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ABSTRACT
In this paper a study on different Radio Resource Allocation
(RRA) methods employed in multi-carrier cellular system is
presented. This work focuses on the rate-adaptive sub-carrier
allocation, as well as the utility-based packet schedulingal-
gorithms. The objective of the paper is to study the trade-off
between system spectral efficiency and fairness among the
users when the considered algorithms are used.

1. INTRODUCTION

The wireless shared channel in cellular networks is a medium
over which many Mobile Terminals (MTs) compete for re-
sources. In such a scenario, spectral efficiency and fairness
are crucial aspects for resource allocation. The time-varying
nature of the wireless environment, coupled with different
channel conditions for different MTs, poses significant chal-
lenges to accomplishing these goals. In general, these ob-
jectives cannot be achieved simultaneously and an efficient
trade-off must be achieved. In recent years RRA has been
envisaged as one of the most efficient techniques to achieve
a desirable trade-off among these three conflicting objectives
in single-cell multi-carrier systems.

Many next generation wireless systems are based on Or-
thogonal Frequency Division Multiple Access (OFDMA),
which provides a high degree of flexibility that can be ex-
ploited by RRA algorithms. There are different sources of di-
versity in an OFDMA-based system, such as time, frequency
and multi-user diversities. Following the path open by the
seminal article by Wong et al. [2], many RRA algorithms
have been proposed to take advantage of these kinds of diver-
sity. In OFDMA-based systems, it is possible to dynamically
allocate subsets of sub-carriers for different MTs (Dynamic
Sub-carrier Assignment (DSA)), and to adapt the Modula-
tion and Coding Scheme (MCS) and power for each sub-
carrier according to the instantaneous channel conditions(bit
and power loading). Furthermore, Packet Scheduling (PSC)
algorithms are responsible for deciding when the MTs will
access the shared channel and with which transport format
depending on the Channel State Information (CSI).

Many separate or joint solutions for the problems of
DSA, bit loading and power loading were based on combi-
natorial optimization. Most of the works in literature follow
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either themargin adaptive approach, formulating dynamic
resource allocation with the goal of minimizing the transmit-
ted power with a rate constraint for each user [3], or therate
adaptive approach aiming at maximizing the overall rate with
a power constraint [4], [5]. In this latter case, the optimalso-
lution for resource allocation in the downlink is often found
as an application of the well-known waterfilling algorithm.

On the other hand, many works have been using Utility
Theory to propose solutions for all the aforementioned RRA
algorithms, including also multi-carrier PSC. Utility theory
performs the optimization of a utility-pricing system, which
is established based on the mapping of some performance
criteria (e.g. rate, delay) or resource usage (e.g. sub-carriers,
power) into the corresponding pricing values [1].

In this work, we will focus on the provision of Non-Real
Time (NRT) services, such as World Wide Web (WWW)
browsing, File Transfer Protocol (FTP) and e-mail. For these
kind of services, the data rate is the most important Qual-
ity of Service (QoS) metric. The optimization problem can
be formulated based on instantaneous or average data rates.
The former case is stricter because QoS and fairness has
to be guaranteed in each Transmission Time Interval (TTI),
while the time window considered in the optimization prob-
lem based on average data rates adds a time diversity that
relax the requirements on QoS and fairness.

The present work will be divided in two parts. In the first
part, we will study rate adaptive sub-carrier allocation using
optimization based on instantaneous data rates. In the sec-
ond part, we will study multi-carrier packet scheduling using
utility functions based on average data rates. The objective
of the paper is to study the trade-off between system spec-
tral efficiency and fairness among the users when the RRA
algorithms mentioned above are used.

The paper is organized as follows. In section 2 the system
model is described. Sections 3.1 and 3.2 present the mathe-
matical formulation of the rate adaptive sub-carrier allocation
based on instantaneous data rate and the packet scheduling
based on utility theory and average data rates, respectively.
The simulation results are depicted in section 4, while the
conclusions are drawn in section 5.

2. SYSTEM MODEL

The considered scenario is a single cell with hexagonal
shape. We consider a network with one transmitter (base-
station) andJ receivers (users). The transmitted Orthogo-
nal Frequency Division Multiplexing (OFDM) signal is time-
slotted, where in every time slot at most one user can be



served over each sub-carrier.
The considered environment is Typical Urban (TU)

where each user experiences independent transmit condi-
tions. The channel is a frequency-selective Rayleigh fading
channel, with the channel coherence time such that each sub-
carrier experiences only flat fading. It is assumed that the
channel fading rate is slow enough so that the frequency re-
sponse does not change during a TTI interval. Each user also
experiences shadowing with log-normal standard deviation
of 8 dB. A perfect knowledge of the CSI at the transmit-
ter side is assumed, with no signalling overhead transmitted.
The signal strength at the receiver side depends on the path-
loss calculated byL = 128.1+ 37.6log10d, whered is the
distance to the base station in km.

The bit allocation on each sub-carrier is determined using
the Shannon’s capacity model shown in [1]:

c j,k = log2 (1+ Γpkρ j,k) (1)

wherec j,k is the achievable throughput of userj over sub-
carrier k, pk is the transmit power allocated at sub-carrier
k, ρ j,k is the Signal-to-Noise Ratio (SNR) of userj at sub-
carrierk, andΓ is the SNR gap given by 1.5

− ln5BER [1] (the
considered target Bit Error Rate (BER) was 10−6).

It was assumed that the MTs remained stationary, hence
there is no need to implement any handover scheme. All
users are assumed to have an infinite amount of data to trans-
mit during whole simulation run (full-buffer model).

3. RESOURCE ALLOCATION ALGORITHMS

3.1 Rate adaptive sub-carrier allocation based on in-
stantaneous data rates

RRA often leads to algorithms whose implementation is very
complex. In fact the allocation problem is in general not con-
vex since the allocation variable is integer and can assume
only two values: 1 when the channel is allocated to a spe-
cific user and 0 otherwise. In most cases the optimal solution
can be found only evaluating all possible allocations and the
complexity grows exponentially in the number of users and
sub-carriers. Therefore, most of the literature has been fo-
cused on the development of sub-optimal heuristics that have
a lower computational complexity but that still yield good
results. Many algorithms make the problem convex by relax-
ing the integer constraint on the allocation variable. Unfor-
tunately, non-integer solutions are hardly applicable in many
scenarios where a sub-carrier should be actually allocatedor
not to a user. In the following we will focus on the RRA
problem outlining its most common formulations and solu-
tions.

3.1.1 Sum Rate Maximization

The most common mathematical formulation of the RRA
problem is

max
p,x

∑
j

∑
k

c j,k · x j,k

s.t.
∑
j

x j,k ≤ 1 ∀k

∑
j

∑
k

p j,k ≤ Pmax

x j,k ∈ {0,1} ∀ j,k

(2)

wherePmax is the maximum allowed transmit power of the
Base Station (BS). The optimization variables arex, the vec-
tor of the allocations, andp , the vector containing the power
levels of all sub-carriers.

In its original formulation the problem (2) has been
solved in [4] by assigning each sub-carrier to the user that
maximizes its gain on it and then performing waterfilling
over all the sub-carriers. On one hand, such a solution maxi-
mizes the cell throughput but on the other hand is extremely
unfair tending to privilege the users that are closest to theBS
and neglecting all the others.

3.1.2 Max-Min Rate Adaptive

The RRA allocation (2) tends to starve the users with the
worse channel gains, i.e. the users that are more distant from
the BS. Thus, in [5] the RRA problem has been formulated
with the goal of maximizing the minimum capacity offered
to each user, thus introducing fairness among the users. In
general, fairness among the MTs comes at the cost of a de-
creased overall throughput of the cell. The max-min RRA
problem is formulated as follows

max
p,x

min
j

c j,k · x j,k

s.t.
∑
j

x j,k ≤ 1, ∀k

∑
j

∑
k

p j,k ≤ Pmax

x j,k ∈ {0,1} ∀ j,k

(3)

Unfortunately, the problem in the formulation (3) is not con-
vex and the authors in [5] study an heuristic that is based on:
a) transmitting the same amount of power (Pmax/K) on each
channel; b) implementing anassignment strategy that itera-
tively assigns each sub-carrier to the user with the smallest
rate.

3.1.3 Sum Rate Maximization with Proportional Rate Con-
straints

The max-min RRA (3) guarantees that all users achieve a
similar data rate. However, different users may require dif-
ferent data rates. In this case the max-min solution is not
able to comply with the different user requirements. The
RRA algorithm presented in [6] is designed to allocate ra-
dio resources proportionally to different rate constraints that
reflect different levels of service. The RRA problem is for-
mulated as follows

max
p,x

∑
j

∑
k

c j,k · x j,k

s.t.
∑
j

x j,k ≤ 1, ∀k

∑
j

∑
k

p j,k ≤ Pmax

x j,k ∈ {0,1} ∀ j,k.
R1 : R2 : ... : RJ = γ1 : γ2 : ... : γJ

(4)

where R j indicates the rate for userj, defined asR j =
∑
k

c j,k · x j,k andγ j ( j = 1, ...,J) is a set of predetermined val-

ues that are used to ensure proportional fairness among users.
The optimization in (4) is a mixed binary integer program-
ming problem and as such is in general very hard to solve.



Thus, also in this case the problem is solved using a sub-
optimal heuristic and the optimization (4) is performed in
two steps. In the first step, following the approach taken in
[5], the sub-carriers are allocated trying to comply as much
as possible with the proportional rate constraints and assum-
ing a uniform power distribution. In the second step, having
fixed the sub-carrier allocation, the power is distributed to the
users so that the proportional rate constraints are met exactly.

3.2 Packet Scheduling Based on Utility Theory and Av-
erage Data Rates

In this section we formulate PSC algorithms that use Utility
Theory in order to find an efficient trade-off between sys-
tem spectral efficiency and fairness among the users. The
considered optimization problem is the maximization of the
total utility with respect to the throughput (average data rate),
which is calculated using a low-pass Simple Exponential
Smoothing (SES) filtering as indicated in [1].

Assuming that the time constant of the exponential filter
is sufficiently large, it is proven in [1] that the DSA problem
has a closed form solution. The MTj∗ is chosen to transmit
on thekth sub-carrier in TTIn if it satisfies the condition
given by (5):

j∗ = argmax
j

{

U
′

j (Tj [n−1]) · c j,k [n]
}

, ∀ j (5)

whereU
′

j (.) is the marginal utility of thejth MT, Tj [n−1]

is the throughput of thejth MT up to TTI n−1, andc j,k [n]
denotes the instantaneous achievable transmission efficiency
of the jth MT on thekth sub-carrier.

We will consider a family of utility functions of the form
presented in (6) below [9].

U j (Tj [n]) =
Tj [n]1−α

1−α
(6)

whereα is a non-negative parameter that determines the de-
gree of fairness. The fairness of the utility function becomes
stricter asα increases.

According to (5), this is equivalent to consider a priority
function of the PSC algorithm given by:

PPSC
j,k =

c j,k [n]

Tj [n−1]α
, ∀ j,k; α ∈ [0,∞) (7)

For each of theK sub-carriers in the system, a multi-carrier
PSC algorithm calculates the priority functions for allJ MTs
according to (7) and assign it to the MT that has the highest
priority value.

We will show in sections 3.2.1, 3.2.2 and 3.2.3 that, de-
pending on the value of the parameterα, the general util-
ity framework presented above can be designed to work as
any of three well-known classical PSC algorithms: Max-Rate
(MR), Max-Min Fairness (MMF) and Proportional Fairness
(PF). Furthermore, in section 3.2.4 we present the Adaptive
Fairness (AF) PSC algorithm, which can achieve an adaptive
trade-off between spectral efficiency and fairness according
to the cellular operator’s objectives.

3.2.1 Rate Maximization

The MR PSC algorithm is able to maximize the system spec-
tral efficiency because it considers a linear utility function

U j (Tj [n]) = Tj [n], which yields a constant marginal utility
U

′

j (Tj [n]) = 1 [1]. One can notice that this can be achieved
settingα = 0 in (6). According to (7), this is equivalent
to consider a priority function related to the MR algorithm
given by (8) below.

PMR
j,k = c j,k [n] , ∀ j,k (8)

As the final result, each sub-carrier will be assigned to the
MT that has the highest channel gain on it. The MR crite-
rion maximizes the system capacity at the cost of unfairness
among the MTs, because those with poor radio link quality
will probably not have chance to transmit.

3.2.2 Max-Min Fairness

The utility function of the MMF algorithm is the limit of
the function in (6), whenα → ∞ [9]. According to (5) and
(7), the priority function is dependent on the marginal utility
U

′

j (Tj [n]) and the achievable instantaneous transmission effi-
ciencyc j,k [n]. However, in the case of the MMF criteria and
when considering MTs with lower data rates, the influence
of the marginal utility whenα → ∞ is so high that the influ-
ence of the channel quality becomes negligible. Taking this
fact into account, we can assume a more simplified priority
function for the MMF algorithm given in (9), which is also
known in the literature as the “Fair Throughput” criterion [7].

PMMF
j,k =

1
Tj [n−1]

, ∀ j,k (9)

which gives priority to the MT that has experienced the worst
throughput so far. In this way, in terms of throughput, it is the
most fair criterion possible, since all MTs will have approxi-
mately the same throughput in the long-term. However, since
this criterion maximizes the throughput of the worst MTs, it
will provide low aggregate system throughput.

3.2.3 Proportional Fairness

A trade-off between spectral efficiency and fairness can be
achieved by means of a PF PSC algorithm [8]. In utility the-
ory, the logarithmic utility function is associated with the
proportional fairness [1]. In the general family of utility
functions presented in (6), the logarithmic function can be
achieved whenα → 1 (see proof on [9]). Therefore, accord-
ing to (7), the priority function of the PF algorithm is given
by (10).

PPF
j,k =

c j,k [n]

Tj [n−1]
, ∀ j,k (10)

3.2.4 Adaptive Fairness

The AF PSC algorithm, which was proposed in [10], joins in
a unified framework the three aforementioned classical PSC
algorithms (MR, MMF and PF). In the light of utility the-
ory, it was shown that a general PSC algorithm based on (6)
is able to provide several degrees of fairness. The AF algo-
rithm adaptively explores this flexibility in order to achieve
an efficient trade-off between spectral efficiency and fairness
planned by the network operator. However, it is difficult to
design an adaptive control of theα parameter because it is
defined over a large range of values. Instead of that, the AF
algorithm transforms the priority function of (7) into another



priority function that is based on a parameterβ , which is de-
fined over a controlled range and provides the possibility of
a stable and simple adaptive control. The priority functionof
the the AF algorithm is presented in (11) below.

PAF
j,k =

c j,k [n]1−
β

Tj [n−1]β
, ∀ j,k; β ∈ [0,1] (11)

Notice that in a conceptual point of view, the priority func-
tions in (7) and (11) perform in the same way. The AF al-
gorithm is able to work as the classical PSC algorithms by
means of the adaptation of theβ parameter. The values of
β = {0,0.5,1} corresponds to the MR, PF and MMF, respec-
tively. For more details on how theβ parameter is adapted in
a feedback control loop, see [10].

4. SIMULATION RESULTS

In this section the simulation-specific parameters as well as
the simulation results are presented. The simulation results
for the sub-carrier allocation and packet scheduling algo-
rithms are depicted in sections 4.1 and 4.2, respectively.

The cell radius was set to 500 m, and there were 192
sub-carriers available for data transmission. The data sub-
carriers spacing was set to 15 kHz, giving the total transmit
bandwidth of 2.88 MHz, with the centre frequency of 2 GHz.
The TTI interval was equal toTs=0.5 ms, with 20 consecutive
time slots constituting one superframe, and each of the TTIs
consisting of 7 OFDM symbols [11]. The Additive White
Gaussian Noise (AWGN) power on each sub-carrier was as-
sumed to be equal to -123.24 dBm.

4.1 Rate Adaptive Sub-carrier Allocation

The results presented in this section are obtained for all RRA
algorithms presented in Section 3.1 considering 1 W transmit
power and averaged over 500 realizations. For the sum rate
maximization with proportional rate constraints two different
sets of rate constraints have been studied: the case where the
rate constraints are set equal for all users (Prop rate 1), i.e.
γ j = 1 ( j = 1, ...,J), and the case where the rate constraints
are set proportional to the user pathloss (Prop rate 2).

Fig. 1 shows the average throughput for the different al-
gorithms: the sum rate maximization algorithm achieves the
highest throughput and the max-min the lowest. The results
show also the flexibility of the algorithm with proportional
rate constraints. As expected, when the set of rate constraints
are all equal its behavior is almost identical to the max-min
algorithm. On the other hand, when the system tends to fa-
vor the users nearer to the BS, the throughput approaches the
sum rate results.

Fig. 2 shows the average fairness index (according to
the definition in [12]) for the various RRA algorithms. In
this case the max-min and the algorithm with equal rate con-
straints outperform all the others. The algorithm with rate
constraints proportional to the pathloss even if guarantees ac-
cess to all users is not very fair. This is due to the fact that
in our simulation setting the difference in patlhoss can be
several orders of magnitude large. Thus, users close to cell
boundaries will have a much smaller throughput than users
near the BS.
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Figure 1: Achievable throughput as function of the number
of users

4.2 Utility-Based Packet Scheduling

In case of the utility-based packet scheduling analysis the
power distribution over all sub-carriers was uniform with no
power adaptation. Only 3 modulation schemes have been
taken into account: Quadrature Phase Shift Keying (QPSK),
16-Quadrature Amplitude Modulation (QAM) and 64-QAM.
The transmitter selects one of the three on the base of the ide-
ally achievable throughput (1) based on SNR. For each sim-
ulation point 10 different realizations have been considered,
with the simulation time span for each of the realizations set
to 30 s (60000 TTIs).

Fig. 3 shows the system fairness index described in [12]
for different cell loads. In this simulation scenario, the AF
target fairness index is 0.9. It can be observed that AF is suc-
cessful to achieve its main objective, which is to guaranteea
strict fairness distribution among the MTs. This is achieved
due to the feedback control loop that dynamically adapts the
parameterβ of the AF priority function (11). As expected,
MMF provided the highest fairness, very close to the maxi-
mum value of 1, while MR proved to be the most unfair strat-
egy with a high variance on the fairness distribution for high
cell loads. PF presented a good fairness distribution, close
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Figure 2: Measured fairness as function of the number of
users
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Figure 3: Comparison of utility-based packet scheduling al-
gorithms regarding the system fairness index

to the performance of MMF. The advantage of the AF algo-
rithm in comparison with the others is that it can be designed
to provide any required fairness distribution, while the clas-
sical PSC strategies are static and no not have the freedom
to adapt themselves and guarantee a specific performance re-
sult.

The total cell throughput for different cell loads is shown
in Fig. 4. As expected, MR was able to maximize the spectral
efficiency, while MMF presented the lowest cell throughput.
Since PF is a trade-off between MR and MMF, its perfor-
mance lied between them. Looking at Fig. 3, one can expect
that since the AF target fairness index was set to 0.9, the AF
performance would be somewhere in the middle between the
performances of PF and MR. This can be observed in Fig.
4, where the total cell throughput is plotted. Notice that the
throughput values presented in this section are lower than
those shown in section 4.1. This was due to the fact that the
simulations carried out for the PSC investigation considered
three discrete modulations while the simulations of section
4.1 assumed continuous link adaptation with no rate restric-
tions.
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Figure 4: Comparison of utility-based packet scheduling al-
gorithms regarding the total cell throughput

5. CONCLUSIONS

In this paper we investigated the trade-off between system
spectral efficiency and fairness among users in OFDMA-
based cellular networks. It was concluded from simulation
results in a single-cell scenario that is possible to achieve
an efficient trade-off using rate adaptive sub-carrier alloca-
tion based on instantaneous data rate or utility-based packet
scheduling based on average data rate (throughput).
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