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Abstract 
 
This paper presents an approach to Joint Radio 
Resource Management based on a Fuzzy Neural 
methodology in order to operate in a heterogeneous 
network scenario including cellular and wireless 
local area network radio access technologies. 
Simulation results show that the Reinforcement 
Learning mechanisms introduced in the proposed 
JRRM methodology allow guaranteeing the QoS 
requirements. Also, the proposed framework is able 
to take into consideration different operator policies 
as well as considering different subjective criteria by 
means of a multiple decision making mechanism, 
such as balancing the traffic among the RATs or 
giving more priority to one RAT in front of 
another one.  
Furthermore, the vision considered in E2R (End-to-
end Reconfigurability) Project is retained and the 
interactions with Dynamic Network Planning and 
Management and Dynamic Spectrum Management 
functionalities are detailed. 

 
Index Terms— Fuzzy Neural, Joint Radio 

Resource Management, System Beyond 3G, 
Reconfigurability.  
 
1. Introduction 
 
The problem faced by a wireless network 
operator is to offer a system where the 
network usage is maximized for a given set 
of QoS requirements. In the framework of 2G 
mobile systems (e.g. GSM), the network 
planning is key. However, in the framework 
of 3G mobile systems the situation is 
significantly different because of several 
reasons. Firstly, in WCDMA based systems 
there is not a constant value for the 
maximum available capacity, since it is tightly 

coupled to the amount of interference in the 
air interface. Secondly, the multiservice 
scenario drops for some services the 
constant delay requirement and, 
consequently, opens the ability to exploit 
RRM (Radio Resource Management) 
functions to guarantee a certain target QoS 
[1]. On the other hand, the perspective of 
Beyond 3G systems is that of heterogeneous 
networks, in which a proper interworking 
among RATs (Radio Access Technologies) 
is required, so a new dimension in the radio 
resource management problem is 
introduced. Joint Radio Resource 
Management (JRRM) is the envisaged 
process to manage dynamically the 
allocation and de-allocation of radio 
resources (e.g. time slots, codes, frequency 
carriers, etc.) within a single or between 
different radio access systems for the fixed 
spectrum bands allocated to each of these 
systems. With JRRM a more efficient usage 
of the radio resources will follow thanks to 
the trunking gain resulting from the 
consideration of the total pool of resources in 
all the RATs as a whole. 

By exploiting the various RATs in addition to 
the different bands and hierarchical cell 
deployment for each RAT, both users and 
operators can benefit from the particular 
advantages each RAT offers at a given point 
of the time and space. In addition to that, 
load sharing would allow an efficient usage 
of resources and multi-homing capabilities 
could provide parallel bearers in different 
RATs, so as the particularities of each RAT 
could even be better exploited [16]. 
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JRRM functions are implemented in the form 
of algorithms, which are not subject of 
standardization as such. Nevertheless, 
measurements and parameters that can be 
useful at JRRM are well identified. 

In this context, this paper presents a general 
framework for JRRM development 
accompanied by a specific JRRM solution in 
order to provide more insight into the 
problem. The considered solution is based on 
Fuzzy-Neural mechanisms, which allow 
taking into account radio network 
considerations, user preferences and 
operator preferences in JRRM decisions. In 
this sense, the approach is flexible and the 
same framework may provide suitable 
solutions for both long term and short term 
technology evolutions. In addition to RAT 
selection decision, bit rate allocation is also 
feasible. Further, the proposed scheme will 
be placed in the context of a fully Beyond 3G 
Reconfigurable system by identifying the 
main interactions with relevant functional 
elements as well as the requirements and 
constraints arising in this framework. In 
particular, the vision considered in E2R (End-
to-end Reconfigurability) Project [2] will be 
retained, and the interactions with Dynamic 
Network Planning and Management and 
Dynamic Spectrum Management 
functionalities will be further detailed. 

 
2. JRRM framework 
 
JRRM problem is complex and admits many 
possible solutions. Nevertheless, there is not 
an absolute optimal solution due to the 
multiplicity of possible criteria to consider, the 
constraints imposed by RATs characteristics, 
coupling architecture, implementation 
approach, user’s and operator’s preferences, 
etc. Consequently, a given JRRM strategy 
may result suitable in a specific framework 
and time-frame while not fitting another 
technology evolution stage and/or network 
constraints.  

The inputs available for JRRM decisions are 
mainly: 

• RATs deployed, bandwidth available for 
each RAT and scenario configuration 

(i.e. base station maximum transmitted 
power level, code sequences available in 
case of WCDMA based RATs, etc.) 

• Interworking level of RATs in terms of 
very tight coupling, tight coupling, loose 
coupling, open coupling, etc.  

• Measurements coming from the different 
RATs (e.g. load levels) as well as 
measurements coming from the User 
Equipments (UEs), such as the received 
power levels, the path loss or the Ec/Io 
(chip energy over noise and interference 
spectral density) in case of WCDMA 
based RATs. 

• Terminal capabilities, e.g., the multi-band 
multi-mode terminal or multi-mode single 
band terminal  

• Techno-economical aspects, including 
operator policies, which may prevail the 
use of certain RATs in front of others for 
different reasons (e.g. commercial 
strategies, radio network ownership, etc.) 
as well as subscriber profiles and user 
preferences (e.g. considering QoS 
versus cost). 

• Service scalability and different priorities 
of the context inside of a service (e.g. the 
scalable video coding)  

The task executed by the JRRM (managing 
radio resources of interworking RATs or 
frequency layers) include:   

• Selection of RATs (Joint admission 
control) 

• Vertical Handover (intersystem 
handover) 

• Diagonal Handover (handover between 
RATs and also with dynamic frequency 
reallocation)  

• Joint Scheduling: the scheduler could 
even work over multiple RAT/frequency 
layers, e.g., HSDPA with two frequency 
layers supporting RMH  

• Joint Power control between interfering 
RATs. This does not apply to the inner-
loop power control but to the outer-loop.  

In turn, the Local RRM undertakes local 
resource allocation: 

• Local admission control (RAT profile 
based, user preference based, terminal 
profile based) 

• Horizontal Handover 
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• Outer-loop power control  
• Flow control 
• Load control 
• Congestion control  
• Power control within a RAT, including 

outer loop as well as inner loop power 
control 

• Local packet scheduling 
• Allocation of RAT specific resources, 

e.g., Channelization codes in CDMA, 
time slot in TDMA system, subcarriers in 
OFDMA system  

• Other functions: e.g., cross layer 
functions 

For some functions, the boundary between 
JRRM and local RRM is becoming blurred. 
Even very low OSI layer ARRM (Advanced 
RRM) functions might contain the JRRM 
component and local RRM components, e.g., 
power control, scheduling.  

A special case is the distributed JRRM: in 
this case, the JRRM entity, e.g., Common 
RNC is absent, however the interworking 
among local RRM entities can also take over 
the JRRM functionalities [17].  
 
3. A case study based on 

Fuzzy Neural approach 
 
In order to envisage proper JRRM algorithm 
frameworks, it is important to consider that 
the variety of JRRM inputs belonging to 
different RATs will provide in general 
imprecise and very dissimilar information. As 
a result of that, since the fuzzy logic-based 
methodology has been proved to be good at 
explaining how to reach suitable decisions 
from such type of information [3][4][5], the 
framework for JRRM strategies development 
proposed here considers this approach. On 
the other side, the use of neural networks, 
which are good at recognizing patterns by 
means of learning procedures, can also be 
considered by tuning the fuzzy membership 
functions properly, thus developing hybrid 
solutions incorporating both fuzzy and neural 
methodologies [6][7]. 

The proposed framework for JRRM algorithm 
implementation based on Fuzzy-Neural 
mechanisms consists of three main blocks: 
Fuzzy based Decision, Reinforcement 

Learning and Multiple Objective Decision 
Making [8][9]. The inputs to the algorithms 
are a set of linguistic variables LVi, 
corresponding to different measurements. 
Also, techno-economical criteria in the form 
of user preferences (UP) and operator 
preferences (OP) are inputs of the algorithm. 

The Fuzzy Based Decision, Reinforcement 
Learning and Multiple Objective Decision 
Making algorithms are executed every time a 
new user asks for admission in the system 
and during the user session. It assures the 
dynamical allocation and de-allocation of 
radio resources in the scenario and the 
selection of the most suitable RAT, while 
keeping the desired QoS requirements of all 
admitted users. Initial evaluations of the 
proposed JRRM approach were carried out 
in simplified scenarios [10][11]. This paper 
extends these prior works by further proving 
the concepts of the JRRM Fuzzy-Neural 
algorithm in a multicell scenario. 

Results will prove the suitability and flexibility 
of the proposed approach in terms of: 

• Capability to guarantee a certain QoS 
objective 

• Capability to implement load balancing 
principles among diverse RATs 

• Capability to implement user and 
operator’s preferences on the RAT 
selection and dynamic processes. 

3.1 Simulation model 
 
Initial evaluations of the proposed JRRM 
approach were carried out in simplified 
scenarios, i.e. considering only three 
concentrically cells (one UMTS, one GERAN 
and one WLAN). In order to further prove the 
concepts of the JRRM Fuzzy Neural 
algorithm, a multicell scenario, with a seven 
cell deployment, including 4 UMTS base 
stations, 2 GERAN base stations and one 
WLAN access point has been envisaged as 
illustrated in Fig. 1. Each cell is characterized 
by a given coverage area and its 
corresponding RAT. The considered scenario 
consists of circular cells, with radii R1, R2 
and R3, defining WLAN, UMTS and GERAN 
dominant areas respectively.  
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Fig. 1. Considered multi-cell scenario 

In this scenario, both the RAT and the cell 
need to be selected for each user during the 
execution of the JRRM algorithms. To this 
end, a two steps procedure has been 
considered in order to decouple the cell 
selection from the RAT selection and 
bandwidth allocation processes, as outlined 
in Fig. 2. It is assumed that the JRRM 
procedure is executed for each user after 
having selected a combination of cells from 
the available RATs, i.e. a UMTS cell, a 
GERAN cell and a WLAN access point. The 
rationale behind this split of functionalities is 
to have a limited number of inputs in the 
fuzzy-based decision procedure, thus 
obtaining a more scalable JRRM procedure. 
Firstly, a combination of three cells built 
around the three considered RATs is 
selected. To this end, a Fuzzy controller is 
considered, and applied to all the possible 
combinations of cells. As an example, the 
considered scenario consists of 8 
combinations of cells. A Fuzzy controller is 
applied to each combination, thus generating 
a FSD (Fuzzy Selected Decision) value as 
output, which is obtained as the maximum of 
the FSD values corresponding to UMTS, 
GERAN and WLAN for this combination. 
Then, the FSD is taken as the indicator of 
appropriateness of the combination and, 
consequently, the chosen combination will be 
that providing the highest FSD. It is worth 
noting that in a given deployment scenario, 
some combinations could be disregarded in 
advance if the corresponding cells do not 
overlap, thus reducing the number of 
computations so that the scalability can 
prevail. 
 

 

CELL 
COMBINATION 

SELECTION 
- RAT SELECTION 

- BW ALLOCATION

JFNC functions 

 
Fig. 2 Functions of the Joint Fuzzy Neural 
Controller 

 
A Signal Strength criterion could also be 
considered in order to select a combination of 
cells, i.e. selecting the cells with the highest 
signal strenght of each RAT. However this 
choice would provide poorer performance, 
since a Fuzzy criterion is able to take into 
account more information in the selection, 
like the load existing in each cell. 
The RAT selection and bit rate allocation are 
implemented by means of a Fuzzy Based 
decision, reinforcement learning and multiple 
decision making algorithms and constitute 
the final JRRM step once a particular 
combination selection has been retained. The 
Fuzzy Based decision algorithm consists of a 
5-layered Fuzzy controller: Layer 2 is in 
charge of performing the fuzzification 
procedure, layer 3 implements the inference 
engine according to a defined Fuzzy Rule 
base, whereas layer 4 performs the 
defuzzication procedure by means of the 
centre-of-area method [9]. In addition to this, 
layers 1 and 5 manage the input/output 
functionalities. This process is carried out at 
the admission control phase and also along 
the active users’ sessions, thus checking 
whether a horizontal or vertical handover is 
required. 
With respect to performance measurements, 
the concept of service non-satisfaction is 
considered. A user is “Non satisfied” if, at 
least, one of the following situations occurs:  
- The fuzzy system assigns to it an amount of 
bandwidth lower than the desired one 
according to its contract 
- The user is in the “outage” state, which 
means that the received power does not 
satisfy the sensitivity criterion, which is 
defined differently for each of the RATs as 
detailed in [11].  
In order to properly capture the performance 
of the system, the following measurements 
are also considered to complement the “non-
satisfaction” probability: 
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- Blocking probability. A user is blocked if at 
the session start the JRRM algorithm assigns 
to the user a bandwidth of 0 kb/s. 
- Dropping probability. A user is dropped if, 
after changing the current cell combination 
that is being considered in the bandwidth 
allocation for a given user, the JRRM 
algorithm assigns to the user a bandwidth of 
0 kb/s, which means that a horizontal or a 
vertical handover failure has occurred. 
A mobility model with users moving 
according to a random walk model inside the 
coverage area is adopted with a randomly 
assigned mobile speed (MS) between 0 and 
50 km/h and a randomly chosen direction. 
The propagation model considered for UMTS 
and GERAN is given by L=128,1+37,6 log d 
(km) [12], which assumes that the frequency 
band is similar for both systems. For WLAN 
the propagation losses inside the hotspot are 
modelled by L= 20 log d(m)+40 [13]. The 
beginning and the end of the user’s activity 
periods are defined according to a Poisson 
scheme with an average of 6 calls per hour 
and user and average call duration of 180 
seconds. The users moving around the 
scenario belong to the traffic class described 
in Table I.  
 

 
 
Results are presented for the uplink direction, 
and the considered possible bit rates for the 
different RATs are: 
For UMTS: 32 kb/s, 48 kb/s, 64 kb/s, 80 kb/s, 
96 kb/s, 112 kb/s, 128 kb/s, 192 kb/s, 256 
kb/s, 320 kb/s, 384 kb/s. A single UTRAN 
FDD carrier is considered. The maximum 
allowed uplink load factor is 0.75. 
For GERAN: 32 kb/s, 48 kb/s, 64 kb/s, 80 
kb/s, 96 kb/s. It is assumed that four carriers 
are available in each GERAN cell for GPRS 
users, with coding scheme CS-4 [14], thus 
having a maximum bit rate in the cell of 640 
kb/s. 
For WLAN it is considered that the total 
bandwidth available (11 Mb/s) is equally 
distributed among the WLAN users (i.e. the 
higher the number of users the lower the 

bandwidth per user will be) [15]. It is also 
assumed that no more WLAN users are 
accepted when the bandwidth per user is 
less or equal than 384 kb/s. A single access 
point is considered. It is worth mentioning 
that CFP (Contention free period) 
mechanisms allow that different users share 
a WLAN channel simply scheduling the 
transmissions on top of the MAC, which 
justifies the assumption that the same bit rate 
per user is considered [15]. 
Other parameters used in the simulations for 
UMTS are: (Eb/No) =3dB is the target 
requirement, PN=-106 dBm the receiver 
thermal noise power, W=3.84Mc/s the chip 
rate and the maximum available power in 
UMTS is 21 dBm. Cell radii of 150 m for 
WLAN, 650 m for UMTS and 1 km for 
GERAN are retained. Also the sensitivity 
level for GERAN is -87 dBm and for WLAN it 
is -93 dBm. 
The Fuzzy-Neural algorithm is activated 
every 100 ms for the simulation purposes in 
order to re-allocate bandwidths and/or RATs 
to the currently admitted users as well as to 
include new users, so that the allocated 
resources can be changed dynamically.  
In the following subsections, the different 
aspects of the proposed JRRM algorithm that 
have an influence over the final performance 
will be analysed on a step by step basis, in 
order to better clarify the relevant role played 
by each one. 
 
3.2 Reinforcement Learning in a 

multi-cell scenario 
 
The reinforcement learning mechanism 
allows to set the average value of an 
objective and measurable performance 
indicator to a target value. In particular, the 
non-satisfaction probability PI(t), is retained 
here as target performance indicator. The 
target rate P* can be set to any desired value 
(i.e. P*=1, 3, 10 %) and the system is able to 
keep this value during the whole simulation 
time, as it is shown in Fig. 3 for three different 
values of P*.  
Furthermore, during the simulation time in the 
example of Fig. 3, the Fuzzy-Neural system 
has to cope with two sharp traffic variations. 

TABLE I 
TRAFFIC CLASS 

 Maximum Rate Desired Rate ≥ 

UMTS 384 Kbps 192 Kbps 
GERAN 96 Kbps 40 Kbps
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Fig. 3 Evolution of the non-satisfaction 
probability 

At simulation start, the whole system 
switches from a situation in which no mobile 
is located in the scenario to another one, 
where 100 users are moving around the 
scenario and demanding service. In addition 
to this, at simulation frame 1000000, 50 more 
users join the scenario. Notice that, at the 
beginning of the simulation, a transient period 
after which the Fuzzy-Neural system 
converges to the desired QoS condition is 
necessary, whereas, in correspondence with 
the second artificial traffic change, the users 
are unaware of this sudden change and only 
concerned with the contracted QoS in terms 
of dissatisfaction. 
 
3.3 Load Balancing Capabilities 
 
The proposed approach allows the operator 
to select different sets of inference rules 
according to specific operator policies or 
business models to match the particular 
operational needs. In order to prove that the 
policy stated by inference rules (IR) can 
modify the traffic distribution in the scenario, 
a new scenario characterized by 9 carriers in 
GPRS in order to offer a similar bandwidth 
than in UMTS is considered. In this scenario 
three sets of inference rules will be 
considered. The first one (reference 
inference rules), gives a higher priority to the 
UMTS selection, the second one (modified 
inference rules) gives a higher priority to the 
GERAN selection while the third one 
(balanced inference rules) aims at balancing 
the traffic among UMTS and GERAN RATs. 
Fig. 4 shows the aggregate bandwidth 
allocated in each UTRAN and GERAN base 
station. It can be noticed that the traffic load 
per RAT and cell varies according to the 
different policies.  
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Fig. 4 Result of different Inference Rules 
policies 

Then, an operator could balance the traffic in 
the network or give more impact to a 
particular RAT, preserving the same 
performances in terms of Not Satisfied users, 
and keeping the Blocking and Dropping 
probabilities to nearly comparable rates (not 
shown here for the sake of brevity). 
 
3.4 Setting Operator and User 

Preferences 
 
A very similar effect to the modification of the 
inference rules can be obtained by applying 
the multiple objective decision making [10]. 
This fact has been illustrated in the following 
simulations, which assume 50 users moving 
around a scenario with 4 GERAN carriers in 
each cell. Reference Inference rules are 
considered. In the following simulation, the 
criteria taken into account by the decision 
maker are three: the FSD value (the only one 
considered up to now), the Operator 
Preference (OP) and the User Demand (UD). 
It is assumed that both the users and the 
operator prefer the GERAN choice according 
to the following membership values: 
OPUMTS=0.1, OPGERAN=0.9, OPWLAN=0.1and 
UDUMTS=0.1, UDGERAN=0.9, UDWLAN=0.1. 
In addition, a number is assigned to each 
criterion indicative of its importance in the 
decision (see [10] for details on how to 
establish the importance between criteria). 
Specifically, the UP and OP criteria are three 
times more important than the FSD criterion. 
In turn, UP and OP have the same relative 
importance between them. In practice, the 
relative importance between different criteria 
can be changed dynamically in a rather slow 
way and the membership values would 
depend on the user profile and the operator 
business models. 
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 Fig. 5 Impact of OP and UP criteria in the 
traffic distribution 

 
 Fig. 5 shows that with this new configuration 
GERAN bandwidth assignment has grown 
whereas UMTS has never been selected. On 
the other hand, there is no loss in 
performance in terms of blocking and 
dropping probabilities. It is worth mentioning 
that the non satisfaction probability in both 
cases achieves the convergence to the target 
value of 10%. 
 
3.5 Comparison with other JRRM 

approaches 
 
In order to compare the performances of the 
proposed Fuzzy Neural algorithm against 
other approaches, three alternative 
algorithms are considered.  
The first alternative algorithm does not take 
into account the JRRM concept, and it is 
denoted as Non-JRRM, (NJRRM). The users 
will be attached to a RAT which is randomly 
chosen among the ones in which the mobile 
measures a signal strength (SS) higher than 
its sensitivity. The second approach takes 
into consideration the JRRM concept in the 
following terms: among the cells to which the 
user could be attached to according to a 
Signal Strength criterion, the least loaded 
RAT will be chosen. Then, the criterion is 
denoted as Load-based JRRM (LJRRM).  
Finally, the third approach selects the RAT in 
which the mobile measures the lowest path 
loss, and it is denoted as Path-Loss-based 
JRRM algorithm (PLJRRM). In all the three 
cases, once the RAT has been selected, the 
bandwidth assigned to each user is the 
minimum bandwidth considered in the 
scenario in order to let the users being 

satisfied (i.e 192 kb/s in UMTS, and 48 kb/s 
for GERAN). 
In Fig. 6 and Fig. 7 the comparison of 
performances obtained through the execution 
of the three algorithms is shown as a function 
of the number of users moving around the 
scenario. A target non-satisfaction probability 
of 1% is considered in order to compare the 
blocking and dropping performances. The 
results clearly show the benefits offered by 
the Fuzzy-Neural JRRM proposed in front of 
the other three alternatives. Even though in 
NJRRM, LJRRM and PLJRRM the admitted 
users are always satisfied, because the 
allocated bit rate is always the desired one, 
this is at the expense of a very high increase 
in both the dropping and blocking probability. 
On the other hand, the Fuzzy-Neural JRRM 
algorithm allows keeping the non- satisfaction 
probability to the desired value (i.e. 1%) 
achieving at the same time much lower 
dropping and blocking probabilities. 
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Fig. 6 Performance comparison of the 
different implementations in terms of blocking 

 
Dropping Probability

0

5

10

15

20

25

0 50 100 150
Number of Users

%

Fuzzy-Neural
NJRRM
LJRRM
PLJRRM

 
Fig. 7 Performance comparison of the 
different implementations in terms of 
dropping 
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4. Fuzzy Neural JRRM in 
E2R Framework 

 
End-to-End Reconfigurability (E2R) project 
[2] targets to devise, develop and trial 
architectural design of reconfigurable devices 
and supporting system functions to offer an 
expanded set of operational choices to the 
users, applications and service providers, 
operators and regulators in the context of 
heterogeneous mobile radio systems. 
Clearly, reconfigurability is a key enabler to 
fully exploit the benefits of a Joint Radio 
Resource Management strategy and, 
consequently, JRRM approaches should be 
consistent with reconfigurability perspectives. 
 
In E2R context, a Functional Architecture is 
identified and continues to be further 
elaborated [18]. As stated there, the ARRM 
(Advanced Radio Resource Management) 
works in the inner-loop of the overall 
functional architecture. Conceptually, the 
ARRM includes the Radio Resource 
Management for a single RAT and Joint radio 
resource management for interworking RATs. 
Besides the functions introduced specified by 
the local radio resource management for a 
single RAT, the JRRM is defined as a set of 
networks’ or cell layers’ controlling 
mechanisms that supports intelligent 
admission of calls and sessions; distribution 
of traffic, power and the variances of them, 
thereby aiming at an optimised usage of 
radio resource and maximized system 
capacity. JRRM mechanisms work over 
multiple radio networks or cell layers with the 
necessary support of reconfigurable/multi-
mode terminals. JRRM is operated in a 
network which consists of several 
subnetworks or cell layers of a single radio 
network. In particular, the main JRRM 
functions are the Joint admission control 
(JOSAC), the Handover (either Horizontal or 
Vertical), the Joint load control (JOLDC) and 
the Joint Scheduling (JOSCH). 
 
The proposed Fuzzy-Neural JRRM relates to 
the overall Functional Architecture as 
depicted in Fig. 8. 

JRRM

JOSAC, JOLDC, JOSCH, HO

DNPM LSAM

MEAS OP / UP

 
Fig. 8 Required information for JRRM 
function module and its interworking with 
other functional modules in a reconfigurable 
system (MEAS stands for: measurements)  

 
The inputs of the algorithm come, on one 
hand, from the DNPM/LSAM (Dynamic 
Network Planning and Management / Local 
Spectrum Allocation Module), which detail 
the network layout, corresponding RATs and 
frequency bands for each site. Further inputs 
state the operator and users’ preferences, 
profile as well as the measurements (i.e. 
signal strength, cell load, etc.).  
The JRRM provides feedback in the form of 
KPI to the DNPM. These KPI should trigger 
re-planning of the area and/or request for 
additional spectrum in the case that a 
performance degradation is reported by 
JRRM. The identified KPI are: 
• Not Satisfaction probability 
• Blocking probability 
• Dropping probability 
 
The Fuzzy Neural module undertakes the 
following functions: 
• JOSAC, as long as a new call/session 

request arriving at the JRRM can be 
accepted or not. An acceptance is 
characterized by a certain RAT and cell 
together with an allocated bandwidth. A 
rejection is characterized because the 
JRRM allocates a bandwidth equal to 
zero [16][17]. 

• JOLDC, as long as the activation of the 
Fuzzy-Neural machine selects a cell, 
RAT and bandwidth taking into account 
the load conditions in the overall 
scenario. In this sense, congestion 
control actions are inherently included in 
the Fuzzy decisions. For example, in 
case a cell is overloaded, this is 
considered in the JRRM algorithm and 
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may lead for some users to change to a 
different RAT or to decrease the 
allocated bit rate, then releasing 
congestion[16][17]. 

• Handover (horizontal and vertical), as 
long as the activation of the Fuzzy Neural 
machine may imply a change of cell with 
continuity in RAT (i.e. horizontal 
handover) or a change of RAT (i.e. 
vertical handover). It is worth noting that 
handover is also inherently coupled with 
JOLDC, so that JRRM decisions may 
take advantage of handover mechanisms 
to prevent and/or solve congestion 
situations. In case horizontal handover is 
controlled at lower level by the legacy 
RRM entities, an implementation of the 
cell combination selection based on 
signal strength would be de facto 
applied. 

• JOSCH, as long as the activation of the 
Fuzzy-Neural machine may imply a 
change of the allocated bandwidth per 
user. Then, a packet scheduling 
mechanism would try to provide the 
assigned bandwidth resources 
concurrently from simultaneously 
connected RATs to the end users 
[16][17]. 

 
In the following section, some key outputs 
and inputs for neural module are detailed.  
 
4.1 Effective Inputs to the Fuzzy 

Neural Module 
 
In [17], we have identified the affecting 
factors for JRRM performance. They are: 
service profile (packet/circuit switch services, 
scalability etc.), terminal profile (multi-mode 
with single band or multi-band capabilities), 
network profile (network constellation, 
spectrum arrangement and inter-operability), 
user profile (preference of RAT) and channel 
status information (available bandwidth and 
fading situation). Due to the high complexity 
of the radio context that a reconfigurable 
system has to encounter, we proposed two 
modules in the fuzzy machine: one is the 
implementation of the rules; another one is 
the local system state memory (local 
database).  

Based on the pre-knowledge out from our 
aforementioned principles according to the 
interrelationship between the factors and the 
potential JRRM performance, the fuzzy logic 
machine can work more effectively. For each 
available principle by knowing the input 
profiles, a subspace of the whole search 
space can be identified. The more principles 
available according to the given factors, the 
smaller the resulted subspace is. It then 
implies a much faster search methodology 
[17].  
 
4.2 Effective Outputs to the Fuzzy 

Neural Module 
 
According to the traffic pattern, user terminal 
profile and network constellation in terms of 
the operated spectrum and co-existing RATs, 
the Fuzzy-Neural model selects the most 
appropriate modes of JRRM, such as radio 
access through a single RAT or radio access 
through multiple RATs simultaneously.   
 
Another output is to interface the network 
management function [18]. The overall 
performance of the KPIs will be periodically 
reported back to the performance manager in 
the OMC (Operation and Maintenance 
Controller) which gets in charge of the 
network planning and management (DNPM). 
Whenever the network is under a bad 
condition resulting in a set of bad KPI, the 
OMC is informed by the Fuzzy Neural Logic 
module for further optimization. The results 
can be an increment of frequency layer, 
reconfiguration of base station to another air 
interface or antenna tilt.  
Throughout the control loop of Fuzzy Neural 
network, Fuzzification causes loss of 
information, which gives even higher demand 
for the accuracy given by the later decision 
making engine. If the layers for the MLP 
(multi-layer perceptron) and number of 
neutrons are sufficient in providing needed 
granularity and accuracy, detailed radio 
resource (e.g., transport block size, quantum 
size for scheduler, power segments, number 
of codes) in each scheduling time can also 
be the outputs of the Fuzzy Neural logic 
module. Otherwise, the Fuzzy Neural logic 
module is only used for policy settings added 
onto the classical JRRM functions, e.g., 
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selection of RATs, selection of JRRM modes, 
i.e., JOSAC or JOSCH.  
 
4.3 Practical Feasibility 
 
With respect to the numerical complexity of 
the proposed algorithm, it should be 
mentioned that the number of operations in 
the procedure is low enough to ensure 
operation in real time by means of software 
approaches. In that sense, the required 
operations should be considered at the 
following two levels: 
• In order to achieve the fuzzy-based 

decision with respect to the RAT and 
bandwidth allocation the type of 
operations to be performed are 
essentially comparisons and sums. Also 
a small number of multiplications and 
divisions are required. As a result of that, 
the number of operations to achieve a 
decision per user is in the order of 5000, 
which turns into a requirement of about 
100µs per user on a single state-of-the-
art general-purpose processor (e.g. 2 
GHz). Then, real time operation is 
feasible even with a high number of 
users, since the time constraints are 
typically fixed at the radio frame-time 
scale (e.g. in the order of several 
milliseconds). 

• With respect to the reinforcement 
learning algorithm, the effect is the 
modification of the parameters of the 
membership functions at layer 2 and 
layer 5 used by the fuzzy-based decision 
procedure according to the system 
evolution. Since this modification occurs 
at the long-term, it does not pose 
constraints for real-time operation. In 
fact, the evolution of the parameter 
changes can be done offline with respect 
to the real time reconfiguration.  

 
 
5. Conclusion and Future 

Work 
 
A Fuzzy Neural JRRM strategy for a multi-
cell and multi-RAT scenario including UMTS, 
GERAN and WLAN Radio Access 
Technologies has been proposed. The 

algorithm operates in two steps in order to 
select the most suitable RAT and cell that 
each mobile should be attached to. The first 
step selects a combination of three cells built 
around the three considered Radio Access 
Technologies. To this end, a Fuzzy-based 
approach is more effective than a signal 
strength criterion. During the second step, 
the proposed JRRM selects the most 
appropriate RAT among the three 
considered, and allocates a granted bit rate 
to each user. The role of each element of the 
discussed Fuzzy-Neural system has been 
described in detail. Furthermore, the 
proposed algorithm allows implementing 
different operator policies as well as technical 
and subjective criteria, such as the operator 
and user preferences when performing the 
RAT selection, by means of appropriate 
inference rules and a multiple decision 
mechanism. Moreover, a reinforcement 
learning mechanism is used in order to tune 
the considered membership functions, 
allowing the system to keep a defined QoS 
parameter to a contracted value. In particular, 
the proposed JRRM algorithm is able to keep 
the Non Satisfaction probability to a target 
value under different varying conditions in 
terms of traffic, mobility, propagation, etc. 
Finally, the proposed algorithm has been 
compared with three alternative JRRM 
algorithms, showing that the discussed 
framework is able to keep a desired value of 
user non-satisfaction probability while at the 
same time having low values of dropping and 
blocking probabilities. 
 
In the future work, we will integrate the fuzzy 
neural network both for JRRM and network 
reconfiguration processes. In the radio 
subsystem, the traffic splitting over multiple 
RATs simultaneously will also be taken into 
account for further investigations. In addition, 
the interworking between neural fuzzy logic 
JRRM and network reconfiguration will also 
be studied.  
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