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Design and Evaluation of a Backhaul-Aware
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Abstract—Existing base station (BS) assignment methods in
cellular networks are mainly driven by radio criteria since it
is assumed that the only limiting resource factor is on the
air interface. However, as enhanced air interfaces have been
deployed, and mobile data and multimedia traffic increases, a
growing concern is that the backhaul of the cellular network
can become the bottleneck in certain deployment scenarios. In
this paper, we extend the BS assignment problem to cope with
possible backhaul congestion situations. A backhaul-aware BS
assignment problem is modeled as an optimization problem using
a utility-based framework, imposing constraints on both radio
and backhaul resources, and mapped into a Multiple-Choice
Multidimensional Knapsack Problem (MMKP). A novel heuristic
BS assignment algorithm with polynomial time is formulated,
evaluated and compared to classical schemes based exclusively
on radio conditions. Simulation results demonstrate that the
proposed algorithm can provide the same system capacity with
less backhaul resources so that, under backhaul bottleneck
situations, a better overall network performance is effectively
achieved.

Index Terms—BS assignment algorithms, mobile backhaul,
OFDMA, radio resource management.

I. INTRODUCTION

W IRELESS access technologies are continuously evolv-
ing to provide higher data rates and pave the way for

ubiquitous, high speed broadband wireless coverage. Nowa-
days, the most outstanding radio technologies to meet these
requirements are based on orthogonal frequency division mul-
tiplexing (OFDM) schemes that have been already adopted for
next generation cellular systems such as Long Term Evolution
(LTE) and Mobile WiMAX. An OFDM physical layer enables
orthogonal frequency division multiple access (OFDMA) that
allows for the exploitation of multiuser diversity by managing
both time and frequency components in the radio resource
allocation process. In an OFDMA-based cellular system, effi-
cient radio resource allocation techniques are crucial to fully
exploit OFDMA capabilities [1]. In this context, the base
station (BS) assignment problem, that is, the selection of
the most appropriate BS to handle radio transmission to/from
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mobile terminals, constitutes a key component of the overall
resource allocation process [2].

So far, existing BS assignment solutions consider that the
main capacity bottleneck of cellular networks is always on the
air interface. This assumption proved to be valid for voice-
dominant cellular networks where, as the aggregate traffic
rate at cell sites was relatively low, dimensioning backhaul
network1 capacity to satisfy air interface peak rates was an
economically feasible option. Conversely, significantly higher
air interface peak rates provided by OFDMA-based systems
bring new challenges in how to properly scale the capacity of
backhaul networks in a cost-effective manner, especially for
the last mile connectivity. Due that backhaul could represent
as much as one quarter of the total network costs [4], mobile
operators are carefully reviewing their backhaul strategies
before making further investments in the transport network
infrastructure. In fact, capacity upgrades in the backhaul are
expected to be carried out by operators gradually and, while
it can be argued that to bring fiber to more cell towers in
the backhaul would solve the last mile bandwidth problem,
the fact is that there are far too many towers for this to
be a near-term strategy. In this context, best practices for
efficient backhaul design have been recently issued by NGMN
Alliance [5] and there is an increasing number of solutions
pushing for the adoption of more cost-effective transmission
technologies than those used in most current deployments
[3]–[6] along with new resource management functionality
specifically tailored to tackle backhaul congestion [7]. As a
matter of fact, flow control mechanisms have been already
introduced in current mobile networks to partially mitigate
traffic peaks in the backhaul at the expenses of an increased
delay in some services [8], [9]. Attending to previous consider-
ations, cellular network capacity limitations due to a shortage
of backhaul capacity should not be underestimated in some
network deployments.

In this paper we propose to take into consideration the
amount of backhaul capacity available in each cell site within
the BS assignment process of a cellular OFDMA network.
Hence, we develop a novel backhaul-aware BS assignment
algorithm envisioned as a suitable technique capable to cope,
at some extent, with possible backhaul congestion situations.

1The backhaul or transport network refers to the part of the cellular access
network that interconnects BSs to the rest of the network infrastructure by
means of whatever transmission media (been E1/T1 leased lines over copper
wires and microwave radio links the most used transmission technologies [3]).
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The main idea behind the proposed algorithm is to distribute
traffic among BSs according to a load balancing strategy that
considers both radio and backhaul load status. This possibility
is shown to constitute a tradeoff between reducing backhaul
congestion and using radio resources efficiently since some
users can be assigned to BSs not being their "best" radio
choice but preventing congestion in other BSs. The proposed
algorithm is proven to successfully exploit such a tradeoff,
turning ultimately into a better overall network performance.

A. Related Work

The BS assignment problem in cellular systems has de-
served significant research efforts. Irrespective of the radio
access technology, one of the most common BS assignment
approaches is the Minimum Path Loss (MPL) that assigns
each user to the BS that provides the highest radio link
gain [10]. This approach alone constitutes the core of many
BS assignment algorithms used in current 2G/3G cellular
systems (where absolute and/or relative received signal level
thresholds are used to decide upon the serving BS) and also
forms part of more sophisticated approaches aimed to exploit,
e.g., multiuser detection and multiple antennas [11]. Another
common approach consists of taking into account the Signal
to Interference and Noise Ratio (SINR) in the assignment
process, which is particularly important when targeting an
aggressive reuse of frequencies throughout the network (e.g.,
single-channel CDMA networks and OFDMA networks with
low frequency reuse factors). In this case, there is a mutual
dependency between the SINR values and the BS assignment
in the downlink2 (i.e., SINR values depends on the BS
allocation and viceversa), that further complicates the resource
allocation problem. In addition to channel gain and SINR,
different constraints such as maximum transmit power levels
or minimum guaranteed bit rates have been also considered
under various forms of optimization problems [2], [12], [13].
As to specific works focusing on the BS assignment problem
in OFDMA, work in [2] proposes a suboptimal approach based
on SINR and constraints on the BS downlink radio capacity,
where mutual dependency issue is avoided by performing a
greedy BS assignment that sequentially chooses the user with
the highest SINR. An iterative BS assignment scheme aimed
to balance traffic densities is developed in [14], where the
assignment decision is based on the MPL criterion and quality
of service (QoS) requirements of users. However, most of the
works tackling resource allocation in multi-cell OFDMA [1],
[15]–[18], implicitly consider a BS assignment based on a
simple MPL criterion, due that these works mainly concentrate
on developing algorithmic solutions to the subcarrier and
power allocation problems.

B. Our Contributions

The effect of possible backhaul capacity limitations on the
BS assignment has not received enough attention so far in the
literature. This paper aims to fill this void, and presents three
main contributions. First, we formulate a new BS assignment

2This is normally seen as the more restrictive link due to the asymmetric
bandwidth demand between downlink and uplink.

problem in OFDMA-based networks considering both radio
and backhaul constraints in the assignment process. The
formulated optimization problem is based on utility and re-
source cost concepts, which have been widely used to develop
resource allocation algorithms [19]. The second contribution
is the mapping, after some practical considerations, of the BS
assignment problem to a Multiple-Choice Multidimensional
Knapsack Problem (MMKP), a well-known NP-hard combi-
natorial optimization problem arisen in many practical and
real life problems [20], [21]. Motivated by the need to obtain
suboptimal solutions with polynomial time complexity, the
third contribution is the derivation of a heuristic backhaul-
aware BS assignment algorithm along with its performance
comparison respect to classical schemes entirely based on
radio conditions.

The rest of the paper is organized as follows. In Section
II we describe the system model. Section III presents the
formulation of BS assignment problem as an optimization
problem, and the mapping to an MMKP. The proposed
heuristic BS assignment algorithm is detailed in Section IV,
where its computational complexity is also analyzed. Section
V provides numerical results of the algorithm’s performance.
Finally, main conclusions are drawn in Section VI.

II. SYSTEM MODEL

We consider a downlink OFDMA-based system with 𝑁 BSs
that cover a geographical area in which there are 𝑀 active
users, as illustrated in Fig. 1. Each user 𝑖 ∈ {1, . . . ,𝑀} is
assumed to have a minimum bit data rate requirement, denoted
as 𝑅min

𝑖 . The overall network uses a total bandwidth 𝐵𝑊
divided into 𝐾 OFDM subcarriers so each BS 𝑗 ∈ {1, . . . , 𝑁}
operates a subset of 𝐾𝑗 subcarriers attending to a given
frequency reuse pattern. Radio and transport resources are
assumed to be allocated to each user in a single BS, i.e.,
no multicell transmission is considered. We assume that each
BS is constrained by a limited amount of radio and transport
resources. As to radio resources, each BS 𝑗 is able to allocate
simultaneously a maximum of 𝐾𝑗 subcarriers and has a max-
imum transmit power of 𝑃max

𝑗 . Radio channel gain between

BS 𝑗 and user 𝑖 is modeled by
−→
𝐺 𝑖,𝑗 = {𝐺𝑖,𝑗,1, . . . , 𝐺𝑖,𝑗,𝑘},

where 𝐺𝑖,𝑗,𝑘 denotes the channel gain over subcarrier 𝑘 ∈
{1, . . . ,𝐾𝑗}. As to transport resources, we assume each BS
𝑗 has a maximum transport capacity of 𝐶trans

𝑗 (in bits/sec),
which refers to the available bandwidth in the path between BS
𝑗 and the access gateway3 (aGW) within the mobile network4.

The amount of network resources required by user 𝑖 to
meet its rate requirement 𝑅min

𝑖 depends on the selected BS
𝑗. Thus, in order to quantify the resource consumption of
user 𝑖 when assigned to BS 𝑗, we define a radio resource
cost and a transport resource cost function, denoted as 𝛼𝑖𝑗

and 𝛽𝑖𝑗 , respectively. Over such a basis, the BS assignment
problem should try to find a feasible assignment (i.e., 𝑅min

𝑖

is satisfied for each user 𝑖 and total radio and transport

3The aGW would correspond to the ASN_GW network entity in Mobile
WiMAX, or to the Serving Gateway in LTE network architecture.

4We have not particularized the analysis of the BS assignment problem to
any specific backhaul technology. Hence, the backhaul capacity assumed here
could actually correspond to the available bandwidth of the wired/wireless link
used for the last mile connection of a given BS.
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Fig. 1. System model with 𝑁 BSs serving 𝑀 users. The arrows connecting
users and BSs indicate possible assignment choices, each one having a

particular radio channel gain
→
𝐺𝑖,𝑗 . Each BS is assumed to have a limited

amount of resources on the air interface (𝐾𝑗 subcarriers, 𝑃max
𝑗 power) and

transport network (𝐶trans
𝑗 ) to serve its assigned users.

resources are not exceeded). As well, if several feasible
solutions exist (i.e., there are several ways to allocate all the
users without exceeding network resources), the "best" one
should be chosen. To this end, a utility function is used to
quantify the appropriateness of each assignment in terms of
bit rate efficiency of the allocated resources. Details of utility
and resource cost functions are given in next subsections.

A. Radio Resource Cost

In a cellular OFDMA system, the computation of the SINR
achieved at subcarrier 𝑘 in the receiver of user 𝑖 served by BS
𝑗, is obtained as follows [2]:

SINR𝑖,𝑗,𝑘 =
𝐺𝑖,𝑗,𝑘𝑃𝑖,𝑗,𝑘

𝐼𝑖,𝑗,𝑘 + 𝜂
(1)

where 𝐺𝑖,𝑗,𝑘 is the radio channel gain between BS 𝑗 and user
𝑖 over subcarrier 𝑘, 𝑃𝑖,𝑗,𝑘 is the transmit power of BS 𝑗 on
subcarrier 𝑘 allocated to user 𝑖, 𝜂 is the subcarrier thermal
noise, and 𝐼𝑖,𝑗,𝑘 is the co-channel interference (CCI) power
received by user 𝑖 on that subcarrier. The value of the co-
channel interference 𝐼𝑖,𝑗,𝑘 can be computed as:

𝐼𝑖,𝑗,𝑘 =

𝑛=𝑁∑
𝑛=1,𝑛∕=𝑗

𝐺𝑖,𝑛,𝑘𝑃𝑚 ∕=𝑖,𝑛,𝑘 (2)

where 𝑃𝑚,𝑛,𝑘 is the transmit power of interfering BS 𝑛, on
subcarrier 𝑘 assigned to other user 𝑚 ∕= 𝑖. Equation (1)
denotes the channel frequency response of user 𝑖 on subcarrier
𝑘, and the achievable transmission rate 𝑟𝑖,𝑗,𝑘 on this subcarrier
of user 𝑖 assigned to BS 𝑗 is given by [22]:

𝑟𝑖,𝑗,𝑘 =
𝐵𝑊

𝐾
log2(1 + SINR𝑖,𝑗,𝑘) (3)

Hence, if all resources of BS 𝑗 were allocated to user 𝑖, the
maximum achievable rate would be:

𝑅max
𝑖𝑗 =

𝐾𝑗∑
𝑘=1

𝑟𝑖,𝑗,𝑘 (4)

Over such a basis, considering that a BS dynamically shares
transmission resources among its assigned users by allocating,
on average, a given amount of subcarriers to user 𝑖, denoted as
𝐾𝑖𝑗 (being 𝐾𝑖𝑗 ≤ 𝐾𝑗) during a given amount of transmission
time denoted as Δ𝑇𝑖𝑗 (being 𝑇𝑖𝑗 ≤ 𝑇𝑠, where 𝑇𝑠 is a
scheduling reference period), we could relate the achievable
rate to the amount of allocated subcarriers and transmission
time to meet user’s minimum rate requirement by:

𝐾𝑖𝑗

𝐾𝑗

Δ𝑇𝑖𝑗

𝑇𝑠
𝑅max

𝑖𝑗 ≥ 𝑅min
𝑖 (5)

From (5), the radio resource cost is defined directly as:

𝛼𝑖𝑗 ≜
𝑅min

𝑖

𝑅max
𝑖𝑗

=
𝐾𝑖𝑗

𝐾𝑗

Δ𝑇𝑖𝑗

𝑇𝑠
≤ 1 (6)

where 𝛼𝑖𝑗 = 1 would mean that the assignment of user 𝑖 to
BS 𝑗 requires all available radio resources at the BS to meet
its rate requirement. Attending to practical considerations, we
consider a limited set of modulation and coding schemes
(MCS) that must be used in each subcarrier, thus reducing
the output of expressions (3), (4) and (6) to a set of discrete
values. Then, we define the aggregate peak rate over the air
interface of BS 𝑗, denoted as 𝐶air

𝑗 , as the highest achievable
aggregate data rate when using all subcarriers continuously
with the highest rate MCS.

B. Transport Resource Cost

The transport resource cost, denoted as 𝛽𝑖𝑗 , associated with
the assignment of user 𝑖 to BS 𝑗 is defined as the ratio of the
minimum data rate required by user 𝑖, 𝑅min

𝑖 , to the available
transport capacity of BS 𝑗, denoted as 𝐶trans

𝑗 , that is:

𝛽𝑖𝑗 =
𝑅min

𝑖

𝐶trans
𝑗

(7)

As a matter of clearly relating the transport capacity 𝐶trans
𝑗 ,

to the aggregate peak rate of the radio interface 𝐶air
𝑗 , we define

the transport capacity factor 𝜙𝑗 as:

𝜙𝑗 ≜
𝐶 trans

𝑗

𝐶 air
𝑗

(8)

Therefore, a transport capacity factor 𝜙𝑗 = 1 would mean
that the transport capacity of BS 𝑗 has been provisioned to
support the highest achievable aggregated data rate of the air
interface. In this regard, it worth noting that dimensioning
the backhaul capacity to satisfy the air interface peak rate
may not constitute a resource efficient solution since not all
cell connections can always simultaneously exploit the fastest
MCS. However, occasionally, user distribution in the cell (e.g.,
most served users being close to BS and enjoying good radio
conditions) may turn into aggregate data rates close to air
interface peak rate.

C. Utility Function

Commonly, a utility function is a non-decreasing function of
the amount of allocated network resources and its shape (e.g.,
step, convex, concave or sigmoid are often used) depends on
the expected benefit that resource allocation can bring into a
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given system5. Here we formulate the utility function to reflect
the bit rate efficiency of the allocated resources to support the
data transfer of each user assigned to a given BS. Hence,
a utility function denoted as 𝑢𝑖𝑗 captures the suitability of
assigning user 𝑖 to BS 𝑗, so 𝑢𝑖𝑗 > 𝑢𝑖𝑙 would mean that BS 𝑗
is more appropriate than BS 𝑙 to serve user 𝑖 in terms of bit
rate efficiency. As well, 𝑢𝑖𝑗 > 𝑢𝑙𝑗 would indicate that is better
to assign user 𝑖 to BS 𝑗 instead of user 𝑙. Over such a basis, the
considered bit rate efficiency in the radio interface is directly
associated with the spectral efficiency (bits/sec/Hz), while in
the transport network it’s assumed that all assignments lead
to the same bit rate efficiency6. Hence, the utility function is
defined as:

𝑢𝑖𝑗 =
1

𝐾𝑗

𝐾𝑗∑
𝑘=1

log2(1 + SINR𝑖,𝑗,𝑘) (9)

As a result, assignments to BSs where users have the highest
values of SINR are favored.

III. PROBLEM SETTING

The BS assignment problem is formulated as an optimiza-
tion problem aiming to maximize the total welfare utility,
defined as the sum of the utilities of all assignments, subject
to resource constraints in BSs. Let 𝐵 = {𝑏𝑖𝑗}𝑀𝑥𝑁 , be the BS
assignment matrix whose entry 𝑏𝑖𝑗 is equal to one if user 𝑖 is
assigned to BS 𝑗 and equal to zero otherwise. This problem
can be formally written as:

max
𝑏𝑖𝑗

𝑀∑
𝑖=1

𝑁∑
𝑗=1

𝑢𝑖𝑗𝑏𝑖𝑗 (10)

s. t.
𝑀∑
𝑖=1

𝛼𝑖𝑗𝑏𝑖𝑗 ≤ 1, 𝑗 = 1, . . . , 𝑁 (11)

𝑀∑
𝑖=1

𝛽𝑖𝑗𝑏𝑖𝑗 ≤ 1, 𝑗 = 1, . . . , 𝑁 (12)

𝑁∑
𝑗=1

𝑏𝑖𝑗 = 1, 𝑖 = 1, . . . ,𝑀 (13)

𝑅𝑖 ≥ 𝑅min
𝑖 , 𝑖 = 1, . . . ,𝑀 (14)

𝑏𝑖𝑗 ∈ {0, 1} (15)

The set of constraints considered in (11) and (12) assures
that no more radio and transport resources than available are
used in each BS. Constraints in (13) indicate that all users
need to be assigned to a single BS, while (14) ensures that
the expected bit rate of user 𝑖, denoted as 𝑅𝑖, meets the
minimum data rate requirement of each user. Finally, to avoid
splitting or partial assignment of users to BSs, constraint (15)
is enforced, which in turn leads to the combinatorial nature
of the problem with exponentially growing complexity in the
degrees of freedom.

5For instance, a step function can be used to model a system where
allocating resources below a given threshold has no utility at all, but the
maximum utility is just achieved when reaching such a threshold.

6The resources needed to transport 1b/s of a user between the aGW and
the correspondent BS are considered to be the same for all BSs, noticing here
that other assumptions, e.g., based on transport provisioning costs, could be
also possible but are out of the scope of this work.

A. Practical Considerations

Problem (10)-(15) is a non-linear combinatorial optimiza-
tion problem since entries in the assignment matrix 𝐵 can only
take integer values. Notice that utility and radio resource cost
functions are non-linear functions that depend on the SINR
values, which in turn depend on the BS assignment solution
because of CCI (i.e., mutual dependency). So, both utility and
radio resource cost function values are coupled with the as-
signment of users to BSs, making the BS assignment problem
very hard to tackle. To overcome this issue, we reformulate the
BS assignment problem under the practical consideration of a
fully-loaded system [12], where BSs are assumed to transmit
at maximum power so that the mutual dependency is avoided.
Apart from reducing the complexity of the BS assignment
problem, the rationale of considering full-load conditions can
be also justified by the fact that it is just under such stressed
load conditions where resource management strategies are
expected to bring out their potential benefits. We also consider
that the maximum transmit power of BS 𝑗 is shared uniformly,
on average7, over its 𝐾𝑗 subcarriers. Hence, BSs are supposed
to make use of all available subcarriers in the same way (i.e.,
there is no a subcarrier more favored than another). Over such
a basis, the co-channel interference value observed by user 𝑖
under full load conditions can be estimated from (2) as:

𝐼max
𝑖,𝑗,𝑘 =

𝑛=𝑁𝑘∑
𝑛=1,𝑛∕=𝑗

𝐺𝑖,𝑛,𝑘
𝑃max
𝑛

𝐾𝑛
(16)

where 𝑃max
𝑛 and 𝐾𝑛 are, respectively, the maximum transmit

power and number of used subcarriers in interfering BS 𝑛. In
this way, the computation of SINR under full load conditions
by means of (1) does not depend on the BS assignment, as
neither do utility and radio costs values.

B. Problem Mapping

According to previous practical considerations, the BS as-
signment problem in (10)-(15) can be mapped into a Multiple-
Choice Multidimensional Knapsack Problem (MMKP) [23],
a variant of the 0-1 knapsack problem. A MMKP considers
a set of items, classified in 𝐼 disjoint groups of 𝐽𝑖 items
each, and a knapsack (to pack some of them) whose avail-
able capacity is modelled by means of S distinct resource
constraints represented by (𝑊1,𝑊2, . . . ,𝑊𝑆). Packing item
𝑗 from group 𝑖 turns into a benefit (utility) given by 𝑢𝑖𝑗 at the
expenses of using a portion of the knapsack capacity given
by 𝑊𝑖𝑗 = 𝑤1

𝑖𝑗/𝑊1, 𝑤
2
𝑖𝑗/𝑊2, . . . , 𝑤

𝑆
𝑖𝑗/𝑊𝑆 . The objective is

to exactly select one item from each group to maximize
the aggregated utility subject to knapsack’s capacity. The
canonical formulation of this problem is as follows:

7The average of the transmit power allocated to each subcarrier is assumed
to be equal for all subcarriers over the time scale at which the BS assignment
algorithm operates.
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max
𝑏𝑖𝑗

𝐼∑
𝑖=1

𝐽𝑖∑
𝑗=1

𝑢𝑖𝑗𝑏𝑖𝑗 (17)

s. t.
𝐼∑

𝑖=1

𝐽𝑖∑
𝑗=1

(
𝑤𝑠

𝑖𝑗

𝑊𝑠

)
𝑏𝑖𝑗 ≤ 1, 𝑠 = 1, . . . , 𝑆 (18)

𝐽𝑖∑
𝑗=1

𝑏𝑖𝑗 = 1, 𝑖 = 1, . . . , 𝐼 (19)

𝑏𝑖𝑗 ∈ {0, 1} (20)

The MMKP problem is equivalent to our original opti-
mization problem given by (10)-(15). Hence, the number of
groups 𝐼 corresponds to the number of users 𝑀 . The set
of items 𝐽𝑖 within the group 𝑖 are the set of 𝑁 BSs where
the user can be allocated. The number of limiting resources
is 𝑆 = 2𝑁 since there are 𝑁 BSs, each one having two
resource constraints. The amount of resources required for
serving user 𝑖 in BS 𝑗 (choosing item 𝑗 from group 𝑖) is given
by 𝑊𝑖𝑗 = (𝛼1

𝑖𝑗 , . . . , 𝛼
𝑠
𝑖𝑗 , . . . , 𝛼

𝑁
𝑖𝑗 , . . . , 𝛽

1
𝑖𝑗 , . . . , 𝛽

𝑠
𝑖𝑗 , . . . , 𝛽

𝑁
𝑖𝑗 ),

where 𝛼𝑠
𝑖𝑗 and 𝛽𝑠

𝑖𝑗 are described next. Since the allocation of
user 𝑖 only requires resources in the serving BS 𝑗, 𝛼𝑠

𝑖𝑗 = 𝛼𝑖𝑗

and 𝛽𝑠
𝑖𝑗 = 𝛽𝑖𝑗 if 𝑠 = 𝑗, and 𝛼𝑠

𝑖𝑗 = 0 and 𝛽𝑠
𝑖𝑗 = 0

otherwise, being 𝛼𝑖𝑗 and 𝛽𝑖𝑗 the radio and transport re-
sources modeled by means of (6) and (7), respectively. Hence,
inner summation in (18) reduces to

∑𝐽𝑖

𝑗=1(𝑤
𝑠
𝑖𝑗/𝑊𝑠)𝑏𝑖𝑗 ≡

(𝑤𝑠
𝑖𝑠/𝑊𝑠)𝑏𝑖𝑠 = (𝑤𝑗

𝑖𝑗/𝑊𝑗)𝑏𝑖𝑗 = 𝛼𝑖𝑗𝑏𝑖𝑗 for 𝑠 = 1, . . . , 𝑁 and∑𝐽𝑖

𝑗=1(𝑤
𝑠
𝑖𝑗/𝑊𝑠)𝑏𝑖𝑗 ≡ (𝑤𝑠

𝑖𝑠/𝑊𝑠)𝑏𝑖𝑠 = (𝑤𝑗
𝑖𝑗/𝑊𝑗)𝑏𝑖𝑗 = 𝛽𝑖𝑗𝑏𝑖𝑗

for 𝑠 = 𝑁+1, . . . , 2𝑁 , resulting in expressions (11) and (12),
respectively. Finally, condition (14) is implicitly considered in
the computation of resource costs.

IV. BS ASSIGNMENT ALGORITHM

Since the BS assignment problem was transformed into an
MMKP, any technique available to solve the MMKP can be
used. There exist two different types of algorithms to solve
the MMKP, namely: exact and heuristic algorithms. Due to
its high computational complexity, exact algorithms are not
suitable for most real-time decision-making applications [24],
so the alternative is to use approximate heuristic approaches
with polynomial time complexity. In this work, we develop
a heuristic BS assignment algorithm based on [25]. The
algorithm of Moser et al. [25] relies on a theorem proven
by Everett [26] that makes Lagrange multipliers applicable to
discrete optimization problems, such as the MMKP. In this
regard, algorithm in [25] has already been considered as a
useful tool in some works [27] to solve resource allocation
problems in OFDMA wireless networks. Therefore, we have
adapted the algorithm of Moser et al. to our specific BS
assignment problem and introduced some relevant modifica-
tions, discussed later on, to the original algorithm. The main
underlying concepts behind the adopted approach and the
description of the proposed algorithm are provided in next
subsections.

A. Main Concepts

According to [26], the optimal solution 𝑏∗𝑖𝑗 ∈ {0, 1} of the
unconstrained maximization problem

max
𝑏𝑖𝑗

⎛
⎝ 𝑀∑

𝑖=1

𝑁∑
𝑗=1

𝑢𝑖𝑗𝑏𝑖𝑗 −
𝑁∑
𝑗=1

𝜆𝑗

𝑀∑
𝑖=1

𝛼𝑖𝑗𝑏𝑖𝑗 −
𝑁∑
𝑗=1

𝜇𝑗

𝑀∑
𝑖=1

𝛽𝑖𝑗𝑏𝑖𝑗

⎞
⎠

(21)
where 𝜆𝑗 and 𝜇𝑗 are non-negative Lagrange multipliers asso-
ciated with the radio and transport constraint on each BS 𝑗,
respectively, is also the optimal solution for the constrained
optimization problem:

max
𝑏𝑖𝑗

𝑀∑
𝑖=1

𝑁∑
𝑗=1

𝑢𝑖𝑗𝑏𝑖𝑗 (22)

s. t.
𝑀∑
𝑖=1

𝛼𝑖𝑗𝑏𝑖𝑗 ≤
𝑀∑
𝑖=1

𝛼𝑖𝑗𝑏
∗
𝑖𝑗 ≜ 𝜋𝑗 , 𝑗 = 1, . . . , 𝑁 (23)

𝑀∑
𝑖=1

𝛽𝑖𝑗𝑏𝑖𝑗 ≤
𝑀∑
𝑖=1

𝛽𝑖𝑗𝑏
∗
𝑖𝑗 ≜ 𝜏𝑗 , 𝑗 = 1, . . . , 𝑁 (24)

that is equivalent to our BS assignment problem except for
condition (13) discussed later on. From expression (21) it
is easily noted that, if Lagrange multipliers 𝜆𝑗 and 𝜇𝑗 are
known, the optimization problem can be easily solved. In fact,
rewritten expression (21) as:

max
𝑏𝑖𝑗

⎧⎨
⎩

𝑀∑
𝑖=1

𝑁∑
𝑗=1

(𝑢𝑖𝑗 − 𝜆𝑗𝛼𝑖𝑗 − 𝜇𝑗𝛽𝑖𝑗)𝑏𝑖𝑗

⎫⎬
⎭ (25)

the optimal solution is given by:

𝑏∗𝑖𝑗 =

{
1, if 𝑤𝑖𝑗 = 𝑢𝑖𝑗 − 𝜆𝑗𝛼𝑖𝑗 − 𝜇𝑗𝛽𝑖𝑗 > 0

0, otherwise
(26)

where we define 𝑤𝑖𝑗 as the weighted utility, a metric that
integrates the utility, radio and transport resource costs and
associated Lagrange multipliers. It is worthwhile to note that
constraint (13) indicating that users need to be assigned to a
single BS can be easily taken into account by selecting, among
possible assignments choices in (26), the one that provides
the maximum weighted utility. Hence, the BS assignment
problem can be solved by computing the set of 2𝑁 Lagrange
multipliers. The assignment solution of all users is feasible
if the amount of radio and transport resources allocated in
each BS, denoted as 𝜋𝑗 and 𝜏𝑗 , in (23) and (24), respectively,
do not exceed available resources, i.e., 𝜋𝑗 ≤ 1 and 𝜏𝑗 ≤ 1.
Furthermore, the solution is optimal if the following condition
is held:

𝑁∑
𝑗=1

𝜆𝑗(1− 𝜋𝑗) +

𝑁∑
𝑗=1

𝜇𝑗(1 − 𝜏𝑗) = 0 (27)

The main difficulty in solving the problem is how to
efficiently compute the Lagrange multipliers. In this regard,
[25] used an approach based upon the concept of graceful
degradation of the most valuable choices. First, an initial
temporary solution 𝑏𝑖𝑗 ∈ {0, 1} is derived from (26) by
considering all Lagrange multipliers equal to zero (i.e., the
weighted utility equals to the utility, so that each user is
assigned to the "best" BS irrespective of its radio or transport
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load). Then, Lagrange multipliers associated to BSs that would
exceed available resources are iteratively increased in a smart
way until a feasible solution, if exists, is found. That is, the
increase of Lagrange multiplier associated to a BS cause a
reduction in the weighted utility of its served users, so that
some of them could be reassigned to other BSs providing
higher weighted utility.

B. Description of the Algorithm

The BS assignment algorithm, shown in Fig. 2, consists of
four phases, namely: initialization, drop, add and relaxation.
Firstly, Lagrange multipliers are set to zero (line 01), and then
resource costs and user utilities are computed (lines 02-04) for
each user. In order to reduce the computational complexity,
not all BSs are viewed as potential choices. Instead, each
user 𝑖 is assumed to have a candidate set, denoted as 𝑛𝑖,
composed by the BSs having the highest channel gain. Then,
an initial assignment is obtained by selecting the most valuable
BS 𝑛 for each user (line 05). The total radio and transport
costs at each BS 𝑗, denoted by 𝜋𝑗 and 𝜏𝑗 , respectively, are
computed (lines 06-07) and the resource cost vector 𝜓 =
{𝜋1, . . . , 𝜋𝑁 , 𝜏1, . . . , 𝜏𝑁} conformed (line 08). If the initial
assignment is feasible (i.e., none of the elements of 𝜓 is greater
than 1.0), that is an optimal solution. Otherwise, the algorithm
continues in the drop phase. Within the drop phase, Lagrange
multiplier associated to the most offending constraint violation
is repeatedly increased to force user reassignments till a
solution not exceeding resource constraints is found. In each
iteration of this phase, the BS 𝑗∗ with the most offending
constraint violation 𝑠 is determined (line 10), where 𝑗∗ = 𝑠
if 𝑠 = 1, . . . , 𝑁 , and 𝑗∗ = 𝑠 − 𝑁 + 1 otherwise. For each
user 𝑖 currently allocated to the BS 𝑗∗ (line 12) the Lagrange
multiplier increase of the most offending constraint 𝑠 required
to move user 𝑖 from BS 𝑗∗ to another BS 𝑗 of its candidate set
is computed (lines 12-18). This is done so that the weighted
utility of user 𝑖 at the overloaded BS 𝑗∗, 𝑤𝑖𝑗∗ , is decreased
to a value less than or equal to the weighted utility on the
candidate BS 𝑗, 𝑤𝑖𝑗 . Thus, if the most offending constraint
violation at BS 𝑗∗ is on transport resources, the increment to
Lagrange multiplier 𝜇𝑗∗ should be such that:

(𝑢𝑖𝑗∗−𝜆𝑗∗𝛼𝑖𝑗∗−(𝜇𝑗∗+Δ𝜇𝑖,𝑗∗→𝑗)𝛽𝑖𝑗∗ ) ≤ (𝑢𝑖𝑗−𝜆𝑗𝛼𝑖𝑗−𝜇𝑗𝛽𝑖𝑗)
(28)

So, the increment Δ𝜇𝑖,𝑗∗→𝑗 to the transport Lagrange
multiplier can be computed as:

Δ𝜇𝑖,𝑗∗→𝑗 ≥ 𝑢𝑖𝑗∗ − 𝑢𝑖𝑗 − 𝜆𝑗∗𝛼𝑖𝑗∗ + 𝜆𝑗𝛼𝑖𝑗 − 𝜇𝑗∗𝛽𝑖𝑗∗ + 𝜇𝑗𝛽𝑖𝑗

𝛽𝑖𝑗∗
(29)

Similarly, the increment Δ𝜆𝑖,𝑗∗→𝑗 to the Lagrange multi-
plier of the radio constraint can be computed as:

Δ𝜆𝑖,𝑗∗→𝑗 ≥ 𝑢𝑖𝑗∗ − 𝑢𝑖𝑗 − 𝜆𝑗∗𝛼𝑖𝑗∗ + 𝜆𝑗𝛼𝑖𝑗 − 𝜇𝑗∗𝛽𝑖𝑗∗ + 𝜇𝑗𝛽𝑖𝑗

𝛼𝑖𝑗∗
(30)

where numerator in (29) and (30) is the increase of the
weighted utility of user 𝑖, denoted as Δ𝑤𝑖,𝑗∗→𝑗 . For each
BS 𝑗 in the candidate set 𝑛𝑖 of users currently allocated to
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Fig. 2. Heuristic BS Assignment Algorithm

BS 𝑗∗, the increase of the corresponding Lagrange multiplier
is computed in lines 12-18. Then, as suggested in [25], the
user 𝐼∗ and candidate BS 𝐽∗ causing the least increase of
the corresponding multiplier is chosen for exchange (lines
19-25) as this choice minimizes the gap between the opti-
mal solution characterized by (26) and the new assignment
solution obtained at this point. However, if the multiplier
increase is just computed as the equality as done in [25],
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important convergence problems arise since users tend to have
the same weighted utility towards multiple BSs. To avoid
this problem, we compute the increment to be added to the
corresponding multiplier as the average between the least
increase, corresponding to user 𝐼∗ and BS 𝐽∗, and the second
least increase obtained with user 𝐼 ′ and BS 𝐽 ′. This choice
guarantees that only one user is reassigned at each iteration
and the next BS assignment solution is stable (equal weighted
utilities due to the update of the multipliers are avoided).
Furthermore, as the BS assignment problem could have no
feasible solution (not enough resources to allocate all the
users), condition (13) is relaxed at this point by allowing that
a user 𝑖 may not have allocated resources in any BS (i.e.,
resource costs and utility equal to zero). The reassignment
of the selected user is performed (line 26), and radio and
transport resource costs updated accordingly (lines 27-28). The
process is repeated until a solution not exceeding resource
constraints is determined, yet there may be some users not
served by any BS. Solution arisen from the drop phase may
not be the most efficient BS assignment configuration in terms
of resource utilization as some BSs could still have available
resources. Then, the solution is improved in the add phase
by applying the following procedure. For each user 𝑖 it is
verified whether, amongst the BSs in its candidate set, there
is an assignment option BS 𝑙 that provides a higher utility
(𝑢𝑖𝑙 > 𝑢𝑖𝑗) than current assignment at BS 𝑗. The utility
increment, denoted as Δ𝑢𝑖,𝑗→𝑙, is computed in lines 30-33.
Among all user assignments satisfying Δ𝑢𝑖,𝑗→𝑙 > 0 , as well
as radio and transport constraints of BS 𝑙, the user 𝐼 ′′ causing
the largest increase in the utility is selected for reassignment
(line 34). The exchange is done in line 35 and costs associated
with radio and transport constraints are updated in lines 36-
37. This process is repeated until no more reassignments are
possible. If the achieved solution after the add phase is a
feasible solution (all users have been allocated and resources
are not exceeded), the algorithm ends, otherwise the algorithm
continues in the relaxation phase.

When a feasible solution cannot be found, users without
allocated resources after the add phase would have to be
dropped or not served temporarily (e.g., in case of a joint
scheduling and BS allocation problem) in order to guarantee
the minimum data rate requirements to the rest of served
users. Alternatively, these users can be served at the expenses
of allowing some degree of service degradation. This second
approach is the one used in this work since it allows a fair
comparison of the proposed algorithm with other strategies in
Section V in terms of service degradation. Hence, a relaxation
phase is considered after the add phase where users without
allocated resources are finally allocated to the BS with the
highest weighted utility 𝑤𝑖𝑗 among those of its candidate
set. In any case, notice that, as a full load condition has
been assumed for the computation of radio resource costs,
the resulting BS assignment after the relaxation phase may
not necessarily lead to service degradation when real load
conditions are accounted. Hence, the output of the presented
algorithm is always a complete BS assignment and its feasi-
bility and level of service degradation caused by exceeding
resource constraints is numerically assessed in Section V by
considering accurate load and interference level estimations.

C. Complexity Analysis

The algorithm’s complexity is determined in this section
based on the analysis given in [25]. The initialization phase has
a complexity of 𝑂(2𝑁 +3𝑀𝑛𝑖). In line 09, the while loop
could be executed up to 𝑂(𝑀𝑛𝑖) times, as in each iteration
one user can be changed from BS 𝑗∗ to BS 𝐽∗. Inner loop (line
12) could perform up to 𝑛𝑖 iterations for each user assigned
to BS 𝑗∗, thus its complexity is 𝑂(𝑀𝑛𝑖). The increase of
multipliers (lines 13-18) results in a complexity of 𝑂(𝑛𝑖). The
complexity of lines 20-25 and lines 26-28 is 𝑂(2𝑀𝑛𝑖) and
𝑂(3), respectively. Thus, in the worst case the complexity
order of the drop phase is 𝑂(𝑀2(𝑛𝑖)

3+2𝑀2(𝑛𝑖)
2+3𝑀𝑛𝑖).

In the add phase, the complexity of line 34 and lines 35-
37 is 𝑂(𝑀𝑛𝑖) and 𝑂(3), respectively. At line 30, for each
user we have at most 𝑛𝑖 BSs resulting in a complexity of
𝑂(𝑀𝑛𝑖). The complexity of line 32 is 𝑂(𝑛𝑖), while the
while loop (line 29) is executed at most 𝑀𝑛𝑖 times. Thus,
the complexity of add phase is 𝑂(𝑀2(𝑛𝑖)

3+𝑀2(𝑛𝑖)
2+𝑀𝑛𝑖),

while the complexity of third phase is 𝑂(𝑀𝑛𝑖). Therefore, the
complexity order of the algorithm is given by 𝑂(𝑀2(𝑛𝑖)

3).

V. PERFORMANCE EVALUATION

In this section, we study the performance of the pro-
posed BS assignment algorithm. The considered scenario is
composed by 19 hexagonal cells (one central cell and its
two concentric tiers). We consider three frequency channels
with 20 MHz bandwidth and a frequency reuse pattern of
3. The maximum transmit power of each BS 𝑗 is set to
47 dBm. The transport capacity of each BS 𝑗 is expressed
in terms of the transport capacity factor 𝜙𝑗 , assumed to
be the same for all BSs so that herein we drop index 𝑗.
The size of the candidate BS set is limited to seven. Users
are uniformly distributed over the entire service area and
all are assumed to have the same downlink data bit rate
requirement 𝑅min. A maximum radio cost 𝛼max

𝑖𝑗 is used to
prevent that a user may consume an excessive share of overall
BS radio resources to meet its requirement. So, the expected
data bit rate for user 𝑖, denoted as 𝑅𝑖, is always limited
by 𝑅𝑖 ≤ min(𝑅min, 𝑅max

𝑖𝑗 𝛼max
𝑖𝑗 ). In the presented analysis,

it’s considered that the BS decision-making process is able
to follow channel variations due to propagation path loss
and slow shadowing changes. Hence, minimum user bit rate
requirements and resource costs considered in the algorithm
would represent average values taken over the time scale
dictated by long-term channel variations (i.e., few hundreds of
milliseconds). Under such an approach, the mean channel gain
in each subcarrier 𝑘 from BS 𝑗 to user 𝑖, referred to as 𝐺𝑖,𝑗,𝑘,
is the same for all subcarriers. Consequently, the computation
of SINR𝑖,𝑗,𝑘 according to (1) leads also to the same value
for all subcarriers, namely SINR𝑖,𝑗 , since the interference
levels are assumed to be uniformly distributed over the entire
bandwidth, as argued in section III-A and captured by (16).
So, upon the average SINR𝑖,𝑗 , the MCS, and, consequently
the corresponding achievable rate at the air interface, are
taken from the look-up table provided in Table I. Notice
that the approach adopted in this work does not preclude
the applicability of the proposed algorithm in a problem also
tackling fast fading fluctuations in the channel gain, e.g., a
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TABLE I
MCS THRESHOLDS AND PHY DATA RATES.

# Modulation Coding SINRmin [dB] PHY data
rate [Mbps]

1 BPSK 1/2 3.4 6.99
2 QPSK 1/2 6.4 13.99
3 QPSK 3/4 8.2 20.99
4 16 QAM 1/2 13.4 27.98
5 16 QAM 3/4 15.2 41.98
6 64 QAM 2/3 19.7 55.97
7 64 QAM 3/4 21.4 62.97

TABLE II
OFDMA SYSTEM PARAMETERS.

Parameter Value
Total number of cells, 𝑁 19

Max. BS transmit power, 𝑃max
𝑗 47 dBm

Transmit antenna gain 18.7 dBi
Cell radius 1060 m

Antenna pattern Omnidirectional

Operating frequency 2500 MHz
Reuse factor 3

Number of channels 3
Channel bandwidth 20 MHz

Number of data subcarriers, 𝐾𝑗 1440
OFDM symbol duration 102.9 𝜇s

Path loss model COST-231 Hata
BS height 32 m

Mobile terminal height 1.5 m
Shadowing standard deviation 8 dB

Shadowing correlation 50%
Shadow fade margin 13.2 dB

Thermal noise -174 dBm/Hz
Receiver noise figure 7 dB

User rate requirements, 𝑅min 600, 1200, 1800 2400 Kbps
Maximum radio cost, 𝛼max

𝑖𝑗 0.2

joint scheduling and BS assignment problem8. As well, it
is worth noting that bit rate values provided in the Table I
could also account for any performance gain associated with
the usage of mechanisms exploiting (subcarrier) frequency
selectivity as well as multi-user diversity that would operate at
shorter time scales than that considered for the BS assignment
process. Propagation losses are computed using the COST-
231 Hata model [28] with parameters as given in Table II.
Lognormal shadowing is accounted with standard deviation
equal to 8 dB and 50% spatial correlation. The radius of the
cell has been chosen so that a signal to noise ratio SNRreq=3.4
dB is assured at the cell border with a probability of 95%,
considering typical sample link budgets for mobile broadband
systems [28]. All system parameters are presented in Table II.

A. Evaluated BS Assignment Algorithms

We evaluate three BS assignment schemes: 1) Algorithm
A, is based on the common MPL scheme, which under
full radio load conditions would also be equivalent to an
algorithm that assigns a user to the BS that provides the
highest SINR; 2) Algorithm B constitutes a load balancing
scheme exclusively based on radio load information, imple-
mented by only considering radio resource constraints in the

8This alternative approach is out of the scope of the current work that
mainly tries to expose the benefits (or needs) to incorporate both radio and
transport information in the ordinary BS assignment problem.
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heuristic algorithm shown in Fig. 2; and 3) Algorithm C
considers both radio and transport load of BSs to determine
the BS assignment solution, and is realized by means of the
proposed heuristic algorithm. Over such a basis, for a given
snapshot of the system (i.e., random distribution of 𝑀 users
in the service area), a BS assignment solution is computed
with each algorithm assuming full load conditions. Then, for
each obtained solution, performance metrics discussed in next
section are computed considering a more accurate estimation
of load and interference levels than the one provided assuming
full load conditions. This can be achieved because once the
BS assignment has been fixed it is possible to compute the
power levels by means of a recursive approach such as the
one proposed in [29]. This step is needed to allow a fair
comparison of the different schemes. For each analyzed case,
results are obtained over 10000 different snapshots.

B. Numerical Results

Fig. 3 presents the percentage of feasible solutions (i.e.,
all users assigned without service degradation) that each
algorithm is able to achieve attending to the mean number
of users per cell and considering different minimum rate
requirements and transport capacity factors. As shown in Fig.
3, Algorithm A’s performance is always quite poor when
compared to load aware schemes. On the other side, Algorithm
C clearly achieves the highest number of feasible solutions
by exploiting both radio and transport load balancing. Notice
that, only for transport capacity factors equal to or higher than
half the value of the radio peak rate (𝜙 ≥ 0.5), Algorithm B
converges to Algorithm C for the considered user bit rates.

Over such a basis, Fig. 4 provides the maximum number
of users per cell supported by each algorithm when targeting
a percentage of feasible solutions equal to 90% (i.e., a BS
solution satisfying all user rate requirements and BS resource
constraints is found in the 90% of the snapshots). Results
are obtained for transport capacities 0.3 ≤ 𝜙 ≤ 0.6 and
minimum rate requirements 𝑅min={600, 1200, 1800, 2400
Kbps}. Notice that minimum rate requirements are between
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1% and 4% when normalized to the BS peak rate9. As shown
in Fig. 4, the relative number of users that can be successfully
allocated by algorithms B and C in front of Algorithm A is very
noticeable for any transport capacity, specifically under high
data rate requirements. For instance, for 𝑅min=2400 Kbps and
transport capacity factor 𝜙 = 0.5, see Fig. 4(b), algorithms B
and C provide capacity gains of 75% and 100%, respectively,
over Algorithm A (i.e., 4, 7 and 8 users per cell achieved by
algorithms A, B, and C, respectively). Under the same transport
capacity but a lower data rate requirement 𝑅min=1200 Kbps,
algorithms B and C both can both support 14 users per cell, in
front of 9 users per cell supported Algorithm A, which turns
into a capacity gain of 56% over Algorithm A. Then, under the
more limited transport capacity conditions (i.e., 𝜙 < 0.5) and
the higher data rate requirements, the more is the capacity
gain achieved by Algorithm C, or, equivalently, the less is
the transport capacity needed to support the same number of
users in the system. Fig. 4(b) shows, for instance, that in order
to support 8 users/cell with a data rate requirement of 1800
Kbps (i.e., a total aggregated rate of 14.4 Mbps), Algorithm
B requires around 28 Mbps of backhaul capacity to meet the
considered network availability. On the other hand, the level
of backhaul resources needed in this case by Algorithm C
is around 22 Mbps, which turns into a capacity reduction of
about 28% in respect to Algorithm B.

When a feasible BS assignment solution cannot be found,
users assigned to overloaded BSs will suffer a service degra-
dation since the provided data rate would be lower than
the minimum expected. The extent of such degradation is
quantified here by considering that a BS exceeding its radio
and/or transport resources proportionally reduces the bit rate
allocated to each served user. Fig. 5 illustrates the cumulative
distribution of the allocated data rate for a transport capacity
factor 𝜙 = 0.3, a distribution of 12 users per cell and a data
rate requirement 𝑅min=1200 Kbps. It is shown that Algorithm
A exhibits the highest degradation, so the requested minimum
data rate is only guaranteed to a 74% of the total users.
Conversely, the degradation is less pronounced for algorithms
B and C, which can provide the minimum rate requirement
to around 80% and 90% of users, respectively. In this con-
text, in Table III we extend previous results by considering
different transport capacity factors 𝜙 = {0.3, 0.4, 0.5}, data
rate requirements 𝑅min={1200, 2400 Kbps}, and traffic load
conditions (e.g., mean aggregated rates of 14.4, 19.2 and
24.0 Mbps). Each table cell provides the percentage of users
receiving the minimum requested data rate (upper row), and
the percentage of users receiving at least 90% of the requested
data rate (bottom row). It is shown that for a mean aggregated
rate of 19.2 Mbps at BSs, with 𝑅min=1200 Kbps and 𝜙 = 0.4,
Algorithm C guarantees that 89.6% of users receives the
minimum requested rate, whereas algorithms B and A lead
to 83.2% and 68.2% of fully satisfied users, respectively. At
higher rate requirements, but same mean aggregated rate per
BS (i.e., 19.2 Mbps) and transport capacity factor, Algorithm
C even achieves better performance, where 88.2% of users are
fully satisfied in front of 76.3% and 68% for algorithms B and

9In fact, the analysis provided in this paper would be valid for different
BS peak rate whenever the normalized transport capacity (𝜙) and normalized
minimum rate requirement are kept.
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Fig. 4. Users/cell supported by each algorithm so that a BS assignment
solution can be found in 90% of the snapshots, considering different data
rate requirements (a) 𝑅min={600, 1200 Kbps}; and (b) 𝑅min={1800, 2400
Kbps}.

A, respectively. This is because, under the same aggregated
rate, for a higher minimum rate requirement, less users can
be allocated in the overall system and, the less the number of
users supported per BS, the more important becomes the need
to account for (radio and transport) load balancing schemes
to properly distribute traffic among neighbouring BSs. Notice
that focusing on the percentage of users receiving at least
90% of the requested rate, similar trends are obtained but
differences are less noticeable between algorithms C and B
(2% and 3% for previous considered cases), but still quite
significant compared to Algorithm A (above 10%).

So far, it has been demonstrated the performance gain that
can effectively be attained by Algorithm C with respect to
algorithms A and B. We now examine in more detail how
each algorithm impacts on the underlying radio and transport
resource consumption. We consider a distribution of 8 users
per cell, a transport capacity factor in the range 0.3 ≤ 𝜙 ≤ 0.6
and a minimum data rate requirement 𝑅min=2400 Kbps. Fig.
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TABLE III
PERCENTAGE OF USER SATISFACTION UNDER DIFFERENT MEAN OF USERS PER CELL AND TRANSPORT CAPACITY CONDITIONS

User rate Users/cell Mean aggregated Algorithm A Algorithm B Algorithm C
(Kbps) rate (Mbps) 𝜙=0.3 𝜙=0.4 𝜙=0.5 𝜙=0.3 𝜙=0.4 𝜙=0.5 𝜙=0.3 𝜙=0.4 𝜙=0.5

1200

12 14.4 74.6% 88.9% 89.9% 78.1% 96.1% 97.0% 92.7% 96.7% 97.0%
87.4% 96.5% 96.5% 91.3% 98.9% 98.9% 98.2% 98.9% 98.9%

16 19.2
33.8% 68.2% 74.0% 34.5% 83.2% 91.9% 38.1% 89.6% 92.3%
53.7% 81.5% 83.5% 58.8% 94.6% 96.2% 75.3% 95.6% 96.2%

20 24.0 3.3% 34.2% 42.8% 4.6% 36.6% 66.3% 10.0% 42.6% 66.5%
17.4% 52.3% 57.9% 17.9% 65.2% 75.3% 31.0% 69.8% 75.6%

2400

6 14.4 63.2% 87.3% 90.8% 67.5% 91.3% 95.8% 78.3% 94.5% 95.8%
78.2% 89.6% 92.3% 79.0% 94.2% 95.8% 93.0% 95.4% 95.8%

8 19.2 32.8% 68.0% 78.7% 36.1% 76.3% 92.0% 50.4% 88.2% 92.0%
52.6% 80.1% 84.0% 52.6% 88.4% 92.4% 84.0% 91.4% 92.4%

10 24.0 10.4% 42.2% 57.0% 11.4% 45.9% 79.4% 14.15% 59.2% 80.7%
21.5% 55.1% 68.0% 24.6% 62.6% 86.9% 53.1% 78.6% 87.7%
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Fig. 5. Cumulative distribution function (CDF) of allocated data rate for
a distribution of 12 users/cell, data rate requirement 𝑅min=1200 Kbps, and
transport capacity factor 𝜙 = 0.3.

6 shows the mean value of BS radio and transport resource
costs incurred by each algorithm over all obtained snapshots.
We observe that, as expected, the performance gain achieved
by Algorithm C is realized at the expenses of a higher usage of
BS radio resources. Specifically, BS mean radio resource costs
with Algorithm C are over 23% higher than with Algorithm
B in the most restricted transport condition (i.e., 𝜙 = 0.3).
However, it’s worthwhile to note that for 𝜙 = 0.4 where,
according to Fig. 4, Algorithm C allows to accommodate up
to 6 users/cell in front of 4 users/cell achieved by algorithms
A and B, the mean radio resource cost of Algorithm C is only
4% higher than the other strategies (i.e., Algorithm C uses
0.675 while the others 0.65). So, Algorithm C is able to use
this, otherwise unused, radio resources to wisely steer traffic
and avoid transport limitations. As a result, a slightly higher
transport resource utilization is obtained with Algorithm C as
it leads to lower data rate degradation. Finally, performance
gains achieved by Algorithm C are also tightly coupled with
its capability to distribute traffic load in a smooth manner
among BSs. This fact can be noticed in Fig. 7 that presents
the coefficient of variation of radio/transport resource costs
(defined as the ratio of standard deviation of radio/transport
costs to the mean of radio/transport costs in all BSs). It
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Fig. 6. Mean of BS radio and transport resource costs for data rate
requirement 𝑅min=2400 Kbps under different transport capacity conditions
and a distribution of 8 users/cell.

can be seen that coefficients of variation of Algorithm C are
always lower than those obtained by the other two algorithms.
Lastly, based on the provided complexity analysis, it can be
determined that the add and drop phase represents around 47%
and 52%, respectively, of the total complexity of Algorithm C,
while remaining corresponds to phases 0 and 3. In analyzed
scenarios the add phase provides a performance enhancement
of around 8% with respect to the drop phase. Furthermore, the
number of iterations required for the algorithm to converge is
less than 800 iterations in the 95% of the computed snapshots.

VI. CONCLUDING REMARKS

In this paper, a BS assignment algorithm for OFDMA-
based systems has been proposed. Unlike most of the existing
approaches, the proposed algorithm accounts for potential
backhaul network constraints in the BS decision making pro-
cess. We have shown that, in scenarios with limited transport
capacity (i.e., where the transport capacity is less than half of
the peak rate in the radio interface), the proposed algorithm
brings out significant gains with respect to algorithms that are
completely based on radio criteria in terms of feasible BS
assignment solutions found, and percentage of users meeting
their minimum bit rate requirement. We claim that the pro-
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Fig. 7. Coefficient of variation of BS radio and transport resource costs
for data rate requirement 𝑅min=2400 Kbps under different transport capacity
conditions and a distribution of 8 users/cell.

posed algorithm can be used to alleviate potential transport
capacity restrictions in cellular system deployments. As future
work, we aim to assess the performance of the proposed
backhaul-aware BS assignment algorithm under partially lim-
ited backhaul scenarios (i.e., not homogeneous transport ca-
pacity limitations) and under different spatial distribution of
users over the service area (i.e., hot-spots). As well, motivated
by the adoption of this kind of strategies within flat network
architectures (e.g., LTE), a distributed implementation of the
proposed algorithm is envisaged based upon a dynamic pricing
approach aligned to that proposed in [12].
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