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Abstract—Self-Organising Networks (SON) concept is seen as a 
way to reduce costs by automating functionalities such as 
network optimisation usually performed manually with extensive 
human work time. This paper provides a general formulation of 
the self-optimisation problem in a cellular wireless network and a 
description of the optimisation search process by means of 
iterative algorithms. Different optimisation methodologies, 
namely simulated annealing, genetic and particle swarm 
algorithms have been considered. These methodologies have been 
implemented for the optimisation of the cell coverage and cell 
overlap using real measurements of a UMTS network deployed 
in a medium-size European city. These methodologies have been 
compared in terms of speed of convergence and performance of 
the solutions provided by the different proposed algorithms. 

I. INTRODUCTION 

In the last years, a drastic increase in the mobile data traffic 
has been experienced since the widespread deployment of 
third-generation (3G) mobile communication systems, the 
introduction of HSPA (High Speed Packet Access) and the 
recent take-off of LTE (Long Term Evolution). Due to the 
increasing demand for wideband services in a competitive 
market, network operators are always investing large budgets 
to deploy and upgrade their networks. This process was 
traditionally done manually or semi-automatically. However, 
being wireless networks inherently dynamic and very sensitive 
to traffic and interference variations, which is particularly 
more relevant with the CDMA (Code Division Multiple 
Access) and OFDMA (Orthogonal Frequency Division 
Multiple Access) based radio interfaces of 3G and LTE 
systems, this approach can easily lead to inefficient 
operations, which will become more critical when broadband 
services are to be provided. On the other hand, the envisaged 
high density of small sites, e.g. with the introduction of femto-
cells, and the pressure to reduce costs clearly indicate that 
deploying and running networks needs to be more cost-
effective. The introduction of Self-Organising Networks 
(SON) functionalities, aiming to configure and optimize the 
network automatically, is seen as one of the promising areas 
for an operator to save operational expenditures (OPEX). For 
this reason, SON has received a lot of attention in recent years 
in different standardization fora, research projects as well as 
academic works [1]-[5].  

Clearly, the SON concept at the largest extent of a totally 
automatic network, able to operate with minimum human 
intervention, is quite ambitious and challenging, so that it can 
be anticipated that SON will continue as a hot research topic 
in coming years requiring further research efforts to facilitate 
its practical implementation. In accordance with this, in [1] a 
roadmap is presented starting from the practical application of 
UMTS (Universal Mobile Telecommunications System) 
optimisation towards automated self-optimisation procedures 
in LTE, thus outlining a roadmap from current deployed 
networks (2G, 3G HSPA), mainly managed by centralized 
remote operations and maintenance (O&M) applications with 
intensive human intervention, to future SONs (LTE, HSPA+).  

The self-optimisation process can be seen as the automatic 
determination of the most adequate values of several network 
configuration parameters to optimise the network performance 
in terms of specific optimisation targets defined by the network 
operator (such as the avoidance of coverage holes, reduction of 
cell overshooting effects, etc. [1]). In a real network, a large 
amount of different network configuration parameters can be 
tuned. Furthermore, due the inter-cell coupling effects, the 
changes done in one cell may influence on the performance 
observed in the area of another cell. Correspondingly, when 
considering large cellular networks consisting of hundreds of 
cells, the resulting number of possible network configurations 
increases dramatically. As a consequence, the use of self-
optimisation algorithms becomes necessary since it is very hard 
for an engineer to cope manually with this level of complexity.  

A wide range of possible strategies have been proposed in the 
literature to find automatically the optimum or at least some 
acceptable sub-optimum solution for different optimisation 
problems. The selection of the optimisation search strategy 
typically depends on the problem complexity, the time 
available to develop and implement the optimisation technique 
and the necessity to obtain solutions with an optimum objective 
value. Some simple optimisation methodologies such as greedy 
algorithms, local search techniques or Tabu Search have been 
commonly used for optimisation [6]-[8]. In turn, other 
methodologies (such as simulated annealing, genetic 
algorithms or particle swarm algorithms) provide in general 
better solutions at the expense of increasing the computation 
time and the algorithm complexity [9]-[11]. Several works that 
make use of these algorithms for the optimisation of mobile 



communication networks are [12]-[14]. Most of the works that 
can be found in the literature related to cellular wireless 
networks optimisation focus on a particular optimisation 
methodology. However, the comparison of different 
optimisation techniques for the self-optimisation problem in 
cellular wireless networks is not usually addressed. 

Within this context, the first contribution of this work is a 
general formulation of the optimisation problem in a cellular 
wireless network and a description of the optimisation search 
procedure. The second contribution of the paper is the 
description and comparison of different optimisation search 
methodologies (i.e. simulated annealing, genetic algorithm and 
particle swarm) in terms of algorithm convergence and 
performance of the solutions provided by the different 
algorithms. This comparison has been done for a particular 
case study using real measurements of a wireless cellular 
network in which the objective is the optimisation of the cell 
coverage and the cell overlap by adjusting the CPICH 
(Common Pilot CHannel) transmitted power of the different 
cells.  The rest of the paper is organised as follows. Section II 
provides a general description of the optimisation problem and 
the general procedure for the network optimisation search. 
Section III provides a brief description of different 
optimisation techniques that are proposed for the network 
optimisation. Section IV presents the comparison of the 
different optimisation methodologies for the considered case 
study. Conclusions are summarized in Section V.   

 

II. OPTIMISATION PROCEDURE 

 
A general scenario consisting of N cells with P tuneable 
parameters per cell is considered. The network configuration 
is represented by a PN matrix ψ=[ψp,n] where the term ψp,n 

denotes the value of the p-th tuneable parameter of the n-th 
cell. The set of possible values of parameter ψp,n is the range 
[Vmin,p,Vmax,p] with resolution Δvp. The proposed self-
optimisation procedure is illustrated in Figure 1 and consists in 
a continuous loop that interacts with the real network based on 
observations and actions [1]. The objective of the network 
optimisation loop is to determine the most adequate network 
configuration ψ to simultaneously achieve M optimisation 
targets specified by the network operator. At the observation 
phase, certain measurements are collected from the network. 
The self-optimisation procedure runs a Network Performance 
Monitoring process that analyses the measurements to detect 
the situations where some of the optimisation targets are not 
properly fulfilled, so the network is behaving sub-optimally. 
When this is detected, the Optimisation Search process is 
triggered in order to find the adequate value of the network 
configuration parameters ψp,n that solve the sub-optimal 
operation situation. In that case, the action consists in applying 
to the network the configuration ψ obtained by the Self-
Optimisation process. In the following, the Network 
Performance Monitoring and Optimisation Search procedures 
are briefly described. 
 

 
Figure 1.- Network optimisation loop. 

 
A. Network Performance Monitoring 

This stage is in charge of analysing the collected set of 
measurements in accordance with the M operator specific 
optimisation targets. This process is carried out on a cell-by-
cell basis and the result will be the MN performance matrix 
S(ψ)=[Sm,n(ψ)] in which the term Sm,n(ψ) (0≤Sm,n(ψ)≤1) reflects 
the performance obtained by the n-th cell in terms of the m-th 
optimisation target with the current network configuration ψ. 
The higher the value of Sm,n(ψ), the more likely that the m-th 
target is not sufficiently optimised in the n-th cell. Based on the 
elements of matrix S(ψ) a trigger condition will be evaluated to 
decide if the measured performance is sufficiently satisfactory 
or if the network needs to be further optimised thus triggering 
the optimisation search. An example of how the Sm,n(ψ) metrics 
are evaluated is presented in [15].  

 
B. Optimisation Search 

The optimisation search problem can be formulated as the 
search of the network configuration parameters in matrix 
ψ=[ψp,n] that optimise the network performance given by 
matrix S(ψ). This is a multi-cell and multi-objective problem 
since it involves N cells and M optimisation targets. In general, 
the optimisation targets can be partly contradictory (e.g. an 
increase in the transmitted power devoted to the pilot channel 
may reduce the existence of coverage holes but may cause an 
increase in the cell overlap and interference [16]). For this 
reason, the network operator has to specify a trade-off criterion 
among the different optimisation goals. A usual approach is to 
define a joint objective or cost function as a linear combination 
of the different quality measures with certain weights m 
assigned to each optimisation target, given by: 
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The weights βm m=1,...,M allow the operator to give more 
relevance to certain targets in the optimisation process in front 



of others. The optimum solution is thus given by the 
configuration matrix ψ* that minimises the cost, that is:  

 * arg min C


    (2) 

The process of finding the optimum solution ψ* in a real 
wireless network is rather complex and challenging, 
particularly in real wireless networks consisting of tens, or 
even hundreds, of cells and several tuneable configuration 
parameters per cell. This requires the use of smart optimisation 
search methodologies able to efficiently explore the search 
space while keeping the computational complexity at 
acceptable levels. The methodologies considered in this paper 
are based on an iterative process. As shown in Figure 1, in the 
Optimisation Search phase, new candidate solution(s) are 
generated in each iteration. These candidate solutions are 
evaluated and the best ones in terms of cost are selected for the 
generation of new solution(s) in the subsequent iteration. Both 
the generation and the selection procedures are specified by the 
optimisation search methodology as it will be detailed in 
section III. In general, with this approach, the algorithm 
provides better solutions as the number of iterations is 
increased. The optimisation search algorithm is run until a 
termination condition is fulfilled that evaluates whether the 
cost has reached a given threshold or whether a maximum 
number iterations has been achieved. The best solution found 
after this iterative process becomes the output of the Self-
Optimisation procedure. 

III. OPTIMISATION SEARCH METHODOLOGIES DESCRIPTION 

This section presents a brief description of the three 
optimisation search methodologies considered in this paper, 
namely simulated annealing, genetic algorithms and particle 
swarm. 

A. Optimisation search based on simulated annealing (SA). 

In the simulated annealing technique, a new candidate solution 
of the optimisation problem, i.e., a candidate network 
configuration ψ, is generated in each iteration [9]. Figure 2 
shows the pseudo-code of the simulated annealing 
methodology. First, the considered initial solution is the 
current configuration being used in the real network. The 
algorithm evaluates this solution ψ and calculates the 
corresponding cost C(ψ) according to equation (1). Then, a 
new solution ψ’ is generated by modifying part of the current 
one. In general, this is done by selecting randomly a particular 
p-th network configuration parameter in the n-th cell (ψp,n) and 
setting the new value for this parameter ψ’p,n either as an 
increase or a decrease (determined randomly with equal 
probability) in one resolution unit within the defined search 
space of the corresponding parameter, as shown in equation 
(3).  
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The new solution ψ’ is evaluated and its cost C(ψ’) is 
determined. If the cost of this new solution ψ’ is lower than 

the cost of the previous one ψ, (i.e. C(ψ’)<C(ψ)), then this 
new solution is accepted (i.e. the previous solution is 
substituted by the new one). Otherwise, even if the cost of the 
new solution is higher than the previous one, the solution may 
also be accepted according to an acceptance probability Paccept 
that decreases as a function of the number of iterations carried 
out. In general, a negative exponential function is considered 
which is controlled by a term called Temperature T according 
to equation (4). 

    
T

CC

accept eP
' 


             (4) 

In each iteration x, the temperature is decreased in steps of ΔT 
according to the cooling function T(x+1)=T(x)-ΔT, so that, in 
the first iterations (the so-called exploration phase) a high 
acceptance probability is usually considered while in the last 
iterations (convergence phase) a lower acceptance probability 
is set  [9]. The possibility to accept new solutions with higher 
cost than the previous ones avoids the algorithm to get stuck in 
local minima. The whole process is run iteratively until the 
termination condition is fulfilled, i.e. the cost of the current 
solution is below a threshold or the maximum number of 
iterations Imax,SA has been reached.   

 

Figure 2.- Simulated annealing algorithm. 
 

B. Optimisation search based on genetic algorithms (GA). 

Genetic algorithms are based on the analysis of a set of NPOP 
candidate solutions that constitute the so-called population of 
the algorithm [10]. Each solution corresponds to a network 
configuration matrix, denoted as ψi i=1,...,NPOP. These 
solutions are modified in the successive iterations (i.e. 
generations) following certain rules inspired by the natural 
evolution principles. Each of the possible solutions ψi is called 
chromosome or individual and each of the elements ψi

p,n of the 
network configuration matrix ψi is called gene. Figure 3 shows 
the pseudo-code of the genetic algorithm. The algorithm starts 
with the initialisation of the NPOP individuals of the population 
corresponding to the first generation. The current network 
configuration is one of these individuals (i.e. ψ1=ψ). For the 
rest of individuals i=2,...,NPOP the network configuration 
parameters are chosen randomly with uniform distribution 
within the range of each parameter [Vmin,p, Vmax,p] with a 
resolution Δvp. Each individual ψi is evaluated in terms of its 



cost C(ψi). Once all the individuals of a particular generation 
have been evaluated, the genetic algorithm proceeds with a 
new generation and creates NPOP new individuals making use 
of the selection, recombination and mutation operators. These 
operators model the evolution process using some evolution 
principles that help the algorithm to provide better solutions as 
the generations evolve [10]. In this paper, the considered 
selection process is the so-called “cost proportional selection” 
in which individuals are randomly selected with a probability 
that depends on their cost, so that individuals with lower cost 
are selected more often than those with higher cost. The 
recombination consists in making a combination of the 
different genes (i.e. the network configuration parameters) of 
the two individuals selected in the previous step (called 
parents) to generate two new individuals (called children). 
The recombination process considered here is the so-called “1-
point crossover” [10]. Finally, the mutation process makes 
small random changes in the individuals after recombination. 
Mutation is responsible for introducing new gene material into 
the population. When the new generation of solutions is 
obtained after the selection, recombination and mutation 
processes, the corresponding costs C(ψi’) are determined. This 
iterative process is repeated until the termination condition is 
fulfilled, i.e. the minimum cost in the current generation is 
below a threshold or the maximum number of Imax,GA iterations 
(generations) has been reached.  

 
Figure 3.- Genetic algorithm. 

 
C. Optimisation search based on particle swarm (PS). 

Particle swarm optimisation is a robust technique inspired by 
the social behaviour of flocking organisms [11]. The algorithm 
considers a population (called swarm) of Npart particles that 
move inside a solution search space of D=PN dimensions. At 
a given iteration x, the position of the i-th particle inside this 
space is given by the PN components ψi

p,n(x) of a candidate 
solution ψi(x) i=1,...,Npart. In each iteration of the algorithm, 
all the particles make a movement according to a certain 
velocity that determines their next positions (i.e. the next 
candidate solutions) in the subsequent iteration. The i-th 
particle velocity at the x-th iteration is represented by matrix 
vi(x)=[vi

p,n(x)] where the term vi
p,n (x) is the change step of the 

p-th tuneable parameter in the n-th cell between iterations x 
and x+1. The pseudo-code of the particle swarm optimisation 
algorithm is presented in Figure 4. First, the initial position 
and velocity of all the Npart particles is determined. The current 
configuration being used in the real network is considered as 
the initial position of the first particle (i=1). The initial 

position for the rest of the particles i=2,...,Npart is set randomly 
with uniform distribution inside the solution space search. The 
particles’ initial velocities vi(0) are also determined randomly. 
At the x-th iteration, the algorithm evaluates all the possible 
network configurations ψi(x) for the different particles and 
determines their cost C(ψi(x)). This cost is used in each 
iteration to determine (and update if necessary) the best 
historical configuration found for each particle ψi

best(x) (the so-
called individual component that represents the solution with 
lowest cost found by the i-th particle during the execution of 
the algorithm up to iteration x) and the best historical 
configuration found for the entire swarm of particles ψsocial(x) 

(the so-called social component that represents the best 
solution found by the entire swarm of particles up to iteration 
x). Then, the new position and the new velocity of each 
particle are determined using the following expressions: 
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Each particle movement comprises three contributions that 
depend on vi(x), ψi

best(x) and ψsocial(x) as illustrated in Figure 5 
and reflected in the velocity update of equation (6) where r2 
and r3 are two random variables uniformly distributed between 
[0,1]. The weights k1, k2 and k3 allow the algorithm to give 
more relevance to the individual or the social component. The 
whole process is repeated several iterations until a termination 
condition is fulfilled, i.e. the minimum cost among all the 
particles in a given iteration is below a threshold or the 
maximum number of iterations Imax,PS has been reached. 

 
Figure 4.- Particle swarm algorithm. 

 
Figure 5.- Update of a particle position in the solution space. 



IV. RESULTS 

 
This section presents a case study to illustrate the performance 
of the proposed optimisation search methodologies using 
measurements of a real UMTS network. Drive test data was 
collected in an urban area of a medium-size European city 
consisting on 18 UMTS cells distributed in 6 Node-Bs as 
shown in Figure 6. The different cells are identified as Cell_id 
where id is a number that represents an identifier of each cell.  
Drive test measurements were carried out along certain streets 
as represented in Figure 6. The CPICH transmitted power is 
initially set to 30dBm for all the cells in the scenario.  
 
The considered M=2 optimisation targets are cell coverage 
and cell overlap optimisation. The coverage of a cell is related 
to the ability to establish a communication in the cell’s service 
area. In turn, cell overlap exists in the areas where access to 
the network is possible through multiple cells. A certain 
degree of cell overlap is useful to facilitate the handover 
process. However, a large overlapping may generate excessive 
interference and soft handover overheads.  
 
The measurements analysed by the Network Performance 
Monitoring for these two optimisation targets are the CPICH 
received power, the Active Set lists and the User Equipment 
transmitted power. For details on how to combine these 
measurements to obtain the corresponding Sm,n(ψ) values the 
reader is referred to [15]. The Network Performance 
Monitoring stage identifies some regions where coverage and 
overlap targets are not properly optimised. Figure 7 presents a 
map of the identified coverage and overlap problems detected 
with the current configuration being used in the network 
before applying the optimisation procedure.  
 

 
Figure 6.- Considered scenario. 

 
 
 
 
 

 
Figure 7.- Location of coverage and overlap problems. 

 

The proposed optimization algorithms adjust the CPICH 
transmitted power for the N=12 cells marked in black colour 
in Figure 6. The range of variation is between Vmin,1=25dBm 
and Vmax,1=35dBm in steps of Δv1=1dB. The weights for the 
calculation of the cost C(ψ) are assumed to be the same for 
both optimisation targets (i.e. β1=β2=1). After several tests of 
the different methodologies in the considered optimisation 
problem, an adequate value for the different optimisation 
search parameters has been determined for each methodology. 
Table 1 shows a summary of the considered parameters for the 
different optimisation search techniques. For the sake of 
comparison, in all the optimisation methodologies 960 
candidate configurations are analysed. This has been done by 
a proper setting of the maximum number of iterations for each 
algorithm. Specifically, for the SA, each iteration corresponds 
to the analysis of one candidate configuration, so Imax,SA is set 
to 960. In turn, the population based algorithms (i.e. GA and 
PS) evaluate 40 configurations in each iteration, so the number 
of iterations is set to 24, so that a total of 960 solutions are 
also evaluated. In all the cases, and to focus the analysis on the 
convergence aspects, the termination condition according to 
the cost threshold has not been implemented.  

Table 1.- Considered parameters. 

 Parameter Value 
Simulated Annealing 
(SA) parameters 

Imax,SA 960 
T0 (Initial temperature) 0.4 
ΔT 0.4/960 

Genetic Algorithm (GA) 
parameters 

NPOP 40 
Imax,GA 24 
Mutation probability 3% 

 
Particle Swarm  (PS) 
parameters 

Npart 40 
Imax,PS 24 
k1 1 
k2 2 
k3 2 



In the following, a comparison in terms of algorithm 
convergence is presented for the three considered optimisation 
search techniques. With the available amount of 
measurements, the process of generation of the new candidate 
solution(s) to be evaluated is practically negligible (for the 
considered algorithms) with respect to the time to evaluate the 
proposed network configurations. For this reason, Figure 8 
represents the cost of the best solution found by each 
algorithm as a function of the number of solutions that are 
evaluated which, in this sense, is used to represent the elapsed 
time. As shown, GA and PS algorithms provide faster 
convergence than SA. Note that in the first iterations, both GA 
and PS are able to find good solutions since both algorithms 
initially generate a group of random solutions spread all over 
the solution search space and, as a consequence, a broader 
search is done during the initial phase in comparison to SA. 
Note that the cost of the final solution found by SA is 
considerably higher than the final cost for GA and PS 
algorithms. In fact, GA and PS algorithms are able to find the 
same final solution thus leading to the same final cost for both 
methodologies as shown in Figure 8. Nevertheless, PS 
algorithm is able to find the best configuration after 200 
solutions analysed in contrast to GA that needs to evaluate 920 
solutions, which reflects the faster convergence provided by 
the PS methodology. 

Algorithm convergence
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Figure 8.- Algorithm convergence. 

 
The following results present a comparison in terms of 
network performance for the final solution found by the 
different optimisation methodologies proposed in this paper. 
These results have been obtained by doing an estimation of the 
network performance in terms of cell coverage and cell 
overlap that would be observed for the best configuration 
found by each optimisation technique. In particular, Figure 9 
represents a map with the location of the coverage and the 
overlap problems that can be observed for the best 
configuration found with the SA algorithm. In turn, Figure 10 
represents the performance of the configuration found by GA 
and PS algorithms (this configuration is the same for these two 
algorithms). Table 2 presents the values of Sm,n for the M=2 
optimisation targets and the N=12 considered cells. It 
compares the values obtained with the initial network 

configuration against the final result obtained by each 
algorithm. The term S1,n represents the degree of the coverage 
problems suffered in the n-th cell and the term S2,n corresponds 
to the degree of the overlap problems caused by the n-th cell. 
Note that, since β1=β2=1, the values of S1,n correspond to the 
contribution of the coverage to the total cost in equation (1) 
while the values S2,n correspond to the contribution of the 
overlap. Finally, Table 3 presents the initial network 
configuration in terms of the CPICH transmitted power 
configured before the optimisation procedure is run and the 
best configuration found by each optimisation algorithm. By 
comparing Figures 9 and 10 with Figure 7, it can be observed 
that the configurations provided by the optimisation 
methodologies are able to solve some coverage and overlap 
problems, especially the ones identified in the central region 
of the considered scenario. Some problems located at the 
borders could be addressed by adjusting the network 
configuration parameters of some neighbouring cells not 
considered in this analysis. As shown in Table 2, the pilot 
power adjustments carried out by SA mainly reduce the 
coverage problems with respect to the initial configuration 
(observe a total coverage cost of 1.018 in the initial 
configuration and a total coverage cost of 0.307 with the 
solution provided by SA). On the other hand, the configuration 
found by GA and PS (see Table 3) allows a further reduction 
of the cost with respect to SA (see Table 2). As shown in 
Figure 10, GA and PS remove some geographical regions with 
problems that are present with the configuration provided by 
the SA algorithm in Figure 9. Moreover, some regions remain 
with coverage and overlap problems with the configuration 
found by GA and PS, but with a lower level with respect to 
SA, which is represented with lower values of Sm,n in Table 2. 
It is worth noting that the optimisation procedure only 
considers the adjustment of the CPICH power. Including other 
network configuration tuneable parameters (such as antenna 
tilt or azimuth) may improve the network performance. 

 
Figure 9.- Location of coverage and overlap problems for the best 
solution found by the simulated annealing algorithm. 



 
Figure 10.- Location of coverage and overlap problems for the 
best solution found by the genetic and particle swarm algorithms. 
 
Table 2.- Values of Sm,n for the coverage and overlap optimisation 
targets in the considered cells 
 Coverage cost (S1,n) Overlap cost (S2,n) 
Cell_id Initial 

config. 
SA PS/GA Initial 

config. 
SA PS/GA 

Cell_3 0.021 0.021 0.021 0.152 0.096 0.046 

Cell_8 0.011 0.011 0.011 0 0 0 

Cell_9 0.095 0.041 0.023 0 0 0 

Cell_10 0 0 0 0 0 0 

Cell_16 0 0 0 0 0 0 

Cell_17 0 0 0 0.144 0.112 0.112 

Cell_22 0.156 0.049 0.020 0 0 0 

Cell_24 0.120 0.120 0.093 0 0 0 

Cell_26 0.550 0 0 0 0 0 

Cell_27 0 0 0 0.035 0.017 0.035 

Cell_32 0.014 0.014 0.014 0 0 0 

Cell_33 0.051 0.051 0.048 0 0 0 

Total 1.018 0.307 0.230 0.331 0.225 0.193 

 
Table 3.- CPICH transmitted power (dBm) of each cell. 

Cell_id Initial 
configuration 

SA PS/GA 

Cell_3 30 28 27 

Cell_8 30 31 28 

Cell_9 30 33 35 

Cell_10 30 26 27 

Cell_16 30 34 34 

Cell_17 30 31 33 

Cell_22 30 35 35 

Cell_24 30 31 35 

Cell_26 30 29 29 

Cell_27 30 28 35 

Cell_32 30 31 29 

Cell_33 30 29 33 

 
In the following, a comparison between the GA and the PS 
algorithm is provided in order to illustrate the way how each 

algorithm performs the solution search along the different 
iterations. For that purpose, the Euclidean distance between 
the different solutions evaluated by the algorithm and the final 
solution found is presented. The Euclidean distance d(ψ, ψ’) 
between two different network configurations ψ and ψ’ is 
defined as: 
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This metric represents how similar the network configurations 
ψ and ψ’ are. As an example, d(ψ,ψ’)=0 indicates that all the 
tuneable parameters for configuration ψ and ψ’ have exactly 
the same value. 
 
Figure 11 shows the maximum, the minimum and the average 
value of the Euclidean distance between each of the 
NPOP=Nparticles=40 solutions evaluated in each iteration and the 
final solution found by both PS and GA algorithms. As shown 
in Figure 11, the PS algorithm is able to locate its solutions 
closer to the optimum faster than GA. Note that the optimum 
solution is found by PS after 11 iterations while GA needs 24 
iterations. On the other hand, observe in Figure 11 a higher 
dispersion of the Euclidean distance for GA than for PS, 
especially in the first iterations, which illustrates the higher 
dispersion of the evaluated solutions. This reflects that PS is 
able to search for solutions in the direction of the optimum 
faster than GA.  
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Figure 11.- Statistics of the Euclidean distance. 

 
The following results illustrate how GA and PS algorithms 
adjust the tuneable configuration parameters of some cells in 
order to reach the final solution. For the sake of simplicity, the 
evolution of the pilot power in Cell_3, Cell_9 and Cell_16 
corresponding to the best solution found in each iteration is 
analysed. Figure 12 and Figure 13 plot this evolution for PS 
and GA, respectively. As an example, it can be seen in Figure 
12 that PS does not identify the most adequate value of the 
pilot power in Cell_16 (i.e. 34dBm) until iteration number 9, 
but the algorithm has already realized in the second iteration 
that a higher value of the pilot power is necessary for this cell, 



thus reflecting that the performed changes tend to go in the 
proper direction from the initial iterations. On the contrary, as 
seen in Figure 13, the best solutions found by GA in the first 
iterations consider a too low value of the pilot power in 
Cell_16 (around 28 or 29dBm) and the algorithm needs 18 
iterations in order to include the adequate pilot power value of 
34dBm for this cell in the best solution found in this iteration. 
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Figure 12.- Evolution of the pilot power for the best solution 

found with PS. 

Genetic algorithm
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Figure 13.- Evolution of the pilot power for the best solution 

found with GA. 

V. CONCLUSIONS 

This paper has presented a general framework for the self-
optimisation process in a wireless cellular network. It is 
composed of two main stages, namely the performance 
monitoring based on real measurements collected by the 
network and the optimisation search to identify the most 
adequate solution by configuring different tuneable network 
parameters. Different optimisation search methodologies, 
namely simulated annealing, genetic and particle swarm 
algorithms have been presented and evaluated. A case study 
using real data of a UMTS network deployed in a medium-size 
European city has been presented to evaluate and compare the 
different optimisation search methodologies in the context of 
the cell coverage and cell overlap optimisation. Results have 
revealed that the three methodologies are able to reduce 
considerably the cell coverage and cell overlap problems with 

respect to the initial network configuration before running the 
optimisation process. In turn, both GA and PS algorithms are 
able to find the same solution that provides a better 
performance than the one obtained by SA. In terms of speed of 
convergence, it has been observed that PS finds the final 
solution faster than GA thanks to a more efficient way of 
determining new candidate solutions to be evaluated in the 
subsequent iterations.  
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