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Abstract In order to increase cognitive radios (CRs) operation efficiency, there has been
an increasing interest in strengthening awareness level about spectrum utilisation. In this
respect, this paper proposes to exploit the fittingness factor concept to capture the suitability
of spectral resources exhibiting time-varying characteristics to support a set of heterogeneous
CR applications. First, a new knowledge management functional architecture for optimiz-
ing spectrum management has been constructed. It integrates a set of advanced statistics
capturing the influence of the dynamic radio environment on the fittingness factor. Then,
a knowledge manager (KM) exploiting these statistics to monitor time-varying suitability
of spectrum resources has been proposed to support the spectrum selection (SS) decision-
making process. In particular, a new Fittingness Factor-based strategy combining two SS
and spectrum mobility (SM) functionalities has been proposed, following either a greedy or
a proactive approach. Results have shown that, with a proper fittingness factor function, the
greedy approach efficiently exploits the KM support at low loads and the SM functionality
at high loads to introduce significant gains in terms of the user dissatisfaction probability.
The proactive approach has been shown to maintain the introduced performance gain while
minimizing the signalling requirements in terms of spectrum handover rate.
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1 Context/Motivation

The cognitive radio (CR) paradigm has emerged as an intelligent radio that automatically
adjusts its behavior based on the active monitoring of its environment [1,2]. The introduc-
tion of cognitive techniques for the management of wireless networks will lead to enhanced
robustness by capitalizing on the learning capabilities intrinsic to cognitive systems. There-
fore, technical requirements of new cognitive management systems have been considered
in many studies [3–5]. In particular, many recent proposals have tried to develop new mod-
els and efficient architectures for introducing cognitive management systems in emerging
environments, such as the Future Internet [6] or the home environment [7]. The underlying
technical challenges have stimulated the initiation of many research projects (e.g., [8–10])
and standardization activities (e.g., [11,12]) to further strengthen and promote the usage of
cognitive management systems.

Radio resource management (RRM) functions are prime important in the specific context
of CR and dynamic spectrum access (DSA), a new communication paradigm proposing to
use and share the spectrum in an opportunistic manner in order to increase spectrum usage
efficiency. Not surprisingly, this topic has received a lot of interest in the recent literature
[13–16]. The flexibility provided by spectrum agility has been materialized in the form of
increased efficiency by means of proper decision-making criteria in the spectrum selection
(SS) functionality.

In this respect, the main objective of this paper is to further strengthen awareness level
in a cognitive system by exploiting the fittingness factor concept that captures the suit-
ability of spectral resources exhibiting time-varying characteristics to support a set of
heterogeneous CR applications. The use of the fittingness factor was proposed by the
authors in [17]. In this paper, the previous work is extended by further developing the
functional framework where the fittingness factor is used and the associated spectrum
management strategies. In this perspective, the main contributions of this paper are two-
fold: (1) To build up a new knowledge management functional architecture for optimiz-
ing the spectrum management decision-making process based on the fittingness factor. It
includes a knowledge manager (KM) that monitors the time-varying suitability of spec-
trum resources to support heterogeneous applications based on a set advanced statistics and
observed fittingness factor values during CR operation. (2) To develop a spectrum manage-
ment strategy exploiting the estimated suitability of spectrum resources, following either a
greedy or proactive approach, to optimize both SS and spectrum mobility (SM) functional-
ities.

The remainder of this paper is organized as follows: in Sect. 2, the system model is
presented and the functional architecture of the proposed framework for assisting spec-
trum management is presented. After formulating two different fittingness factor functions,
a set of statistics capturing their behavior are proposed in Sect. 3 and a KM exploiting
these statistics is developed in order to monitor the time-varying suitability of spectrum
resources. Then, a new strategy following either a greedy or a proactive approach has
been proposed in Sect. 4 to exploit the estimated fittingness factor values for the sake of
optimizing both SS and SM functionalities. Results are presented in Sect. 5 firstly comparing
performances are used, and secondly assessing the impact of the proposed decision making
criteria. Conclusions are addressed in Sect. 6.
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2 System Model

Let us consider a set of L different radio links that need to be established between pairs of
terminals and/or infrastructure nodes. The purpose of each radio link is to support a certain
application. The l-th application is characterized in terms of a required bit-rate Rreq,l and
duration Treq,l . The available spectrum is modeled as a set of P spectrum blocks (denoted
in this paper as ”pools”) each of bandwidth BWp . Based on radio link requirements and
spectrum pool characteristics, the general aim is to efficiently assign a suitable spectrum
pool for each of the L radio links. In order to accomplish this objective, the functional
architecture depicted in Fig. 1 is proposed. It consists of the following entities:

1. The Knowledge Management entity, which is responsible for storing and managing the
relevant knowledge obtained from the radio environment to be used in the decisions made
by the Decision-Making entity. It is materialized by a KM that monitors the suitability of
existing spectral resources to support the considered heterogeneous applications based
on information retrieved from a knowledge database (KD).

2. The Decision-Making entity, which is responsible for assigning the appropriate pools to
different links. For that purpose, it interacts with the KM that will provide the relevant
information for the decisions to be made. Decision-making is split into two functional
entities: SS, which will pick up a suitable pool for each communication whenever a new
application request arrives, and SM, which will perform the reconfiguration of assigned
pools whenever changes occur in the environment and better pools can be found for some
applications.

In order to assess the suitability of spectral resources to support heterogeneous application
requirements, the so-called “fittingness factor” (Fl,p) is proposed as a metric capturing how
suitable each p-th spectrum pool is for each l-th radio link/application. Fl,p will particularly
assess the suitability in terms of the bit-rate that can be achieved operating in the spectrum
pool p (denoted as R(l, p)) versus the bit-rate required by the application l(Rreq,l).

From a general perspective, the fittingness factor can be formulated as a function of the
utility Ul,p the l-th link can obtain from the p-th pool, where the utility is defined as [18]:

Ul,p =
(

R(l,p)
Rreq,l

)ξ

1+
(

R(l,p)
Rreq,l

)ξ
(1)

where ξ is a shaping parameter that allows the function to capture different degrees of
elasticity of the application with respect to the required bit-rate. The achievable bit-rate by
link l using pool p (R(l, p)) will depend on radio and interference conditions existing in
pool p.

Based on the above concept, two different fittingness factor functions are defined:

– Fittingness factor function 1: It is the utility itself, that is:

Fl,p = f1(Ul,p) = Ul,p (2)

Let us note that f1(Ul,p) is a monotonically increasing function of the ratio R(l,p)
Rreq,l

.
– Fittingness factor function 2: It is defined as:

Fl,p = f2(Ul,p) = 1− e
− K×Ul,p

R(l,p)
Rreq,l

λ
(3)
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Fig. 1 Functional architecture of the proposed Fittingness Factor-based Spectrum Management Framework
for CR Networks

where K is a shaping parameter and λ is a normalization factor that normalizes the
maximum of the fittingness factor funtion to one, that is given by:

λ = 1− e
− K

(ξ−1)

1
ξ +(ξ−1)

1−ξ
ξ (4)

The proposed f2(Ul,p) increases with R(l, p) up to the maximum at R(l, p) = ξ
√

ξ − 1×
Rreq,l . This means that Fl,p decreases for R(l, p)>>Rreq,l , which targets an efficient usage
of spectral resources by reducing the value of the fittingness factor whenever the available
bit-rate is much higher than the required one.

3 Knowledge Management

3.1 Knowledge Database

In order to enable a global characterization of the suitability of a given pool p to a given link
l based on the past history when using this pool, KD will retain some statistics of Fl,p . The
database will be fed by measurements of R(l, p) that are extracted from the radio environment
about each active link/pool pair. Then, Fl,p will be computed following either (2) or (3) and
will be stored in the database together with the corresponding time stamp.

Considering that Fl,p values can be associated to two states: LOW (<δl,p) or HIGH
(>=δl,p), the following statistics are also generated and stored in the database:

– The probability Pl,p
L (δl,p) of observing a LOW fittingness factor:

Pl,p
L (δl,p) = Prob

[
Fl,p<δl,p

]
(5)
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– The probability Pl,p
H (δl,p) of observing a HIGH fittingness factor is then given by:

Pl,p
H (δl,p) = 1− Pl,p

L (δl,p) (6)

– The average of observed LOW fittingness factor values:

F̄l,p
L = E

(
Fl,p|Fl,p<δl,p

)
(7)

– The average of observed HIGH fittingness factor values:

F̄l,p
H = E

(
Fl,p|Fl,p≥δl,p

)
(8)

Furthermore, in order to monitor fittingness factor variability, the following statistical
metrics are considered:

– Given Fl,p is LOW at a given time instant k, the probability that Fl,p will be LOW at
each time instant up to time k +�k defined as follows:

Pl,p
L ,L(�k, δl,p) = Prob

[
Fl,p(k + j)<δl,p,∀ j∈{1 . . . �k}|Fl,p(k)<δl,p

]
(9)

where Fl,p(k) denotes the observed Fl,p value at time k.
– Given Fl,p is HIGH at a given time instant k, the probability that Fl,p will be HIGH at

each time instant up to time k +�k defined as follows:

Pl,p
H,H (�k, δl,p) = Prob

[
Fl,p(k + j)≥δl,p,∀ j∈{1 . . . �k}|Fl,p(k)≥δl,p

]
(10)

The proposed fittingness factor variability metrics (Pl,p
L ,L and Pl,p

H,H ) can be used to deter-
mine the extent to which the fittingness factor is not likely to change after a certain time shift
�k.

3.2 Knowledge Manager

The KM plays a key role between the Knowledge Management and Decision-Making
domains of the proposed architecture. In this perspective, it manages the information retained
in the KD in order to determine the knowledge about the environment that would be mostly
relevant for supporting all decisions made by the decision-making entity.

The KM keeps an estimation of Fl,p values based on the set of statistics available at
the KD. These estimated values, denoted as F̂l,p and obtained following Algorithm 1, are
provided upon request to the decision-making module. The estimate F̂l,p is determined based
on whether the state of the Fl,p stored in the KD is likely to be the same that was obtained
�kl,p time units before (this is checked in the conditions of lines 5 and 11, respectively,
with respect to the significance thresholds T hr_L OW and T hr_H I G H ). In such case, F̂l,p

is set to the last measured value Fl,p (lines 6 and 12). Otherwise, F̂l,p is randomly set to

either either F̄l,p
L or F̄l,p

H , the average Fl,p values in the LOW and HIGH states, respectively,

with probabilities Pl,p
L (δl,p) and 1 − Pl,p

L (δl,p) (lines 8 and 14). Once all link/pool pairs
are explored, the list of all estimated fittingness factor values ({F̂l,p}) is returned back to the
decision-making entity (line 19).

The KM also captures relevant changes in these estimated values and informs the decision-
making module for consideration.
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Algorithm 1 Knowledge manager (KM)
1: Function KM()
2: for l=1 to L do
3: for p=1 to P do
4: if Fl,p is LOW then

5: if Pl,p
L ,L (�kl,p, δl,p)≥T hr_L OW then

6: F̂l,p ← Fl,p;
7: else
8: Estimate Fl,p as follows:

F̂l,p =
{

F̄l,p
L with probability Pl,p

L (δl,p),

F̄l,p
H with probability 1-Pl,p

L (δl,p).
;

9: end if
10: else
11: if Pl,p

H,H (�kl,p, δl,p)≥T hr_H I G H then

12: F̂l,p ← Fl,p;
13: else
14: Estimate Fl,p as follows:

F̂l,p =
{

F̄l,p
L with probability Pl,p

L (δl,p),

F̄l,p
H with probability 1-Pl,p

L (δl,p).
;

15: end if
16: end if
17: end for
18: end for
19: return ({F̂l,p});

4 Fittingness Factor in Spectrum Selection Decision-Making

The proposed fittingness factor function claims to have applicability in the SS decision-
making process whose aim is to allocate, for a given application l, the best spectrum pool
p∗(l). In this respect, two fittingness factor-based criteria are proposed:

– Greedy criterion: It selects the pool with the largest fittingness factor among the set of
available pools (Av_Pools):

p∗greedy(l) = arg max
p∈Av_Pools

(
F̂l,p

)
(11)

– Proactive criterion: It selects the pool that maximizes the likelihood of observing a HIGH
Fl,p value up to the end of link session duration Treq,l . It is defined as follows:

p∗proactive(l) = arg max
p∈Av_Pools

(
g(F̂l,p)

)
(12)

where:

g(F̂l,p) =
{

Pl,p
H,H (�kl,p + Treq,l , δl,p) if F̂l,p is HIGH,

0 otherwise.
(13)

In the very specific case of multiple pools fulfilling the maximization, the pool with the
highest F̂l,p is selected.

Note that unlike the greedy criterion that simply maximizes the instantaneous fittingness
factor value a link can immediately get, the proactive criterion selects the pool that would be
most likely to provide a HIGH fittingness factor value during the whole link session.
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In what follows, both the SS and SM functionalities of the decision-making process are
implemented using either the greedy or proactive criterion.

4.1 Spectrum Selection

Based on fittingness factor values estimated by the KM, the SS functionality selects a
suitable spectrum pool for each radio link according to the Fittingness Factor-based SS
algorithm described in Algorithm 2. Upon receiving a request for establishing a link l, the
request is rejected if the set of available pools is empty (line 3). Otherwise, an estimation
of all Fl,p values is obtained from the KM (line 5). Based on provided F̂l,p values, the
best spectrum pool p∗(l) is selected following either the greedy or the proactive criterion
(line 6).

4.2 Spectrum Mobility

In order to further adjust CR behavior to changes in suitability of spectrum resources, the SM
functionality can be executed whenever better pools can be found for some applications. SM
is considered on a global perspective jointly optimizing all assignments in order to improve
the overall pool usage efficiency.

Algorithm 2 Fittingness Factor-based Spectrum Selection
1: if application l request then
2: if Av_Pools = ∅ then
3: Reject request;
4: else
5: Get {F̂l,p} from the KM;
6:

p∗(l) =
{

p∗greedy(l)

p∗proactive(l)
;

7: end if
8: end if

As detailed by Algorithm 3, the proposed fittingness factor-based SM is triggered when-
ever a previously selected pool by SS at link establishment is no longer the best in terms
of F̂l,p for the corresponding active link. This may happen whenever some active pools are
released or experience some change in their Fl,p values. Following both triggers, the KM
is first called in order to get an estimation of all Fl,p values ({F̂l,p}) (line 2). The algorithm
then explores the list of currently active links (Active_Links) in the decreasing order of the
required throughputs (Rreq,l ) in order to prioritize the neediest links. The decision to recon-
figure or not each active link is based on a comparison between the actually used pool (p∗(l))
and the currently best pool in terms of F̂l,p(new_p∗(l)) (line 7). Specifically, if Fl,p∗(l) is
LOW and Fl,new_p∗(l) is HIGH, a spectrum handover (SpHO) from p∗(l) to new_p∗(l) is
performed since new_p∗(l) fits better link l. The same SpHO should be performed in case
p∗(l) is no longer available to link l after being reassigned to other links in the previous
iterations of the loop of line 5 (line 8). Once all active links are explored, the list of assigned
pools is updated to consider all SpHOs that need to be executed as a result of the algorithm
(line 15).
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Algorithm 3 Fittingness Factor-based Spectrum Mobility
1: if (application l∗ ends) or (change in any active Fl,p) then

2: Get {F̂l,p} from the KM;
3: new_Assigned ← ∅;
4: Sort Active_Links in the decreasing order of Rreq,l ;
5: for l=1 to |Active_Links| do
6:

new_p∗(l) =
{

p∗greedy(l)

p∗proactive(l)
;

7: if ((F̂l,p∗(l) is LOW) and (F̂l,new_p∗(l) is HIGH)) or
8: (p∗(l)∈new_Assigned) then
9: p∗(l)← new_p∗(l);
10: new_Assigned ← new_Assigned

⋃{new_p∗(l)};
11: else
12: new_Assigned ← new_Assigned

⋃{p∗(l)};
13: end if
14: end for
15: Assigned ← new_Assigned;
16: end if

5 Performance Evaluation

5.1 Simulation Model

To evaluate the effectiveness of the proposed framework in assisting the spectrum manage-
ment decision-making process, L = 2 radio links are considered. The l-th link generates
sessions with arrival rate λl and constant session duration Treq,l . Link #1 is associated to
low-data-rate sessions (Rreq,1 = 64 Kbps, Treq,1 = 2 min), while link #2 is associated to
high-data-rate sessions (Rreq,2 = 1 Mbps and Treq,2 = 20 min).

Performance is evaluated using a system-level simulator operating in steps of 1 s. The
radio environment is modeled as a set of P = 4 spectrum pools. The available bandwidth
at each pool is BW1 = BW2 = 0.4 MHz and BW3 = BW4 = 1.2 MHz. A heterogeneous
interference situation is considered in which the total noise and interference power spectral
density Ip experienced in each pool p∈{1, . . . , P} is assumed to follow a two-state discrete
time Markov chain jumping between a state of low interference I0(p) and a state of high
interference I1(p) with transition probabilities P10 (i.e., probability of moving from I1 to
I0 in a simulation step) and P01 (i.e., probability of moving from I0 to I1). In our specific
case, it is assumed that pools #1 and #2 are always in state I0(p), while pools #3 and #4
alternate between I0(p) and I1(p) with transition probabilities of P10 = 55.5 × 10−5 and
P01 = 3.7× 10−5 for pool #3 and P10 = 8.33× 10−3 and P01 = 55.5× 10−5 for pool #4.
Based on these probabilities, the average durations of the high interference state #3 and pools
#4 are 0.5 h and 2 min, respectively, while the average durations of the low interference state
for pools #3 and #4 are 7.5 h and 0.5 h, respectively. With this configuration, the achievable
bit-rate by one link in pools #1 and #2 is R(l, 1) = R(l, 2) = 128 Kbps, while for pools
#3 and #4, it alternates between R(l, 3) = R(l, 4) = 1536 Kbps for the I0(p) state, and
R(l, 3) = R(l, 4) = 96 Kbps for the I1(p) state.

The system is observed during a simulation time of 300 days. Other simulation parameters
are ξ = 5, K = 1, δ1,p = 0.2, δ2,p = 0.8, T hr_LOW = 0.8 and T hr_HIGH = 0.1.
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5.2 Benchmarking

In order to assess the influence of the different components of the proposed framework, the
following variants will be compared:

– SS: This variant only considers the use of the SS algorithm supported by the KM module,
and no SM decisions are made.

– SS + SM : This strategy jointly considers the SS and SM algorithms, so that it incorporates
the reallocation flexibility associated to SM.

Both variants can use either the greedy or proactive criterion. The use of either fittingness
factor function 1 or 2 will be also considered in the analysis.

Apart from the considered variants, the following reference schemes are introduced for
benchmarking purposes:

– Rand: This implements only the SS module of Fig. 1 and performs a random selection
among available pools. Neither SM nor KM modules are used.

– Optim: This scheme is an upper bound theoretical reference. In each simulation step,
the procedure assigns the combinations of pools and active links that maximize the total
instantaneous throughput at a given time instant k as follows:

max

⎛
⎝ ∑

active(l,p)

min
(
Rreq,l , R(l, p∗(1), k)

)
⎞
⎠ (14)

where R(l, p∗(1), k) is the measured bit-rate R(l, p∗(1)) at time k.

5.3 Results

This section presents the performance evaluation of the different schemes introduced in
Sect. 5.2. The target of the analysis is two-fold: (1) to benchmark the performance of the
proposed variants (SS and SS + SM) with respect to the reference Rand and Optim schemes,
and (2) to compare the proposed fittingness factor functions. The greedy criterion is initially
considered for the sake of simplicity.

Figure 2a plots the dissatisfaction probability of link #2 (i.e. the most demanding in terms
of required bit-rate) as a function of the total offered traffic load λ1 × Treq,1 × Rreq,1 + λ2 ×
Treq,2 × Rreq,2. It is defined as the probability of observing a bit-rate below the application
requirement Rreq,l . Results for link #1 are not presented since it is all the time satisfied (i.e.,
the bit-rate is always above the requirement of 64 Kbps). Figure 2b plots the fraction of time
during which link #2 uses pools #3 or #4. When using these pools in the low interference
state, link #2 will be satisfied. In turn, link #2 will be dissatisfied whenever it is allocated
pools #1 or #2 or pools #3 or #4 in the high interference state.

As seen in Fig. 2a, for low traffic loads below 0.6 Mbps, a very important reduction of the
dissatisfaction probability compared to Rand is observed for both f1(Ul,p) and f2(Ul,p). This
is because the KM component allows a proper exploration of the different pools to identify
changes in their interference conditions. Therefore, the most suitable pools are allocated to
the different applications and, as a result, the dissatisfaction probability improves. The similar
performance of f1(Ul,p) and f2(Ul,p) can be justified by the fact that, for this low traffic
load, either pool #3 or #4 uses to be available for link #2, even if function f1(Ul,p) tends
to allocate these pools to link #1. This is reflected in Fig. 2b, where it can be seen that the
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Fig. 2 Spectrum selection performance comparison for link #2. a Dissatisfaction probability. b Fraction of
time that link #2 uses pools #3 or #4

usage of pools #3 or #4 by link #2 (when it is active) is close to 1 for both fittingness factor
functions.

When load increases above 0.6 Mbps, performance degrades more significantly for
f1(Ul,p) than for f2(Ul,p). This is because f1(Ul,p) tends to allocate pools #3 and #4 to
link #1 sessions, which forces link #2 sessions to use pools #1 and #2 that are not able to
provide the required bit-rate. On the contrary, f2(Ul,p) prioritizes pools #1 and #2 for link
#1 sessions, and thus pools #3 and #4 tend to be more available for link #2 usage, resulting in
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Fig. 3 Average number of SpHOs/session

a much lower dissatisfaction probability. To illustrate allocations made by the two functions,
it can be observed in Fig. 2b that the usage of pools #3 or #4 by the most demanding link #2
is much higher with f2(Ul,p) than with f1(Ul,p).

With respect to the role of SM, for low loads, its use leads to small improvements for both
fittingness factor functions (see the comparison in Fig. 2a between SS and SS + SM). The
reason is that, for low loads, it occurs very rarely that a link is not allocated the pool with
the highest fittingness factor because of being occupied by another link. Consequently, there
is no need to perform SpHOs towards a better pool except in the case when the interference
increases in the allocated pool, which justifies the small improvement observed when com-
paring SS and SS + SM . On the contrary, when traffic load increases, the introduction of
SM leads to a significant performance gain. The reason is that, whenever link #2 sessions
are assigned to pools #1 or #2 due to the unavailability of pools #3 and #4, the SM algorithm
succeeds in reconfiguring these sessions to use pools #3 and #4 after they got released. In
case of f2(Ul,p), the unavailability of pools #3 and #4 for link #2 usage occurs mainly due
to the high traffic load. Nevertheless, in case of f1(Ul,p), the unavailability of pools #3 and
#4 may also be caused by the inefficient allocation of these pools to link #1 sessions, which
justifies the higher improvement SM is introducing in this case. Correspondingly, it can be
observed that the difference in dissatisfaction probability between f1(Ul,p) and f2(Ul,p)

becomes smaller when strategy SS + SM is considered. The reason is that inappropriate
allocations made by the function f1(Ul,p) can be compensated by the reassignments made
by SM when these pools are released. However, this comes at the expense of an increase in
signalling requirements due to executed SpHOs. This is shown in Fig. 3 that plots the number
of SpHOs per link session experienced by SS + SM for both fittingness factor functions.
Note in particular that there is a very important reduction in the number of required SpHOs
for link #2 when function f2(Ul,p) is used (at the expense of a slight increase in the number
of required SpHOs for link #1).
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Fig. 4 Impact of decision-making criterion

Another relevant observation in Fig. 2a is that the strategy SS + SM using f2(Ul,p)

performs very closely to the upper-bound optimal scheme for all load conditions, mainly
thanks to the support of the KM and SM components. The gain observed by SS + SM with
respect to the Rand scheme (measured as the reduction in dissatisfaction probability) ranges
from 85–100 % (Fig. 2a). Note that a slight degradation is observed for SS + SM when
f1(Ul,p) is used. This is due to a higher number of SM executions caused by the inefficient
allocation of pools. As a matter of fact, whenever link #2 sessions are inefficiently assigned
pools #1 or #2, some time is spent before SM reconfigures these sessions to use pools #3 or
#4, which slightly increases the dissatisfaction probability.

Enlightened by the above analysis, it can be concluded that function f2(Ul,p) provides
a more efficient resource allocation resulting in a better dissatisfaction probability and less
SpHO signalling requirements.

In order to evaluate the impact of the decision-making criterion on the obtained per-
formance, a comparison between the greedy and proactive criteria introduced in Sect. 4 is
next presented. Only the function f2(Ul,p) is considered for both criteria, together with the
strategy SS + SM .

Figure 4 plots the total requirements in terms of SpHO rate for both the greedy and
proactive criteria as a function of the total offered traffic load. It is worth mentioning that the
performance in terms of dissatisfaction probability reveals a very similar performance for
both criteria with the same result shown in Fig. 2a for SS + SM with f2(Ul,p).

The results in Fig. 4 show that, from low-to-medium traffic loads, the proactive criterion
strongly outperforms the greedy criterion. This is because, among pools #3 and #4, the proac-
tive criterion tends to prioritize pool #3 exhibiting much longer durations of the state HIGH
(7.5h for poos #3 versus 0.5h for pool #4). Therefore, it becomes less likely to experience a
state change from I0(p) to I1(p) during link session, which considerably reduces the number
of executed SpHOs. As traffic load becomes high, pools #3 and #4 become occupied most
of the time, which marginalizes the effect of giving priority to pool #3.
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6 Conclusions

This paper has proposed a new knowledge management functional architecture, based on
the fittingness factor concept, for optimizing spectrum management to support a set of
heterogeneous application. It particularly includes a set of advanced statistics to capture
the influence of the dynamic radio environment on the fittingness factor. These statistics are
exploited by a KM entity that supports two Fittingness Factor-based SS and SM function-
alities. The impact of two different formulations of the fittingness factor and two decision-
making criteria has been analyzed. It has been obtained that a proactive decision-making
combined with fittingness factor function 2 allows performing an efficient resource allocation
in terms of both dissatisfaction probability and SpHO signalling requirements. Specifically,
achieved performance in terms of dissatisfaction probability is very close to the upper-bound
optimal scheme and introduces significant gains (ranging from 85–100 %) with respect to a
random selection scheme.
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