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Abstract— It is envisaged that future Beyond 5G (B5G) 
systems will make extensive use of Artificial Intelligence (AI) 
capabilities to achieve an efficient automated management and 
optimization of communication and computing resources and to 
support advanced data-driven applications that provide the users 
with highly immersive services. Ensuring the trustworthiness of 
the AI solutions is key for their successful introduction in B5G, as 
this will guarantee their robustness towards errors and potential 
attack threats, the privacy of the used data and trained models and 
the explainability of AI-based decisions, ensuring that they do not 
have unsafe consequences. In this context, this paper focuses on 
the trustworthiness of Reinforcement Learning (RL) solutions, as 
their inherent trial-and-error behavior during training makes 
them particularly challenging from the robustness perspective. 
Then, the paper proposes a framework for managing the lifecycle 
of an RL-based resource management solution for both training 
and inference stages to ensure its trustworthy operation. The 
framework relies on an RL training configuration function to 
specify the training conditions, a Network Digital Twin (NDT) to 
perform the training on a safe environment and a continuous 
operation function to monitor the behaviour of the trained policy 
during inference. The framework is illustrated with an 
applicability use case of capacity sharing for network slicing. 
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I. INTRODUCTION

Artificial Intelligence (AI) development aims to benefit 
society as a whole and assist humans by resolving challenging 
problems. However, AI might unintentionally harm humans, 
for example by making decisions that lead to adverse effects on 
a system that supports critical services (e.g. remote surgery, 
autonomous driving, etc.). As a result, the research community 
has recently given significant attention to trustworthy AI to 
reduce any unfavorable impacts that AI may have on people [1]. 
Trustworthiness becomes a prerequisite to develop, deploy and 
use AI systems, because without AI systems being 
demonstrably worthy of trust, unwanted consequences may 
arise, and their uptake might be hindered. The High-Level 
Expert Group on AI (AI HLEG) set up by the European 
Commission elaborated in [2] the ethics guidelines for 
trustworthy AI and established the existence of three 
components to be met throughout the system's entire life cycle. 
Specifically, AI should be lawful, complying with all applicable 
laws and regulations, ethical, ensuring adherence to ethical 
principles and values, and robust to prevent unintentional harm. 
The AI HLEG group also provided guidance on how to realize 
trustworthy AI by listing seven key requirements [2][3], 
including among them technical robustness and safety.  

A clear application area of AI is in the context of future 
Beyond 5G (B5G) and 6G cellular systems, as it is commonly 

agreed that, thanks to the enormous development in 
computational resources, edge- and cloud-computing, as well 
as the ever-increasing amount of available network and 
application data, AI will permeate almost all the layers of these 
systems. The vision is that B5G/6G will leverage AI for 
optimising the air interface and to transform the network to a 
powerful distributed AI platform. Hence, the AI as a Service 
(AIaaS) concept, which refers to the provision of AI and 
Machine Learning (ML) capabilities as a cloud-based service 
that can be consumed by the decision-making components of 
the network (e.g., orchestrators, controllers, infrastructure 
managers, etc.), will be a key B5G/6G enabler [4].  

To facilitate the deployment of such AI-enabled services, 
architectures should be able to manage the complete lifecycle 
of the AI/ML models in a transparent and automated way and 
should encompass the mechanisms that ensure the 
trustworthiness of the solutions. In this direction, the VERGE 
project (https://www.verge-project.eu/) introduced in [5] an 
architecture for the evolution of edge computing towards 
B5G/6G. The proposed architecture aims to enable the seamless 
execution of cloud-native services, including disaggregated 
Radio Access Network (RAN) and core network functions, 
distributed AI, and big data workflows, while leveraging data-
driven AI/ML-based solutions for edge and network 
optimization. One of the main pillars of this architecture is the 
so-called “Security, Privacy and Trustworthiness for AI” 
(SPT4AI), which encompasses a set of methods to ensure the 
trustworthiness in the VERGE AI solutions.  

This paper focuses on the development of trustworthy 
reinforcement learning (RL) solutions and how they can be 
supported and facilitated in the VERGE architecture. RL is a 
subset of ML that consists in learning a behavioral model 
through the dynamic interaction with an environment [6]. It 
provides a mathematical formalism for learning-based control 
that allows acquiring near-optimal behavioral skills and, for this 
reason, RL methods have applicability in many decision-
making problems and have been proposed for many 
functionalities in wireless networks [7], particularly in those 
related with resource management, as RL allows dealing with 
the uncertainties of the radio environment.  

In RL, an agent executes actions depending on the observed 
state in the environment and then obtains a reward signal as a 
result that quantifies how good or bad was the outcome of the 
selected action. This process is iteratively repeated during the 
training stage so that the decision-making policy at the RL agent 
can be progressively enhanced. To learn a robust RL decision-
making policy, the selection of the actions during the training 
needs to balance the exploitation of the knowledge that has been 
acquired from previous decisions and the exploration of new 
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actions that are randomly selected in order to discover if they 
can improve the current policy. This exploration, which is 
essentially a trial-and-error approach, can be particularly 
critical depending on the considered scenario and decision-
making problem (e.g. in case of safety-critical services such as 
healthcare or autonomous driving), because it can lead to 
considerable degradations in the performance of the related 
services, thus affecting the trustworthiness of the RL algorithm. 

In this context, the main contribution of this paper is the 
proposal of a framework for a trustworthy lifecycle 
management of RL-based resource management strategies. 
Among the dimensions of trustworthiness, the focus is on the 
technical robustness, targeting that the RL decision-making 
policies are reliable and make accurate decisions that do not 
lead to adverse effects on the system. To that end, the proposed 
framework covers both the training and inference stages and is 
aligned with the architecture of the VERGE project. Workflows 
to illustrate the interworking between the involved components 
are also included. 

 The paper is organized as follows. Section II presents a 
brief summary of the VERGE architecture. Section III describes 
the proposed framework for trustworthy RL-based resource 
management and Section IV presents some illustrative results 
on an applicability example of RL for capacity sharing. Finally, 
conclusions are given in Section V.  

II. MAIN HIGHLIGHTS OF THE VERGE ARCHITECTURE 

The architecture for AI-powered edge computing evolution 
proposed by the VERGE project is built around three main 
pillars. The first one is the “Edge for AI” (Edge4AI), a flexible, 
modular and converged edge platform design that unifies the 
lifecycle management and closed-loop automation for cloud-
native applications and network services across a unified edge-
cloud compute continuum. The second pillar is the “AI for 
Edge” (AI4Edge), a portfolio of AI-based solutions to manage 
and orchestrate the computing and network resources. The third 
pillar is the SPT4AI, a suite of methods and tools to ensure the 
privacy of sensitive data and AI models, the security of the AI-
based models against adversarial attacks, their safe training and 
execution, and their explainability for different stakeholders. 

The key building blocks of the VERGE architecture are 
illustrated in Fig. 1. A highly heterogeneous infrastructure is 
depicted at the bottom, consisting of diverse edge computing 
resources (from the Far Edge to the Near Edge and the Cloud) 
embedded in the end-to-end (E2E) B5G network. The 
architecture intends to provide services to users of multiple types 
associated with different use cases (e.g. augmented/extended 
reality, smart cities, automotive, etc.). Users are connected 
through heterogeneous RAN deployments and leverage the 
availability of Multi-access Edge Computing (MEC) services. 
The provision of services across this infrastructure is sustained 
on the three VERGE pillars shown in the upper part of Fig. 1 and 
summarized in the following paragraphs (see [5] for details). 

The Edge4AI forms an AI-powered platform to facilitate the 
deployment and execution of cloud-native services and network 
functions from the Application layer over the heterogeneous 
pool of connected edge and cloud resources. The Edge4AI 
virtualization layer provides a unified view of the 
communication and computational resources, forming an edge-
cloud compute continuum tightly integrated with the B5G 

communication fabric. To flexibly deploy cloud-native 
functions on the infrastructure, the Edge4AI includes the 
Orchestration, Management and Control layer. It handles the 
orchestration of services and infrastructure and the control of the 
RAN elements. For the latter, a set of intelligent RAN 
controllers at single site and multi-site level is included. The 
lifecycle management of the AI/ML solutions is enabled by a set 
of Application Programming Interfaces (APIs), supporting 
services and toolkits under the scope of the so-called Cognitive 
Framework. Moreover, the Distributed Knowledge Base (DKB) 
contains a registry of the available AI/ML models, used datasets 
and associated metadata. Finally, the Data Access layer is in 
charge of gathering relevant data from the observability and 
telemetry stacks to monitor the underlying infrastructure and 
services. To that end, it includes a set of distributed agents for 
the ingestion of data from RAN and core, edge platform 
telemetry and application-related metrics. The datasets 
employed for the training of AI/ML models can also be stored 
in an Open Dataspace, enabling their reutilization and 
transparent usage.  

 
Fig. 1. Key building blocks of the VERGE architecture. 

The AI4Edge pillar forms the intelligence layer with the 
AI/ML models designed for the automated management and 
optimization of communication and computing resources and 
for the support of advanced data-driven applications that provide 
immersive services to the users. The AI4Edge, which is 
facilitated by the cognitive framework functionalities and APIs, 
specifies the model-specific methods for AI/ML training and 
validation, AI/ML model monitoring and management and 
AI/ML model inference of the trained models.  

Finally, the SPT4AI pillar provides the methodologies and 
tools for ensuring secure, private, safe and explainable 
operations of the AI4Edge models, thereby increasing their 
trustworthiness. The SPT4AI includes, among other 
functionalities, the ones for trustworthy RL that are proposed in 
this paper and discussed in next section.  

III. FUNCTIONAL FRAMEWORK FOR TRUSTWORTHY RL-
BASED RESOURCE MANAGEMENT  

A. Architectural framework 

The architectural components of the proposed solution for 
trustworthy RL-based resource management are illustrated in 



Fig. 2 in the context of the VERGE architecture. An RL agent 
applies a decision-making policy to support a certain 
functionality as part of the AI4Edge portfolio of solutions (e.g. 
handover, resource allocation, power control, etc.). The 
decision-making policy is learnt by the RL agent during the 
training stage and, after this stage is completed, the resulting 
policy is applied in the so-called inference stage. Inference is 
executed at a network function referred to in Fig. 2 in a generic 
manner as the controller. It can be part of the orchestration, 
management and control layer or can be embedded in certain 
network nodes (e.g. base stations).  

 

Fig. 2. Architectural components of the trustworthy RL solution. 

To achieve a trustworthy operation of the RL agent, the 
proposed framework incorporates specific SPT4AI 
functionalities that configure and monitor the model training 
and inference stages associated with the AI4Edge pillar. 
Specifically, the proposed framework is sustained on the RL 
training configuration function, the continuous operation 
function, and on the use of a Network Digital Twin (NDT) of 
the RAN that provides a safe training environment. 

The degree of trustworthiness of the RL agent should be 
assessed through a metric (or metrics) that quantifies to what 
extent the decision making policy is technically robust and 
makes accurate decisions during the inference. In general terms, 
this metric is referred to in this paper as optimality level. Its 
precise definition depends on the problem at hand but typically 
it should be computed by contrasting network performance 
measurements (e.g. throughput, energy consumption, etc.) 
against desired targets. The optimality level should be 
considered in the design and operation of the SPT4AI functions.  

 1) RL training configuration function 

The key role of the RL training configuration function is to 
establish the proper strategy to efficiently conduct the training, 
trading-off aspects such as the training duration, the 
sustainability of the training process (connected e.g., to energy 
consumption), and the optimality level of the learnt policy. To 
that end, the RL training configuration should specify the 
hyperparameters of the RL technique (e.g., Deep Neural 
Network configuration, learning rate, etc.) and the parameters 
of the training environment so that the RL agent faces a 
diversity of situations during the training stage. These situations 
constitute the basis for learning a robust policy so that the agent 
knows how to react in each possible situation during the 

inference stage on the real network. For example, for training 
AI models addressing radio resource allocation in the RAN, the 
training should be conducted under different space/time 
variations of the offered load of different services and cells.   

Multiple datasets with different characteristics can be 
available to specify the situations that the RL agent will 
experience during training. Datasets can be extracted from 
different sources (e.g., RAN measurements, synthetic data, data 
augmentation) and can be available in the Open Dataspace of 
the VERGE architecture.  

In order to tackle the RL training configuration function in 
a systematic way, different features can be associated to each of 
the available datasets. An example is the dataset coverage 
metric [8], which measures the range of situations that are 
captured by a dataset with respect to the total set of possible 
situations. A high coverage metric means that the RL agent will 
face a large variety of situations during the training.  

Another feature that can be used to assess the quality of the 
dataset is the so-called degree of coincidence, which measures 
the ratio between the situations that are expected to be observed 
during inference and those that are included in the dataset. A 
low value of this metric indicates that the inference conditions 
are not properly captured in a dataset. 

2) Network Digital Twin 

In order to deal with the intrinsic randomness of RL 
algorithms during the training stage due to the exploration vs. 
exploitation trade-off, the use of an NDT is considered. An 
NDT provides a virtual and updated representation of the 
network that allows analysing, diagnosing and emulating the 
physical network in a zero-risk environment [9][10]. Therefore, 
it brings the opportunity to train RL algorithms by testing the 
outcomes of the different actions selected by the RL agents on 
a virtualized, updated, and safe version of the real network. 
Indeed, the use of an NDT for training RL algorithms can be 
the key to their practical adoption, as it assures that the 
outcomes of random exploration actions, which are needed to 
progressively enhance the decision-making policy, are obtained 
without having any impact on the real network.  

Aligned with the terminology and concepts proposed by 
IETF in [10], an NDT can be composed of three main modules 
[11]. First, the service mapping models module includes the 
models that characterize the network nodes and functionalities 
(e.g. base stations, routers, propagation, mobility, etc.). The 
data repository module collects and stores data from the 
network used to get an accurate representation of the reality. 
This collection can be done through the data access layer of the 
VERGE architecture. The datasets selected for the training by 
the RL training configuration will also be part of the NDT data 
repository. Finally, the digital twin management module 
controls the lifecycle of the NDT enabling the configuration of 
the service mapping models, the deployment of NDT instances 
with the selected models, the control of the execution and the 
extraction of Key Performance Indicators (KPIs).  

As seen in Fig. 2, the training of the RL model is conducted 
at the training host that includes the RL agent. The environment 
used for the training is an instance of the NDT defined with the 
adequate service mapping models set in accordance with the 
scenario where the RL agent should operate. The NDT instance 
also uses the training dataset selected by the RL training 
configuration function to produce the situations specified in this 



dataset e.g., in terms of traffic generation. During the training, 
the RL agent iteratively makes observations of the state of the 
environment and chooses an action that results in the 
modification of certain parameters at the NDT. Then, the NDT 
simulates the behavior of the network with the new 
configuration and provides as a result the reward value to be 
used by the RL agent to progressively improve the policy. This 
is iteratively repeated until reaching a termination condition 
specified by the RL training configuration function (e.g. having 
a variation of a loss function lower than a threshold). After the 
training execution terminates, the resulting model is validated 
to check its behavior under specific scenario conditions 
emulated at the NDT. Then, if the validation is successful, the 
training is considered completed and the resulting RL model 
(i.e. the learnt decision making policy) can be stored in the DKB 
and later on deployed in the controller for the inference stage.  

3) Continuous operation function 

When the decision-making policy is used at the inference 
stage to make decisions over the real network the continuous 
operation function at the SPT4AI monitors the behaviour of the 
policy to detect degradations, analyse the root cause of such 
degradations and, if needed, decide to perform a retraining or a 
change of policy as a fall-back mechanism. The performance of 
the policy during inference will be highly related with the 
similarity between the conditions (e.g. load levels) included in 
the training dataset and those experienced during inference. 
Moreover, it will also depend on the generalization capability 
of the policy to adapt to potentially new situations not captured 
in the training dataset. The operation of the continuous 
operation function can be based on monitoring different 
aspects. On the one hand, it should assess the optimality level 
of the policy based on the performance that results from the 
selected actions. On the other hand, it should measure the 
similarity between the conditions experienced during the 
training and those experienced during inference, using e.g. the 
degree of coincidence explained in Section III.A.1. In this way, 
if performance degradations are observed in the network, the 
continuous operation will be able to understand if these are due 
to substantial differences between the training and the inference 
conditions. In such a case, a retraining can be needed. As seen 
in Fig. 2 the continuous operation function uses network 
metrics and KPIs collected through the data access layer. 

B. Workflows 

To illustrate the interworking between the different 
components of the solution, Fig. 3 shows the workflow of the 
procedure for the initial deployment of an RL model. First, the 
user of the VERGE platform, e.g., the Mobile Network 
Operator (MNO), accesses the RL training configuration 
function (step 1) to specify the hyperparameters and the training 
dataset (step 2) that determines the situations to be experienced 
by the RL agent. The corresponding training configuration will 
be enforced at the training host through one of the APIs of the 
cognitive framework in the VERGE architecture (step 3). At the 
same time, the user will also configure the NDT (steps 4, 5) by 
selecting the models to be used during the training in terms of 
e.g., mobility, propagation, network topology. As a result, the 
NDT instance that will be used in the training will be deployed 
at the training host (step 6). It is worth mentioning that, 
although the workflow of Fig. 3 assumes that the steps 1 to 6 

are controlled by the user, an automated operation would also 
be possible. In that case, the RL training configuration function 
should include automated reasoning mechanisms to select the 
training datasets and configure the NDT while the role of the 
user would be limited to specifying high level policies (e.g. 
optimality level target, maximum training duration, etc.).  

After configuring and deploying the NDT, the RL training 
process starts (step 7) and lasts until reaching a termination 
condition. Afterwards, the resulting model is validated (step 8) 
by testing it under a specific configuration of the NDT instance 
used for evaluation purposes. If the validation is satisfactory, 
the training will be considered completed and the resulting 
trained model will be stored at the DKB (step 9), together with 
the used training datasets and the training data (i.e., the 
hyperparameters, visited states, actions and rewards during the 
training). At this point, the user will be able to request the 
deployment of the RL model stored at the DKB on the 
controller through the corresponding API of the cognitive 
framework (steps 10, 11). Finally, the deployed RL model will 
start to operate in the inference stage (step 12). 

 
Fig. 3. Workflow of the RL model initial deployment. 

The continuous operation function follows the workflow 
shown in Fig. 4, which illustrates the case that a retraining is 
required and this retraining can be handled automatically 
without user intervention. During inference stage (step 1), the 
controller provides monitoring data to the continuous operation 
function (step 2). This data includes performance KPIs together 
with the states, actions and measured rewards. At the same time, 
the continuous operation function also gets from the DKB the 
stored training data of the model (e.g., visited states during 
training, actions, rewards, etc.) (step 3). In this way, it will be 
able to monitor the performance of the RL model during 
inference and compare it against the one that was obtained 
during the training (step 4). This will allow detecting 
discrepancies between the behaviour of the model during the 
training and the inference stages, e.g., due to changes in the 
network, due to the NDT instance not being properly 
configured, due to different traffic conditions, etc. In case that 
significant discrepancies are detected, the continuous operation 



function will issue a retraining request to the RL training 
configuration function (step 5). Consequently, the training 
configuration function will request monitoring data from the 
controller to better characterise the real network operation 
(steps 6, 7). This new information will be used to better specify 
the training conditions (steps 8, 9) and to better configure the 
NDT (steps 10, 11), so that a new NDT instance for training is 
generated (step 12). Then, the model will be retrained and 
validated at the training host (steps 13, 14) and a new version 
of the model will be stored at the DKB (step 15) and deployed 
at the controller (steps 16, 17) for continuing with the inference 
(step 18). Although the workflow presented here assumes that 
the retraining is automatically handled, other possibilities could 
exist in which the user of the platform could specify the training 
conditions and/or the NDT based on the monitoring data. 

 
Fig. 4. Workflow of the continuous operation in case of retraining. 

IV. APPLICABILITY EXAMPLE  

This section presents an applicability example of the 
proposed framework to gain insight in the role of the defined 
metrics and how they can drive the definition of strategies for 
the RL training configuration and the continuous operation 
functions. The considered RL strategy is the Deep Q Network 
(DQN) Multi Agent Reinforcement Learning (MARL) 
algorithm from [12] that dynamically allocates the capacity of 
a 5G New Radio (NR) RAN to a set of RAN slices. It intends 
to fulfil the Service Level Agreement (SLA) with each slice, 
defined in terms of the aggregate bit rate to be provided across 
the involved cells, and to maximize the utilization of the 
available Physical Resource Blocks (PRBs) in each cell. Thus, 
DQN-MARL deals with the offered load fluctuations of RAN 
slices to make assignments that fulfil at least the SLA of the 
slices when this is demanded and can absorb excess loads above 
the SLA if there is spare capacity.   

The operation of DQN-MARL is based on an RL agent per 
slice that, based on a state that captures the PRB occupation, the 
cell capacities and the SLA requirements, decides an action that 
consists in increasing, maintaining or decreasing the fraction of 
assigned PRBs to the slice in each cell. In turn, the reward 
captures both the SLA satisfaction and the capacity 
overprovisioning. The decision-making policy to select the 

actions is a Deep Neural Network (DNN) whose weights are 
adjusted during the training (see [12] for details).  

The considered scenario assumes a 5G NR cell with 
capacity ∼120 Mb/s and two RAN slices. Without loss of 
generality, the SLA of slice 1 is given by an aggregate bit rate 
corresponding to 60% of the capacity, while the SLA of slice 2 
is the 40%. The DQN-MARL strategy makes decisions in 
periods of 3 min and modifies the assigned fraction of PRBs per 
slice in steps of 0.03. The DNN has an input layer with 7 
neurons, a single layer with 100 neurons, and an output layer 
with 3 neurons. The rest of DQN parameters are those of [12]. 

The optimality level in this example is defined as the ratio 
between the reward obtained with the learnt policy and the 
optimum reward, which is obtained from an optimum ideal 
policy derived after analyzing all the possible PRB allocations 
to the two slices. The optimality level is computed for each pair 
of offered loads of the two slices observed during the inference 
stage as well as on average terms.  

A. RL training configuration: impact of dataset selection 

This section intends to assess the importance of the dataset 
selection in the RL training configuration function in terms of 
the resulting optimality level. To that end, 16 different policies 
of the DQN-MARL algorithm have been obtained, each one 
resulting from an execution of the training with a different 
training dataset. Each dataset is defined by a dynamic variation 
of the offered load in the two slices for a duration of 2E6 
decision making periods and has a different dataset coverage 
metric given by the percentage of combinations of offered loads 
of the two slices included in the dataset with respect to the total 
number of possibilities. 

For each policy the inference stage has been executed by 
applying the policy with a given pattern of the offered load 
variation per slice covering a total of 38400 decision making 
periods (i.e. 80 days). Fig. 5 illustrates the optimality level 
obtained with two policies, one learned with a training dataset 
of coverage 92% (Fig. 5a) and another with a much smaller 
coverage of 16% (Fig. 5b). It is observed that the policy trained 
with the dataset of large coverage exhibits a high optimality 
level close to 1 for most of the observed offered loads during 
inference. In contrast, the policy trained with the dataset of less 
coverage only has high optimality level for medium/average 
load levels, while for reduced loads poorer values between 0.3 
and 0.6 are observed, reflecting that the policy is not making 
optimum decisions.  

  
(a)         (b) 

Fig. 5. Optimality level for training datasets of coverage (a) 92%, (b) 16%. 

Fig. 6 quantifies the relationship between the dataset 
coverage and the optimality level. To that end, the 16 policies 
have been grouped in four ranges according to their dataset 
coverage. Then, Fig. 6 plots, on the one hand, the average 



optimality level for the policies in each range and, on the other 
hand, the percentage of offered loads with optimality level 
higher than 90%, computed also as an average for all the 
policies in a range. The results reflect that, in this study, datasets 
with coverage lower than 25% only reach average optimality 
levels around 85% and only in 50% of the loads the optimality 
level is higher than 90%. In contrast, this significantly improves 
when the coverage is higher than 25%. In this case, the average 
optimality level is around 93-94% and in approximately 80% of 
the loads it is higher than 90%, thus reflecting a much more 
trustworthy RL policy. So this means that a proper design of the 
RL training configuration function should carefully consider 
the dataset coverage as it will have a significant influence on 
the model optimality after training.  

 
Fig. 6. Relationship between optimality level and training dataset coverage. 

B. Continuous operation: impact of the degree of coincidence 

Results in this section illustrate how the degree of 
coincidence metric can be used to support the continuous 
operation function. Here this metric is computed as the fraction 
of offered load combinations of the two slices observed during 
the inference that were also included in the training dataset. Fig. 
7 depicts the optimality level as a function of the degree of 
coincidence obtained when the inference is executed with three 
policies trained with datasets of different coverage. Each point 
in the figure corresponds to the average of one day of the 
inference stage. It is observed that the days with the poorer 
optimality (e.g. below 70%) are those in which the degree of 
coincidence is small, i.e. lower than ∼10%, and they occur 
mostly with the policy trained with the dataset 3 of low 
coverage of 16%. This reflects that this policy is not performing 
adequately during these days. Thus, the continuous monitoring 
function would detect on the one hand a degradation of the 
optimality level and on the other hand that this degradation is 
associated with a low degree of coincidence. This would be an 
indication that a retraining with a better dataset would be 
appropriate. 

V. CONCLUSIONS 

The availability of trustworthy AI solutions is envisaged as 
a key aspect for the successful introduction of AI in future 
cellular systems. In this context, this paper has focused on the 
mechanisms to achieve a trustworthy operation of RL-based 
solutions, as they can be used for different decision-making 
problems in B5G. Specifically, the paper has proposed an 
architectural framework based on an RL training configuration 
function to specify the training conditions, on the use of a 
Network Digital Twin for safely conducting the training and on 
a continuous operation function to monitor the trained policies 

during inference. The interworking between these components 
has been elaborated by means of different workflows that reflect 
the initial model deployment and the continuous operation. The 
paper has also presented different metrics to support the 
operation of these functions, such as the dataset coverage, the 
degree of coincidence or the optimality level. These have been 
illustrated using a DQN-MARL algorithm for RAN slicing.  

 
Fig. 7. Optimality level and degree of coincidence for different trained policies. 
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