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Abstract— Beyond 5G (B5G) communication networks 
face the challenge of meeting the demanding requirements of 
various service types, including uRLLC, mIoT, eMBB, and 
emerging technologies like Extended Reality (XR). Edge 
computing can address these demands effectively because of 
the ability to bring computational power and resources closer 
to the source of data. Nevertheless, the realization of this 
potential necessitates an open, flexible, and automated 
architectural framework capable of supporting disaggregated 
applications and network designs. In this context, this paper 
introduces a novel architecture designed to advance the 
evolution of edge computing in B5G, developed within the EU-
funded project VERGE. The proposed architecture is 
modular and scalable, guided by artificial intelligence (AI), 
and founded on three essential pillars: "edge for AI," "AI for 
edge," and "security, privacy, and trustworthiness for AI." 
After presenting this architecture, the paper showcases its 
applicability through the examination of two vertical use cases 
within the industrial and transportation domains. 

Keywords— Edge computing; AI/ML-based optimization; 
security and trustworthiness; B5G/6G evolution; edge-cloud 
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I. INTRODUCTION

Edge computing involves a connected ecosystem of 
highly heterogeneous computing elements, distributed 
among end-devices, access and core network, and sharing 
boundaries with central cloud infrastructures [1], [2]. There 
is an ongoing standardization effort to enable edge 
computing in beyond 5G (B5G) networks, mainly driven by 
3GPP (refer to Rel-18 [3] and new features in Rel-19), and 
by the European Telecommunications Standards Institute 
(ETSI) (refer to the Multi-access Edge Computing (MEC) 
specification [4]).  

Edge computing can enable several key innovations in 
B5G, such as dynamic network slicing, flexible functional 
splits, improved network determinism, and adaptive Virtual 
Network Function (VNF) placement and scaling. 
Furthermore, the introduction of artificial intelligence (AI) 
and machine learning (ML) in resource orchestration will 
enable a dual-layer control at the edge. The first layer 
concerns a new level of closed-loop programmability and 
automation, especially when near real-time decisions need 

to be made while handling massive amounts of data close to 
the end users. The second layer serves digital sovereignty, 
created by means of a powerful local distributed edge 
infrastructure that provides services to manage identities, 
applications, and dataspaces for multiple tenants.  

In addition to empowering B5G network optimization 
and automation, edge computing is a key vertical service 
enabler across multiple sectors [5]. Real-time immersive 
applications, as the ones based on eXtended Reality (XR) 
and holographic representations, are progressively 
emerging, enabling innovative services like online gaming, 
robotic teleoperation and remote education. On the other 
hand, big data analytic pipelines, processing the massive 
amount of data generated by distributed Internet of Things 
(IoT) deployments, are leveraged in a wide range of 
applications (e.g., digital twins [6]) for smart cities, Industry 
4.0, autonomous vehicles, etc.  

Such applications pose significant and diverse 
challenges on existing network and computing 
infrastructures. Current edge-enabled 5G architectures lack 
the required level of flexibility, openness and automation, 
and the mechanisms to support distributed and 
disaggregated application and network designs that are 
needed by such next generation services. Besides, even 
though edge computing has been widely considered within 
5G networks, the adopted approaches have been mainly 
driven by specific use case requirements leading to a 
fragmented architectural landscape with respect to the edge 
deployments and performance aspects [7][8]. Hence, further 
evolution and closer synergy between the B5G and the edge 
computing paradigms are needed to ensure the real-time 
responsiveness and fast computation capacity needed to 
ensure enhanced and dynamic user experience [9]. 

To address these gaps and to fully exploit the potential 
of edge computing, this paper proposes an evolved edge 
computing architecture integrated with the B5G network 
fabric. This architecture is developed within the EU-funded 
research project VERGE [10]. The proposed design aims to 
enable the seamless execution of cloud-native services, 
including disaggregated Radio Access Network (RAN) and 
core network functions, distributed AI, and big data 
workflows, while leveraging data-driven, AI/ML-based 
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solutions for edge and network optimization. 
Simultaneously, it ensures that the AI-based solutions 
themselves are secure and trustworthy. The proposed 
architecture is modular and scalable, powered through 
secure data-driven and AI-based solutions that enable its 
adaptability to the requirements of B5G and forthcoming 
6G applications. 

The architecture presented in this paper (henceforth 
referred to as the “VERGE architecture”) is built around 
three main pillars: i) “Edge for AI” (hereafter referred to as 
Edge4AI), a flexible, modular and converged edge platform 
design that unifies the lifecycle management (LCM) and 
closed-loop automation for cloud-native applications and 
network services across a unified edge-cloud compute 
continuum; ii) “AI for Edge” (AI4Edge), an AI-powered 
portfolio of solutions that leverages the multitude of metrics 
provided by the monitoring mechanisms to manage and 
orchestrate the computing and network resources; and iii) 
“Security, Privacy and Trustworthiness  for AI” (SPT4AI), a 
suite of methods and tools to ensure data and AI-based 
model privacy, security of the AI-based models against 
adversarial attacks, their safe training and execution, and 
their explainability for different stakeholders.  

The structure of the paper is as follows. After 
introducing the novel architecture in Section II, details of the 
key pillars are provided in Sections III, IV and V. Section VI 
illustrates the applicability of the architecture in two vertical 
use case examples, for XR-enabled services in an industrial 
environment and IoT-driven autonomous tram services in a 
smart city. Finally, Section VI concludes the paper.  

II. PROPOSED EDGE COMPUTING ARCHITECTURE 

A high-level view of the proposed VERGE architecture 
is shown in Fig. 1. A highly heterogeneous infrastructure is 
depicted at the bottom, consisting of diverse edge computing 
resources (from the Far Edge to the Near Edge and the 
Cloud) embedded in the end-to-end (E2E) B5G network. 
Different types of users are considered, connected through 
heterogeneous RAN deployments (disaggregated, relay-
enabled, etc.) and leveraging MEC services. VERGE 
architecture is shown in the upper part of Fig. 1, featuring 
the three aforementioned pillars, further discussed next.  

The Edge4AI layer forms an AI-powered platform to 
facilitate the deployment and execution of cloud-native 
services and network functions (coming from the 
Application layer) over the heterogeneous pool of connected 
edge and cloud resources. The Edge4AI virtualization layer 
provides a unified view of the communication and 
computational resources, forming an edge-cloud compute 
continuum that is tightly integrated with the B5G 
communication fabric. To fully leverage such resources, 
Edge4AI contains: i) the Orchestration, Management and 
Control layer, handling the orchestration of services and 
infrastructures, and the control of the RAN elements; ii) the 
Cognitive Framework, enabling the LCM of the developed 
AI/ML solutions; iii) the Distributed Knowledge Base 
(DKB) where all generated knowledge (e.g., trained AI/ML 
models, datasets, metadata) are registered; and iv) the Data 
Access layer, responsible for collecting all the relevant 
observability data across the entire deployed system. The 

generated datasets from the data access layer, as well as any 
additional external or synthetic datasets employed for the 
training of AI/ML models, are stored in an Open Dataspace, 
enabling their reutilization and transparent usage.  

 
Fig. 1. The key building blocks of the proposed edge computing 

architecture 

The AI4Edge forms the intelligence layer encompassing 
all the AI/ML models that can be used for the automated 
management and optimization of communication and 
computing resources, as well as for supporting advanced 
data-driven applications able to interact with their 
environment and provide immersive services to the users. 
The AI4Edge layer, facilitated by the Edge4AI cognitive 
framework functionalities and interfaces, specifies the 
model-specific methods for: i) AI/ML training and 
validation; ii) AI/ML model monitoring and management 
(e.g., retraining if needed); and iii) AI/ML model inference, 
in which trained models are used to optimize Edge4AI 
components (e.g., orchestrators, RAN controllers, etc.) The 
training of these models can make use of datasets included in 
the Open Dataspace.  

Finally, the SPT4AI layer defines a set of security, 
privacy and trustworthiness processes applied to the 
AI4Edge models. The interoperability between the diverse 
portfolio of security/privacy/safety/explainability solutions 
of SPT4AI with the AI4Edge platform is ensured through 
the open interfaces provided by the cognitive framework. 
These interfaces provide a common way to handle the 
complete lifecycle (including training, validation, 
deployment, inference, and monitoring) of the AI/ML 
models that are deployed by the Orchestration, Management 
and Control elements to enforce the intelligent decisions. 

A more detailed view of the proposed architecture is 
given in Fig. 2. The architectural components of each pillar 
depicted in the figure are described in the following 
sections, namely the Edge4AI (Section III), the AI4Edge 
(Section IV) and the SPT4AI (Section V), stressing their 
key capabilities and interactions.  

III. THE EDGE4AI LAYER 

A. Programming Models and Application Workflow 
Frameworks  

A cloud-native design approach is adopted, where both 
application and network functions, composing the 



Application layer of Fig. 1, are primarily packaged as 
containers. However, to ensure backwards compatibility, 
other implementation technologies such as Virtual 
Machines (VMs) or physical functions are supported. The 
functions/services running at the edge include: 
 Application functions implementing the different use 

cases that can exploit the proposed architecture. 
 5G/B5G network functions for the RAN, the core and 

the control plane running at the edge. Specific 
examples include: i) virtualized RAN functions, e.g., 
implementing Centralized and Distributed Unit 
functionalities (CU/DU), aligned with the trend for 
disaggregated RAN functions promoted by 3GPP [11] 
and the Open RAN (O-RAN) Alliance [12]; ii) 
virtualized core functions, e.g., User Plane Function 
(UPF), Network Exposure Function (NEF), etc.; and 
iii) virtualized RAN control elements.  

 AI/ML functions implementing the AI4Edge 
intelligence layer, including the training and inference 
of AI models that may run at the edge, as well as 
distributed learning methods.  

Leveraging the flexibility offered by the cloud-native 
application design, this evolved edge architecture supports 
different levels of distribution mechanisms for splitting the 
computation across the available edge and cloud resources: 
i) in-node splitting of computing tasks, i.e., within the same 
multi-accelerator platform; ii) horizontal distribution of 
computation among peer edge nodes; and iii) vertical 
distribution, between end users, edge and cloud.  

This key innovation of splitting the computation, e.g., 
splitting the processing tasks associated to different layers 
of a Deep Neural Network (DNN), is provided by 
employing programming models and application workflow 
frameworks supported by the Edge4AI layer. The decision 
of selecting the optimal split point to offload computation 
tasks across the available edge and cloud resources is made 

based on the knowledge acquired from the AI4Edge layer. 
Thus, the computational burden can be alleviated by taking 
into consideration the available resources of the devices and 
edge servers, application latency requirements, and the 
resource constraints of a given use case deployment.   

Moreover, the most suitable programming models and 
practices from the embedded, High Performance Computing 
(HPC) and AI domains are employed and adapted for the 
implementation of highly efficient application workflows at 
the edge-cloud compute continuum. A key innovation 
towards this direction is the design of an adaptive 
virtualization layer specifically targeting programmable and 
accelerated hardware platforms, enabling the dynamic 
reconfiguration of functions across embedded AI 
accelerators and general-purpose computing elements. 

B. Service Orchestration, Management and Control 

The high flexibility in the deployment of cloud-native 
functions over a highly heterogeneous edge-to-cloud 
compute continuum infrastructure and the support for multi-
tenancy and distributed execution call for a unified design 
for the service orchestration, management and control 
planes. A distributed/ hierarchical approach is adopted for 
this layer, considering both a global multi-site view and a 
local edge-site perspective, to better deal with the 
distributed nature of the underlying infrastructure. On the 
one hand, this design enables the E2E optimization across 
multiple sites, facilitating functionalities such as service 
migration, edge federation, mobility support, etc. On the 
other hand, having a local orchestration layer at each edge-
site enhances the flexibility and modularity of the system, 
enabling localized optimization actions with reduced 
management overhead (e.g., intra-node orchestration or 
single-site interference management). The key 
functionalities of the Service Orchestration, Management 
and Control layer are:  
 Service orchestration, handling the service onboarding 

Fig. 2. A novel architecture for the edge computing evolution 



and LCM of cloud-native applications and AI/ML 
workflows, and the orchestration of the underlying 
computing resources at both global and local scale.  

 RAN control, responsible for the management of the 
RAN elements, consisting of i) a multi-site RAN 
controller for optimization across multiple RAN sites 
and ii) an edge-site component for localized actions, 
often at a near real-time scale. When implemented as 
containers, the RAN controllers are also managed by 
the service orchestrator.    

Two additional network-related functionalities are also 
supported, only considering their scope within the edge-
cloud continuum domain:  
 Network orchestration, handled by the Network 

Function Virtualization Orchestrator (NFVO) in the 
ETSI NFV specifications. The NFVO is responsible for 
the LCM of network services composed by multiple 
VNFs running at the edge (whereas an E2E NFVO may 
reside beyond the considered edge-cloud continuum).  

 Slice management, responsible for the network slice 
provisioning, i.e., the slice instantiation, operation, 
modification, and termination.  

C. Data Access and Cognitive Framework 

The data access layer and cognitive framework of the 
Edge4AI are the key enablers of closed-loop automation in 
the proposed architecture. The cognitive framework fuels 
the AI4Edge layer with the necessary data, collected by the 
data access layer, and supports the lifecycle of the AI4Edge 
AI/ML models. In turn, the output of these models provides 
intelligent decisions to the Edge4AI service management, 
orchestration and control layer, optimizing and automating 
multiple aspects of the underlying system.  

The data access layer is responsible for the extraction of 
relevant metrics from all layers of the architecture, 
including infrastructure, platform and services. To that end, 
the data access layer provides all the necessary distributed 
agents for the ingestion of RAN and core metrics, exposed 
by the B5G network, edge platform telemetry (e.g., Central 
Processing Unit (CPU)/storage/memory utilization, etc.), 
and application-related requirements, exposed by the 
employed programming models. The data access layer may 
also collect data from external sources, e.g., synthetic 
datasets, datasets created over extended operation of the 
deployed system, etc., made available through the Open 
Dataspace environment. The data access layer is responsible 
for integrating and analyzing the collected data (exploratory 
data analysis), creating datasets to be used by the AI4Edge 
models (stored in the data registry) and providing their 
access to the respective AI models.  

The cognitive framework provides a common 
framework and interfaces for the development, deployment 
and LCM of the AI4Edge AI/ML models, aligned with the 
best practices defined in ML Operations (MLOps) [14]. The 
framework includes: 
 Cognitive framework engine, providing all needed 

functionalities and Application Programming Interfaces 
(APIs) to enable model training, monitoring and 
inference serving across the entire architecture, and to 
ensure the exposure of all relevant services to the 

Service Orchestration, Management and Control layer. 
Additional APIs enable end users to introduce specific 
performance requirements (e.g., on AI/ML safety), as 
well as enable the ingestion of the right level of data by 
the AI4Edge layer, as needed by each AI/ML model. 

 AI/ML development toolkit, containing software tools 
and libraries that are required by the AI4Edge and 
SPT4AI pillars, for the design, validation and 
trustworthiness of AI/ML models. 

 Distributed knowledge base (DKB), containing all 
relevant data and knowledge generated and required by 
the AI4Edge AI/ML models, such as the generated 
datasets, trained models, and other relevant metadata 
and platform metrics. The DKB is deployed in each 
edge-site, storing only locally relevant metadata and 
any other information needed by the AI4Edge models 
running at each location.  

IV. THE AI4EDGE LAYER 

The AI4Edge layer represents a comprehensive suite of 
AI/ML models designed to (1) manage the entire lifecycle 
of computing, communication, and networking resources, 
and (2) power the network edge applications in an efficient 
and scalable manner, leveraging the Edge4AI capabilities.  

The key model-specific functionalities provided by each 
AI/ML model within the AI4Edge layer include: 
 Training & Validation: This functionality encompasses 

the full training pipeline of AI/ML models. It includes 
all relevant data management procedures for preparing 
the data collected by the data access layer and storing 
the trained model and necessary metadata in the DKB. 

 Inference Service: This refers to the application of the 
trained model in empowering intelligent decision-
making processes within the Edge4AI orchestration, 
management, and control entities (for example, the 
local or multi-site orchestrators, the RAN controllers, 
etc.). Various implementations for serving inference 
services can be considered, whether through APIs or 
packaged as an AI/ML-enabled application. 

 AI4Edge Model Monitoring and Management: This 
functionality is in charge of (1) monitoring the quality 
of the inference predictions based on user-defined Key 
Performance Indicators (KPIs), prompting the 
retraining of the model if necessary, and (2) managing 
the model serving and deployment processes. 

These AI/ML models, though inherently unique, are 
unified under the cognitive framework, enabling them to 
interact seamlessly with the underlying system. However, it 
should be noted that, depending on the scope of each 
AI/ML model, some functionalities (e.g., the training of a 
complex model) might not be running at the edge. 

The proposed architecture also takes some initial steps 
towards resolving the challenges associated with the 
widespread adoption of multiple, independent AI/ML 
solutions. Such mechanisms detect and resolve potential 
conflicts between the independent AI/ML-based decisions, 
ensuring that the system behaviour is stable and efficient.  

V. THE SPT4AI LAYER 

The SPT4AI layer provides a set of methodologies and 



tools for secure, private, safe and explainable operations of 
the AI4Edge models, thereby increasing their 
trustworthiness. Various functionalities of the SPT4AI layer 
are exposed through the cognitive framework APIs and are 
invoked during the design and deployment phases of the 
AI4Edge models. These are summarized as follows: 
 Security and privacy: providing a methodology to 

protect the AI4Edge models against potential 
adversarial attacks and functional failures, SPT4AI 
implements targeted threat analysis methods and 
recommends efficient and robust mitigation methods. It 
also provides methods to ensure the security and 
privacy of the sensitive information carried by the data 
and models against attacks. 

 Design time verification: providing formal and 
quantitative verification results of safety metrics for 
AI4Edge models, specifically targeting Reinforcement 
Learning (RL) models. It collects safety requirements 
from stakeholders (e.g., service consumers, model 
developers), builds and maintains environment models 
from training data, and integrates off-the-shelf open-
source tools to produce reports about the safety KPI 
satisfaction of the ML models. The reports, containing 
possible counterexamples and insights, can be used to 
improve the models through, for example, additional 
targeted training data. These reports can also be used to 
explain the compliance of the model to the safety KPIs 
and identify unsafe operating regions. 

 Run-time verification: monitoring the deployed ML 
models and the application environment for potential 
violation of the safety KPIs (e.g., range violation, 
wrong sequence of actions) during the system run-time. 
The reports can guide the cognitive framework to 
decide fallback procedures and/or model re-training. 

 Explainability and interpretability: Model 
explainability methods include both interpretability 
(i.e., the ability to present the cause-and-effect 
relationship between the model input and output), and 
the logic through which the relationship is established, 
e.g., feature attribution explaining to what extent a 
decision is impacted by an input feature. Explainability 
contributes to accountability, reliability and 
transparency. It is achieved either via the adoption of 
post-hoc explainability techniques or via the design of 
inherently interpretable built-in models. The 
incorporation of such methodologies fosters 
trustworthiness in AI4Edge solutions, as well as their 
legal and regulatory compliance. 

VI. B5G EDGE-ENABLED USE CASE EXAMPLES   

In order to show the suitability and versatility of the 
VERGE architecture across vertical use cases in B5G-
enabled networks, two examples from the industrial and 
transportation domains are elaborated: XR-driven edge-
enabled industrial B5G applications and autonomous tram 
services for safety and entertainment in a smart city 
environment. 

A. XR-driven edge-enabled industrial B5G applications 

The Fourth Industrial Revolution, also known as 

Industry 4.0, represents the digital innovation effort across 
several industrial sectors. Industry 4.0 leverages cutting-
edge technologies, such as AI, IoT, and automation, to 
establish intelligent factories that increases productivity, 
reduces cost and facilitates real-time monitoring and 
decision-making. XR is a key technology that can 
contribute to productivity and monitoring via immersive 
services such as robot teleoperation and cooperative 
product design [15].  

Consider, for instance, an information-rich industrial 
environment in which human operators must seamlessly 
interact and control robotic vehicles remotely for security 
reasons. Typically, visual contact or video feedback is used 
to determine the course of the vehicles, often resulting in 
disorientation and reduced piloting efficiency. The 
integration of XR technology, blending virtual and physical 
elements and overlaying relevant information, can 
significantly enhance the operators’ experience, immersing 
them in the robots’ coordinates system for more intuitive 
control. Edge computing can play a key role in such 
scenarios, bringing the processing of the massive amount of 
data (environment structure, maps, etc.) closer to both 
robots and end users, thus reducing latency and ensuring 
immediate responses. Furthermore, keeping the data at the 
edge, and especially in private edge servers in industrial 
facilities, mitigates security and privacy concerns. With 
respect to communications, ultra-low latency connection 
with mobility support is required, with sufficient coverage, 
bandwidth and reliability to serve potentially massive 
deployments of robots, pushing conventional access 
technology to its utmost.  

 
Fig. 3. XR-driven edge-enabled industrial B5G use case scenario 

XR can also drastically change and enhance the 
industrial product design process, which is currently 
impacted by the high latencies in processing and visualizing 
large volumes of 3D Computer Aided Design (CAD) files. 
Using XR tools integrated with the industrial Product 
Lifecycle Management (PLM) software, designers from 
remote locations can work collaboratively and 
simultaneously on the same product design. This enables 
the efficient and faster transfer of knowledge, with an 
immense reduction on design time and travel cost. 
Currently, XR data is typically stored in the cloud, but 
computation continues to occur on the mobile end device, 
with limited capabilities. This limitation can be overcome 
by hosting the XR application at the edge and only stream 
the content to the XR device/user. Such a solution requires 



fast and secure exchange of big data volumes between 
locations, as well as a low-latency connectivity between the 
PLM and XR platforms, stressing the need for B5G 
solutions, especially as the number of concurrent design 
sessions increases. 

Fig. 3 illustrates two XR-aided industrial applications 
for remote robot handling and collaborative product design, 
enabled by the synergy of edge computing with B5G 
communications. The key involved stakeholders include: i) 
the edge infrastructure provider, who develops and 
maintains the physical and virtual infrastructure with the 
computational resources required to support the XR 
services; ii) the mobile network operator (MNO), who 
provides wireless access, broadband network and services 
that allow designers and human operators of the robots to 
stay connected; and iii) the end users, including the 
designers who actively participate in the collaborative 
design process, and the robot manipulators, controlling 
remotely the robots that transmit real-time video and sensor 
data to the edge; and iv) the application provider, who 
develops and maintains the XR rendering application. 

On this basis, the main capabilities that the proposed 
architecture offers to support this use case are the following:  
 At the Edge4AI layer, the offloading of the heavy 

computational XR processes to the edge is supported, 
considering the device-specific limitations for rendering 
the huge volume of data (e.g., CAD files can be 
composed of several million polygons, whereas 
standalone XR glasses can only effectively visualize up 
to one million polygons). This is achieved, on the one 
hand, through the development of cloud-native 
middleware solutions at the application layer for the XR 
rendering and streaming. On the other hand, advanced 
edge-site and multi-site orchestration supports the 
flexible deployment, scaling and overall LCM of the XR 
software components, especially as the number of end 
users (designers or robot operators) increases.  

 The AI4Edge layer supports predictive intelligent 
analytics to forecast the future resource needs and 
allocate network slices proactively, thus dealing with the 
stringent latency and bandwidth requirements of the XR 
services. Furthermore, AI-driven resource management 
and network function configuration based on real-time 
demands is supported, leveraging the system’s capability 
to collect runtime metrics. To ensure the coherent 
integration between the AI components multi-level multi-
agent mechanisms will be investigated, preventing 
potential conflicts in the decision-making process. 

 Security and privacy are fundamental concerns in 
industrial environments and are considered in multiple 
levels across the proposed architecture and the SPT4AI 
layer. First, to provide inherent security support, Non-
Public Networks (NPNs) deployments are considered, 
through either i) standalone NPNs totally separated from 
the public network, or ii) public networks integrated with 
NPNs, in which the NPN is provided in the form of a 
network slice of the MNO. To maximize privacy, 
scalability and efficiency, distributed learning methods 
are employed, allowing local training without centralized 
data sharing to dynamically allocate computation 

resources across the compute continuum.. Finally, smart 
defense techniques is provided to overcome the effects of 
malicious attacks against AI/ML models which target 
specific vulnerabilities due to the distributed and 
heterogeneous nature of edge deployments. 

B. Autonomous tram services for safety and entertainment 
in a smart city environment 

The concept of autonomous driving in Light Rail Transit 
(LRT) tram public transport systems heavily relies on 
multiple sensors, such as cameras, radars, light detection and 
ranging (LIDAR) systems, etc. The sensor data coupled with 
Bayesian and AI processes can provide the necessary level 
of perception and actuation in real-time. However, the 
implementation of such autonomous systems poses 
challenging requirements. Since these services are exposed 
to several critical uncontrollable events such as pedestrians, 
vehicles, and obstacles, a much higher level of situational 
awareness and more dynamic interaction must be supported. 
Such capabilities can be offered by edge computing and 
B5G communication technologies, supporting the 
orchestration of tram autonomy functions and dedicated 
network slices for safety-related critical and non-critical 
data. These mechanisms can provide the necessary ultra-
reliable low-latency connectivity, high computational 
capability closer to the data sources, mobility support and 
dynamic reconfigurability needed to implement different 
services of the autonomous tram of the future.  

At the same time, smart cities are adopting sensing, 
computing and communication technologies to provide 
innovative services for a more efficient, safe and sustainable 
city management and enhanced quality of life. Fueled by the 
wide IoT penetration, cities are collecting massive volumes 
of data, which, through AI and big data technologies, is 
transformed into valuable and actionable knowledge, able to 
automate and optimize several city aspects. In such highly 
distributed and heterogeneous environments, edge 
computing can be leveraged to fuse together information 
coming from both the sensor-equipped trams and the city to 
detect and anticipate hazards that may lie along the 
trajectory of the tram, beyond the visibility of the tram 
sensors. Furthermore, innovative XR entertainment services 
with demanding latency and processing requirements can be 
supported, e.g., providing immersive touristic information 
for people moving by tram or other means within specific 
areas of interest. 

Fig. 4 illustrates the components of this use case, which 
involves applications (e.g., track occupation monitoring and 
obstacle/hazard detection) aimed at improving the safety and 
operational efficiency of the autonomous tram in a smart city 
environment, and at providing immersive entertainment 
services for passengers. The key stakeholders include: i) 
tram operators, owning the autonomous tram infrastructure 
(e.g., railway lines, interlocking systems, operational control 
centers, etc.); ii) edge infrastructure and IoT providers, 
offering the computational resources at the edge and the 
smart city infrastructure (e.g., smart sensors, cameras, etc.); 
iii) MNO, offering wireless connectivity between the 
autonomous tram and the infrastructure; iv) AI models/ 
application developers, supporting services like object 
detection, classification and tracking, and entertainment 



services targeting the tram passengers; and v) end users, 
consuming the safety and entertainment services. 

 
Fig. 4. Autonomous tram services for safety and entertainment in a smart 

city environment use case scenario 

On this basis, the main capabilities that the proposed 
architecture offers to support this use case are the following:  
 The Edge4AI layer supports the decomposition of 

monolithic services into microservices, enabling their 
flexible and scalable deployment, which is crucial given 
the heterogeneous and distributed nature of the smart city 
IoT devices. Furthermore, the adoption of HPC and 
distributed programming models at the Edge4AI layer 
breaks complex data analytics pipelines into linked tasks, 
enabling their parallel execution.  

 Exploiting the Edge4AI features, the availability of 
intelligent task-based scheduling algorithms can allocate 
tasks to the most suitable computing resources, taking 
into account task-specific requirements in terms of 
latency, computational needs, data locality, etc. AI4Edge 
also supports the optimal splitting of complex tasks (e.g., 
3D model reconstruction or AI-based workflows for 
video processing and object detection), and their 
placement at the most appropriate resources across the 
compute continuum, balancing latency requirements, 
energy consumption constraints and resource utilization.  

 Ensuring the robustness and trustworthiness of the 
employed AI algorithms for the autonomous tram 
operation is essential. Insufficient distribution of training 
data or lesser generalizability of the trained model can 
lead to unsafe model behavior in new and unseen 
scenarios. Moreover, malicious attacks can substantially 
compromise the security of these AI-driven systems, 
often with disastrous results [16]. The SPT4AI layer 
offers the mechanisms to detect and mitigate security 
risks. It also ensures safety of the decisions output by the 
AI/ML models. In addition, by obtaining uncertainty 
information from AI/ML models (e.g., DNN 
predictions), SPT4AI can increase reliability and reduce 
the risk of making wrong decisions.  

VII. CONCLUSIONS 

This paper proposes a modular and scalable architecture 
to support edge computing evolution demands towards B5G, 
introduced by VERGE [10]. The proposed architecture 
opens the door for novel solutions to enable AI-enabled 
automation and intelligent decision-making across an 
integrated edge-cloud computing ecosystem, while ensuring 

security, privacy, and trustworthiness of the employed AI 
models. Two use case scenarios leveraging XR and IoT 
technologies also illustrate the potential benefits of the 
proposed architecture in the industrial and transportation 
vertical sectors. 
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