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Abstract—This paper proposes a Dynamic Spectrum Assign-
ment strategy in the context of next generation multicell Orthog-
onal Frequency Division Multiple Access networks. The proposed
strategy is able to dynamically find spectrum assignments per cell
depending on the spatial and temporal distribution of the users
over the scenario. Reinforcement Learning methodology has been
employed to implement the strategy, which compared with other
fixed and dynamic spectrum assignment strategies shows the best
tradeoff between spectral efficiency and Quality-of-Service.

Index Terms—Dynamic Spectrum Assignment, Multicell
OFDMA, Reinforcement Learning.

I. INTRODUCTION

The detected spectrum scarcity and its underutilization in
current networks [1] claim for a new paradigm of spectrum
access that overcomes current regulatory and technological
barriers and promotes the usage of the spectrum dynamically
and opportunistically by accounting for the different tempo-
ral and spatial spectrum demands [2]. OFDMA (Orthogonal
Frequency Division Multiple Access) is a multiple access
technique that is in the main stream of current proposed next
generation broadband wireless systems (3G LTE, WiMax).
It provides an extremely flexible radio interface, where the
operation bandwidth is divided into small flat frequency
response subchannels. Hence, this interface is suitable for
current spectrum needs where the objective is to find a
spectrum assignment over the radio interface that (a) improves
the spectral efficiency and (b) adapts system spectrum to users’
QoS requirements, taking into account the spatial and temporal
variations of the network load.

Several approaches have been proposed so far to this
problem. On the one hand, frequency reuse schemes based on
a certain Frequency Reuse Factors (FRF) [3] try to mitigate
intercell interference and in this way improve spectral usage
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at the cells’ edge. Universal reuse (FRF1), where all cells
share the same set of subchannels, increases system capacity
at the cost that some users at the edge cannot be served due
to excessive intercell interference. Thus, higher FRFs such
as FRF3 or FRF7, where the entire bandwidth is distributed
among clusters of 3 and 7 cells respectively, have been
proposed. However, FRF3 and FRF7 schemes considerably
reduce cell capacity. Additionally, the number of subchannels
devoted to each FRF in each cell must be equal, which
is not optimal for heterogeneous spatial distributions of the
users [4]. In these heterogeneous scenarios, high flexibility of
the spectrum management is preferred in order to properly
distribute the subchannels over cells depending on each cell
demands [5].

On the other hand, radio resource allocation strategies
have been proposed with the objective of minimizing the
total power consumption [6], maximizing overall system
throughput [7], mitigate intercell interference [8] or guaran-
tee users’ QoS requirements [9]. However, some of these
schemes [6][7] are proposed for single cell scenarios and
they need high computational requirements and information
exchange among users and cells to perform the subchan-
nel/power/modulation/cell/user assignment in the short-term
(due to instantaneous variations of subchannel conditions in
multipath propagation environments). Others [8][9] introduce
hierarchical schemes to circumvent these drawbacks. Thus,
the controller of a cluster of cells decides which subchannels
should be used by each cell under control, whereas in the
short-term each cell independently decides how to schedule
users’ transmissions into available subcarriers regarding the
channel status reported by the users. Nevertheless, users’
QoS requirements [8] and intercell interference [9] are not
considered in the optimization problem.

This paper presents a Dynamic Spectrum Assignment
(DSA) strategy in a multicell OFDMA system that embraces
the DSA problem not just at a cell level but at a network
level by sharing the whole spectrum among different cells
by means of a hierarchical architecture. Cognitive network
functionalities like network observation, analysis, learning
and decision making are introduced to provide the network



with the ability to automatically detect the instants when
the current spectrum assignment is no longer valid and then
dynamically find spectrum assignments per cell depending
on the spatial and temporal distribution of the users over
the scenario. To this end, we propose a DSA strategy based
on Reinforcement Learning (RL) denoted here as DSA. The
ability of RL to learn from interaction with the network is
exploited to discover proper dynamic spectrum assignments
of groups of contiguous OFDMA subcarriers or chunks to
cells. Compared with classical fixed frequency assignments
for cellular OFDMA planning, RL-DSA (i) improves spectral
efficiency, (ii) maintains users’ QoS satisfaction and, (iii)
adapts spectrum to temporal and spatial variations of the
network load. Thus the proposed algorithm demonstrates the
best tradeoff between spectral efficiency and QoS.

Sections II and III describe the DSA system model and
the RL-DSA algorithm, respectively. Section IV is devoted to
detail the simulation model and section V to analyze obtained
results. Finally, section VI presents final concluding remarks.

II. DYNAMIC SPECTRUM ASSIGNMENT SYSTEM MODEL

A hierarchical framework is proposed to manage spec-
trum dynamically and is depicted on Fig. 1. A generalized
OFDMA radio interface is supposed where time is divided
into frames and frequency into chunks. Hence, the minimum
radio Resource Block (RB) assignable to users is a specific
chunk into a frame. The cluster controller performs long-
term cell-by-cell spectrum assignments that adapt to temporal
and spatial variations of the spectrum demands depending on
users’ QoS and intercell interference. Additionally, the Short-
Term Scheduler (STS) independently provides the short-term
exploitation of multiuser diversity at each cell by dynamically
assigning available radio resources to users.

As shown in Fig. 1(a), there is a DSA controller that is
located in a network node with the ability to control a set of
cells. The RL Trigger entity is in charge of executing the RL-
DSA algorithm. The network variable status is observed and

analyzed by this entity to detect the instants when the current
spectrum assignment is no longer valid regarding the users’
QoS performance as in the following.

Let us define PTth

k as the average user dissatisfaction in cell
k that reflects the percentage of time that the received through-
put per user during one second is below a target throughput
Tth.Then, the RL Trigger entity checks the following condition
each L seconds period.
Condition 1:

if ((PTth

k > δup) OR (PTth

k < δdown)) then
EXECUTE RL DSA ALGORITHM

endif
Parameters δup and δdown are thresholds to determine

whether current assigned resources are insufficient or over-
provisioned respectively.

Once the RL-DSA algorithm is executed, its intermediate
actions (i.e., possible spectrum assignments) are applied to
a Network Characterization Entity (NCE) that mimics the
behavior of the real network based on real measurements.
Inputs to NCE are the deployment and powers of base stations,
the load per cell and the average pathloss of the users from
serving and neighboring cells. These load and average pathloss
measurements can actually be obtained from real networks and
are acquired when the RL-DSA algorithm has to be run. As it
is discussed in next section, RL-DSA converges to a solution
based on the interaction with the NCE that returns a reward
for a given action.

Finally, a Decision Maker analyses the status of the algo-
rithm to stop the RL-DSA algorithm when it has converged
and to decide the final chunk-to-cell assignment. Moreover, it
implements the procedures to redeploy the new assignment in
the real system. Details about the decision process are given
in next section.

III. RL-DSA ALGORITHM

Consider N available chunks in a downlink OFDMA cel-
lular system to distribute over K cells. Chunks are numbered

y11 Ny1 Ky 1 KNy

( )Nx 1 ( )Kx 1( )x 11 ( )KNx

( )Nw 1 ( )Kw 1( )w 11 ( )KNw

p11 Np1 Kp 1 KNp

Fig. 1. Proposed DSM Model based on RL. (a) System Model, (b) RL-DSA Model.



from 1 to N and cells are numbered from 1 to K. The RL-
DSA algorithm is based on the RL REINFORCE methods
[10]. We propose a feed-forward network composed of KN
agents to implement the RL-DSA algorithm (Fig. 1(b)) that
interacts with the NCE in a step by step basis until convergence
is reached. Notice that N RL agents are devoted to the k-th
cell where each kn-th RL agent is devoted to learn whether
the n-th chunk should be assigned to the k-th cell. For each
single RL agent the output ykn∈{0, 1} is a Bernoulli random
variable where the agent’s internal parameter pkn contains its
knowledge since represents the probability that the output ykn

is 1. Probability pkn depends on an input xkn and a weighting
value wkn as [10]

pkn= max
{

min
{(

1+e−xknwkn
)−1

, 1− pexp

}
, pexp

}
(1)

where probability pexp is introduced as a small bias in order
to enforce some exploratory behavior in the agent even if its
internal probability is very near to 1 or 0.

The RL-DSA algorithm works as follows:
1) For each RL step t, it is considered that the n-th chunk

is assigned to the k-th cell if the output ykn(t) is 1.
2) In next step, for each assignment the NCE returns a

reward r(t+1) (i.e, a numerical representation of the
assignment suitability detailed below) that is used by
the respective RL agents to update its internal weight as
[10]

wkn(t+1)=wkn(t)+∆wkn(t+1), (2)

∆wkn(t+1) = α(t+1) · [r(t+1)− r̄(t)]·
· [ykn(t)− pkn(t)] · xkn(t). (3)

Notice that the learning from reward is enforced in the
weighting value. Parameter α(t) is called the learning
rate and, to improve convergence [11], it is linearly
decreased as α(t)=α(t−1)−∆, where ∆ is a factor that
should be small enough to assure a smooth transition
between steps. Moreover, the maximum number of steps
(MAX STEPS) must be set so that negative values
of α are avoided. r̄(t) is the reinforcement baseline or
average reward calculated using a exponential moving
average with parameter β.

3) The agents capture the inputs xkn(t+1) that reflect the
percentage of users in the kn-th cell so that the algorithm
is able to adapt to homogeneous and heterogeneous
spatial distributions of the users.

4) Probabilities pkn(t+1) and outputs ykn(t+1) are ob-
tained for next assignment. If the decision maker detects
that the variation of all pkn between two successive steps
is below ε in S steps, or t > MAX STEPS, then step
5) is executed. If not, next assignment is tested from 1).

5) Decision maker stops the RL-DSA algorithm. It decides
that a chunk is assigned (not assigned) to a cell if pkn

is greater (lower) than 0.5.
The first time that RL-DSA is run full assignment is set,

i.e.,ykn(0)=1 ∀n, k, and in subsequent executions RL-DSA

algorithm begins from the assignment learnt in the previous
execution so that the knowledge acquired until that moment
is retained.

REINFORCE methods are characterized by low complexity
and optimal behavior in the sense that a maximum reward
is guaranteed in the long-term. Thus, a reward signal that
captures the objective of maximizing the spectral efficiency
per cell ηk and guarantees the satisfaction of the users has to
be defined to assure the success of the proposed strategy. The
reward signal rk per cell k is defined as

rk(t)=

0, if thk(t) < Tth

ληk(t), otherwise
(4)

where thk(t) is the average user throughput for cell k at step t,
ηk(t) is the average spectral efficiency, λ is a positive weight-
ing constant whose value should be high enough (around 100)
in order to distinguish very similar spectral efficiencies, and
Tth is the user satisfaction throughput threshold.

With the above definition, rk reflects the spectral efficiency
obtained in a cell if average user throughput is greater than
the target. Otherwise RL-DSA does not receive any reward.
Thus, it is assured that spectral efficiency is maximized only
if QoS is fulfilled.

IV. SIMULATION MODEL

Results were obtained by means of dynamic simulations
over a 19 hexagonal cells scenario representing a simulated
time of 1 hour. At the beginning 190 users equally distributed
among cells are considered moving at 3Km/h with a random
walk model [12] (i.e., 10 active sessions per cell). Users always
remain within their cell (i.e., handovers are not considered) and
a full-buffer traffic model is considered. During a 10 minutes
period between the minutes 25 to 35, 3 new sessions per
minute are started in one of the cells and one session per
minute is stopped in another cell (see Fig. 2). In this way,
simulations consider both spatial and temporal variation of
the traffic.

SINR for m-th user is computed for each chunk n (denoted
as γm,n) considering distance dependant pathloss, shadowing
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Cell #19

Increasing 
Load

Decreasing 
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Fig. 2. Scenario layout



and frequency selective fast fading for both serving cell and
interfering cell. Chunk power is constant and users’ transmis-
sion bit rate is variable by means of Adaptive Coding and
Modulation (ACM). The detailed SINR thresholds for each
modulation and coding rate considered are given in Table I
[13]. Then, the m-th user achievable bit rate for each chunk
n, (Rm,n) is computed as

Rm,n = Bq(γm,n) (5)

where, B is the chunk bandwidth in Hz and q(γm,n) stands
for the available spectral efficiency for a given SINR threshold
obtained from Table I. Notice that the maximum net spectral
efficiency is limited to a maximum value of ηmax = 5 bits/s/Hz
corresponding to 64QAM modulation with a coding rate of
5/6. Finally, users transmissions are scheduled by STS follow-
ing a Proportional Fair strategy [14] with an averaging window
of 50 frames. Other simulation parameters are provided in
Table II.

RL-DSA is triggered each time Condition 1 holds for
δup=10% and δdown=0.1% for any cell, being Tth=256
kbps the user satisfaction throughput. RL-DSA performance
is compared with classical Frequency Reuse Factors (FRF),
such as FRF1 (full assignment) and FRF3 (1/3 of the band
assigned to each cell), and a fully dynamic heuristic strategy

TABLE I
MODULATION AND CODING SCHEMES

Modulation m Coding Rate r Spectral SINR threshold
(bits/s/Hz) (bits/s/Hz) efficiency (dB)

q (bits/s/Hz)
2 (QPSK) 1/3 0.66 ≥ 0.9
2 (QPSK) 1/2 1 ≥ 2.1
2 (QPSK) 2/3 1.33 ≥ 3.8

4 (16QAM) 1/2 2 ≥ 7.7
4 (16QAM) 2/3 2.66 ≥ 9.8
4 (16QAM) 5/6 3.33 ≥ 12.6
6 (64QAM) 2/3 4 ≥ 15.0
6 (64QAM) 5/6 5 ≥ 18.2

TABLE II
SIMULATION PARAMETERS

Number of cells K = 19
Cell Radius R = 500 meters

Antenna patterns Omnidirectional
Frame time 2 ms

Number of chunks N = 12
Chunk bandwidth B = 375 KHz
Power per chunk P = 33 dBm

Path loss in dB at d km 128.1 + 37.6log10(d) [12]
Shadowing standard deviation 8 dB [12]

Shadowing decorrelation distance 5 m [12]
Small Scale Fading model ITU Ped. A [12]

UE thermal noise −174 dBm/Hz
UE noise factor 9 dB

RL parameters [α, β,∆]
[
10, 0.01, 10−5

]
Exploratory probability pexp = 0.1%

Reward constant λ 100

RL convergence criterion [ε, S]
[
10−4, 5000

]
MAX STEPS 100000

RL-Trigger period L = 30 seconds

[5] whose configuration parameters are also included in Table
II. This strategy heuristically decides the number of chunks
per cell based on its respective number of users.

V. RESULTS

Results are presented in terms of spectrum utilization,
dissatisfaction probability and spectral efficiency in Fig. 3, Fig.
4 and Fig. 5 respectively.

Fig. 3 illustrates the number of assigned chunks for each one
of the studied strategies. Average number of assigned chunks
over all cells in the scenario as well as in the most and least
loaded cell is represented. As expected, RL-DSA and DSA-
heuristic as dynamic strategies adapt the number of chunks per
cell depending on traffic demands. However, RL-DSA adapts
more progressively the spectrum proving the validity of the
proposed system architecture for the RL-DSA algorithm by
detecting the instants when RL-DSA has to be run during
temporal changes in the scenario. The instants where RL-
DSA is executed are plotted in the figure as vertical arrows.
Notice that, after each execution a spectrum modification
(i.e., variation of the number of assigned chunks to cells)
is enforced. In this way, increasing load cells have also an
increasing number of chunks and vice versa. Finally, in all
cases, RL-DSA is the strategy that minimizes the number of
chunks per cell. This feature translates in an improved spectral
efficiency without compromising dissatisfaction probability as
it is shown in the following.

Fig. 4 shows the average dissatisfaction probability per
cell for the studied strategies. Again, this performance is
represented for all cells in the scenario (average) and for
the most and least loaded cells. It can be seen that RL-

0 10 20 30 40 50 60
0

5

10

15
Average number of assigned chunks

A
ve

ra
ge

 a
ll 

ce
lls

0 10 20 30 40 50 60
0

5

10

15

M
os

t l
oa

de
d 

ce
ll

0 10 20 30 40 50 60
0

5

10

15

Le
as

t l
oa

de
d 

ce
ll

time [minutes]

FRF1
FRF3
DSA_heuristic
RL-DSA

FRF1
FRF3
DSA_heuristic
RL-DSA

FRF1
FRF3
DSA_heuristic
RL-DSA

Fig. 3. Average number of assigned chunks



0 10 20 30 40 50 60
0

10

20

A
ve

ra
ge

 o
ve

r a
ll 

ce
lls

[%
]

Average dissatisfaction probability

 

 
FRF1
FRF3
DSA_heuristic
RL-DSA

0 10 20 30 40 50 60
0

50

100

M
os

t l
oa

de
d 

ce
ll

[%
]

 

 
FRF1
FRF3
DSA_heuristic
RL-DSA

0 10 20 30 40 50 60
0

2

4

time [minutes]

Le
as

t l
oa

de
d 

ce
ll

[%
]

 

 
FRF1
FRF3
DSA_heuristic
RL-DSA

Fig. 4. Average dissatisfaction probability per cell

0 10 20 30 40 50 60

4.6

4.8

5

A
ll 

ce
lls

[b
its

/s
/H

z]

Average Spectral Efficiency

 

 

FRF3
DSA_heuristic
RL-DSA

0 10 20 30 40 50 60

4.6

4.8

5

M
os

t l
oa

de
d 

ce
ll

[b
its

/s
/H

z]

 

 

FRF3
DSA_heuristic
RL-DSA

0 10 20 30 40 50 60
3.5

4

4.5

5

Le
as

t l
oa

de
d 

ce
ll

[b
its

/s
/H

z]

time [minutes]

 

 

FRF3
DSA_heuristic
RL-DSA

Fig. 5. Average spectral efficiency per cell

DSA maintains dissatisfaction probability below 5% in all
cases and improvements near to 95% can be obtained with
respect to FRF3 in the most loaded cell. Fixed strategies
demonstrate poor performance for heterogeneous distribution
of the load (i.e., after minute 35) since they are not capable
of re-adapting their spectrum whereas DSA-heuristic strategy
also has a reasonable dissatisfaction probability but performs
worse than proposed RL-DSA algorithm in terms of spectral
efficiency as shown in Fig. 5.

RL-DSA obtains the best spectral efficiency results as de-
picted in Fig. 5. FRF1 performance is not represented in those

plots since its spectral efficiency maintains below 4 bits/s/Hz,
showing that, due to excessive intercell interference, spectrum
cannot be fully exploited by users. RL-DSA achieves a spectral
efficiency near the maximum of 5 bits/s/Hz. Notice that for
the least loaded cell a reduction of the spectral efficiency is
reported after minute 35 for all strategies. This is because only
one session is active in this cell and, then, multiuser diversity
cannot be exploited. Also in this situation RL-DSA achieves
the best spectral efficiency since it is the strategy that assigns
only one chunk to this cell.

VI. CONCLUSION

In this paper a framework for Dynamic Spectrum As-
signment (DSA) in next generation OFDMA-based networks
has been proposed, as well as a RL-based algorithm whose
foundations reside on an optimal RL methodology called RE-
INFORCE. Compared with other fixed spectrum planning and
dynamic strategies, the proposed algorithm demonstrates the
best tradeoff between spectral efficiency and QoS fulfillment
thanks to an adequate adaptability to temporal and spatial
variations of the spectrum demands.
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