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Abstract – An economic driven JRRM algorithm is 
introduced in a multicell scenario based on guaranteeing  a 
certain user acceptance probability of a given service while 
at the same time increasing the network provider revenue. 
It includes both service price and user utility  and allows 
an operator to envisage the price impact on the final 
revenue attained. The paper focuses on two profiles, 
namely consumer and business and reflects that the 
proposed algorithm is able to adapt to the needs of each 
profile. A realistic UMTS, GERAN and WLAN scenario is 
considered. 

I. INTRODUCTION 
Today’s wireless communications comprise a broad 

variety of Radio Access Technology (RAT) standards. In 
Europe, the success of second-generation (2G) cellular system 
GSM (Global System for Mobile Communications) and the IP 
data connectivity support provided by GPRS (General Packet 
Radio System) paved the way towards evolved systems with 
higher data rate capabilities, such as the Enhanced Data rates 
for GSM Evolution (EDGE) and finally the third-generation 
(3G) Universal Mobile Telecommunications System (UMTS). 
Moreover, in parallel with the evolution of cellular systems, 
several types of Wireless Local Area Networks (WLANs) like, 
e.g., the IEEE 802.11x standard emerged and became 
profusely used in home environments.  

These new scenarios must indeed be regarded as a new 
challenge to offer services to the users over an efficient and 
ubiquitous radio access by means of coordinating the available 
RATs. In this way, not only the user can be served through the 
RAT that fits better the terminal capabilities and service 
requirements, but also a more efficient use of the available 
radio resources can be achieved. On the other hand, the 
introduction of reconfigurability capabilities at different levels 
of the network (end user terminal, radio access points, etc) [1] 
opens new perspectives in the manner all the today’s and next 
future available RATs are managed. Indeed, in a multi radio 
environment, the capabilities brought by reconfigurable 
equipments offer the possibility to increase spectrum 
efficiency by developing appropriate mechanisms allowing a 
better management of radio resources in near real time (i.e. at 
frame level scale). This challenge calls for the introduction of 
new radio resource management (RRM) algorithms operating 
from a common perspective that takes into account the overall 
amount of resources offered by the available RATs, and 
therefore are referred to as JRRM (Joint Radio Resource 
Management) algorithms. Furthermore, for a proper support of 
such algorithms, suitable network architectures and procedures 

must ensure the desired interworking capabilities between the 
different technologies. 

In this framework, introducing cognition processes is of 
up most importance. They are associated with technologies 
that operate in a complex environment, observe it, make 
behaviour choices, and receive feedback from it, while 
learning to help determining future behaviour based on past 
and current feedbacks [2].  

Clearly, the objective of the network operator is to support 
its customers with the required QoS in a profitable way. 
Operator’s profit depends, on one hand, on a large variety of 
CAPEX (Capital Expenditure) and OPEX (Operational 
Expenditure) components, while on the other hand on the 
revenue, which is directly influenced by the pricing strategy. In 
more detail, coverage, radio link quality (e.g. bit error rate) and 
maximum capacity are the result of the operator’s investment 
on radio network infrastructure [3] as well as the dynamic 
management of the radio resources (through JRRM strategies 
in the case of heterogeneous RANs).  

Even though technical issues related to the dynamic 
operation of the network have traditionally been targeted quite 
independently from economic aspects, research community has 
already identified the need for a major interaction. In this 
context, this paper represents a step forward in this direction by 
introducing revenue considerations into radio-interface 
management decisions. In particular, a complete framework for 
JRRM in a UMTS/GERAN/WLAN scenario is proposed, 
including the user’s satisfaction and the operator’s revenue into 
the decision making process for the RAT selection and 
bandwidth allocation. It is worth noting that the proposed 
approach introduces techno-economic cognitive mechanisms, 
so that the JRRM decisions auto-adapt themselves to the 
changing traffic, mobility and propagation conditions in order 
to keep the target on user’s satisfaction, which in turn is mainly 
driven by the price and the utility given to the offered service. 
It is shown that this leads to improved revenue for the operator 
compared to the case where only technical aspects are 
considered. 

The rest of the paper is organised as follows. In Section II, 
the traditional approach for JRRM is described, accompanied 
by reference solutions. Section III is devoted to describe how 
pricing and revenue mechanisms have been considered so far in 
the wireless communications arena. In turn, Section IV 
develops the proposed solution based on a techno-economic 
fuzzy-neural machine. Section V presents some illustrative 
simulation results supporting the rationale of the proposed 
approach. Finally, Section VI summarises the conclusions.   



II. JOINT RADIO RESOURCE MANAGEMENT 
JRRM refers to the set of functions that are devoted to 

ensure an efficient use of the available radio resources in 
heterogeneous networks scenarios by means of a proper 
coordination between the different RATs. In turn, when a 
heterogeneous scenario is considered, some additional 
functionalities arise, like the initial RAT selection (i.e. the 
functionality devoted to decide to which RAT a given service 
request should be allocated at the set-up phase) and the 
vertical (inter-system) handover (i.e. the functionality devoted 
to decide a seamless RAT switching for an on-going service) 
[2]. JRRM strategies may be useful to support a variety of 
objectives, such as avoiding disconnections due to lack of 
coverage in the current RAT, blocking due to overload in the 
current RAT, possible improvement of QoS by changing the 
RAT, support of user’s preferences in terms of RATs, support 
of operator’s preferences for RATs usage or load balancing 
among RATs. 

JRRM entity is responsible for the QoS guarantee and 
monitoring of the different radio interfaces. The QoS may be 
expressed in a variety of parameters, ranging from system-
level performance indicators (e.g. blocking probability), to 
connection level figures (e.g. average bit error rate, average 
packet delay, etc.). Furthermore, smart JRRM algorithms may 
lead to capacity gains, thanks to the exploitation of the 
resource sharing leading to a potential trunking gain.  

It is worth mentioning that JRRM has been identified as 
an important issue by the 3GPP from an architectural point of 
view [5][6], as well as by the research community. The 
literature has covered the effects of load balancing in inter-
RAT handover procedures. In particular, in [7], the effect of 
tuning the load-based handover (HO) thresholds depending on 
the load of inter-system/inter-layer/inter-frequency cells is 
studied. In [8], a force-based load balancing approach is 
proposed for initial RAT selection and vertical HO decision 
making. In turn, in [9] the authors compare the load balancing 
principles with respect to service-based policies. Similarly, 
Lincke discusses the problem from a more general perspective 
in e.g. [10] and references therein, comparing several 
substitution policies and evaluating them by means of 
simulations. Finally, in [11] a fuzzy-neural based strategy for 
JRRM operation was presented by the authors, including a 
reinforcement learning mechanism to adapt the algorithm in 
order to achieve the desired QoS constraints. In this context, 
the user satisfaction was associated with the minimum 
bandwidth allocated to the users. Consequently, a user was 
considered dissatisfied if its bandwidth allocated was below 
the contracted one. However, the users’ feelings also depend 
on the price paid for the service, so that both the users’ and the 
operator satisfaction depend on the bandwidth allocated and 
pricing policies. In this sense, this paper aims at including in 
the technical framework presented in [11] microeconomic 
considerations.  

III. PRICING AND REVENUE IN WIRELESS NETWORKS 
Several works in the open literature have addressed the 

inclusion of economic concepts in the development of 
different types of algorithms for wireless networks [12]. In 
that sense, one of the key driving indicators is the notion of 
user acceptance of a given service. This can be defined as the 

probability that the users are satisfied with the service 
obtained from the network in accordance with the price they 
are paying, and therefore they stick to the network [13]. 
Therefore, the acceptance depends on the one hand on the 
utility that the user perceives from the network for a given 
service, which is related mainly with QoS parameters like, e.g. 
bandwidth, delay, etc., and on the other hand on the price that 
the user is paying for that service. Furthermore, the acceptance 
should be an increasing function of the utility and a decreasing 
function of the price.  

The utility is a function that depends on the specific 
service characteristics and the elasticity of the applications 
[14]. Particularly, an application can be inelastic, meaning that 
the utility is modelled as a step function with only two values, 
either good or bad, depending on e.g. whether the allocated 
bandwidth B is above or below a given threshold, as illustrated 
in Figure 1. Some examples in this category would be the real 
time voice or video applications with constant bit rate.  On the 
contrary, other applications, e.g. typically data applications, 
exhibit more elastic behaviours in the sense that the utility is a 
smoother function of the allocated bandwidth, as depicted in 
Figure 1. Some utility models focusing on different quality 
parameters like delay or signal-to-interference-ratio are 
presented in [15][16]. 
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Figure 1 Utility functions for elastic and inelastic applications 

From the point of view of the network operator, pricing 
strategies should be devised in order to determine the price 
that should be paid for the access to the different services with 
specific user profiles. Here the objective is to maximize the 
obtained revenue by taking into account the user behaviour 
with respect to one or another price, captured with the 
definition of a proper acceptance function. Then, the revenue 
can be formulated as a function of the price that the users are 
paying and of the user acceptance, in the sense that only users 
accepting the service will be in practice generating revenue. 
This leads to the following definition of revenue [13]: 

1
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where N is the number of users, pi is the price paid by the i-th 
user, Bi its bandwidth and A(u,p) the user acceptance, as a 
function depending on both utility and price, with a tuning 
similar to the Cobb-Douglas demand curves widely used in 
economics, which can be modeled by: 

( , ) 1 exp( )A u p Cu pµ ε−= − −    (2) 
where C, µ and ε are constants representing the different 

user sensitivity to utility and price. In [13] these economic 
concepts are used to devise a rate allocation algorithm so that 
users are satisfied with the received service and the price paid 
while at the same time revenue can be maximized.  



Pricing strategies are typically classified into static and 
dynamic pricing [17]. In static pricing the price of the different 
services is either fixed or is only changed at specific periods of 
the day or the week, i.e. the so-called time-of-day pricing, in 
which the price is higher during e.g. the working days than 
during weekends or in the night. In turn, the dynamic pricing 
strategies consider the price as an additional network 
parameter that can be changed during relatively short periods 
of time in order that the network operates always with the 
optimum price according to the available resources and the 
existing demand. Some static pricing models were proposed 
initially in [18] and in [19], where a reservation based pricing 
is proposed. In [20] a dynamic pricing strategy is applied to 
devise a network congestion control. Other applications of 
dynamic pricing are in the development of admission control 
[21], power control [22] and packet scheduling [23] 
algorithms. Concerning Dynamic Spectrum Allocation (DSA), 
the pricing concepts have been introduced in [24] where a 
scheme for choosing the appropriate pricing in short-term 
spectrum licenses is presented. 

IV. ECONOMIC-DRIVEN JRRM 
The proposed economic-driven JRRM is based on fuzzy 
neural methodology and operates in a heterogeneous scenario 
aiming at selecting the most appropriate RAT and bandwidth 
for each active use in the system. The proposed scheme is plot 
in Figure 2 and consists of two main blocks, a Fuzzy Neural 
Controller (FNC) and a Multiple Objective Decision Maker 
(MODM). The inputs of the algorithm are of the following 
nature: 
a) Technical inputs: They consist of measurements of the 
signal strength SSk and resource availability RAk for each 
RAT k. Mobile speed MS is included to take into 
consideration mobility constraints in the RAT allocation. 
b) Economic inputs: They consist of the price pj to be paid for 
service j, in the revenue estimation R according to (1) and on 
the desired total user acceptance A(u,p). 
c) Operator policies: They consist in a set of high-level 
directives that specify the construction of the inference rules in 
the fuzzy neural block and the operation of the decision 
maker.  
The FNC consists of a Fuzzy Logic Controller (FLC) and a 
reinforcement learning algorithm. The FLC is organized into 
three procedures, denoted as fuzzification, inference engine 
and defuzzification whose mission is to make a selection of 
the appropriate RAT and bandwidth taking into account the 
technical inputs. The details of the operation of the FLC are 
described in [11]. The reinforcement learning procedure aims 
at tuning the different membership functions in the 
fuzzification and defuzzification processes in order to adapt 
the network to the current conditions and to learn from the 
experience the way to satisfy a target criterion. Then, this 
procedure embeds the cognitive-based mechanisms letting the 
network be aware of its current status in terms of user traffic 
and position variations. More specifically, the criterion 
considered in the proposed economic-driven JRRM will be to 
achieve a specific value of the overall user acceptance A(u,p).  
Notice that, according to (1), for a given price a high user 
acceptance turns into a high operator revenue. The 
reinforcement learning algorithm will try then to minimise the 
following error: 

( ) ( )( )21 *
2

E t A A t= −     (3) 

where A(t) is the user acceptance A(u,p) averaged for all the 
users at the time t and A* is the target value. For each user, the 
actual acceptance depends on the FNC allocated bandwidth, as 
it is explained below, and on the price charged according to 
the user profile.. For details on the operation of the 
reinforcement learning algorithm the reader is referred to [11], 
where only bit rate considerations were made in the definition 
of the reinforcement signal. 

The outputs of the FNC are: 
a) The RAT selected by means of the so called FSD parameter 
(Fuzzy Selected Decision), which is an indicator of the 
appropriateness of selecting a RAT in front of another one. 
 b) The most appropriate bandwidth B that should be allocated 
to the active users in each RAT. 

Finally, the MODM is in charge of performing the 
selection of the specific RAT and bandwidth combining the 
output of the fuzzy-neural JRRM with revenue considerations 
in order to maximize revenue while keeping the desired user 
acceptance. Particularly, the MODM is based on the 
combination of fuzzy logic with the Analytic Hierarchy 
Process (AHP) presented in [25][26] and is here used with two 
decision criteria, namely the FSD values corresponding to the 
different RATs and the revenue that would be obtained by the 
operator selecting the different RAT and allocating the 
corresponding bandwidth suggested by the FNC. The two 
decision criteria are characterized by the same importance in 
order to obtain the final decision regarding the RAT and the 
bandwidth. For details the reader is referred to [25][26]. It is 
worth noting that p is a fixed price parameter in all the above 
procedure. However, it could also be set in a medium or long 
term dynamic way, depending on spatial-temporal average 
traffic fluctuations and operator agreements, if any. 
Nevertheless, this is out of the scope of this paper, 
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Figure 2 Economic-driven JRRM algorithm 

V. RESULTS 
The proposed economic-driven JRRM is evaluated in a 

multicell scenario, with a seven cell deployment, including 4 
UMTS base stations, 2 GERAN base stations and one WLAN 
access point, as it is shown in Figure 3. Each cell is 
characterized by a given coverage area and its corresponding 
RAT. The considered scenario consists of circular cells, with 
radii 150m for WLAN, 650m for UMTS and 1km for 



GERAN. A mobility model with users moving according to a 
random walk model inside the coverage area is adopted with a 
randomly assigned mobile speed (MS) in the interval [0,50] 
km/h and a randomly chosen direction. The propagation model 
considered for UMTS and GERAN is given by L=128,1+37,6 
log d (km), which assumes that the frequency band is similar 
for both systems [27]. For WLAN the propagation losses 
inside the hotspot are modeled by L= 20 log d(m)+40 [28]. 
The shadowing model considers a standard deviation of 7 dB 
and a decorrelation length of 20m.The beginning and the end 
of the user’s activity periods are defined according to a 
Poisson scheme with an average of 6 calls per hour and user 
and average call duration of 180 seconds. The set of available 
bit rates in UMTS are {32 kb/s, 48 kb/s, 64 kb/s, 80 kb/s, 96 
kb/s, 112 kb/s, 128 kb/s, 192 kb/s, 256 kb/s, 320 kb/s, 384 
kb/s}, considering a single UTRAN FDD carrier with 
maximum allowed uplink load factor 0.75. For GERAN, the 
set of bit rates is {32 kb/s, 48 kb/s, 64 kb/s, 80 kb/s, 96 kb/s}, 
assuming a total of four carriers available and coding scheme 
CS-4. For WLAN it is considered that the total bandwidth 
available (11 Mb/s) is equally distributed among the WLAN 
users (i.e. the higher the number of users the lower the 
bandwidth per user will be). It is also assumed that no more 
WLAN users are accepted when the bandwidth per user is less 
or equal than 384 kb/s. A single access point is considered.   

A static pricing is considered in which the price p is 
proportional to the allocated bandwidth (i.e. p=0.01·B). The 
utility function as a function of the allocated bandwidth B is 
[13]: 
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/
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B K
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where K=2 and ξ=2.2 have been set for illustrative purposes. 
Actually, reliable user utility functions can be obtained 
through field tests and user survey. 
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Figure 3 Considered Multicell scenario 

From the point of view of user acceptance, and in order to 
consider that different users may exhibit a different sensitivity 
to the specific service, two user profiles, are defined for 
illustration purposes, whose acceptance functions as a function 
of the allocated bandwidth are plot in Figure 4. (i.e. µ=2 and 
ε=1.5 for consumer users and µ=40 and ε=2.5 for business 
users) The consumer profile represents the population segment 
for which the price may be more relevant than the allocated 
bandwidth and therefore its acceptance is high even for 
relatively low bandwidths and decreases very fast for high 
bandwidths because they are not willing to pay for them. On 
the contrary, the business profile represents the population 
segment for which the most important thing is the allocated 
bandwidth rather than the price. Consequently their acceptance 

is low for low bandwidths and decreases slowly for high 
bandwidths.  

Table 1 and Table 2 present some illustrative performance 
figures of the considered algorithm in the cases that the RAT 
selection decision is made according to the fuzzy neural 
JRRM presented in [11], which considers only technical 
criteria (denoted here as technical-driven JRRM), or according 
to the economic-driven fuzzy neural JRRM. In the later case, 
two different solutions have been envisaged. The first one 
bases the JRRM decision just on the fuzzy neural JRRM 
outputs (i.e. without the MODM block in Figure 2), whereas 
the second one also includes the MODM block in Figure 2, for 
revenue maximization. In  

Table 1 and 2 a total of 100 consumer and business users 
have been considered, respectively. In the case of economic 
driven JRRM, the target user acceptance in the reinforcement 
algorithm is 0.8. In turn, in case of the technical-driven fuzzy 
neural JRRM, the satisfaction probability (i.e. the probability 
that the allocated bandwidth is above the satisfaction 
bandwidth) is set to 80%, for comparison purposes with the 
economic driven implementation. Similarly, and to allow a 
fair comparison, the satisfaction bandwidths in the technical-
driven case are selected as the minimum bandwidths allocated 
in more than 80% of the cases by the economical-driven 
JRRM (i.e. the 20-th percentile of the allocated bandwidth 
distribution). 
Focusing on the economic-driven JRRM, the higher 
willingness of business users to pay for high bandwidths turns 
into an overall increase in the allocated bandwidth with 
respect to consumer users. Similarly, and due to the higher bit 
rates available in UMTS, the allocation of business users in 
UMTS is higher than the allocation in GERAN, particularly 
when only fuzzy neural JRRM is considered, while the 
opposite occurs for consumer users. Notice also that the 
inclusion of the MODM aimed at revenue maximization turns 
into an increase in the total revenue obtained for both 
consumer and business users at the expense of slight 
performance degradation in terms of blocking and dropping 
rate, which in all cases is below 1%. In addition, notice that 
the economic-driven JRRM provides higher revenues to the 
operator and higher bandwidth allocated for the users, than the 
technical-driven JRRM approach, where the RAT selection 
and bandwidth allocation do not take into account neither 
revenue nor price.  

VI. CONCLUSIONS AND FUTURE WORK 
This paper has included the economic concepts based on 

user acceptance and pricing in the JRRM problem. To this 
end, a JRRM algorithm able to select the appropriate RAT and 
bandwidth in a heterogeneous B3G scenario has been 
presented. The algorithm keeps a certain constraint in terms of 
user acceptance, depending on the utility and the price, and is 
capable of increasing the revenue through a multiple criteria 
decision making process. Furthermore, different user profiles 
depending on the sensitivity to price and utility have been 
considered, showing that the algorithm is able to adapt to the 
specific user requirements. Further work involves the global 
optimization of the price to achieve maximum revenues.  
 



0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 100 200 300 400 500
Kb/s

U
se

r A
cc

ep
ta

nc
e

Consumer Business

 
Figure 4 User acceptance for the two user profiles 

 
Table 1 Consumer Performance figures 

Economic-Driven JRRM   
Technical-

Driven JRRM 
Fuzzy-Neural 
JRRM only 

Fuzzy-Neural 
JRRM + 

Decision Maker 
% UMTS Selection 35 45 49 

% GERAN Selection 63 54 49 
%WLAN Selection 2 1 2 

Revenue 1.17 1.66 1.83 
Average assigned 

bandwidth  
84.5 Kb/s 115.3 Kb/s 132.8 Kb/s 

Table 2 Business Performance figures 
Economic Driven JRRM   

Technical-
Driven 
JRRM 

Fuzzy-Neural 
JRRM only 

Fuzzy-Neural 
JRRM + 

Decision Maker 
% UMTS Selection 50 54 58 

% GERAN Selection 48 45% 35 
%WLAN Selection 2 1 7 

Revenue 2.5 3.06 3.4 
Average assigned 

bandwidth  
157 Kb/s 171.8 Kb/s 203.1 Kb/s 
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