This is the authors' version of the manuscript accepted in Computer Networks (2023).
Final publication can be found in doi: https://doi.org/10.1016/j.comnet.2023.110001.
© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0

Dynamic Slicing Reconfiguration for Virtualized
5G Networks Using ML Forecasting of
Computing Capacity

Juan Sebastian Camargo™*!, Estefania Coronado!%, Wilson Ramirez', Daniel
Camps', Sergi Sdnchez Deutsch!, Jordi Pérez-Romero?, Angelos
Antonopoulos®, Oscar Trullols-Cruces®, Sergio Gonzalez-Diaz*, Borja Otura®,
and Giovanni Rigazzi®

L j2CAT Foundation (juan.camargo, estefania.coronado, wilson.ramirez,
daniel.camps, sergi.sanchez)@i2cat.net
2 Dept. Signal Theory and Communications Universitat Politecnica de Catalunya

(UPC) (jordi.perez-romero@upc.edu)

3 Nearby Computing S.L.(aantonopoulos, otrullols)@nearbycomputing.com

4 Atos(sergio.gonzalez.diaz, borja.otura)@atos.net
® Cellnex Telecom(giovanni.rigazzi@cellnextelecom.com)
§ High-Performance Networks and Architectures, Universidad de Castilla-La

Mancha(estefania.coronadoQuclm.es)

Abstract. As 5G deployments continue to increase worldwide, new ap-
plications can fully leverage the exceptional features of the emerging mo-
bile networks. Ultra-Reliable Low Latency Communications (URLLC)
serve as an excellent example of applications highly sensitive to jitter
and packet loss. To meet these demanding requirements, 5G relies on
network slicing, network virtualization, and software-defined networks.
This ecosystem enables the precise allocation of resources for each net-
work slice. However, the applications’ resource demands may vary over
time. In this challenging and overwhelming environment, traditional hu-
man decision-making for slice reconfiguration is not suitable anymore,
due to the multitude of parameters and the need for extremely fast
response times. Machine Learning (ML) comes as a tool that can en-
able better use of the available resources with faster and more intelli-
gent management. This paper introduces an ML model that can predict
slices’ traffic and dynamically reconfigure computational capacity. With
these forecasting capabilities, the virtualized resources can be fine-tuned
to suit the slices’ requirements, guaranteeing their Quality of Service
(QoS). By doing so, Mobile Network Operators can make optimized use
of the equipment, tailoring their needs to each service while complying
with the QoS level. The results obtained demonstrate that the proposed
ML model, in combination with a specific set of hysteresis rules, can ac-
curately predict the saturation of virtualized capacity with up to 91%
accuracy and proactively adapt it to the network slice requirements.
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1 Introduction

Mobile Network Operators (MNOs) are trying to fulfill the ever-increasing net-
work technical requirements while adapting to service flexibility and reducing
the operational expenditures in their networks [1]. For that reason, as MNOs
look to reduce the cost, they also need to fulfill high service level agreements
from a wide variety of services and applications running in their networks. Under
this scenario, MNOs are currently facing an opposing problem: they need to pro-
vide highly differentiated and demanding services while at the same time being
limited in terms of network capacity. Therefore, to cope with such an extreme
scenario, Open RAN 5G architectures follow the principle of complementing
3GPP standards with virtualized elements, as described in [2].

While virtualization, orchestration, and network slicing appear as big op-
portunities to overcome these issues, they are also challenging technologies to
adopt [3]. However, virtualization generates an under/over provisioning dilemma
in the MNOs, as the allocated resources by the orchestration should be enough
to satisfy the Service Level Agreement (SLA) of a variety of applications, but at
the same time those resources should be the minimum possible, to save unwanted
operational and capital costs. One solution to balance these needs is to be able
to predict in advance the incoming traffic that services and applications will han-
dle, and then alert the network administrator to adjust the virtualized capacity
accordingly. Nevertheless, this approach still requires human intervention, whose
reaction time would be prone to high delays in the network’s reconfiguration. In
this regard, Machine Learning (ML) approaches have been proven to serve the
purpose of dynamism required in virtualized resource provisioning problems in
various orchestration and networking platforms [4, 5]. However, although several
works in this area have attempted to solve this problem, the number of incorrect
predictions due to too frequent and drastic changes in the resource demands,
create unnecessary operational costs and SLA breaches. Moreover, it must be
taken into consideration that most of the slicing reconfiguration management
systems proposed in the literature are evaluated under simulation or lab envi-
ronment testbeds, which cannot guarantee that the proposed solutions would fit
the requirements of real-world commercial 5G networks following internationally
accepted standards and equipment.

With that objective in sight, in this paper, we propose a network orches-
tration system that leverages an ML model to predict the computing resources
needed to be allocated to a specific network slice deployed under virtualized
equipment. In this way, the ML model allows the network orchestrator to dy-
namically adapt the slice computing capacity whenever the prediction crosses
a pre-defined threshold and the current virtualized resources are not enough
to maintain the Quality of Service (QoS) expected to be maintained for the
slices. Therefore, this paper pursues two main objectives: (i) to configure the
requirements of each application while guaranteeing the agreed Quality of Ser-



vice under such slice, avoiding hysteresis in the resource allocation operations
across time due to drastic and fast changes (typical from mobile networks); and
(ii) to use only the resources needed for each case, optimizing the network’s
capacity, and avoiding unnecessary expenses due to SLA breaches or resource
over-provisioning. This approach allows MNOs to predict the incoming CPU ca-
pacity and adjust it by setting different values to different slice types, optimizing
the resource utilization.

The rest of this paper is organized as follows. Section 2 describes the related
work in the field of ML-aided orchestration, the main gaps in the existing stud-
ies and the novelty of our work. Section 3 introduces the 5G architecture and
system model that our work takes a reference. Section 4 describes the proposed
ML model and its introduction in the networked system. Moreover, Section 5
discusses the test-bed used for evaluation and the obtained results. Finally, Sec-
tion 6 draws the conclusions.

2 Related Work

As thoroughly described in [6], the new virtual capacities of a 5G network have
led to a position in which the number of configurable parameters and configura-
tion variables is too complex for manual intervention. Additionally, the network
equipment capacity has been controlled and virtualized using Network Functions
Virtualization (NFV) and Software Defined Networking (SDN) respectively, gen-
erating a highly flexible management of the network. However, with virtualiza-
tion also comes the under/over provisioning of resources compared with the real
capacity needed on each piece of equipment. Consequently, in the literature, there
can be found several works that aim to tackle different angles of this problem.

On the one hand, the work in [4] describes an ML-based network resource
orchestration model that is in charge of predicting the incoming traffic per slice
and then assigning the amount of resources needed accordingly. The ML-model
is based on a three-dimensional Convolutional Neural Network (CNN) that uses
time as an input, allowing it to integrate a temporal variable that provides the
trend and proneness of cyclical use of the network into the learning mechanism.

On a similar line, the authors of [5] take the over-provisioning problem of
Docker-based apps deployed in Kubernetes and propose an ML model that allows
the detection of overbooking resources. Using the variables at the disposal by
the containerization tool, the authors use different classifier ML models that
allow them to find which of the different variables used as input are part of an
overbooked system.

Following this ML trend, the authors of [7] use two types of Long Short Term
Memory (LSTM) to predict the performance of the load of Virtual Network
Functions (VNF) in the pathway of end-to-end services. The authors compare
the performance of a traditional LSTM model against the Context and Aspect
embedded attentive Target LSTM (CAT LSTM). The classical LSTM uses only
the historical data of each VNF, whereas CAT LSTM uses the same historical
data plus the contextual historical data of the neighbors’ VNF. The basis of



neighbors’ data is also employed by the authors of [8], who introduce a Graph
Neural Network (GNN) to predict the future resource requirements of each VNF.
The model uses a set of network parameters (CPU, RAM, latency and call
drop rate) and as part of the pre-processing data, and generates a profile of the
parameter utilization. The model uses the profile of a given VNF component
and also the neighbors profile to predict the resource consumption of said VNF
component.

In the same trend, the work in [9] also predicts the VNF resource demands
using two LSTM models: the previously described CAT LSTM and the Target-
Dependent LSTM (TD LSTM). The authors also use a pre-processing method
to classify what data is the most important in the forecasting stage, helping
the predictors by only using the data that provides good results. Additionally,
contrary to the previously described methods, the input of the ML model is
not only a quantitative network parameter, but it is a combination of numerical
network information with a qualitative status of each of the VNF’s studied.

Along with the previous works, the paper in [10] uses an ML model embedded
in the orchestrator that works with a Reinforcement-Learning (RL) system. This
model takes scenarios and selects actions based on a reward system. The main
objective of the model is to observe the current network status and suggest
the best-use policy for the VNF associated. The RL agent analyzes different
values of the network, including the operational costs, bandwidth availability
and virtual links along with the new IoT service instantiation request. With
that information, the model can provide suggestions for creating or modifying
the existing VNF’s in a priority-wise approach.

In the same line, the authors of [11] propose also an RL model using a Deep
Neural Network that helps the model to perform adaptive provisioning of VNF
at the edge of 5G networks, while looking to maximize the throughput of the
VNEF. The model takes as input the information of the nodes and the edge in-
frastructure, along with the delay requirements of the applications. Additionally,
the work also highlights the flexibility capabilities of the ML models, as the tests
take into consideration training the model for a specific VNF and Edge network
and, without re-train the model, the VNF and the Edge size are changed.

Following the Kubernetes approach, the authors of [12] take advantage of the
already in-built auto-scaling feature in the containerization platform. By using
a winner-takes-all approach, the authors create a competition of different ML
models and then, the model that better suits the current situation is chosen as
the final predictor. The authors also show that with this forecasting information,
it is possible to improve the built-in auto-scaling feature and significantly reduce
resource provisioning issues.

It is worth noticing that the works in [5] and in [12] do not evaluate the
impact of network traffic on the overall resource utilization of a 5G network.
This is an important difference with respect to the work presented in this paper,
which uses forecasting techniques to detect over utilization of resources under
different traffic schemes in a 5G virtualized network.



Similar to the work presented in this paper, the authors in [13] also use an ML
for predicting both resource usage and performance of a virtualized Fog-to-Cloud
Environment. However, their approach is different from this study because: 1) a
virtualized 5G access network aligned with the O-RAN vision is not used; 2) dis-
tinct network traffic schemes were not considered.

Centering on the O-RAN environment, the authors of [14] present an exhaus-
tive description of the current cellular technologies and compare and contrast
them with the incoming of O-RAN architecture. The authors also show the
evolution of mobile networks and present the current challenges and the future
opportunities to adopt the O-RAN architecture. About the current O-RAN ar-
chitecture, the study presented in [15] provides a comprehensive overview of the
O-RAN solution, giving a detailed description of the architecture, the various
interfaces, and security considerations at each stage of the architecture. The
authors’ study highlights how the O-RAN architecture and interfaces help in
integrating Artificial Intelligence (AI) and ML techniques creating a new intel-
ligent RAN. Following with ML line, the authors of [16] face the challenges and
potential risks of the ML life-cycle while implementing AI in an O-RAN archi-
tecture. The authors use as a base the already existing principles for ML Ops
and tweak them to the new O-RAN environment.

Regarding slicing, the authors of [17] propose a case of network slicing in an
O-RAN architecture. The slicing approach is performed solely in the RAN do-
main, looking to optimize the physical resources and power allocation of the radio
units. The optimization problem is then solved using a mixed-integer non-linear
programming and then validated using a simulation. It is worth noting that us-
ing a traditional optimization solving method could potentially not be suitable
for a real-life implementation, due to the lack of flexibility of the methods, the
high level of fine-tuning of the models, and the long time spent to provide de-
cisions that are required to be made in real-time. By using ML, this problem is
overcome thanks to the high level of adaptability, flexibility and a more suitable
time frame to provide decisions of ML models, as used in our approach.

Another work using ML in an O-RAN architecture is presented in [18], where
the authors use an ML model to perform an early attack detection working
alongside the O-RAN intelligent controller. In this case, the authors focus only
on the classification of the incoming traffic through the air interfaces and, taking
advantage of the modularity of the O-RAN architecture, stop the attack before
it reaches higher instances of the network. Slicing is, however, out of the scope
of this work.

Having considered different solutions for the adaptive configuration of re-
sources in virtualized environments, the work presented in this paper shows a key
advantage: it has been specifically designed to meet the elasticity requirements
of network slices (allowing to meet strict SLAs while minimizing the resource
usage and the investment in equipment), and it has been tested under a real
implementation of virtualized 5G networks, following internationally accepted
standards and in line with the current state of the art of 5G architecture. By
implementing the model proposed in a real deployment site, we guarantee that



no bias or gap could have arisen from testing it in a simulation platform or other
type of specifically designed testbeds. Additionally, several studied methods have
included the historical information of the predictors to improve their forecasting
accuracy. However, forecasting is not 100% accurate and in some cases, it might
generate false positives, instances where an increase in forecasting is predicted
but in reality, the traffic does not increase. These false positives could generate
a bad impact on the performance of the network as actions would be taken, but
variations in the traffic managed would not fit said actions, therefore creating
additional unwanted operational costs. In this regard, different from the rest,
we have included an innovative hysteresis set of rules that allows the prediction
system to minimize the number of false positives and generate a more reliable
predicted value.

3 System Overview

In this section, we describe the 5G system used in this work along with a func-
tional description of each of the building blocks present, discussing their impor-
tance in the forecasting method. In addition, we delve into the reason behind
using ML techniques as a means to tackle traffic prediction and how it can be
used as an enabler of network reconfiguration.

3.1 System Model

The system model envisioned in this work is depicted in Figure 1, which con-
tains all the building blocks of the network presented. In particular, this system
represents a virtualized 5G network aligned with the O-RAN vision, composed
of the service management and orchestration framework, the network function
layer and the key technical enablers. On the one hand, the infrastructure layer
refers essentially to the cloud infrastructure, i.e., the Network Function Virtual
Infrastructure (NFVI). On the other hand, the network function layer contains
the basic 5G network stack, comprising the radio access network, the core net-
work and the application servers. Finally, the key technical enablers contain the
building blocks added in this work (together with the non-RT RIC) to the service
management and orchestration framework, namely the System Orchestrator, the
Slice Manager (SM), the telemetry and data collector, the message broker, and
the ML Framework. It is worth highlighting that the elements introduced in the
system model are fully compatible with the O-RAN architecture. The reason
for this is that the AI/ML Framework and the telemetry collector represent a
west interface towards the orchestrator, which interacts with the NFVI, if man-
agement operation are required. Therefore, no changes are introduced to the
O-RAN elements and interfaces.

In this context, a network slice is provisioned through the Orchestrator and
a Slice Manager, which deals with the compute resources and access network
resources of the network slice, respectively. After the network slice is provisioned,
telemetry data is periodically sent from a Telemetry Data Collector to a Message
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Fig. 1. Main building blocks of the proposed system model.

Broker. This data reflects the performance of the network slice, that is, the
virtual elements (in this case Kubernetes Pods), and the physical servers where
the pods are running.

A more detailed figure of the architecture is illustrated in Figure 2, where
the joint vision of the network and compute resource orchestration, and actu-
ation over network infrastructure/components, together with the AI engine is
provided. The next subsections describe in detail the relationship between the
various building blocks.

The selected telemetry data is sent to the ML Framework, where it is pro-
cessed, analyzed and shared with the specific ML model handling this manage-
ment operation to detect a possible alarm concerning the under/over-utilization
of computational resources. This alarm might be caused by a sudden increase
in traffic between the User Equipment (UE) and the applications running in
the core. The main objective of the ML model in this work is to anticipate
the increase or decrease in the incoming CPU capacity, so the network can ad-
just the virtualized resources accordingly. In case an alarm is predicted, the
ML model informs the Orchestrator about it, which triggers the reconfiguration
of the computational resources, guaranteeing the conditions agreed upon such
slice and providing a tailor-made distribution of the network resources. For more
information regarding the ML model, the reader is referred to Section 4.

3.2 Slicing Implementation

The slicing model envisioned in this work involves the allocation of both com-
puting and radio resources in an End-to-End (E2E) manner, together with the
provisioning of the required Virtual Network Functions (VNFSs) for the network
functioning. The SM is the module responsible for this task, and a key ele-
ment in the 5G network architecture presented in this paper. It allows three
key points: (i) seamless management of the network resources required by each
network slice; (ii) deployment of services and applications for different verticals
within the slices; and (iii) creation and management of network slice instances.
In the 5G architecture studied in this paper, the SM acts as a proxy between the
orchestrator (in charge of the computing -or infrastructure- resources, referred
also as slice computing chunk) and the non-RT RIC (in charge of the radio re-
sources, also named slice radio chunk) to allocate the resources needed by a slice.
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Fig. 2. Detailed network architecture overview.

Furthermore, the Slice Manager is responsible for the configuration of the core
network and the initiation of the small cells, which is an essential step to provide
full connectivity to any UE.

3.3 Orchestration Layer

The orchestrator is responsible for managing the Network Service (NS) life-cycle,
along with the VNF life-cycle, supported by the VNF Manager (VNFM), and
orchestrating Network Function Virtualization Infrastructure (NFVI) resources
supported by the Virtualization Infrastructure Manager (VIM) to ensure an
optimized allocation of the necessary resources and connectivity. Therefore, the
orchestrator’s functions can be classified into two main categories: E2E resource
orchestration, and NS orchestration. The orchestrator is also responsible for
guaranteeing adequate NS performance and fault management, as well as VNF
package management.

To perform the actions described above, the orchestrator is composed of
three main modules: (i) the secure provisioner, which provisions the node (e.g.,
installing the operating system, Hardware acceleration drivers, etc.); (ii) the SLA
manager, which is responsible for guaranteeing the SLAs of the different tenants;
and (iii) the service placement manager, which decides the optimal locations
for the services to be executed. In addition, the orchestrator receives different
kinds of requirements and information, i.e., from customer-driven requirements
to location-aware information (e.g., power constraints) and service-level KPlIs.
Based on this information, the orchestrator can communicate with external en-
tities (e.g., SM or an ML engine) to make the reconfiguration actions during the
service lifecycle.



The reconfiguration actions regarding the network slice can be achieved
through the ML control loop. To this end, the orchestrator monitors and collects
all the monitoring data, KPIs, and logs exposed by the different components of
the slice. This data is published in a telemetry time-series database (such as
Prometheus) that can be used as input by an ML model. An ML model fed with
this data is trained to raise alarms, which are published in a message broker. The
orchestrator allows the user the definition of rules that, based on these alarms,
enforce proactive reconfiguration of the network slice before an event happens.

3.4 Non-RT RIC

The Non-real-time RAN Intelligent Controller (Non-RT RIC) is a functional ele-
ment defined by the O-RAN reference architecture [19], in charge of enabling the
configuration of the disaggregated radio functions, i.e., Centralized Unit (CU)
and Distributed Unit (DU), through the O-RAN O1 interface, as well as man-
aging radio related policies deployed in the Near-real-time RIC (Near-RT RIC)
through the Al interface. In this work, we focus on automating radio configura-
tions using the O1 interface. Moreover, dedicated network slices are provisioned
leveraging the Multi-Operator Core Network (MOCN) functionality available in
the base stations. In essence, deploying a new slice consists of deploying a ded-
icated core network instance, using the orchestrator and configuring the base
stations that are part of that slice to add the core network’s Public Land Mobile
Network ID (PLMNID) to their list of radiated PLMNIDs and to include the IP
address of the deployed core networks in its list of MOCN adjacency.

3.5 Telemetry Data Collector

The Telemetry Data Collector oversees the monitoring of both physical and vir-
tual resources of the network slice. The telemetry data collected is made available
for the ML algorithm to improve specific KPIs of the network. As mentioned in
Section 3.3, the Orchestrator publishes on this element the telemetry data.

The Telemetry Data Collector can be viewed as a real-time data collection
from various components of the architectural layers. Therefore, two relevant
components are the Network Data Analytics Function (NWDAF) and the Cen-
tralized Management Data Analytics Function (C-MDAF), where the first one
is a well-specified component of the 5G Core network according to 3GPP spec-
ifications. The NWDAF collects data from and provides network data analytic
services to 5G core Network Function (NF). The C-MDAF is provisioned with
all the centralized telemetry capabilities, located at the Management, Orchestra-
tion and Automation layer. In this context, a particular NF can subscribe to the
C-MDAF as a consumer to collect or provide management data for forecasting
or resource information purposes.



4 ML Pipeline in the Networking System

In this section, we describe the ML pipeline proposed in the system. In particular,
we first discuss the rationale of the ML model built for the proactive adaptation
of virtualized resources in mobile networks using forecasting models, covering the
design proposed and the training process. Then, we describe the ML framework
embedded in the network to facilitate not only the development but also the
native deployment of AT/ML models.

4.1 Conceptual Design

The objective pursued in this work focuses on the design of a closed control loop
able to reconfigure the virtualized computation capacity of a networking system.
This work envisions an O-RAN-like mobile network as the one described in
Section 3, in which several network slices with distinct requirements are deployed
E2E, from the core to the radio units. The layout of the various slices is depicted
in Figure 3, and as can be observed there, each slice is fully isolated from the
RAN and core network perspective. All the slices leverage the NFVI resources,
as specified in their SLA, and consume the services offered by their respective
deployed applications.

Taking as a reference the above definition, we aim to analyze the KPIs of the
network infrastructure and the applications deployed in each of the slices that
have a direct relationship to the use of computational resources, and more in
particular, to the CPU consumption of the slices. Based on this analysis, the main
goal is to design a forecasting ML model able to anticipate the events causing
under- and over-provisioning of the resources allocated to slices. Moreover, the
ML model must proactively provide customized resources for every slice’s needs,
while helping guarantee optimized use of the network resources.

4.2 ML Pipeline Hosting

The increasing demand for AI/ML control loops requires dedicated architectural
building blocks to facilitate all the different ML model development operations,
including the data ingestion, training, evaluation and execution of the ML algo-
rithms at every network level. To that end, we have developed an AI/ML frame-
work based on open libraries and standards, including a set of open interfaces
for integration with all the different network components of the architecture.
The AI/ML framework presented in this paper is based on TensorFlow [20], the
most widely adopted open-source set of libraries and toolkits for numerical com-
putation and large-scale machine learning. TensorFlow ingests the data in the
so-called tensors, which are multidimensional arrays of high dimensions, allowing
TensorFlow to easily handle large amounts of data.

The architecture of the proposed AI/ML Framework is detailed in Figure 4.
The first building block is the AI/ML Pipeline Orchestration Platform (POP),
which is based on Apache Airflow [21] and allows the AI/ML developer to pro-
grammatically and sequentially run, schedule and monitor AI/ML pipelines in
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the form of Direct Acyclic Graphs (DAGs). A DAG is a collection of tasks you
want to run, properly organized and connected, reflecting relationships and de-
pendencies.

The second building block is the AI/ML Automated Model Deployer (AMD),
which interfaces the POP with the serving infrastructures. The AMD is in charge
of creating a serving instance of new models on the AI/ML Model Serving Plat-
form (MSP) or update already served models to a newer version. The MSP is the
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building block in charge of serving the ML models. It includes a Message Broker
(MB) based on RabbitMQ [22] and an instance that enables the simultaneous
serving of multiple models, managing the versioning and model labeling, and
enabling the separation of testing and production environments.

In the ML network reconfiguration scheme described in this paper, we have
used the MSP data bus of the MB, as depicted in Fig. 5. Following this architec-
ture, the ML model’s input of the MB interfaces with the Prometheus instance
using the Prometheus REST API [23]. This enables the ML model to periodi-
cally retrieve the (real-time) telemetry data collected. Conversely the output of
the ML model, which represents a probability of alarm, is periodically published
by the MB on the MSP data bus. Consequently, the orchestrator receives the
output from the ML model to initiate network infrastructure reconfiguration
when necessary directly interacting with the NFVI.

The last building block of the AI/ML Framework is the Data Visualization
Platform (DVP). It is formed by Prometheus [24] and Grafana [25] and allows
the user to monitor real-time metrics from the POP and the MSP, including
basic metrics like resource utilization, inference requests per model, incoming
and outcoming messages in the MSP data bus, etc.

All the aforementioned building blocks have been developed as Docker con-
tainers that can be easily deployed in a Kubernetes environment. This fact makes
this solution highly portable and scalable, enabling the effortless orchestration
of each element individually scaling the resources on demand, and replicating
the containers for load balancing and reliability purposes.

We acknowledge that in a fully deployed, production-level O-RAN architec-
ture, the model would exclusively interact with the Orchestrator. The Orches-
trator would then communicate with other nodes in accordance with established
standard protocols, such as O1, O2, and Al interfaces, as specified by the O-
RAN Alliance and 3GPP. Consequently, there are no other interactions between



the proposed ML model and any other entities in the O-RAN architecture, as
the output of the ML model does not affect the management and control of the
radio nodes. The O-RAN Working Group 2 has standardized the ML/AT work-
flow to facilitate the interaction between ML models and the specific O-RAN
architecture, as described in [26]. Following this scheme, data is acquired from
the O1, Al, and E2 interfaces and stored in extensive datasets, typically cen-
tralized repositories referred to as data lakes. These repositories serve as sources
for data storage, enabling extraction when required. Our ML model requires
specific configuration of input data, and to fulfill this requirement, the O-RAN
specifications include an initial step of data pre-processing or preparation. Dur-
ing this step, the collected data, both for training and online inference purposes,
undergoes shaping and formatting to align with the input size of the AI/ML
model under consideration. After completing the inference stage, the ML model
sends the necessary actions to the corresponding entity. Configuration manage-
ment tasks are executed via the O1 interface, policy management is facilitated
through the A1 interface, and control actions or policies are transmitted via the
E2 interface.

It is important to note that if the capabilities of this ML model are extended
in the future to also account for the management of the radio resources allocated
to a given slice, the orchestrator would communicate this decision to the Non-RT'
RIC using the E2 interface, which would then take the corresponding actions on
the radio configuration.

4.3 Data Preprocessing

An extensive process has been performed before the model training, with two
main objectives: (i) online data acquisition, and (ii) offline data preprocessing.
The testbed used for this data acquisition step is described in Section 5.1.

The data acquisition process has been carried out online by deploying an Iperf
server as the application requested on a particular instantiated slice, and an Iperf
client on the UE connected to such a slice. This choice in the application seeks
to enable in the slice a variety of bitrates generated by various traffic types,
including TCP and UDP. This application has been deployed by the network
orchestrator on a container, together with a Python script that is in charge of
tuning the parameters used by Iperf for the data collection. The data collection
has been organized into different s tages o n w hich t he a forementioned traffic
parameters are modified, gathering a dataset with a total duration of around 8
hours. The traffic injected, as well as the virtual in frastructure resource KPIs,
have been retrieved every 5 seconds by using a Prometheus server deployed along
with the VIM.

At the beginning of the data collection process, the server has been initialized
with the lower bound of the bitrate range envisioned (10 Mbps), while the script
is additionally responsible for selecting with a 50% probability whether the traffic
generated is TCP or UDP. The use of two types of traffic aims to show if, in
addition to the bitrate injected, the transport protocol employed also impacts
the network resources. This bitrate is maintained for 180 seconds, and then



randomly increased or decreased in the range of [10 - 100 Mbps]. This process of
modifying the bitrate value is performed five times after which the script forces
the Iperf application to select again the traffic type (i.e., TCP, UDP) to be used
and restarts the operation.

Initially a total of 18 network parameters have been obtained as a result
of the data collection. Six of these parameters are linked with the status of
the Kubernetes node in which the slice is allocated, while the remaining twelve
are bound to the infrastructure dedicated to the application of the slices. This
Prometheus output has been parsed to obtain a time-series dataset that can be
used for training and validation purposes.

Following the data collection, an important preprocessing step is to discern
which of these collected parameters have a direct impact on future values of
the CPU usage. This step has been carried out by using the Granger causality
test [27], which is a statistical hypothesis test designed to determine if a time
series can be used to forecast another. This test has been performed to find the
subset of available parameters that can be useful to predict future values of the
container CPU usage seconds variable. Results have indicated a subset of 7 of
these parameters, namely node memory percentage, node long-term load, node
midterm load, container file system usage bytes, container memory usage bytes,
container network transmitted bytes, and container CPU usage seconds itself.

We have further reduced the number of parameters to use for the CPU usage
forecasting, limiting them to two, which represent the input of the ML model:
container network transmitted bytes and past values of the container CPU usage
seconds itself. This selection has been made after some manual experimental and
visual analysis of the 7 preselected parameters. Both selected features have been
found to affect in a major way the status of the CPU in future time steps.

4.4 ML Model Description

In this paper, we use Neural Networks (NN) for predicting the computational
resources of a slice [28]. The rationale behind the adoption of NNs is twofold:
(i) the use of NNs substantially reduces the manual actions related to both
control and management of 5G networks [29]; and (ii) compared with other non-
linear forecasters, NNs provide higher accuracy levels. Specifically, the ML model
presented in this work is based on a Feedforward Neural Network (FNN), which
is a model where information flows in only one direction; this is, from the start
node going through the hidden layer nodes until the final nodes ( without any
type of feedback or closed loops).

The FNN employed in this work is composed of one input layer with 30
neurons, followed by a hidden layer of 64 neurons and finally an output layer
with a sigmoid activation function. The input of the FNN is obtained from
two Prometheus metrics (as described in Section 4.3): CPU usage seconds and
container network transmitted bytes. 15-time samples of these two metrics are
gathered, and each sample is linked to an individual neuron. Therefore, 30 neu-
rons in total are used as inputs of the model. Several time sample numbers have



been tested and used, but the best results are obtained while using 15 as the
time sample number.

The value of the output layer of the ML model represents the probability
(i.e., a value between 0 and 1) of having an alarm in the next 30 samples in
a network slice. An alarm is defined as a sudden and drastic increase in CPU
consumption. This can occur due to an increase or decrease in traffic from the
UE to the application running in the containers and/or due to bad planning
regarding the computational resources allocated to the slice. If the probability
exceeds a predefined threshold value, the ML model’s output will trigger an
alarm, prompting the orchestrator to adjust the computational resources within
the NFVI of the slice. This adjustment aims to handle the incoming network
traffic while ensuring the quality of service for established slices and improving
network throughput. To further improve the accuracy of the FNN, the dropout
is set to 10%. Therefore, in every batch size run (training the model using the
defined batch size once), one out of ten randomly selected neurons is turned off.
This random selection is performed to avoid the overfitting of the results, as
when the NN works with different neurons off, it becomes more robust.

5 Experimental Evaluation

In this section, we describe the testbed used to evaluate the method proposed
in this paper. Moreover, we discuss in detail the experimental results and their
impact on the overall network throughput. To show how the ML closed control
loop reconfiguration works and how the computational resources of the contain-
ers can be fine-tuned to each slice, we have defined a set of experiment settings,
whose methodology is described in the section.

5.1 Real-world Testbed Description

The testbed introduced in this section is used for both data acquisition during
the training phase of the ML model in Section 4, as well as for its validation and
performance evaluation.

The physical deployment is located at the Castelloli Parcmotor test track,
a circuit near the city of Barcelona (Spain) usually employed by carmakers for
vehicle stress-testing and validation sessions. Two sites in the circuit were se-
lected: the control room and one of the cell sites, connected through a microwave
link used as backhaul of the network. The control room accommodates servers
specifically designed for virtualized mobile networks at the Edge, namely Lenovo
ThinkSystem SE350 Edge Servers [30]. In our experiments, we have used two of
these servers. They were initially provisioned with CentOS as the base OS, and
Kubernetes as the VIM. For the orchestration, we have installed the state-of-the-
art NearbyOne platform [31], which can provision and monitor the bare-metal
servers, CIM nodes and the apps running in containers. The monitoring data is
stored in a Prometheus database and is available for the ML-Engine for predic-
tive actions.



On the other hand, the 5G access layer is based on a virtualized Open RAN,
including an Accelleran dRAX (version 2.1), and Small Cells model E1000. This
radio has been demonstrated to be appropriate for various types of wireless net-
work deployments: from sparsely populated areas to capacity-constrained and
ultra-dense scenarios. This small cell can be easily configured to work in rural en-
vironments using high-gain directional antennas or in urban/suburban environ-
ments using omni-directional antennas. This second configuration is particularly
useful when addressing capacity-constrained and ultra-dense deployments. The
radio also supports most of the Time-Division Duplexing (TDD) and Frequency-
Division Duplexing (FDD) bands, with a particular emphasis on the 3.5GHz
worldwide mobile capacity in B42, B43, and the B48 CBRS/OnGo variant. For
the specific deployment, the selected frequency band was 3400-3420 MHz with a
20 MHz carrier (B42 band) [32]. We have used the servers as the physical devices
in which to instantiate the virtualized entities previously described (i.e., non-RT
RIC, SM, Orchestrator and the Telemetry Data Collector), helping us also to
deploy a real-world multivendor, disaggregated Open RAN with a 5G core based
on the Druid Raemis 4G/5G solution, which is 3GPP-compliant, as described
in [33].

There are two key advantages of deploying the scenario in a real-world loca-
tion, following a 3GPP architecture standard: first, even if the data of the model
is obtained in a test scenario, the results obtained are closer to a real commercial
deployment of a 5G network, as opposed to just testing the model in an enclosed
simulation environment; second, by testing the model in an architecture com-
pliant with international specifications, we can guarantee the compatibility of
the model with said standards and the possibility to escalate it on commercially
launched architectures.

5.2 ML Model Evaluation

In the following lines, we describe the experiments and the rationale behind
the design and tuning of the proposed ML model. It is worth mentioning that
the values of the CPU usage (measured every 5 seconds) normally have high
fluctuations over time. As a result, the accuracy of the prediction of CPU usage
is not a trivial task. Another challenge is the quickness of the prediction since
the ML model must predict the high increase in CPU usage as soon as possible
to trigger the required reconfiguration actions, hence minimizing the negative
impact on the network throughput. To cope with both accuracy and quickness,
the training of the ML model has been tackled by creating two new variables:

— An alarm variable with values {0,1}. At each time step, this variable has
value 1 if the value of the feature CPU usage seconds surpasses a pre-defined
threshold, where the CPU usage seconds is defined as the CPU time con-
sumed per CPU (for each Kubernetes POD) in seconds.

— An alarm-next-30 variable with values {0,1}, where the value 1 means that
there is at least one alarm within the next 30 time steps (i.e. at least one of
the thirty following samples has the alarm variable set to 1).
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Fig. 6. Input variables and ground truth label used during training. The alarm variable
is also represented for comparison purposes with the ground truth label.

The variable alarm-next-30 has been introduced because it is more stable
than the alarm variable. In this way, the initial problem of forecasting a CPU
usage value has been adapted to a simpler binary classification task. Within this
new task, the model takes as input the past values of both the container network
transmitted bytes and CPU usage seconds KPIs and outputs a value indicating
the probability of an alarm happening in the next 30 time steps. Notice that the
purpose of the alarm variable is to create the alarm-next-30 variable, but only
the latter has been used during the training of the model. Figure 6 shows an
example of both input variables during six minutes (360 seconds), the ground
truth label and the alarm variable, where the x-axis represents the sample time
(time steps). Notice that the alarm-next-30 variable is much more stable in time
than the single alarm variable. The container network transmitted bytes and the
container CPU usage variables have been normalized to fit in the figure.

The training process of the FNN involved an iterative algorithm that adjusts
the network parameters (weights and biases) to minimize the difference between
the predicted output and the actual output of the network on the training data.
This is achieved using a technique called backpropagation, which calculates the
gradient of the loss function with respect to the network parameters and updates
them accordingly using an optimization algorithm such as stochastic gradient
descent (SGD).

Figure 7 shows the training process of the FNN. As we can see, the validation
error is lower than the training error, usually an indication that the model is
generalizing the information appropriately. Additionally, both errors tend to zero
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Fig. 7. Input variables and ground truth label used during training. The alarm variable
is also represented for comparison purposes with the ground truth label.

in the long term, suggesting that the FNN model has learned to fit the data in
a good way. We have used binary cross entropy as a loss function because our
goal is to predict a binary output (0 or 1) based on the set of input features. The
use of binary cross entropy as the loss function is motivated by the fact that it
is well-suited for measuring the dissimilarity between the predicted and actual
outputs, as it penalizes large deviations from the true values more heavily.

Once the ML model is trained, we have observed that it provides outputs that
can be considered unstable over time, meaning that the output of the model can
vary from nearly 1 to nearly 0 and vice versa between consecutive time steps.
Therefore, a set of hysteresis rules have been defined to address the negative
sudden variations in the ML output.

Every output of the model is stored in a buffer of historical predictions. This
buffer works as a FIFO queue with a fixed size n, and its values are considered
to make the final decision of future time steps. Similarly, the average of the CPU
usage seconds variable in the last n samples is computed at each time step. To
smooth out the noise in data, the average is calculated by replacing each data
point with the average of its neighbor values in a moving kernel.

With the historical predictions buffer, the CPU average and, being prediction
the output of the model at the current time step, the hysteresis rules are applied
as follows.

— If prediction > 0.8 (i.e., high probability of alarm in the next 30 time steps),
then the average CPU usage is checked. The final hysteresis prediction is set
to 1 if this average is above a certain threshold, otherwise, it is set to 0. This
rule helps to filter out false positive outcomes of the model when the CPU
usage has no sign of stress. We must remark that the 0.8 threshold is based on
extensive simulation results, where several experiments with different types
of traffic were conducted.

— If prediction < 0.8 (i.e., low probability of alarm in the next 30 time steps),
then the buffer of the historical predictions is checked. If there is at least
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Fig. 8. Comparison between the ML raw output and the final ML prediction after
applying the hysteresis rules.

one alarm prediction in the buffer, the final hysteresis decision is set to 1,
otherwise, it is set to 0. In other words, it forces the model to output sev-
eral no-alarm decisions consecutively before considering that an alarm is no
longer present. This rule is useful for filtering out false negative outcomes
when there is still a situation of alarm.

Figure 8 shows an example of the behavior of the ML model and the final
decision once the hysteresis rules are applied. Notice that the raw output of
the model is shown in color orange and the final prediction after applying the
hysteresis rules is depicted in green. The alarm ground truth, which refers to
the alarm-next-30 is represented in red. Finally, the container CPU usage (blue
color) has been normalized to fit in the figure.

Additionally, accuracy results on test data have been computed using the
definition of balanced accuracy score given, as described in [34], by the following
equation: P N

1 T T
2(TP+FN+TN+TP) (1)

where TP, TN, FP, FN correspond to the True Positive, True Negative, False
Positive and False Negative predictions after applying the hysteresis results.
Balanced accuracy is a much more accurate metric than normal accuracy when
working with unbalanced datasets. This is exactly the case in this work, since
there is a clear majority class (i.e., negative outcome meaning “no-alarm”) and a
minority class (i.e., positive outcome meaning “alarm”). In binary classification
tasks such as the one in this paper, the balanced accuracy metric is equivalent




to the arithmetic mean of the true positive rate (or recall) and the true negative
rate. Table 1 depicts all the aforementioned metrics. In this regard, we have
drawn the following conclusions about the obtained results:

— The true negative rate indicates an overall great performance when it comes
to the avoidance of false positive outcomes. Although there are still some of
them, this issue can be further addressed, for example, by requiring a mini-
mum number of consecutive positive outcomes before triggering an alarm.

— The true negative rate shows that there is still room for improvement to re-
duce the number of false negative outcomes. However, we have observed that
all of the “alarm” CPU usage peaks have been correctly detected, although
not with 30 samples of anticipation as the ground truth requires.

Table 1. Accuracy metric results of the ML model on test data.

Raw Balanced True Positive True Negative
Accuracy Accuracy Rate (Recall) Rate
[0.980 [0.915 0.839 [0.991

5.3 Impact of the ML Model on the 5G Network Performance

To properly evaluate the benefits of the proposed ML model regarding the overall
network performance (specifically on the network throughput), we conducted the
following experiments. We deployed two different slices in our testbed. Each of
these slices has its pool of resources assigned (compute chunk, access network
chunk, core network chunk).

The full life cycle and configuration of the different components is managed
by the Orchestrator. From the bottom up, the server’s HW configuration, its
operating system and the deployment of the containerized RAN, core, applica-
tions, and slices are managed and monitored by the Orchestrator. The slices
configured for the experiment are assigned limited CPU resources. We remind
the reader that, in this work, capacity forecasting is specifically focused on the
CPU resources assigned to the compute chunk. In this regard, and to show the
bandwidth degradation and the impact of dynamic slice provisioning, only the
second slice is monitored by the ML-powered closed-control loop. By contrast,
to focus on the ML model’s decisions regarding the infrastructure resources, and
be able to extract proper conclusions, we have dimensioned the radio access and
core network chunk’s resources large enough, so that they do not constitute a
bottleneck for the bandwidth values considered in the experiments.

Notice that for the first slice, which has fixed computational resources, and
does not have the ML closed control loop, we observe severe bandwidth ser-
vice degradation (65 Mbps) when the CPU resources assigned to the compute



ode  b2405b30-e162-030-27cc-26bl0(08d095 ¥ slice  slice2

CPU Alert Prediction (booleon)

1532 1533 1534 1535

Sllce: Compute Chunk Resources (CPU Cores)

1533 1534

slice CPU [rate] (CPU Corea)

1833 1634
Slico Notwork [rate] (Mbps)
100 Wil
S0 Ml
0

1530 1531 1532

== RX (f0) == Rx (fole) = T (fole) =T« (falo)

Fig. 9. Grafana snapshot with a triggering event example.

chunk become the bottleneck. Hence, the UE is not able to achieve its maximum
throughput. However, for the second slice (which has the ML features), the ML
closed control loop triggers the resizing of the compute chunk. As a result, the
Orchestrator deploys a new pod with increased CPU resources. Only after the
new pod is running, the first instance is removed and the Iperf download can
switch to the new Iperf server. This will enable the UE to achieve its maximum
network throughput.

Figure 9 shows a triggering event from the point of view of the orchestrator
and its Grafana dashboard. On the top row, under CPU Alert Prediction, it
can be seen how at time 15:36 the ML-Engine algorithm identifies an alarm
pattern that triggers the rule in the Orchestrator. Hence, the consequent pod
for this slice is resized from 0.2 to 1.0 CPU cores. At the bottom row in the same
figure, i.e., Slice Network RTx (Mbps), it can be observed that after the iperf
client detects the change, it reconnects to the new pod. During that transient
period, the bandwidth falls initially, but it is able to recover and increase the
previously obtained bandwidth. This transient period, where performance seems
to degrade, can be explained by the fact that we are using a simple iperf client
script with no kind of support to handle these updates proactively. Until the
initial iperf connection timeouts, it does not try to reconnect. In this sense, it
is possible to state that the proactive reconfiguration of the resources required



in the compute resources of the slice results in an increase of the network slice
performance, reflected by an almost 4x enhancement (as depicted on the bottom
of Fig. 9).

6 Conclusions

In this paper, we introduced an ML model capable of successfully forecasting
the over-utilization of computational resources in virtualized 5G networks. This
ML model has the potential to be a key asset that can be leveraged for network
reconfiguration actions in future virtualized wireless networks, providing the
ability to properly fulfill the QoS of the slices while providing a way to optimize
the network resources. Our test experiment was conducted in a real testbed
located in Castelloli, Spain, which is based on a virtualized 5G wireless network
and a Kubernetes infrastructure using baremetal servers.

The results obtained indicate that a Fully Connected Neural Network with
a single hidden layer and some simple post-processing hysteresis rules can ac-
curately detect the saturation of computing resources, achieving up to 91% bal-
anced accuracy and close to 84% recall (true positive rate) for both TCP and
UDP traffic. Therefore, this paper demonstrated: (i) the impact that network
traffic has on the computational resources allocated to a slice on the obtained
throughput; and (ii) the successful use of an ML-based prediction model that
supports the automatic reconfiguration of the computational resources. Notably,
the performance results obtained are independent of the number of slices, as the
ML model’s prediction is executed separately for each slice.

It is important to note that, due to the flexible capacity of the ML model
used in the prediction of the CPU alarm, the analyzed feature can be easily
replaced. This means that with some small changes, the model would be able to
predict another feature of the network without any core changes in its design,
enforcing its adaptability and flexibility.

As a future line of work, we plan to extend the proposed ML model to go
a step further regarding slice reconfiguration. To this end, we envision an ML
model capable of detecting not only the saturation of computational resources,
but also of providing as output: (i) the amount of computational resources that
must be reassigned; and (ii) the most suitable Kubernetes container from which
resources can be allocated according to application requirements and constraints,
enhancing the ability of the network to provide QoS to specific slices or services.
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