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Abstract—This paper presents a decentralized framework for dynamic
spectrum assignment in multicell orthogonal frequency division multiple
access (OFDMA) networks. The proposed framework allows each cell to
autonomously decide the frequency resources it should use through a proce-
dure that incorporates concepts from self-organization and machine learn-
ing in multiagent systems (MASs). Simulation results have been obtained
for several scenarios, including both macrocells (MCs) and femtocells (FCs),
revealing important improvements in terms of spectral efficiency and in-
tercell interference mitigation over reference approaches, and close perfor-
mance with the one obtained by a centralized strategy. Results also suggest
that the framework would be practical for future FC cellular deployments
where a high degree of independence of the network nodes is expected to
reduce operational costs.

Index Terms—Cellular mobile networks, intercell interference, mul-
tiagent systems (MASs), orthogonal frequency division multiple access
(OFDMA), reinforcement learning.

I. INTRODUCTION

Current mobile cellular networks are difficult to manage and re-
quire a lot of human interaction. For example, tasks such as assigning
spectrum resources to macrocells (MCs), i.e., operator-deployed cells
of wide-range coverage areas, are carried out off-line during network
deployment. Then, the spectrum assignment remains unaltered until
new infrastructure is added to the system, and a tedious manual fre-
quency planning is repeated. This is also the case for next-generation
mobile cellular networks such as Third-Generation Partnership Plan
(3GPP) long-term evolution (LTE) or IEEE 802.16e (Mobile WiMax),
whose downlink radio access network is based on orthogonal fre-
quency division multiple access (OFDMA). Such an interface divides a
broad frequency band into small bandwidth frequency resources named
chunks [1] that have to be allocated to the different cells.

When performing frequency planning, the network operator aims
to cover the maximum demand anyplace within the service area while
reducing the intercell interference (i.e., the interference that two or
more neighboring cells using the same frequency resource cause each
other). Usually, different frequency reuse factors (FRF) [2] are de-
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ployed, where the spectrum is distributed among MCs following a static
regular pattern. Additionally, it has been showed [3] that global network
performance can be improved by fragmenting spectrum according to
the distance of the users to MCs. Then, several proposals to arrange the
division between a central and an edge subband have been proposed,
where one of the most representatives is called partial-frequency reuse
(PR) [4]. However, either FRF or PR spectrum assignment strategies
can be clearly inefficient with variable traffic demands [5], leading to
underutilization of the spectrum in some cells and lack of spectrum
resources in others.

Moreover, current trend in cellular networks is to decentralize the
spectrum assignment tasks [6], [7]. This has been mainly motivated by
1) the tendency to enhance the radio resource management capabilities
in MCs in order to reduce operational costs of the network and 2)
the advent of new cellular deployments based on femtocells (FCs).
These are small range user-deployed base stations introduced at a
considerable amount of random locations [8] that require a high degree
of autonomy due to their independent nature. Then, spectrum manage-
ment in OFDMA FCs is a challenging task where different possibilities
are open [9], especially when FCs are operating under the coverage
of an MC deployment. Therefore, orthogonal division of the spectrum
can be made to avoid cross-layer interference (i.e., that interference
between MCs and FCs). In that arrangement, MCs and FCs operate in
different parts of the spectrum to avoid cross-layer interference but at
the cost of reducing the available capacity as well. On the other hand,
the authors of [10] proposed a hybrid scheme where, depending on the
position of the FC, it accesses to an orthogonal or cochannel part of
the spectrum (i.e., the MC layer and the FC layer could share the same
spectrum band, so that cross-layer intercell interference could arise).
However, this scheme needs to locate the FCs within the MC and from
explicit communication between FCs and MCs. Finally, FC spectrum
management with regard to other FCs is also an important task because
in scenarios with a high density of FCs, interference between them
cannot be neglected due to their proximity. In this case, a reference
approach introduced in [9], called FRSx , consists of dividing the
available spectrum into x equal portions so that the FCs randomly
select one of them to operate after switch on. Then, the spectrum
management is simple and autonomous, but it can be far from optimal.

Centralized spectrum assignment strategies concentrate on the de-
cision tasks in a centralized controller with global knowledge of the
status of the cellular network. On the other hand, decentralized schemes
provide 1) flexibility because they can adapt to a vast variety of scenar-
ios without having to deploy a centralized architecture; 2) scalability,
maintaining constant the signaling and computational requirements
with an increment of the number of cells; and 3) robustness, since
the decentralized strategy avoids the need of a centralized controller
which constitutes a single point of failure. However, there are open
questions regarding decentralized management such as how close the
performance of the decentralized system can be to the one in the cen-
tralized counterpart (having in mind that each entity has only a partial
knowledge of the status of the cellular network) or how the different
entities self-organize to achieve a stable solution.

From an operator’s perspective, it would be desirable that a decen-
tralized strategy for spectrum assignment includes automatic mecha-
nisms in the network procedures. Then, the spectrum assignment would
be dynamically adapted to temporal and spatial traffic load needs at
the same time that operational and capital expenditures reductions are
achieved [11]. In this context, machine learning appears as a potential
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approach to implement cognitive and autonomic procedures in each of
the entities of the system [12].

In this paper, we approach the decentralized spectrum assignment
problem as a learning task in a multiagent system (MAS) [13]. This
approach is useful in scenarios where several entities pursue different,
even contradictory goals. This is the case of the spectrum assignment
problem in cellular systems, where intercell interference supposes a
conflict between cells. Here, each cell behaves as an autonomous agent
that executes a reinforcement learning (RL) algorithm to decide its best
spectrum assignment based on context information obtained from their
surroundings. This context information includes partial knowledge of
the spectrum assignment choice taken by other cells so that, although
the learning is localized in each cell, it is influenced by other agents’
decisions, constituting a form of learning in the MAS [14]. Other
approaches consider a global common learning for the agents in the
MAS [15] or the existence of a coordination entity that entails the
learning task for a set of agents [16], but it is an open question whether
local or global learning is better depending on the specific problem to
be solved [14].

Work in this paper extends our previous work in [17] that pre-
sented a preliminary version of the decentralized approach. However,
work in [17] did not consider future advances in mobile networks
such as the possibility of intercell signaling interfaces between cells
or the channel-aware packet scheduling strategies. On the other hand,
two novel strategies for the decentralized spectrum assignment are
presented in this paper, named communicative and noncommunica-
tive spectrum assignment schemes, respectively, depending on whether
there exists communication between adjacent cells or not. Moreover,
the reinforcement learning-dynamic spectrum assignment (RL-DSA)
strategy presented in [18] has been adapted to be independently exe-
cuted by each cell to determine its used spectrum. In fact, work in [18]
focused on a centralized approach where a single node entails the spec-
trum assignment procedure for a set of cells. Clearly, this approach
could become intractable with the advent of new cellular deployments
based on FCs. Finally, simulation results have been extended in this
paper to be obtained in three case studies including a typical 19 MCs
scenario, a scenario with up to 100 FCs, and a combined MC and FC
scenario, where finding a spectrum assignment to reduce intercell in-
terference is quite challenging (i.e., intercell interference could appear
between MCs, between FCs, and between MCs and FCs). The pro-
posed scheme exhibits a superior performance to classical spectrum
assignment strategies, and a close performance to its centralized ver-
sion taking into account that cells in the decentralized approach handle
limited information compared with the centralized controller. Also,
the better scalability of the decentralized approach with respect to the
centralized counterpart has been qualitatively analyzed.

In the following, Section II presents the operation of the proposed
framework. Then, Section III presents the Cell DSA controller, which
is the functional block in each cell where the RL-DSA is executed.
There, a detailed description of internal procedures of the controller is
given. Section IV is devoted to present the simulation model and the
results for three case studies in this paper. Final conclusion is stated in
Section V.

II. DECENTRALIZED FRAMEWORK DESCRIPTION

We consider a decentralized framework (see Fig. 1) where each
cell (MC or FC) constitutes an independent agent that performs au-
tonomous spectrum assignment decisions with the objective of im-
proving cell’s SINR (signal to interference plus noise ratio) while
guaranteeing cell users’ quality of service (QoS). In the follow-
ing, we focus on a single cell. Assume that the cell has U users

Fig. 1. Proposed decentralized framework for spectrum assignment.

{1, . . . , u, . . . , U}. A generalized OFDMA radio interface is con-
sidered in downlink for users’ data transmission, where a common
system bandwidth W for the service area is divided into N chunks
{1, . . . , n, . . . , N}. Each chunk is a group of contiguous OFDM sub-
carriers with bandwidth B = W/N Hz. Moreover, time is divided
into frames. The minimum radio resource block assignable to users
is one chunk per frame. On the other hand, there is an uplink control
channel where users send instantaneous (frame-by-frame) measure-
ments report messages from which the SINR in the different chunks
can be obtained. These reports are necessary to perform the link adap-
tation for each established downlink communication in terms of an
adequate modulation and coding rate scheme for a given SINR in a
given frame.

The operation of a cell is as follows. In the short term (i.e., at the
frame-time scale), the cell handles users’ traffic and performs OFDMA
fast link adaptation following a channel-aware strategy such as propor-
tional fair (PF) [19]. On the other hand, spectrum assignment is done
in the medium term (i.e., from tens of seconds to tens of minutes).
More precisely, each cell tries to learn the best spectrum assignment
by executing the RL-DSA algorithm (see the next section) in an execu-
tion period of L frames. It is important to remark that RL-DSA is run
in each cell assuming that the spectrum assignment in adjacent cells
is not varying during its execution to assure the self-organization of
the MAS to a stable solution. Notice that if the periods were aligned
between cells (i.e., all cells execute RL-DSA simultaneously), then
adjacent cells would be simultaneously varying their respective spec-
trum assignments, and thus, convergence to a stable solution could be
compromised. Trying to avoid this, we consider that, after switch-on,
a cell randomly selects an initial time to execute for the first time, and
then the execution period L is followed from the initial time. Hence,
since large values of L are expected for a medium-term execution of
RL-DSA, the probability that adjacent cells select the same initial time
becomes negligible. For instance, we have taken in this paper L =
60 000 frames, what leads to a probability of simultaneous execution
of around 10−4 assuming a value of six adjacent cells. In the case of
simultaneous execution, this could be easily detected, e.g., due to con-
secutive performance degradation in the cell, and then simply another
initiation time for the cell would be randomly selected.

In order to perform a reliable autonomous spectrum assignment de-
cision, the cell should estimate the spectrum usage of adjacent cells to
calculate the potential intercell interference and then their own chunks’
capacities. We consider two ways of obtaining such information: 1)
a communicative spectrum assignment scheme, where cells explicitly
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Fig. 2. RL-DSA functional scheme.

exchange the current spectrum assignment through an intercell inter-
face; and 2) a noncommunicative spectrum assignment scheme, where
the spectrum usage of adjacent cells is estimated from users’ mea-
surements reports. The communicative spectrum assignment scheme
is only possible when a signaling interface between cells is available
(e.g., the X2 interface in MC scenarios [20]). On the other hand, the
noncommunicative spectrum assignment scheme is possible in most
of the scenarios as long as there are measurement reports from users.
This is especially useful for FC scenarios, where the random location
of FCs makes challenging an intercell signaling interface.

III. CELL DYNAMIC SPECTRUM ASSIGNMENT CONTROLLER

The aim of the cell DSA controller shown in Fig. 1 is to find a suitable
spectrum assignment that improves the SINR of the cell while the QoS
of the users in terms of a minimum throughput is assured. Its functional
blocks status observer, RL-DSA algorithm, and cell characterization
entity (CCE) are explained next.

A. Status Observer

The status observer entity in each cell is responsible for triggering the
RL-DSA algorithm following periods of L frames and appropriately
selecting the initial execution frame. In addition, the status observer
entity collects and builds necessary inputs for the spectrum assignment
decision task. Hence, local measurements to the cell are averaged over a
measurement averaging period of l frames, where l � L to favor that
inputs at the time of execution reflect the latest up-to-date measure-
ments. Then, the status observer provides to the RL-DSA algorithm
and the CCE (see Section III-C) the execution context composed by
1) the average number of users in the cell, which are denoted Ū , and
2) information regarding spectral usage in nearby cells. In the commu-
nicative scheme, this latter information is the spectrum assignment of
adjacent cells explicitly retrieved from the intercell signaling interface.
In turn, in the noncommunicative scheme this information is implicitly
included in the probability density function (pdf) of the average SINR
for each chunk γ̄n , which is denoted sγ̄n (γ̄n ).

B. RL-DSA

The RL-DSA algorithm performs the decision task to select an ap-
propriate spectrum assignment for the cell. The inherent optimization
behavior of RL over a reward signal is exploited by RL-DSA to dynami-
cally find proper spectrum assignments in the cell depending on current
traffic load variations. Also, learning is retained to be exploited in sub-
sequent spectrum assignment tasks. RL-DSA functional architecture is
shown in Fig. 2. A feedforward network composed of N RL-agents is
used to implement the RL-DSA algorithm in each cell, where the nth
RL-agent in the feedforward network is devoted to learn whether the

nth chunk should be assigned to the cell or not. The learning procedure
given in [18] has been adopted, which is briefly described next.

RL-DSA interacts with the CCE on a step-by-step basis to ob-
tain a reward. In each RL step t, the action chosen by the RL sys-
tem to interact with the CCE is a binary assignment vector Υ(t) =
(y1 (t), y2 (t), . . . , yN (t)) that contains the chunk-to-cell assignment
so that it is considered that the nth chunk is assigned to the cell if the
output yn (t) is 1 (and not assigned otherwise). It is worth to remark
that outputs are Bernoulli random variables that depend on an internal
probability pn (t) corresponding to the probability that the output yn (t)
is equal to 1 at a given RL step. This random nature and the learning
algorithm allow RL-DSA to explore the solution space in a direction
where reward is globally maximized [18], [21]. Specifically, in [21],
the general REINFORCE methods, being the algorithm proposed in
this paper as a specific case, have been proven to converge to a global
maximum of reward signal. Moreover, we set the inputs xn (t) = Ū for
all n and t. This input remains constant during an RL-DSA execution
so that RL-DSA is able to associate solutions to different loads of the
cell. Then, RL-DSA maximizes a reward signal which is appropriately
defined in terms of the average SINR in the cell and the QoS of users’
communications. It is considered that the transmitted power per chunk
is constant for a given cell, so that an increment in the SINR for a
given distribution of the users in the cell is equivalent to a reduction
of the interference from other cells. Finally, Decision Maker stops RL-
DSA after a sufficiently high number of steps MAX_STEPS. Then,
it examines RL-DSA status, which is a vector with agents’ internal
action–selection probabilities pn (t) for n = 1, 2, . . ., N , and assumes
for the new spectrum assignment that a chunk has to be used in the
cell if pn (t) > 0.5 and not assigned otherwise. We showed in [18] that
RL-DSA tends to converge to an optimal solution for a reduced number
of steps compared with the size of the space solution.

For each action of RL-DSA, CCE returns a reward signal r ∈ R

that is common for all RL-agents in a given cell so that all agents are
involved in the same goal oriented problem [22]. Notice that in essence,
RL-DSA involves learning in a MAS, and thus, having a common
reward indirectly makes the actions of each RL-agent dependent on
actions taken by other RL-agents in that cell. This fact, jointly with
the random nature of the outputs of RL-agents, provides adequate
coordination between them to converge to a stable solution. The aim
of RL-DSA algorithm is to maximize a reward signal r(t). To give a
physical meaning to the learning procedure, the reward signal should be
linked to a system performance metric. Since the Cell DSA Controller
in this paper aims at maximizing cell’s SINR assuring a given QoS in
terms of a minimum average user throughput, r(t) is defined as

r(t) =

{
0, if t̂h(t) < thtarget

γ̂(t), otherwise
(1)

where γ̂(t) is the estimated average SINR in the cell and t̂h(t) is the
estimated average user throughput for the cell. Notice that the reward
signal is zero for the cell if the average user throughput is below a given
user satisfaction throughput target thtarget , so that the reward signal
retains QoS constraints. Otherwise, RL-DSA maximizes the SINR.
This reward signal is built by CCE for each action of RL-DSA in a
cell. Thus, coordination among different cells results from the fact that
reward signal captures the SINR resulting from the actions of the other
cells. Notice that this reward is nonstationary since different rewards
can be obtained for the same action in different executions of RL-DSA
depending on the current status of the cell and its environment (i.e., the
spectrum assignment chosen by other cells in the surroundings). In the
following, we describe how CCE can estimate γ̂(t) and t̂h(t).
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C. Cell Characterization Entity

The CCE constitutes the environment for the RL-DSA and tries to
mimic the response of the cell for a given spectrum assignment. It
is worth noticing that the accuracy of the estimation could affect the
accuracy of the proposed solution. However, as results in Section IV
will reveal, the models given here are adequate since the proposed
solution by RL-DSA certainly improves performance over the real
network.

For each candidate spectrum assignment Υ(t) given by RL-DSA in
step t, the CCE returns the reward value reflecting the suitability of each
action as given by (1). Hence, the reward signal should be estimated
for each action. To this end, CCE should compute estimations of the
average SINR in the cell γ̂(t) and the average user throughput t̂h(t) for
a certain spectrum assignment selected by RL-DSA in a given step. We
propose two estimation methods depending on whether cooperation
exists between cells or not.

1) Communicative Spectrum Assignment Scheme: In the commu-
nicative spectrum assignment scheme, cells exchange the spectrum
assignment so that a given cell knows the spectrum assignment in ad-
jacent cells. Thus, it can compute the set of cells Φn (t) that cause
interference to each chunk n in a given RL step. In this paper, the
communicative spectrum assignment is only considered for an MC
scenario where an intercell signaling interface is feasible and cell’s
deployments are controlled by the operator. Then, let us assume an
interference limited MC scenario with omnidirectional antennas (i.e.,
noise can be neglected) and uniformly distributed users per cell. The
average signal to interference ratio (SIR) per chunk in the cell for a
given candidate spectrum assignment in an RL step can be estimated
as

γ̂n (t) =
∫∫

A

1
A

SIR(Φn (t), ρ, θ)ρd ρd θ (2)

where SIR(Φn (t), ρ, θ) is the SIR at a given point (ρ, θ) of the cell
in polar coordinates. Hence, (2) averages the SIR for all points in the
actual area A covered by the cell. Considering that any interfering cell
j is located, in polar coordinates, at a point (dj ,φj ) with respect to the
reference cell, SIR(Φn (t), ρ, θ) is written as

SIR(Φn , ρ, θ) =
Pn KP L ρ−χ∑

j∈Φn

Pn KP L ρj (ρ, θ)−χ
(3)

for ρm in ≤ ρ ≤ ρm ax and 0 ≤ θ < 2π. ρm in > 0 is the minimum dis-
tance between users and the base station due to base station antenna
height, and ρm ax is the maximum distance to the base station in the
cell’s coverage area. Constant chunk power Pn is assumed for all
chunks and pathloss is modeled as KPL ρ−χ , being KPL a pathloss
constant and χ the pathloss exponent dependent on the scenario. Since
we are interested in average results in the medium term, slow and fast
varying fading has not been considered in (3). The distance between
the interfering cell and the point of interest in the reference cell can be
written as ρj (ρ, θ) =

√
d2

j + ρ2 − 2ρdj cos(θ − φj ). Then, (3) can
be reduced to

SIR(Φn , ρ, θ)−1

=
∑
j∈Φn

(
1 + d2

j

/
ρ2 − 2dj cos (θ − φj )/ρ

)−0 .5χ
. (4)

Finally, we average γ̂n (t) for all assigned chunks to the cell in a given
RL step:

γ̂(t) =
1

|C(t)|
∑

n∈C (t)

γ̂n (t) (5)

Fig. 3. Spectral efficiency gain versus average SINR and number of users.

where C(t) is the set of chunks assigned to the cell by the RL-DSA for
a given action (i.e., n ∈ C(t) if yn (t) = 1), and consequently, |C(t)|
stands for the number of assigned chunks.

On the other hand, the average user throughput in the cell can be
obtained as

t̂h(t) =
B |C(t)| η̂(t)

Ū
(6)

where B denotes the chunk bandwidth, Ū is the average number of
users in the cell, and η̂(t) is an estimation of the average cell spectral
efficiency for a given spectrum assignment. Similar to γ̂(t), η̂(t) can
be obtained as

η̂(t) =
1

|C(t)|
∑

n∈C (t)

G(Ū , γ̂n (t))

×
∫∫

A

1
A

q(SIR(Φn (t), ρ, θ))ρdρdθ (7)

where q (SIR(Φn (t), ρ, θ)) is the spectral efficiency in bits/(s Hz) for a
given value of the SIR. For instance, the function q can be the mapping
table given in [1, Tab. 8.1]. G(Ū , γ̂n (t)) is a gain factor that captures
the multiuser diversity features [1] of the short-term scheduling strategy
used in the cell as a function of the average number of users Ū and
the average estimated SINR per chunk γ̂n (t). In particular, Fig. 3
shows the gain factor obtained for a PF scheduler from simulations
(simulation details are in Table I). Notice that spectral efficiency gain
tends to be constant for numbers of users above a certain value because
multiuser diversity cannot be further exploited (i.e., after reaching a
certain number of users, it is always very probable that a user with a
good channel will be found).

2) Noncommunicative Spectrum Assignment Scheme: In the case
of noncommunicative spectrum assignment scheme, the average SINR
and user throughput are estimated from measurements, because the
spectrum usage of adjacent cells is unknown. Let sγ̄n (γ̄n ) be the av-
erage SINR pdf for the chunk n computed by status observer from
users’ measurement reports. Then, the average cell SINR per chunk is
obtained as

γ̂n (t) =
∫ ∞

−∞
γ̄n sγ̄n (γ̄n )dγ̄n (8)

and hence, the average cell SINR is computed as

γ̂(t) =
1

|C(t)|
∑

n∈C (t)

γ̂n (t). (9)
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TABLE I
SIMULATION PARAMETERS

On the other hand, an estimation of the average spectral efficiency can
be obtained as

η̂(t) =
1

|C(t)|
∑

n∈C (t)

G(Ū , γ̂n (t))
∫ ∞

−∞
q(γ̄n )sγ̄n (γ̄n )dγ̄n (10)

where, as in the communicative spectrum assignment scheme,
G(Ū , γ̂n (t)) is the spectral efficiency gain factor. Finally, similar to the
communicative spectrum assignment scheme, the average user through-
put in the cell can be estimated by following (6) and considering (10).

IV. SIMULATION RESULTS

Performance results for the proposed distributed framework have
been obtained in three different case studies for an MC, an FC, and a
combined MC and FC scenario, respectively. In all case studies, the
number of available chunks is N = 24. The modulation and coding
rate SINR thresholds in [1, Tab. 8.1] have been considered to perform
the short-term link adaptation. Other simulation parameters for these
case studies can be found in Table I.

A. Case Study 1: MC Scenario

We consider a downlink OFDMA-based MC scenario composed of
19 hexagonal cells where the central cell is rounded by two rings of six
and 12 cells, respectively. Users are distributed homogeneously within
a cell, and they move at the speed of 3 km/h following a random walk

model [23]. Handovers are not considered, so users always remain
within their cell. Users always have data ready to be sent (i.e., full-
buffer traffic model), so that each user tries to obtain as much capacity
as possible. We compare the proposed decentralized framework based
on RL-DSA with FRF strategies FRF1, FRF3, and PR [4], which
deploy a static spectrum assignment over the cellular network. Also,
comparison with the centralized counterpart strategy [18] and with
another decentralized spectrum assignment strategy proposed in [24]
has been performed. This latter strategy (denoted in the following as
“Bernardo et al. [24]”) uses a heuristic algorithm to determine the
spectrum assignment and transmission power for each cell taking into
account throughput QoS constraints as in this paper. For fair comparison
purposes, the transmission power optimization in [24] has not been
simulated.

The performance of the system is evaluated during 1 h to capture
changes in the spatial distribution of the load (users) and to focus on
the dynamic response of the algorithms. In that respect, three types of
cells can be distinguished in the scenario. At the beginning, all cells are
equally loaded with 15 users. After 25 min, the central cell increases
the number of active users in two users per minute. The six cells in the
first ring increase the number of users in one user per minute whereas
the 12 cells in the second ring decrease the number of users in one user
per minute. These variations take place only during a 10-min period
between 25 and 35 min so that, after that period of time, traffic load
has been grouped in the central cell.

Fig. 4 shows a spectral efficiency comparison between considered
schemes. It is clear that RL-DSA strategies overcome the performance
attained by the rest of strategies. As is expected, the centralized ap-
proach achieves the best performance due to handling global informa-
tion. However, decentralized approaches presented here demonstrate
a very close spectral efficiency performance although each cell only
has a partial observation of the assignment problem. Furthermore, RL-
DSA strategies show a very satisfactory behavior in terms of users’
QoS compliance. Concretely, Fig. 4 shows the average dissatisfaction
probability defined as the probability that the user throughput is below
the target throughput thtarget . Here, thtarget per user is set to 256
kb/s (the impact on results of changing this target can be seen in case
study 2). As can be seen in the figure, static reuse schemes are not
adapted to heterogeneous distribution of the load (from 35 min), and
thus, they obtain poor performance in dissatisfaction probability. In
contrast, RL-DSA and Bernardo et al. [24] maintain a reduced dissat-
isfaction thanks to a dynamic adaptation of the spectrum assignment
in both homogeneous and heterogeneous spatial distributions of the
traffic load. Nevertheless, RL-DSA performance in terms of spectral
efficiency is better than the obtained by Bernardo et al. [24].

Comparing the communicative and the noncommunicative schemes,
the communicative spectrum assignment scheme shows slightly better
performance than the noncommunicative scheme because a given cell
handles the precise spectrum assignment in adjacent cells at the mo-
ment of RL-DSA execution. On the other hand, the noncommunicative
scheme relies on measurements to estimate the spectrum usage of
adjacent cells. These measurements need to be averaged during a
certain period of time (i.e., the measurements averaging period). In
case that the spectrum assignment in adjacent cells changes during the
measurements averaging period, the estimation of the spectrum usage
in adjacent cells could be less accurate. However, results show that the
noncommunicative scheme attains similar performance to the commu-
nicative scheme. It happens thanks to the random selection of the initial
execution time, the long RL-DSA execution period L, and a sufficiently
short measurement averaging period (i.e., l � L). Moreover, the
noncommunicative spectrum assignment scheme avoids the need of
signaling between cells. Hence, it raises a good choice in deployments
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Fig. 4. Performance comparison for case study 1. Spectral efficiency for (a) static schemes and (b) dynamic schemes. Dissatisfaction probability for (c) static
schemes and (d) dynamic schemes.

where the intercell signaling interface is not available, as in FC
deployments.

It is worth noticing the close performance shown by the decentral-
ized strategies in relation to the centralized strategy. This certainly
favors the usage of the distributed approaches because they also add
robustness against failure of either a given cell or the centralized con-
troller in charge of executing the centralized algorithm. Also, decen-
tralized strategies show better scalability. For instance for each cell that
is added, the solution space for the centralized RL-DSA strategy in-
creases in 2N solutions and the signaling increases in the order of N/L
bits/s [18]. However, the solution space does not increase in the decen-
tralized approach. In turn, signaling increases in the same amount as
in the centralized approach in the communicative scheme, and remains
constant for the noncommunicative approach. Moreover, decentralized
approaches are more flexible since they can be used in FC scenarios
where a centralized architecture is not practical due to the high number
and random positions of FCs’ access points as the scenario tested in the
following.

Finally, we have studied the convergence behavior of the decen-
tralized RL-DSA methods in terms of the root mean squared error

(RMSE) between the reward eventually achieved by RL-DSA after a
certain number of RL steps and the optimal reward in a given scenario.
In order to make feasible the computation of the optimal reward, we
have set a particular scenario with 19 cells, 19 chunks, and five users
per cell so that any spectrum assignment providing one different chunk
per cell (i.e., no intercell interference) was considered to be optimum,
i.e., attained the best reward defined in (1). Considering the decen-
tralized RL-DSA configuration values given in Table I (α = 100, σ
= 0.05), an RMSE up to 1% is reached in 105 RL steps for both the
communicative and noncommunicative schemes, what denotes a good
convergence behavior since the solution space for the tested scenario
involves 219×19 (=4.69 × 10108 ) different assignments. It is worth to
remark that this result is similar to the one obtained by the centralized
RL-DSA [18].

B. Case Study 2: FC Scenario

In this case study, an FC scenario without an MC layer is studied. The
performance of the noncommunicative spectrum assignment scheme
based on RL-DSA is compared with Bernardo et al. [24] and with
the FRSx strategy as defined in [9], which deploys a randomly selected
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Fig. 5. Performance comparison case study 2. (a) Average dissatisfaction (10 FCs). (b) Average spectral efficiency (10 FCs). (c) Average dissatisfaction (100
FCs). (d) Average spectral efficiency (100 FCs).

subband of N/x chunks per FC. Concretely, we compare RL-DSA with
FRS1 , FRS2 , FRS3 , and FRS6 . Ten and 100 circular FCs are randomly
deployed with a uniform distribution in a square area of 500 × 500 m2

to obtain the performance comparison under two different densities of
FCs. The MC pathloss model is used between FCs for interference con-
siderations plus an additional wall penetration loss detailed in Table I.
Users in an FC remain static and the target throughput thtarget per user
is varied from 128 to 2048 kb/s. The number of users per FC is randomly
selected, where 4 is the maximum number of users in any case. Results
are averaged for 100 simulations with different FCs positions and users’
distributions.

Fig. 5 shows the average performance statistics for the case
study in terms of dissatisfaction probability and spectral effi-
ciency for the two densities of FCs. In both cases, RL-DSA
maintains the dissatisfaction probability at the lowest level even
for high QoS throughput targets. To this end, RL-DSA adapts
the number of chunks per cell to cope with the demanded
traffic. Logically, an increment in the assigned bandwidth per cell
increases the possibility of having intercell interference. Thus, in the
high density scenario with strong intercell interference due to cells’
proximity, RL-DSA experiments a reduction of the spectral efficiency.
On the other hand, the greater the value of x in the FRSx , the lower
the probability that two adjacent FCs use the same portion and in-
terfere each other, which turns into an increment of the spectral ef-
ficiency. However, a high x reduces the available bandwidth in each
FC, which leads to an increase of dissatisfaction probability due to
the lack of capacity (this is especially remarkable for FRS6 with a
target throughput of 2048 kb/s). In all, RL-DSA is the strategy that ob-

tains the best tradeoff between dissatisfaction probability and spectral
efficiency.

C. Case Study 3: MC and FC Scenario

In this case study, we focus on a coexistence MC and FC scenario,
with cochannel spectrum assignment. The layout of 19 MCs of case
study 1 is combined with ten or 100 FCs randomly positioned in the
coverage area of the central MC. A total of 15 users per MC and four
users per FC are uniformly deployed, requiring 256 and 512 kb/s per
user, respectively. Closed access is assumed [25], that is, MC users
cannot connect to FCs. This produces the worst-case MC-to-FC inter-
ference patterns.

We compare the performance of using different spectrum assignment
strategies in the MC layer and the FC layer, respectively. In particular,
FRF1, FRF3 or RL-DSA are tested in MC deployment at the same
time that FRS1 , FRS3 , or RL-DSA are used in the FC layer, having a
total of nine possible combinations. In the case of RL-DSA strategy,
the communicative spectrum assignment scheme was used at the MC
layer whereas the noncommunicative scheme was employed at the FC
layer.

Tables II and III show the average spectral efficiency obtained in the
central MC and the FC layers for the deployment of 10 FCs and 100
FCs, respectively. The employment of RL-DSA strategies in both the
MC and FC layers brings important spectral efficiency improvements,
being the improvement particularly sensitive at the FC layer and when
RL-DSA is used at both the MC and FC layers. Hence, the inclusion
of self-organization at both layers is clearly beneficial. Finally, Fig. 6
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TABLE II
SPECTRAL EFFICIENCY IN MCS AND FCS (10 FCS)

TABLE III
SPECTRAL EFFICIENCY IN MCS AND FCS (100 FCS)

Fig. 6. SINR comparison in the central MC of an MC–FC scenario.

illustrates the average SINR improvement in the central MC when RL-
DSA strategy is used. In the figure, each row represents a spectrum
assignment for the MC layer whereas each column represents a spec-
trum assignment for the FC layer. Notice that FCs produce SINR dead
zones, where the SINR for MC users highly decays in the proximities of
an FC (dark spots). However, for other spectrum assignment schemes,
these zones can be avoided. In fact, RL-DSA strategy in both the MC
and FC layers is the best approach, demonstrating a better average
SINR pattern in the central MC.

V. CONCLUSION

The decentralized approach for spectrum assignment proposed in
this paper based on learning in MAS can help on the task of imple-
menting autonomic procedures in the network nodes and thus reduce
operational costs. Concretely, the proposed framework has shown its
effectiveness in several cellular deployments in terms of spectral effi-
ciency and SINR improvement, and QoS fulfillment. Also, the solution
envisages communication between cells if an intercell signaling in-
terface is available between cells. Since this is not the case for FC
deployments, a complete independent (noncommunicative) spectrum

assignment scheme has been also considered, where knowledge of the
environment is obtained from measurements taken in the own cell. This
approach could be of interest of mobile network operators that currently
face the challenge of managing a network composed of thousands or
even millions of nodes with the exploitation of FC technologies, where
clearly, centralized approaches are unpractical. Future work could in-
vestigate global learning techniques in the MAS, where the learning
rules in each cell (agent) explicitly consider the actions taken by other
cells, making each cell orient its decisions, taking into account, for
instance, the predicted behavior of other cells in the surroundings.
Also, the possibility of having different goals per cell can be studied,
constituting, in this case, a heterogeneous MAS.
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[17] F. Bernardo, R. Agustı́, J. Pérez-Romero, and O. Sallent, “Distributed
spectrum management based on reinforcement learning,” in 4th Int. Conf.



976 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 41, NO. 6, NOVEMBER 2011

Cognitive Radio Oriented Wireless Netw. Commun., Jun. 22–24, 2009,
pp. 1–6.
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