-plus-noise ratio

When the circuit power consumption is much smaller than
the transmitted power (pc � pk), an interesting result is
derived: the optimum SINR obtained from the EE optimi-
sation problem in Equation (20) is the same for any MAI
level, while the asymptotic SINR necessary to the SE max-
imisation still remains related to the interference power
level,eIk . Hence, under this hypothesis, the best SINR for
max-EE criterion depends only on the system parameters,
such as maximal tolerable BER (QoS), modulation level,
coding and packet coding size. This result is well known
in the literature, as can be seen in [7, 8]. Besides, it is
worth noting that when the MAI increases, the transmitted
power per user becomes higher, and indeed, the condition
pc � pk holds.

In order to verify the impact of the normalised MAIeIk
on the optimum SINR ��

k
, that is, the SINR at the max-

imal EE point equilibrium, Figure 3 shows the ��
k

for a

wide range ofeIk , revealing that when system interference
is low, the pc term at the denominator of Equation (11)
allows the system to use more power to transmit, because
�keIk tends to be lower than pc . WheneIk becomes greater,
we have the condition pk � pc , and optimum SINR tends
to converge.
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As concluded from the results, when the MAI increases,
ƒ is drastically reduced for MF. This shows that the best
EE–SE trade-off is to allocate the necessary power to
achieve the maximum EE. In the case of the DEC detec-
tor, our simulations indicated that ƒ remains almost the
same with increasing system loading, indicating that multi-
objective optimisation techniques are necessary to deter-
mine the best EE–SE trade-off. This investigation is also
left for future work.

Because we defined the best EE–SE trade-off, in the
next section, two iterative-approximative algorithms will
be suggested in order to implement/verify the conclusions
found earlier.

5. PROPOSED ENERGY
EFFICIENCY–SPECTRAL
EFFICIENCY ALGORITHMS

As described in the previous section, MAI plays a key role
in the EE performance; this way, reducing MAI is criti-
cal to obtain higher EE. Looking at the EE maximisation
problem described in Equation (17) and the strict quasi-
concavity of �k , when p�

k
> Pmax, we have that �k is

strictly increasing in the interval Œ0; Pmax�, and the kth
user selfishly allocates the maximum available power. This
behaviour tends to increase the MAI power level for all
users, reducing the EE. As demonstrated in [3], the ratio
of users transmitting at Pmax can be approximately 80 per
cent in full system loading.

The algorithm proposed to implement the optimal EE–
SE trade-off solution is described in Algorithm 1. The MAI
is determined via SINR measurement, and the optimum
SINR is obtained by solving Equation (20), that is, the
SINR of maximum EE; after that, the optimum power for
each mobile user is found by iteratively applying Verhulst-
based PCA [26]. If one or more users cannot achieve the
optimum EE, given the maximum power constraint, then
they are put in outage. The set of users in outage is given
by Kout.

In order to minimise the outage probability, an alter-
native approach is proposed in Algorithm 2. Instead of
putting all users that cannot achieve optimum EE in out-
age, Algorithm 2 considers the QoS metrics for each user
in the decision process. As we defined the minimum data
rate Rk;min as a QoS metric, if one user cannot achieve
the optimum EE but is able to maintain Rk;min, then this
user is not put in outage; however, if both optimum EE and
Rk;min are not obtained, the outage event occurs.

The evaluation of eIk is made with BS information;
transmitted by a feedback channel, the BS communicates
to all the users the SINR achieved between themselves
and the BS. Because all users know their own transmitted
power, they just need to divide the communicated SINR by
the power allocated, obtainingeIk .

Algorithms 1 and 2 are closely related. It is easy to see
that when the necessary SINR �k;min to achieve Rk;min is
greater than or equal the optimum SINR (��

k
), Algorithm 2

reduces to Algorithm 1, because the second condition to be
inserted in Kout is always true for all non-optimum users.
Besides, if we set Rk;min D 0, Algorithm 2 will have the
same behaviour as the problem defined in Equation (17),
equivalent to the classic approach in the literature.

Algorithm 1 EE–SE with optimum EE

Require: i  1, Nit , pk Œ0�D �
2
k
8k

while i 6Nit do
for k D 1 WK do

EvaluateeIk (via SINRk measurement);
Find ��

k
, by solving Equation (20);

Find p�
k

iteratively using Verhulst PCA [26];
end for
i D i C 1;

end while
Compute the SINR achieved (�k) for each user;
Compute Kout, where k 2Kout if �k < �

�
k

;
if fKoutg ¤ ; then

Find the user with the worst channel gain inKout (j th
user);
Set ��j D 0;
Go to the beginning;

else
return p�

k
8k;

end if

Algorithm 2 EE–SE with Rk;min criterion

Require: i  1, Nit , pk Œ0�D �
2
k
8k

Compute p�
k

as described in Algorithm 1;
Compute the SINR (�k) and rate (rk) achieved for each
user;
Compute Kout, where k 2 Kout if �k < ��

k
and rk <

Rk;min
if fKoutg ¤ ; then

choose the user with worst channel gain in Kout (j th
user)
set ��j D 0;
go to the beginning.

else
return p�

k
8k (EE–SE trade-off solution)

end if

After defining the algorithms, we need to investigate
the existence and uniqueness of the equilibriums achieved.
Defining the equilibrium point by p� D .p�1 ; p

�
2 ; � � � ; p

�
k
/,

the Nash equilibrium can be defined as follows.

Definition 2 (Nash equilibrium). An equilibrium is said
to be a Nash equilibrium if and only if any user cannot
unilaterally improve its response by changing the optimum
value [15]. In the context of the EE problem, this state-
ment is equivalent to the fact that no user can improve their
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utility value by changing the optimum power for any other
value:

uk
�
p�k ;p

�
�k

�
> uk

�
pk ;p

�
�k

�
; 8k (24)

Because the two algorithms proposed do not necessar-
ily result in the same equilibrium p�, we must discuss
the equilibria achieved by Algorithms 1 and 2. However,
because the existence of the Nash equilibrium depends
on the game (the utility function), we first prove that the
proposed game has the minimum properties that guaran-
tee the existence of the Nash equilibrium, resulting in the
following theorem.

Theorem 1. The system achieves at least one equilibrium
p� for both algorithms, and each p�

k
2 p� is defined by the

following conditions for Algorithm 1

(1) If pk 6 Pmax and
@.uk.pk ;p

�
�k
//

@pk
D 0, then p�

k
D

pk
(2) Else, p�

k
D 0

and for Algorithm 2

(1) If pk 6 Pmax and
@.uk.pk ;p

�
�k
//

@pk
D 0, then p�

k
D

pk

(2) If pk D Pmax,
@.uk.pk ;p

�
�k
//

@pk
¤ 0 and rk >

Rk;min, then p�
k
D Pmax

(3) Else, p�
k
D 0

Proof . See the Appendix. �

The first condition in Theorem 1 for Algorithm 1 occurs
when the user has sufficient power to achieve the optimum
SINR point, and the second condition occurs when the
user cannot achieve the optimum point, that is, the outage
scenario.

Similarly, the first condition in Theorem 1 for
Algorithm 2 corresponds to the case when the kth user
achieves optimum EE setting his power to less than or
equal to the maximum power available at the transmitter.
The difference is for the situation in which the user cannot
achieve the maximum efficiency but achieves a minimum
rate criterion, defined in the second case, setting his trans-
mit power to the maximum power available. Finally, when
the two criteria fail, the user must set his transmit power to
zero, as in the second case for Algorithm 1.

The uniqueness and Pareto optimality of the Nash equi-
librium for this non-cooperative game is summarised in
Lemma 2. The proof for this lemma is developed in the
Appendix.

Lemma 2. When equilibrium p� is achieved without
removing any user, this Nash equilibrium is unique. When
it is necessary to remove any user, multiple equilibriums
will exist, depending on the criterion adopted. For the cri-
terion we adopted, the equilibrium is also unique. About

Pareto optimality, the equilibrium obtained with MF detec-
tor is not Pareto optimal, while that obtained with DEC is
Pareto optimal [9].

6. NUMERICAL RESULTS

The system parameters are indicated previously in Table II.
In particular, the analysis in this section assumes a ring
geometry, with internal radius rint D 50 m and external
radius rext D 200 m, with K mobile users uniformly dis-
tributed in this ring area with radius� U Œrint; rext�, and
the BS in the centre of the ring. The processing gain was
assumed N D 63; the number of MTs was K 2 f2I 15g
(low system loading) for the first set of results and K 2
f3I 63g for the second set (from low to full system loading).
For simplicity, identical parameters of QoS were adopted
for all users, that is, SINR gap �k D 0:651, and mini-
mum data rate Rmin D 500 kbps. Fading is modelled as a
non-selective Rayleigh distribution (module), simulated as
a complex Gaussian random process, with zero mean and
variance given by �2 D d�2

k
, namely hk � CN .0; d�2

k
/,

where dk is the distance between kth user and the BS. In
order to analyse the average network behaviour, numeri-
cal results were taken as the average over 2000 network
realisations. Furthermore, it was assumed that the mobile
transmitter has perfect channel state information available,
but the measurement of other users channel state informa-
tion can only be carried out by the BS through quantised
transmitted bits. For Verhulst PCA, a convergence fac-
tor ˛ D 0:5 and number of iterations Nit D 500 were
assumed.

Figures 4–7 bring the four main metric figures in order
to analyse and to quantify performance gain of the two
algorithms proposed against the classical approach defined
in Equation (17), that is, (i) the attainable sum rates of
all users,

P
R; (ii) the sum of power level consumption,

including the circuit power,
P
P ; (iii) the overall EE,

obtained from the two algorithms for the two detectors con-
sidered; and finally, (iv) the percentage of users in outage
is calculated.

From Figure 4, one can conclude that the classical
approach described by Equation (17) achieves the best
result in terms of sum rate maximisation, mainly when the
system loading increased under conventional receiver, fol-
lowed by Algorithms 2 and 1. It is worth pointing out that
under the multi-user DEC filter, the

P
R differences for

all algorithms are negligible, and the cause is the null out-
age probability for DEC, as will be further discussed in
Figure 7. Besides, because under the classical approach, no
user was put in outage, all of them contribute to increase
the

P
R, even by transmitting with a little rate. For

Algorithm 1, the higher outage probability limits the
P
R,

and for Algorithm 2, the lower outage probability keeps itsP
R between the two other algorithms.
For sum power metric (Figure 5), the non-outage

behaviour described by Equation (17) implies higher power
consumption for the MF, because non-optimum users
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Figure 4. Sum rate (
P

R) for the two algorithms proposed and
two different filters. In detail, the

P
R is for the decorrela-

tor (DEC) and
P

R for the matched filter at K D 13 users,
emphasising the gap among both algorithms proposed.

Figure 5. Sum power (
P

P) for the two algorithms proposed
and two different filters. In detail, the

P
P is achieved by the

decorrelator (DEC) at K D 13, emphasising the null performance
gap among both algorithms proposed for low system loading.

MF, matched filter.

Figure 6. Energy efficiency for the two algorithms proposed and
detectors. DEC, decorrelator; MF, matched filter.

Figure 7. Percentage of users in outage for the two algorithms
proposed. Herein, the adopted processing gain is N D 63. DEC,

decorrelator; MF, matched filter.

transmit at maximum power. As some users are put in
outage, Algorithm 2 reduces the

P
P but keeps some non-

optimum because the minimum rate criteria was reached.
For Algorithm 1, all non-optimal users will be in outage
state, and then, the

P
P is minimised. Again, because no

outage occurs for all algorithms for DEC, no gaps can be
seen. Because the DEC is more efficient than the MF for
MAI mitigation, the system is able to support more users
under DEC multi-user filter.

Figure 6 indicates the EE behaviour against increas-
ing system loading (when the number of active users
increases). When K > 7, despite the sum rate improve-
ment obtained by Algorithm 2 and the problem described
in Equation (17) over Algorithm 1 considering the MF
detector, this improvement is obtained at the system’s EE
degradation cost (Figure 6). This behaviour is justified by
the fact that there are users transmitting with non-optimal
powers in Algorithm 2 and Equation (17). Besides, the
best response in terms of EE is achieved by Algorithm 1
but incurs in more users in outage. As pointed out before,
the multi-user DEC detector is more efficient than the MF
for the two algorithms proposed, thanks to its improved
capacity to provide MAI mitigation.

Despite the null difference in sum rate (or sum power)
performance between the two algorithms proposed oper-
ating under DEC filter, both algorithms proposed present
remarkable efficiency increase, because the rate achieved
is higher and simultaneously the allocated power is smaller
than that attainable with MF.

Figure 7 shows the impact of the MAI on receivers
equipped with matched and DEC filter-based systems.
System loading was confined in the interval K=N 2

Œ0:0317I 0:2381�. Hence, even under low system load-
ing, Algorithm 1-based system is not able to achieve the
maximum EE point for all users using MF, because the
power required to achieve the optimum SINR increases
as the interference increases, and then, the maximum
power available is overcome very soon. On the other hand,
because Algorithm 2 allows users to transmit over a non-
optimum power level scenario (as long as the minimum
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rate criterion is reached), the outage probability will be
smaller. Again, thanks to the MAI mitigation characteris-
tics of the DEC filter, no outage events were detected for
low system loading.

It is worth noting that the performance gaps among
the two algorithms proposed—mainly deployed with MF-
based systems—can be explained by the numerical value
for the minimum rate adopted, which requires low SE
(
k D 0:5) to be achieved, while allowing a better visu-
alisation of the performance difference. By adopting a
higher value for the minimum rate, the expectation is that
the outage probability will be increased for the two filters
(MF and DEC), while the performance difference among
Algorithms 1 and 2 will be decreased.

Finally, in order to corroborate the DEC efficiency and
the MAI mitigation impact on the system performance,
the same metrics were then analysed, considering only
the DEC performance with K 2 f3I 63g (i.e. low to high
loading system conditions). To demonstrate the impact of
the minimum rate criteria and the fact that the results of
Algorithm 2 are constrained by Algorithm 1 and the prob-
lem defined in Equation (17), we use two minimum rate
values: Rk;min D 50 kbps and Rk;min D 1 Mbps. Those
metrics are illustrated in Figures 8–11.

Figures 8 and 9 show the sum rate and the sum power
for the two algorithms proposed deploying multi-user DEC
filter; again, Algorithm 1 presents the best response in
terms of power minimisation. The remarkable difference
gain occurs in the higher system loading zone. Further-
more, with Algorithm 1 running, a higher sum rate regard-
ing Algorithm 2 and Equation (17) is attained, because
the DEC filter depends on the spreading codes correlation
(pseudo-noise sequences are adopted). Thus, under high
system loading condition (above K D 54 users), the aver-
age MAI (given by the average of Ik of the denominator
in Equation (5)) becomes higher and limits the achievable
SINR. Because Algorithm 1 is more susceptible to outage

Figure 8. Sum rate (
P

R) for the two algorithms proposed
and the decorrelator (DEC) filter. In detail, the

P
P and

P
R

are achieved by the DEC at K D 14, emphasising the small
performance gap in both algorithms proposed.

Figure 9. Sum power (
P

P) for the two algorithms proposed
and the decorrelator (DEC) filter. In detail, the

P
P and

P
R

are achieved by the DEC at K D 14, emphasising the small
performance gap among both algorithms proposed.

Figure 10. Energy efficiency for the two algorithms proposed
for the decorrelator.

Figure 11. Percentage of users in outage for the two proposed
algorithms deploying the decorrelator filter; N D 63.
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than the other algorithms (Figure 11), those removed users
reduce the noise enhancement, and other users can achieve
greater SINR values. When using Rk;min D 1 Mbps,
Algorithm 2 results are closer to the performance of
Algorithm 1, and when Rk;min D 50 kbps, the results are
closer to the problem in Equation (17).

In terms of EE, given by Figure 10, both algorithms
proposed present slightly decreasing EE with system load-
ing increasing, but this decrease becomes more prominent
when the system loading approaches 1, in which the EE
difference among both algorithms increases substantially,
mainly when L D K=N > 90 per cent. Under medium
and low system loadings, there are no noticeable differ-
ences in EE, as shown in Figure 6. In conclusion, as
expected, Algorithm 1 is the most energy efficient, and
even under full system loading (L D 1), the DEC filter is
more efficient than MF-based systems for low and medium
loadings, whatever algorithm is deployed. Both algo-
rithms are more energy efficient than the problem defined
in Equation (17).

Finally, in Figure 11, the percentage of users in out-
age for both algorithms with DEC filter can be examined.
Under medium and mainly high system loading, the EE-
efficient system equipped with DEC filter achieves much
lower user outage probability than with MF-based systems
(when comparing the same algorithms), even with a load-
ing four times higher. For example, while the MF-based
system equipped with Algorithm 1 presents an average of
8.56 users in outage of 15 active users, the same system
based on the DEC filter is able to reduce the average users
in outage to only 0.375 users removed of 63 active users.
For Algorithm 2, while the MF-based has an average of
1.91 users removed every 15 active users, with the DEC
filter, the algorithm removes only 0.01755 of 63 active
users. These results demonstrate the impact of MAI in the
equilibrium and the ability of the multi-user DEC filter to
mitigate MAI. In conclusion, Algorithm 1 is less efficient
in terms of outage probability than Algorithm 2.

7. CONCLUSIONS

In this work, we analysed the EE and SE in the multi-
ple access DS/CDMA systems. The distributed EE cost
function is elaborated from the perspective of the two con-
flicting metrics, throughput maximisation and power level
consumption minimisation, as well as the impact of multi-
user filter deployment over the EE–SE trade-off.

We found that SINR under the max-EE point equilib-
rium decreases when MAI power level increases, being,
however, almost the same under medium or high interfer-
ence scenarios. For MF, the best EE–SE trade-off consists
in allocating in each node the necessary transmit power
to achieve the maximal EE, while SE can be determined
by the attainable rate in each node given by the Shannon
capacity equation.

Employing different figures of merit, numerical results
indicated that by deploying both power allocation

algorithms proposed, the linear multi-user filter is much
more efficient than the conventional MF receiver.

Finally, because the DEC detector is more efficient in
providing MAI mitigation, a new formulation for the max-
EE versus opt-SE trade-off problem, considering multi-
objective techniques, would be proposed as a new research
direction in the field.

APPENDIX

Proof of strict quasiconcavity of the
utility function

Proof . In order to prove that our utility function is strictly
quasiconcave, first we demonstrate that the numerator of
the utility function, that is, .1 � e�� /M log2.1 C ��/, is
S-shaped. As described in [25], if our utility function is
f .x/=x and f .x/ is S-shaped, then we can guarantee that
f .x/=x is strictly quasiconcave. According to [25], there
are six conditions that need to be proven to state that a
function is S-shaped:

C1 Function domain (X) is the non-negative part of the
real line, Œ0;1/;

C2 The range is the interval Œ0; B/, generally with B D
1;

C3 It is increasing;
C4 The first derivative is continuous.
C5 Strictly convex in the interval Œ0; xi �; xi 2 X;
C6 Strictly concave in the interval Œxi ; L�; L > xi ;

Condition C1 is obvious, because �k > 0.
At first, C2 appears to be false, because lim

�k!1
D 1,

but because our scenario includes power limitation, it is
obvious that lim

�!�max
D b, where b 2 R and �max is the

maximum achievable SINR.
Condition C3 is also obvious, because

.1� e��i /M > .1� e��j /M8 �i > �j

and

log2.1C ��i / > log2.1C ��j /;8 �i > �j :

Condition C4 is also true, because the first derivative of
.1 � e�� /M log2.1 C ��/, given in Equation (25), has a
unique restriction to the continuity .1C �� > 0/. Because
0 < � < 1 and � > 0, .1C ��/> 1.

@f.1� e�� /M log2.1C ��/g

@�
D
.1� e�� /M �

.1C ��/ ln.2/
C

Me�� .1� e�� /.M�1/ log2.1C ��/ (25)

As conditions C5 and C6 are hard to demonstrate, we use
numerical evidences to confirm them. The strict convexity
of a given function can be confirmed looking at the first
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derivative: if f .x/ is strictly convex and f 0.x/ is continu-
ous, then f 0.x/ is increasing. Likewise, the strict concavity
can be analysed by the first derivative: if f .x/ is strictly
concave and f 0.x/ is continuous, then f 0.x/ is decreas-
ing. Thus, if the numerator is S-shaped, it is obvious that
there is a unique inflection point at the first derivative of the
EE numerator, that is, at the point the first derivative stops
increasing and starts to decrease. In order to determine
this point, we take the second derivative of the numerator
regarding �k , and equate it to zero, obtaining

2�e��M.1� e�� /

.1C ��/
�
�2.1� e�� /2

.1C ��/2
�

Me�� log.1C ��/CM 2e�2� log.1C ��/D 0 (26)

Determining an explicit function to calculate the inflection
SINR, �infl, which is the solution of Equation (26), for any
value ofM and � , becomes an extremely hard task. Hence,
in order to show the existence of �infl, we plot the first
derivative of EE numerator for a wide range of combina-
tions of M and � , as shown in Figure A.1. Because a 4D
plot would be required to visualise the solution for all pos-
sible combinations, firstly we consider a fixed value forM
with 0:15 6 � 6 0:99, and then, we range M from 2 to
100 with fixed � . These plots show that there is at least
one inflection point and that the packet size impact is much
more prominent than gap factor � .

Hence, verifying the first derivative of the EE numer-
ator for a wide range of combinations of M and � ,
the inflection point is verified to exist. To determine the
inflection SINR, we used the fzero tool from MATLABr

(Release 2010a, The MathWorks, Inc., Natick, Mas-
sachusetts, United States) and analysed the range 0:15 6
� 6 0:99 and 2 6M 6 100. From Figure A.2, one can see
that the inflection point increases when M increases and
� decreases, as expected from the numerical evidences of
Figure A.1.

Under these numerical evidences, we state that the
numerator of the EE utility function is S-shaped, and,
as a consequence, the statement of Rodriguez [25, Sec.
IV] can be invoked to prove that the utility function in
Equation (17) is strictly quasiconcave; Lemma 1 thus
holds. �

Proof of Theorem 1

Proof . The proof presented is similar to that discussed in
[27]. As pointed out herein, there are three conditions to
confirm the existence of the Nash Equilibrium:

C1 Strategy set Ak is a non-empty, convex and compact
subset of some Euclidian space;

C2 The utility function for the kth user (uk.pk ;p�k/)
is continuous for all p�k and pk 2 Ak ; item[C3]
The utility function for the kth user (uk.pk ;p�k/)
is quasiconcave in pk (or �k);

Figure A.1. First derivative from the numerator of the
utility function, discarding the constant factor L=M, for: (a)
different values of M and fixed � D 0:651; (b) different val-
ues of � and fixed M D 80. EE, energy efficiency; SINR,

signal-to-interference-plus-noise ratio.

Figure A.2. Inflexion signal-to-interference-plus-noise ratio
(SINR) (solution of Equation (26)) for different values of M

and � .
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Condition C3 was proven in the first section of this
Appendix.

Condition C2 can be proven by looking at the definition

of uk , uk.�k/D
`kw log2.1C�k�k/.1�e

� /M

�keIkCpc . The first con-

dition to the continuity of uk is that the denominator is
different from zero, �keIk C pc ¤ 0. Because interference
is non-negative for both filters for any p�k (Equation (18))
and pc is positive, we have that the denominator never
equals zero. The second condition is that 1 C �k�k > 0,
because the logarithm operation is not defined for non-
positive arguments. Because �k > 0 8pk ;p�k and 0 <
�k < 1, we have that the minimum argument to the loga-
rithm operation is 1, which guarantees the continuity of the
utility function.

Condition C1 is proven as discussed in [27]. Because
the strategy set Ak is a segment of the real line, given
by Œ0; Pmax�, it follows that it is non-empty, convex and
compact.

With those considerations, we demonstrated the neces-
sary conditions and prove the existence of the Nash equi-
librium in the game proposed. To discuss the achieved
equilibriums, we consider the possible values for the two
proposed algorithms.

After the execution of Algorithm 1 and convergence of
the Verhulst PCA, we have the power vector p, with pk 2
Œ0; Pmax�; 8 k, which denotes the allocated power for all
users. Because this algorithm only accept users operating
at the maximum EE, it checks if the first derivative of uk
(defined in Equation (20)) is equal to zero, corresponding
to the maximiser point, because the kth utility function is
strictly quasiconcave. Then, there are two possibilities:

(1) if Œuk.pk ;p�k/�
0 D 0 for all users, then all of them

operate at the maximum EE and the equilibrium p

is a Nash equilibrium, and pk D p
�
k
;8k.

(2) if Œuk.pk ;p�k/�
0 ¤ 0 for one or more users,

then those users are grouped into an outage group
(Kout). Hence, one user belonging to this group is
removed from the system (pi D 0) and inserted in
the removed users group list (Krem). After that, the
remaining users atKout are reinserted in the system,
and the algorithm is restarted. After the exclusion of
some users, the condition Œuk.p

�
k
;p�
�k
/�0 D 0 for

all the remaining users will occur, and at this point,
the equilibrium is also a Nash equilibrium, but now
with

p�k D

�
pk ; if Œuk.pk ;p�k/�

0 D 0

0 if k 2Krem

For Algorithm 2, after the convergence, we have power
vector p, with pk 2 Œ0; Pmax�; 8 k, which denotes the allo-
cated power for all users. Again, to check if users achieved
the maximum efficiency, the first derivative of uk is com-
puted. If Œuk.pk ;p�k/�

0 D 0 for all users, then we have
uk.pk ;p�k/ > uk. Jpk ;p�k/;8k, with Jpk 2 Œ0; Pmax/,
and p is a Nash equilibrium, with p�

k
D pk ;8k. When

Œuk.pk ;p�k/�
0 ¤ 0 for one or more users, a second cri-

terion is analysed: if the achieved rate satisfies the mini-
mum rate (rk > rk;min), then pk D Pmax. In this case,
p is also a Nash equilibrium, because p�

k
> Pmax and

uk.pk ;p�k/ is strictly quasiconcave, Pmax is located in
the increasing interval, which means that uk.Pmax;p�k/ >
uk. Jpk ;p�k/. For the users that cannot achieve neither
maximum efficiency nor the minimum rate, the procedure
is the same as that described for case (2) of Algorithm 1.
After removing some users, the equilibrium achieved is
also a Nash equilibrium, and p�

k
has three possible values:

p�k D

8<:
pk ; if Œuk.pk ;p�k/�

0 D 0

Pmax; if Œuk.pk ;p�k/�
0 ¤ 0 and rk > rk;min

0 if k 2Krem

Given that discussion, we prove that our proposed game
presents a Nash equilibrium, and the allocated power vec-
tor p� depends on the chosen algorithms, as described in
Theorem 1. �

Uniqueness and Pareto optimality of the
Nash equilibrium for the two proposed
non-cooperative games

Proof . In the cases in which the equilibrium is achieved
without putting any user in outage, the strict quasiconcav-
ity and the one-by-one mapping between power and SINR
[7] ensure that no user is able to unilaterally improve his
own utility with any other power level pk ¤ p

�
k

.
For the cases in which users are put in outage, the pos-

sibility of multiple equilibriums occurs because it is highly
probable that two distinct users have different impacts on
the system interference level, because the fading channel
conditions are statistically independent, and removing one
user without a deterministic and well-defined criterion can
make the two algorithms present a non-deterministic game
equilibrium. In order to guarantee the equilibrium unique-
ness for the two allocation resource algorithms proposed,
we defined the following rule to deterministically remove
a specific user:

krem D arg min
j
fjhj j; 8j 2Koutg;

Krem krem (updating removed users set);
... updating Kout set;

With this rule, and the fact that the probability of two
users having the same channel gain is close to zero, we can
conclude that even for the cases in which it is necessary
to remove users, the Nash equilibrium obtained is unique.
Hence, the proof for Lemma 2 is completed.

The proof of the Pareto optimality can be found in
[9]; the equilibrium obtained with MF detector can be
improved if every user decreases the allocated power
by a small factor, given the selfish behaviour of the
non-cooperative solution. For DEC, because the SINR

Trans. Emerging Tel. Tech. 26:670–685 (2015) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/ett

683



Á. R. C. Souza et al.

achieved, given in Equation (5), does not depend on inter-
fering users power level, the selfish power allocation does
not affect the EE. �
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