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Abstract. The subject of secondary spectrum usage has been a hot research 
topic for some time now. Secondary users should be able to detect available 
primary frequency bands and use these spectrum opportunities without causing 
any harmful interference to primary users. The aim of this paper is to propose a 
new methodology, based on image processing techniques, which combines a 
number of sensed samples at different random geographical positions collected 
by secondary sensors, in order to build a map with the positions and coverage 
areas of the different primary transmitters. The results can be used to discover 
frequencies that can be used by a secondary market without causing 
interference to primary receivers and without any type of cooperation between 
primary and secondary networks.  
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Image Processing. 

1   Introduction 

Recent years have witnessed the evolution of a large plethora of wireless technologies 
with different characteristics, as a response of the operators’ and users’ needs in terms 
of an efficient and ubiquitous delivery of advanced multimedia services. As a result, 
current and future wireless scenarios will be characterized by a multiplicity of Radio 
Access Technologies (RATs) and network operators with very different deployments 
(e.g. cellular, wireless local area networks, etc.). In addition to this, and with the 
objective of ensuring an efficient utilization of the available spectrum bands, the 
regulatory perspective on how the spectrum should be allocated and utilized is 
evolving as well [1]. New technical advances are focused on the development of 
strategies and policies aiming at the utmost and efficient access to shared spectrum 
resources. As an example, the unlicensed use of VHF and UHF TV bands by 
secondary users, provided no harmful interference is caused to the licensee (i.e. 
primary user), was targeted by the FCC in [2]. 

The primary-secondary spectrum sharing can take the form of cooperation or 
coexistence. Cooperation means there is explicit communication and coordination 
between primary and secondary systems, and coexistence means there is none. In the 
latter case, secondary devices are essentially invisible to the primary and all of the 



 

complexity of sharing is borne by the secondary without changes required to the 
primary system. In this context, one of the key enabling technologies to enable 
secondary spectrum access is the cognitive radio, which allows the terminals 
determining which portions of the spectrum are available, selecting the most 
appropriate channel for transmission, and vacating the channel whenever a licensed 
user is detected [3]. 

In the above framework, assuming the coexistence case, knowledge about the 
primary transmitters’ positions can be a relevant input for secondary users to 
determine the frequencies available for secondary use at the different points. In this 
respect, this paper proposes a new methodology, based on image processing 
techniques, aimed at combining a number of sensed samples at different geographical 
positions collected by secondary sensors, in order to build a map with the estimated 
positions and coverage areas of the different primary transmitters. The proposed 
methodology could be used to build databases containing the relevant aspects of radio 
environment characterization, such as the so-called Radio Environment Map (REM) 
in [4]. The REM can serve as the navigator and the vehicle of network support for 
Cognitive Radios. REM can also be viewed as the generalization of the available 
resource map proposed by Krenik for cognitive radio applications in unlicensed wide 
area networks [5], [6]. In [4], the authors use the REM as a database in order to 
compute the distance between the primary transmitter and secondary receiver. Prior 
work of the authors in [7] also introduced the image processing to identify the 
homogeneous radio-electrical regions where certain frequencies can be detected. This 
paper goes beyond the previous work in [7] by introducing novel object-based 
reconstruction techniques to enable the characterization of the scenario based on only 
a subset of samples. 

This paper is organized as follows. Section 2 presents the problem formulation and 
the scenario considerations, prior to describing the proposed methodology in Section 
3. Illustrative results are presented in Section 4 and conclusions are summarized in 
Section 5. 

2   Scenario considerations and problem formulation 

A generic scenario such as the one depicted in Fig. 1 is considered. It is characterized 
by a number of primary transmitters corresponding to different RATs which operate 
at different frequencies and have different coverage areas (e.g. the central transmitter 
operating in a broadcast-like RAT with an extensive coverage area at frequency f5, or 
the transmitters operating at RATs 1 and 2 with frequencies f1, f2, f3 and f4 that could 
correspond to some cellular-like RATs). Assuming that no cooperation between the 
primary and secondary networks exists, the secondary network will have to discover 
the positions and coverage areas of the primary transmitters to be able to decide in 
which places and in which frequencies secondary transmissions could be allowed. For 
that purpose, the secondary network can rely on the information measured by a 
number of sensors randomly scattered in the scenario and that could be built-in e.g. 
mobile terminals, and the appropriate post-processing of this information, which is the 
focus of this paper. 
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Fig. 1 Generic scenario with different RATs and frequencies 

A sensor measures the received power in a number of specific frequencies in its 
position. It is assumed that frequency fi is detected by the sensor at position (x,y) 
when the received power is above a given threshold Pth(fi), so that the following 
binary representation can be obtained for each frequency at each sensor position: 
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From this binary representation, it is possible to characterize the measurement at 
all frequencies given by the sensor at coordinate (x,y) by a value corresponding to the 
sum of the binary representations of all the N considered frequencies: 
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Each sensor would then report the value of I(x,y) to a central entity in charge of 
combining the measurements of every sensor. The problem considered here consists 
then in defining a methodology to smartly combine the different measurements at 
random positions, which represent a partial vision of the scenario, in order to get a full 
vision in which the positions and coverage areas of the different primary transmitters 
are obtained. It is worth mentioning that this work focuses mainly on this combination 
of the sensing results, assuming these results are available, but both the considerations 
on the sensing process itself (such as errors in the process or the determination on 
which frequencies has to sense every sensor) and the means to report the sensing 
results are out of the scope of the paper and are left for future work.  

3   Proposed methodology 

The proposed methodology assumes that the radio environment can be characterized 
by an image [7], where each pixel (i.e. a rectangular area of dimensions Δx × Δy) 
takes the value I(x,y) corresponding to the frequencies that are detected in it. Then, 
given that only the values I(x,y) of the pixels where a sensor is located are known, 
these values need to be combined using image processing techniques in order to 



 

reconstruct the overall image and to discover the transmitter positions and coverage 
areas, as it is illustrated in Fig. 2. It is assumed that a pixel can only have the result of 
one sensor. 

 
Fig. 2 Inputs and outputs of the considered problem 

Assuming that the coverage area of a transmitter to be discovered will be 
approximately circular, which would be valid according to the distance-dependent 
path loss whenever omnidirectional antennas are used, the proposed methodology 
aims at identifying in the image the existing circular regions. For that purpose, 
starting from the sensed pixel values, which will be affected by propagation and 
shadowing effects, an object-based reconstruction technique will be developed to 
identify those “objects” (i.e. an object is a region where a certain frequency fi is 
detected) that can be assimilated as circular areas and correspondingly as transmitter 
coverage areas. For that purpose, the steps of the proposed methodology are 
illustrated in Fig. 3 and explained in the following. 

 

 
Fig. 3 Steps of the proposed methodology 

3.1   Interpolation 

Interpolation is the first step of this methodology. From the results of the sensors we 
build an image by interpolating the intermediate pixels for those positions where no 
sensor was available. We do that by attributing to each unknown pixel the value of the 
nearest known pixel. 
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3.2   Construction of binary images 

From the interpolated image, we build a set of binary images, each one corresponding 
to a given frequency fi. Each pixel of a binary image takes the value 1 if frequency fi 
is detected and 0 otherwise. These binary images will be used as the basis to identify 
the different objects. 

3.3   Erosion 

It is possible that in some cases, some objects are not properly detected in the binary 
images, because they are not clearly separated from each other. This can occur due to 
e.g. shadowing effects in the propagation. In order to eliminate this drawback, before 
the object-based reconstruction technique, we apply an image processing technique 
called erosion to the binary images resulting from the interpolated image. In the 
erosion, the value of the output pixel is the minimum value of all the pixels in the 
input pixel's neighborhood. We assume that a pixel’s neighborhood is defined by a 
circular area of radius 5 pixels. In image processing terminology, this corresponds to 
making the erosion with a circular structuring element [8]. Note that in the particular 
case of a binary image, if any of the pixels of the neighborhood is set to the value 0, 
the output pixel after the erosion will be set to 0, which will tend to decrease the size 
of the objects and thus to separate them. 

3.4   Object-based reconstruction technique 

Object-based reconstruction technique tries to regenerate the image based on object 
properties, in particular assuming that the coverage area of a transmitter will be 
approximately circular. For each binary image (i.e. for each frequency fi), we: 

• Detect the objects (i.e. regions where frequency fi is detected), following the 
so-called connected-component labelling technique [9] that consists in 
scanning the image and making groups of adjacent pixels having the same 
value (4-connected pixels are assumed, meaning that pixels are adjacent if 
their edges touch). Each group of pixels will be then an “object”.  

• Measure objects properties (centroid and diameter of the object, which 
correspond to the centre and diameter of a circle with equivalent area than 
the object). Note that the centroid of every object represents the estimate 
position of primary transmitter; 

• Regenerate a new image replacing each object by a circle with the 
corresponding diameter (see Fig. 3). 

3.5   Dilation 

Because of the prior erosion process, the resulting object area after object-based 
reconstruction technique has become smaller than in the binary images, which would 
lead to more reduced coverage areas than in the real situation. To compensate this 



 

effect, we apply the dilation technique to the binary images resulting from the object-
based reconstruction technique. The dilation is the image processing technique 
opposite to the erosion process, and in this case the value of the output pixel is the 
maximum value of all the pixels in the input pixel's neighborhood [8]. In particular, in 
a binary image, if any of the pixels of the neighborhood is set to the value 1, the 
output pixel is set to 1, which will tend to increase the size of the objects. The same 
neighborhood shape (i.e. circular structuring element) as in the erosion is considered. 

3.6   Object-based reconstruction technique 

After the dilation process, it may occur that some small circles intersect with other 
bigger circles. For that purpose, we execute again the object-based reconstruction 
technique to clearly regenerate the circular areas. 

3.7   Filtering 

Due to the shadowing effects in the propagation, after the reconstruction process, it 
may happen that certain objects are detected with an area significantly smaller than 
that of the rest of objects, so they cannot be considered as transmitters. To cope with 
this, in the last step, we filter the resulting images by eliminating those objects that 
have an area 30 times smaller than the average area of all the detected objects. 
Finally, after the filtering, we combine the binary images to obtain a new image 
including information of all the frequencies. This image includes the positions, 
coverage areas and frequencies of the different primary transmitters. 

4   Results 

In order to illustrate the capabilities of the proposed methodology, it is evaluated in a 
cellular scenario with cell radius 1km, hexagonal layout and with a 3 frequency reuse 
pattern (f1, f2, f3). The total scenario size is 10km x 10km, and the pixel size is 
Δx=Δy=10m. The transmitter power is 30dBm, propagation losses as a function of 
distance d(km) are given by L=128.1+37.6*log10(d) and the shadowing standard 
deviation is 3dB. Power threshold Pth(fi) is set at -99.6dBm for all frequencies. In Fig. 
4 we can see the original image corresponding to the digitalization (i.e. the image if 
all the pixels were known). Having just N=3 frequencies, pixels are encoded 
according to equation (2) with 8=2N different intensity levels (i.e. colours) where the 
value 7=111 corresponds to the areas where three cells are overlapped, the values 
3=011, 5=101 and 6=110 corresponds to the areas where two cells overlap and finally 
the values 1=001, 2=010 and 4=100 correspond to the central areas of each cell. 



 

 
Fig. 4 Image corresponding to the cellular scenario with 3dB standard deviation shadowing. In 
the right part, the colour scale corresponding to each pixel intensity between 0 and 7 is plot 

We sense the original image with a random sensor distribution with average 
density D sensors/km2 and apply the proposed methodology. In Fig. 5 we can see the 
difference between the original image with shadowing effects, the sensed and 
interpolated image and the reconstructed image, in case that density of sensors 
D=100sensors/km2. Visually we can remark that we obtain an important improvement 
of the original image as the shadowing effects are no longer included in the 
reconstructed image, so that the positions and coverage areas of the different 
transmitters can be more clearly identified. 

 
Fig. 5 Comparison between the original image, the sensed and interpolated image, and the 
reconstructed image for the case D=100 sensors/km2  

In Fig. 6, we observe the resulting images for different values of the sensor density 
D. Note that if we have a low density of sensors such as D=4sensors/km2, we can not 
properly identify the transmitters. 

 
Fig. 6 Images resulted after proposed methodology for different sensor densities 

Every centroid of the detected objects represents the estimation of the position of 
each transmitter. In order to measure the accuracy in this estimation, we compute the 

Sensed and 
interpolated 

Original Reconstructed 

24sensors/km225sensors/km270sensors/km 250sensors/km2100sensors/km



 

relative error in the position estimation as the difference between the real transmitter 
position and the detected position, divided by the transmitter coverage radius. For this 
computation, we do not account for the transmitters that are located in the borders of 
the image, since they do not form a complete circle in the original image and 
consequently they lead to larger errors due to border effects. 

Fig. 7 represents the relative error for each transmitter in the considered scenario in 
case that density of sensors D=100sensors/km2. It can be observed that, in all the 
cases, the values of the relative errors are below 8%. 

 
Fig. 7 Relative error in the transmitter positions for D=100sensors/km2  

The mean error and the standard deviation for different density of sensors are 
shown in Fig. 8. In addition, Fig. 9 plots the rate of transmitter detection representing 
the ratio between the number of transmitters properly detected and the exact number 
of transmitters. In case that density of sensors D=4 sensors/km2, only a 40% of the 
transmitters are detected, and the mean error is high, as well as the standard deviation. 
As the density of sensors grows, the rate of detection is 100%, and the mean error is 
smaller. Gathering more than about 25 sensors per km2 (i.e. on average 1 sensor every 
200×200 m2 or equivalently about 80 sensors per transmitter coverage area) leads to 
minor marginal gains to the mean error of about 5% (or 50 meters in the base station 
position) and to a detection probability of 100% in the analysis performed. 
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Fig. 8 Mean error and standard deviation, 

represented as vertical lines. 
 

Fig. 9 Rate of transmitter detection 

Fig. 10 and Fig. 11 plot the obtained results for different values of cell radius. As 
we expect, in case that the cell radius is small (e.g. 500m), we have fewer sensors 
inside the cell coverage area, the errors are bigger, and the rate of detection smaller. 
Instead, if the cell radius is large (e.g. 1500m), the number of sensors inside the cell 
coverage area is also larger, the errors are smaller and the rate of detection is higher. 



 

 
Fig. 10 Mean error for different values of cell 

radius. 

 
Fig. 11 Rate of transmitter detection for 

different values of cell radius 
Accepting an error below 5% and a rate of transmitter detection above 95%, we 

can obtain from the results the minimum density of sensors necessary in order to 
make a proper estimation of the position of the transmitters. This is indicated in Table 
1. 

Table 1 Minimum density of sensors necessary for different cell radius 

 cell radius 
500 m 

cell radius 
700 m 

cell radius 
1000 m 

cell radius 
1200 m 

cell radius 
1500 m 

density of 
sensors per  

km2 
110 73 28 22 10 

5   Conclusions 

This paper has presented a new methodology, based on image processing techniques 
that combine a number of sensed samples at different geographical positions collected 
by sensors, in order to discover the positions and coverage areas of the different 
primary transmitters. Utilization of these databases in a secondary spectrum usage 
permits the secondary network to discover the presence of primary network 
transmitters and to use spectrum opportunities without disturbing the primaries. The 
results obtained reveal the utility and efficacy of the proposed methodology, with 
relative errors below 5% in the transmitter position. 
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