
Towards Trustworthy Reinforcement Learning-
based Resource Management in Beyond 5G

Jordi Pérez-Romero1, Oriol Sallent1, Irene Vilà1, Elli Kartsakli2, Ömer Faruk Tuna3,
Swarup Kumar Mohalik4, Xin Tao4

1
Universitat Politècnica de Catalunya (UPC), Barcelona, Spain;

 2
Barcelona Supercomputing Center (BSC), Barcelona,

Spain;
3
Ericsson Research, Istanbul, Turkey, 4Ericsson Research, Stockholm, Sweden.

Abstract— It is envisaged that future Beyond 5G (B5G)
systems will make extensive use of Artificial Intelligence (AI)
capabilities to achieve an efficient automated management and
optimization of communication and computing resources and to
support advanced data-driven applications that provide the users
with highly immersive services. Ensuring the trustworthiness of
the AI solutions is key for their successful introduction in B5G, as
this will guarantee their robustness towards errors and potential
attack threats, the privacy of the used data and trained models and
the explainability of AI-based decisions, ensuring that they do not
have unsafe consequences. In this context, this paper focuses on
the trustworthiness of Reinforcement Learning (RL) solutions, as
their inherent trial-and-error behavior during training makes
them particularly challenging from the robustness perspective.
Then, the paper proposes a framework for managing the lifecycle
of an RL-based resource management solution for both training
and inference stages to ensure its trustworthy operation. The
framework relies on an RL training configuration function to
specify the training conditions, a Network Digital Twin (NDT) to
perform the training on a safe environment and a continuous
operation function to monitor the behaviour of the trained policy
during inference. The framework is illustrated with an
applicability use case of capacity sharing for network slicing.

Keywords—AI/ML-based optimization; Trustworthy AI;
B5G/6G evolution; Reinforcement Learning

I. INTRODUCTION

Artificial Intelligence (AI) development aims to benefit
society as a whole and assist humans by resolving challenging
problems. However, AI might unintentionally harm humans,
for example by making decisions that lead to adverse effects on
a system that supports critical services (e.g. remote surgery,
autonomous driving, etc.). As a result, the research community
has recently given significant attention to trustworthy AI to
reduce any unfavorable impacts that AI may have on people [1].
Trustworthiness becomes a prerequisite to develop, deploy and
use AI systems, because without AI systems being
demonstrably worthy of trust, unwanted consequences may
arise, and their uptake might be hindered. The High-Level
Expert Group on AI (AI HLEG) set up by the European
Commission elaborated in [2] the ethics guidelines for
trustworthy AI and established the existence of three
components to be met throughout the system's entire life cycle.
Specifically, AI should be lawful, complying with all applicable
laws and regulations, ethical, ensuring adherence to ethical
principles and values, and robust to prevent unintentional harm.
The AI HLEG group also provided guidance on how to realize
trustworthy AI by listing seven key requirements [2][3],
including among them technical robustness and safety.

A clear application area of AI is in the context of future
Beyond 5G (B5G) and 6G cellular systems, as it is commonly

agreed that, thanks to the enormous development in
computational resources, edge- and cloud-computing, as well
as the ever-increasing amount of available network and
application data, AI will permeate almost all the layers of these
systems. The vision is that B5G/6G will leverage AI for
optimising the air interface and to transform the network to a
powerful distributed AI platform. Hence, the AI as a Service
(AIaaS) concept, which refers to the provision of AI and
Machine Learning (ML) capabilities as a cloud-based service
that can be consumed by the decision-making components of
the network (e.g., orchestrators, controllers, infrastructure
managers, etc.), will be a key B5G/6G enabler [4].

To facilitate the deployment of such AI-enabled services,
architectures should be able to manage the complete lifecycle
of the AI/ML models in a transparent and automated way and
should encompass the mechanisms that ensure the
trustworthiness of the solutions. In this direction, the VERGE
project (https://www.verge-project.eu/) introduced in [5] an
architecture for the evolution of edge computing towards
B5G/6G. The proposed architecture aims to enable the seamless
execution of cloud-native services, including disaggregated
Radio Access Network (RAN) and core network functions,
distributed AI, and big data workflows, while leveraging data-
driven AI/ML-based solutions for edge and network
optimization. One of the main pillars of this architecture is the
so-called “Security, Privacy and Trustworthiness for AI”
(SPT4AI), which encompasses a set of methods to ensure the
trustworthiness in the VERGE AI solutions.

This paper focuses on the development of trustworthy
reinforcement learning (RL) solutions and how they can be
supported and facilitated in the VERGE architecture. RL is a
subset of ML that consists in learning a behavioral model
through the dynamic interaction with an environment [6]. It
provides a mathematical formalism for learning-based control
that allows acquiring near-optimal behavioral skills and, for this
reason, RL methods have applicability in many decision-
making problems and have been proposed for many
functionalities in wireless networks [7], particularly in those
related with resource management, as RL allows dealing with
the uncertainties of the radio environment.

In RL, an agent executes actions depending on the observed
state in the environment and then obtains a reward signal as a
result that quantifies how good or bad was the outcome of the
selected action. This process is iteratively repeated during the
training stage so that the decision-making policy at the RL agent
can be progressively enhanced. To learn a robust RL decision-
making policy, the selection of the actions during the training
needs to balance the exploitation of the knowledge that has been
acquired from previous decisions and the exploration of new

© 2024 IEEE. This is the authors' version. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/ republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works. Final publication can be found in https://ieeexplore.ieee.org/

actions that are randomly selected in order to discover if they
can improve the current policy. This exploration, which is
essentially a trial-and-error approach, can be particularly
critical depending on the considered scenario and decision-
making problem (e.g. in case of safety-critical services such as
healthcare or autonomous driving), because it can lead to
considerable degradations in the performance of the related
services, thus affecting the trustworthiness of the RL algorithm.

In this context, the main contribution of this paper is the
proposal of a framework for a trustworthy lifecycle
management of RL-based resource management strategies.
Among the dimensions of trustworthiness, the focus is on the
technical robustness, targeting that the RL decision-making
policies are reliable and make accurate decisions that do not
lead to adverse effects on the system. To that end, the proposed
framework covers both the training and inference stages and is
aligned with the architecture of the VERGE project. Workflows
to illustrate the interworking between the involved components
are also included.

 The paper is organized as follows. Section II presents a
brief summary of the VERGE architecture. Section III describes
the proposed framework for trustworthy RL-based resource
management and Section IV presents some illustrative results
on an applicability example of RL for capacity sharing. Finally,
conclusions are given in Section V.

II. MAIN HIGHLIGHTS OF THE VERGE ARCHITECTURE

The architecture for AI-powered edge computing evolution
proposed by the VERGE project is built around three main
pillars. The first one is the “Edge for AI” (Edge4AI), a flexible,
modular and converged edge platform design that unifies the
lifecycle management and closed-loop automation for cloud-
native applications and network services across a unified edge-
cloud compute continuum. The second pillar is the “AI for
Edge” (AI4Edge), a portfolio of AI-based solutions to manage
and orchestrate the computing and network resources. The third
pillar is the SPT4AI, a suite of methods and tools to ensure the
privacy of sensitive data and AI models, the security of the AI-
based models against adversarial attacks, their safe training and
execution, and their explainability for different stakeholders.

The key building blocks of the VERGE architecture are
illustrated in Fig. 1. A highly heterogeneous infrastructure is
depicted at the bottom, consisting of diverse edge computing
resources (from the Far Edge to the Near Edge and the Cloud)
embedded in the end-to-end (E2E) B5G network. The
architecture intends to provide services to users of multiple types
associated with different use cases (e.g. augmented/extended
reality, smart cities, automotive, etc.). Users are connected
through heterogeneous RAN deployments and leverage the
availability of Multi-access Edge Computing (MEC) services.
The provision of services across this infrastructure is sustained
on the three VERGE pillars shown in the upper part of Fig. 1 and
summarized in the following paragraphs (see [5] for details).

The Edge4AI forms an AI-powered platform to facilitate the
deployment and execution of cloud-native services and network
functions from the Application layer over the heterogeneous
pool of connected edge and cloud resources. The Edge4AI
virtualization layer provides a unified view of the
communication and computational resources, forming an edge-
cloud compute continuum tightly integrated with the B5G

communication fabric. To flexibly deploy cloud-native
functions on the infrastructure, the Edge4AI includes the
Orchestration, Management and Control layer. It handles the
orchestration of services and infrastructure and the control of the
RAN elements. For the latter, a set of intelligent RAN
controllers at single site and multi-site level is included. The
lifecycle management of the AI/ML solutions is enabled by a set
of Application Programming Interfaces (APIs), supporting
services and toolkits under the scope of the so-called Cognitive
Framework. Moreover, the Distributed Knowledge Base (DKB)
contains a registry of the available AI/ML models, used datasets
and associated metadata. Finally, the Data Access layer is in
charge of gathering relevant data from the observability and
telemetry stacks to monitor the underlying infrastructure and
services. To that end, it includes a set of distributed agents for
the ingestion of data from RAN and core, edge platform
telemetry and application-related metrics. The datasets
employed for the training of AI/ML models can also be stored
in an Open Dataspace, enabling their reutilization and
transparent usage.

Fig. 1. Key building blocks of the VERGE architecture.

The AI4Edge pillar forms the intelligence layer with the
AI/ML models designed for the automated management and
optimization of communication and computing resources and
for the support of advanced data-driven applications that provide
immersive services to the users. The AI4Edge, which is
facilitated by the cognitive framework functionalities and APIs,
specifies the model-specific methods for AI/ML training and
validation, AI/ML model monitoring and management and
AI/ML model inference of the trained models.

Finally, the SPT4AI pillar provides the methodologies and
tools for ensuring secure, private, safe and explainable
operations of the AI4Edge models, thereby increasing their
trustworthiness. The SPT4AI includes, among other
functionalities, the ones for trustworthy RL that are proposed in
this paper and discussed in next section.

III. FUNCTIONAL FRAMEWORK FOR TRUSTWORTHY RL-
BASED RESOURCE MANAGEMENT

A. Architectural framework

The architectural components of the proposed solution for
trustworthy RL-based resource management are illustrated in

Fig. 2 in the context of the VERGE architecture. An RL agent
applies a decision-making policy to support a certain
functionality as part of the AI4Edge portfolio of solutions (e.g.
handover, resource allocation, power control, etc.). The
decision-making policy is learnt by the RL agent during the
training stage and, after this stage is completed, the resulting
policy is applied in the so-called inference stage. Inference is
executed at a network function referred to in Fig. 2 in a generic
manner as the controller. It can be part of the orchestration,
management and control layer or can be embedded in certain
network nodes (e.g. base stations).

Fig. 2. Architectural components of the trustworthy RL solution.

To achieve a trustworthy operation of the RL agent, the
proposed framework incorporates specific SPT4AI
functionalities that configure and monitor the model training
and inference stages associated with the AI4Edge pillar.
Specifically, the proposed framework is sustained on the RL
training configuration function, the continuous operation
function, and on the use of a Network Digital Twin (NDT) of
the RAN that provides a safe training environment.

The degree of trustworthiness of the RL agent should be
assessed through a metric (or metrics) that quantifies to what
extent the decision making policy is technically robust and
makes accurate decisions during the inference. In general terms,
this metric is referred to in this paper as optimality level. Its
precise definition depends on the problem at hand but typically
it should be computed by contrasting network performance
measurements (e.g. throughput, energy consumption, etc.)
against desired targets. The optimality level should be
considered in the design and operation of the SPT4AI functions.

 1) RL training configuration function

The key role of the RL training configuration function is to
establish the proper strategy to efficiently conduct the training,
trading-off aspects such as the training duration, the
sustainability of the training process (connected e.g., to energy
consumption), and the optimality level of the learnt policy. To
that end, the RL training configuration should specify the
hyperparameters of the RL technique (e.g., Deep Neural
Network configuration, learning rate, etc.) and the parameters
of the training environment so that the RL agent faces a
diversity of situations during the training stage. These situations
constitute the basis for learning a robust policy so that the agent
knows how to react in each possible situation during the

inference stage on the real network. For example, for training
AI models addressing radio resource allocation in the RAN, the
training should be conducted under different space/time
variations of the offered load of different services and cells.

Multiple datasets with different characteristics can be
available to specify the situations that the RL agent will
experience during training. Datasets can be extracted from
different sources (e.g., RAN measurements, synthetic data, data
augmentation) and can be available in the Open Dataspace of
the VERGE architecture.

In order to tackle the RL training configuration function in
a systematic way, different features can be associated to each of
the available datasets. An example is the dataset coverage
metric [8], which measures the range of situations that are
captured by a dataset with respect to the total set of possible
situations. A high coverage metric means that the RL agent will
face a large variety of situations during the training.

Another feature that can be used to assess the quality of the
dataset is the so-called degree of coincidence, which measures
the ratio between the situations that are expected to be observed
during inference and those that are included in the dataset. A
low value of this metric indicates that the inference conditions
are not properly captured in a dataset.

2) Network Digital Twin

In order to deal with the intrinsic randomness of RL
algorithms during the training stage due to the exploration vs.
exploitation trade-off, the use of an NDT is considered. An
NDT provides a virtual and updated representation of the
network that allows analysing, diagnosing and emulating the
physical network in a zero-risk environment [9][10]. Therefore,
it brings the opportunity to train RL algorithms by testing the
outcomes of the different actions selected by the RL agents on
a virtualized, updated, and safe version of the real network.
Indeed, the use of an NDT for training RL algorithms can be
the key to their practical adoption, as it assures that the
outcomes of random exploration actions, which are needed to
progressively enhance the decision-making policy, are obtained
without having any impact on the real network.

Aligned with the terminology and concepts proposed by
IETF in [10], an NDT can be composed of three main modules
[11]. First, the service mapping models module includes the
models that characterize the network nodes and functionalities
(e.g. base stations, routers, propagation, mobility, etc.). The
data repository module collects and stores data from the
network used to get an accurate representation of the reality.
This collection can be done through the data access layer of the
VERGE architecture. The datasets selected for the training by
the RL training configuration will also be part of the NDT data
repository. Finally, the digital twin management module
controls the lifecycle of the NDT enabling the configuration of
the service mapping models, the deployment of NDT instances
with the selected models, the control of the execution and the
extraction of Key Performance Indicators (KPIs).

As seen in Fig. 2, the training of the RL model is conducted
at the training host that includes the RL agent. The environment
used for the training is an instance of the NDT defined with the
adequate service mapping models set in accordance with the
scenario where the RL agent should operate. The NDT instance
also uses the training dataset selected by the RL training
configuration function to produce the situations specified in this

dataset e.g., in terms of traffic generation. During the training,
the RL agent iteratively makes observations of the state of the
environment and chooses an action that results in the
modification of certain parameters at the NDT. Then, the NDT
simulates the behavior of the network with the new
configuration and provides as a result the reward value to be
used by the RL agent to progressively improve the policy. This
is iteratively repeated until reaching a termination condition
specified by the RL training configuration function (e.g. having
a variation of a loss function lower than a threshold). After the
training execution terminates, the resulting model is validated
to check its behavior under specific scenario conditions
emulated at the NDT. Then, if the validation is successful, the
training is considered completed and the resulting RL model
(i.e. the learnt decision making policy) can be stored in the DKB
and later on deployed in the controller for the inference stage.

3) Continuous operation function

When the decision-making policy is used at the inference
stage to make decisions over the real network the continuous
operation function at the SPT4AI monitors the behaviour of the
policy to detect degradations, analyse the root cause of such
degradations and, if needed, decide to perform a retraining or a
change of policy as a fall-back mechanism. The performance of
the policy during inference will be highly related with the
similarity between the conditions (e.g. load levels) included in
the training dataset and those experienced during inference.
Moreover, it will also depend on the generalization capability
of the policy to adapt to potentially new situations not captured
in the training dataset. The operation of the continuous
operation function can be based on monitoring different
aspects. On the one hand, it should assess the optimality level
of the policy based on the performance that results from the
selected actions. On the other hand, it should measure the
similarity between the conditions experienced during the
training and those experienced during inference, using e.g. the
degree of coincidence explained in Section III.A.1. In this way,
if performance degradations are observed in the network, the
continuous operation will be able to understand if these are due
to substantial differences between the training and the inference
conditions. In such a case, a retraining can be needed. As seen
in Fig. 2 the continuous operation function uses network
metrics and KPIs collected through the data access layer.

B. Workflows

To illustrate the interworking between the different
components of the solution, Fig. 3 shows the workflow of the
procedure for the initial deployment of an RL model. First, the
user of the VERGE platform, e.g., the Mobile Network
Operator (MNO), accesses the RL training configuration
function (step 1) to specify the hyperparameters and the training
dataset (step 2) that determines the situations to be experienced
by the RL agent. The corresponding training configuration will
be enforced at the training host through one of the APIs of the
cognitive framework in the VERGE architecture (step 3). At the
same time, the user will also configure the NDT (steps 4, 5) by
selecting the models to be used during the training in terms of
e.g., mobility, propagation, network topology. As a result, the
NDT instance that will be used in the training will be deployed
at the training host (step 6). It is worth mentioning that,
although the workflow of Fig. 3 assumes that the steps 1 to 6

are controlled by the user, an automated operation would also
be possible. In that case, the RL training configuration function
should include automated reasoning mechanisms to select the
training datasets and configure the NDT while the role of the
user would be limited to specifying high level policies (e.g.
optimality level target, maximum training duration, etc.).

After configuring and deploying the NDT, the RL training
process starts (step 7) and lasts until reaching a termination
condition. Afterwards, the resulting model is validated (step 8)
by testing it under a specific configuration of the NDT instance
used for evaluation purposes. If the validation is satisfactory,
the training will be considered completed and the resulting
trained model will be stored at the DKB (step 9), together with
the used training datasets and the training data (i.e., the
hyperparameters, visited states, actions and rewards during the
training). At this point, the user will be able to request the
deployment of the RL model stored at the DKB on the
controller through the corresponding API of the cognitive
framework (steps 10, 11). Finally, the deployed RL model will
start to operate in the inference stage (step 12).

Fig. 3. Workflow of the RL model initial deployment.

The continuous operation function follows the workflow
shown in Fig. 4, which illustrates the case that a retraining is
required and this retraining can be handled automatically
without user intervention. During inference stage (step 1), the
controller provides monitoring data to the continuous operation
function (step 2). This data includes performance KPIs together
with the states, actions and measured rewards. At the same time,
the continuous operation function also gets from the DKB the
stored training data of the model (e.g., visited states during
training, actions, rewards, etc.) (step 3). In this way, it will be
able to monitor the performance of the RL model during
inference and compare it against the one that was obtained
during the training (step 4). This will allow detecting
discrepancies between the behaviour of the model during the
training and the inference stages, e.g., due to changes in the
network, due to the NDT instance not being properly
configured, due to different traffic conditions, etc. In case that
significant discrepancies are detected, the continuous operation

function will issue a retraining request to the RL training
configuration function (step 5). Consequently, the training
configuration function will request monitoring data from the
controller to better characterise the real network operation
(steps 6, 7). This new information will be used to better specify
the training conditions (steps 8, 9) and to better configure the
NDT (steps 10, 11), so that a new NDT instance for training is
generated (step 12). Then, the model will be retrained and
validated at the training host (steps 13, 14) and a new version
of the model will be stored at the DKB (step 15) and deployed
at the controller (steps 16, 17) for continuing with the inference
(step 18). Although the workflow presented here assumes that
the retraining is automatically handled, other possibilities could
exist in which the user of the platform could specify the training
conditions and/or the NDT based on the monitoring data.

Fig. 4. Workflow of the continuous operation in case of retraining.

IV. APPLICABILITY EXAMPLE

This section presents an applicability example of the
proposed framework to gain insight in the role of the defined
metrics and how they can drive the definition of strategies for
the RL training configuration and the continuous operation
functions. The considered RL strategy is the Deep Q Network
(DQN) Multi Agent Reinforcement Learning (MARL)
algorithm from [12] that dynamically allocates the capacity of
a 5G New Radio (NR) RAN to a set of RAN slices. It intends
to fulfil the Service Level Agreement (SLA) with each slice,
defined in terms of the aggregate bit rate to be provided across
the involved cells, and to maximize the utilization of the
available Physical Resource Blocks (PRBs) in each cell. Thus,
DQN-MARL deals with the offered load fluctuations of RAN
slices to make assignments that fulfil at least the SLA of the
slices when this is demanded and can absorb excess loads above
the SLA if there is spare capacity.

The operation of DQN-MARL is based on an RL agent per
slice that, based on a state that captures the PRB occupation, the
cell capacities and the SLA requirements, decides an action that
consists in increasing, maintaining or decreasing the fraction of
assigned PRBs to the slice in each cell. In turn, the reward
captures both the SLA satisfaction and the capacity
overprovisioning. The decision-making policy to select the

actions is a Deep Neural Network (DNN) whose weights are
adjusted during the training (see [12] for details).

The considered scenario assumes a 5G NR cell with
capacity ∼120 Mb/s and two RAN slices. Without loss of
generality, the SLA of slice 1 is given by an aggregate bit rate
corresponding to 60% of the capacity, while the SLA of slice 2
is the 40%. The DQN-MARL strategy makes decisions in
periods of 3 min and modifies the assigned fraction of PRBs per
slice in steps of 0.03. The DNN has an input layer with 7
neurons, a single layer with 100 neurons, and an output layer
with 3 neurons. The rest of DQN parameters are those of [12].

The optimality level in this example is defined as the ratio
between the reward obtained with the learnt policy and the
optimum reward, which is obtained from an optimum ideal
policy derived after analyzing all the possible PRB allocations
to the two slices. The optimality level is computed for each pair
of offered loads of the two slices observed during the inference
stage as well as on average terms.

A. RL training configuration: impact of dataset selection

This section intends to assess the importance of the dataset
selection in the RL training configuration function in terms of
the resulting optimality level. To that end, 16 different policies
of the DQN-MARL algorithm have been obtained, each one
resulting from an execution of the training with a different
training dataset. Each dataset is defined by a dynamic variation
of the offered load in the two slices for a duration of 2E6
decision making periods and has a different dataset coverage
metric given by the percentage of combinations of offered loads
of the two slices included in the dataset with respect to the total
number of possibilities.

For each policy the inference stage has been executed by
applying the policy with a given pattern of the offered load
variation per slice covering a total of 38400 decision making
periods (i.e. 80 days). Fig. 5 illustrates the optimality level
obtained with two policies, one learned with a training dataset
of coverage 92% (Fig. 5a) and another with a much smaller
coverage of 16% (Fig. 5b). It is observed that the policy trained
with the dataset of large coverage exhibits a high optimality
level close to 1 for most of the observed offered loads during
inference. In contrast, the policy trained with the dataset of less
coverage only has high optimality level for medium/average
load levels, while for reduced loads poorer values between 0.3
and 0.6 are observed, reflecting that the policy is not making
optimum decisions.

(a) (b)

Fig. 5. Optimality level for training datasets of coverage (a) 92%, (b) 16%.

Fig. 6 quantifies the relationship between the dataset
coverage and the optimality level. To that end, the 16 policies
have been grouped in four ranges according to their dataset
coverage. Then, Fig. 6 plots, on the one hand, the average

optimality level for the policies in each range and, on the other
hand, the percentage of offered loads with optimality level
higher than 90%, computed also as an average for all the
policies in a range. The results reflect that, in this study, datasets
with coverage lower than 25% only reach average optimality
levels around 85% and only in 50% of the loads the optimality
level is higher than 90%. In contrast, this significantly improves
when the coverage is higher than 25%. In this case, the average
optimality level is around 93-94% and in approximately 80% of
the loads it is higher than 90%, thus reflecting a much more
trustworthy RL policy. So this means that a proper design of the
RL training configuration function should carefully consider
the dataset coverage as it will have a significant influence on
the model optimality after training.

Fig. 6. Relationship between optimality level and training dataset coverage.

B. Continuous operation: impact of the degree of coincidence

Results in this section illustrate how the degree of
coincidence metric can be used to support the continuous
operation function. Here this metric is computed as the fraction
of offered load combinations of the two slices observed during
the inference that were also included in the training dataset. Fig.
7 depicts the optimality level as a function of the degree of
coincidence obtained when the inference is executed with three
policies trained with datasets of different coverage. Each point
in the figure corresponds to the average of one day of the
inference stage. It is observed that the days with the poorer
optimality (e.g. below 70%) are those in which the degree of
coincidence is small, i.e. lower than ∼10%, and they occur
mostly with the policy trained with the dataset 3 of low
coverage of 16%. This reflects that this policy is not performing
adequately during these days. Thus, the continuous monitoring
function would detect on the one hand a degradation of the
optimality level and on the other hand that this degradation is
associated with a low degree of coincidence. This would be an
indication that a retraining with a better dataset would be
appropriate.

V. CONCLUSIONS

The availability of trustworthy AI solutions is envisaged as
a key aspect for the successful introduction of AI in future
cellular systems. In this context, this paper has focused on the
mechanisms to achieve a trustworthy operation of RL-based
solutions, as they can be used for different decision-making
problems in B5G. Specifically, the paper has proposed an
architectural framework based on an RL training configuration
function to specify the training conditions, on the use of a
Network Digital Twin for safely conducting the training and on
a continuous operation function to monitor the trained policies

during inference. The interworking between these components
has been elaborated by means of different workflows that reflect
the initial model deployment and the continuous operation. The
paper has also presented different metrics to support the
operation of these functions, such as the dataset coverage, the
degree of coincidence or the optimality level. These have been
illustrated using a DQN-MARL algorithm for RAN slicing.

Fig. 7. Optimality level and degree of coincidence for different trained policies.

ACKNOWLEDGEMENT

This work is part of VERGE project, which has received
funding from the Smart Networks and Services Joint
Undertaking (SNS JU) under the European Union’s Horizon
Europe research and innovation programme under Grant
Agreement No 101096034. Views and opinions expressed are
however those of the authors only and do not necessarily reflect
those of the European Union. Neither the European Union nor
the granting authority can be held responsible for them. The
work of Irene Vilà has been funded by a Margarita Salas Grant
(ref. 2022UPC-MSC- 94079).

REFERENCES

[1] H. Liu, et al. "Trustworthy AI: A Computational Perspective",
CoRRabs/2107.06641 2021.

[2] High-Level Expert Group on Artificial Intelligence, "Ethics Guidelines
for Trustworthy AI", European Commission, April, 2019.

[3] L. Floridi, "Establishing the rules for building trustworthy AI", Nature
Machine Intelligence, May, 2019.

[4] 5G PPP Architecture WG, "The 6G Architecture Landscape. European
perspective. Version 1.0", White paper, December, 2022.

[5] E. Kartsakli, et al. "An Evolutionary Edge Computing Architecture for
Beyond 5G Era", IEEE Int. Workshop on Computer Aided Modeling and
Design of Communication Links and Networks (CAMAD), Nov. 2023.

[6] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, 2nd
edition, The MIT Press, 2018.

[7] J. Wang, et.al, “Thirty Years of Machine Learning: The Road to Pareto-
Optimal Wireless Networks”, IEEE Comms. Surveys & Tutorials, Vol.
22, No. 3, 3rd Quarter, 2020.

[8] I. Vilà, et al. "Impact Analysis of Training in Deep Reinforcement
Learning-based Radio Access Network Slicing", IEEE CCNC, 2022.

[9] H. X. Nguyen, et al., "Digital Twin for 5G and Beyond", IEEE
Communications Magazine, Volume 59, no. 2, pp. 10-15, 2021.

[10] C. Zhou et al. "Digital Twin Network: Concepts and Reference
Architecture", Internet Engineering Task Force, Internet Draft draft-irtf-
nmrg-network-digital-twin-arch-03, April, 2023.

[11] I. Vilà, O. Sallent, J. Pérez-Romero, "On the Design of a Network Digital
Twin for the Radio Access Network in 5G and Beyond", Sensors, MDPI,
Vol. 23, 1197, Jan. 2023.

[12] I. Vilà, J. Pérez-Romero, O. Sallent, A. Umbert, “A Multi-Agent
Reinforcement Learning Approach for Capacity Sharing in Multi-tenant
Scenarios”, IEEE Trans. on Veh. Tech., July 2021.

40%

50%

60%

70%

80%

90%

100%

[0-25]% [25-50]% [50-75]% [75-100]%

Dataset coverage (%)

Optimality level Perc. of loads with optimality>90%

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

O
p

ti
m

a
li

ty
 l

e
ve

l (
%

)

Degree of Coincidence (%)

Dataset 1 (Coverage 23%)

Dataset 2 (Coverage 92%)

Dataset 3 (Coverage 16%)

