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Abstract—Reinforcement Learning (RL)-based algorithmic 
solutions have been profusely proposed in recent years for 
addressing multiple problems in the Radio Access Network 
(RAN). However, how RL algorithms have to be trained for a 
successful exploitation has not received sufficient attention. To 
address this limitation, which is particularly relevant given the 
peculiarities of wireless communications, this paper proposes a 
functional framework for training RL strategies in the RAN. 
The framework is aligned with the O-RAN Alliance machine 
learning workflow and introduces specific functionalities for 
RL, such as the way of specifying the training datasets, the 
mechanisms to monitor the performance of the trained policies 
during inference in the real network, and the capability to 
conduct a retraining if necessary. The proposed framework is 
illustrated with a relevant use case in 5G, namely RAN slicing, 
by considering a Deep Q-Network algorithm for capacity 
sharing. Finally, insights on other possible applicability 
examples of the proposed framework are provided. 
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I. INTRODUCTION 

The advent of 5G promises to deliver a wide range of new 
services (e.g., self-driving car, virtual reality, eHealth, etc.) 
with heterogeneous requirements (e.g., high data rates, 
reliability, low latencies, massive connection densities, etc.). 
To meet the demands of all these services and to provide a 
high level of flexibility, the 5G New Radio (NR) technology 
comes with a number of substantially new features in relation 
to previous Long Term Evolution (LTE) standard. These are 
included both from an architectural perspective, e.g. through 
the support of network slicing or the split of the gNB network 
function, and from a radio access technology perspective, e.g. 
through the support of higher frequency ranges, flexible 
numerologies or enhanced multi-antenna transmission. In 
turn, increasing virtualization and embedding data-driven 
intelligence into the Radio Access Network (RAN) are two of 
the major paradigm changes associated with 5G and beyond 
systems. In this way, the RAN industry is re-shaping towards 
more intelligent, autonomous, open, virtualised and fully 
interoperable mobile networks. 

A key driving force in this transformation towards more 
autonomous mobile networks comes from the exploitation of 
Artificial Intelligence (AI) and, more specifically, Machine 
Learning (ML) techniques. These are permeating almost all 
layers of the next generation RAN architecture and the 
associated operations and support systems (OSS) for network 
management. There is a vast literature in the application of 
AI/ML in the RAN, which is profusely captured in survey 
papers (e.g., [1]-[4]) or tutorial-like papers discussing the 
challenges, opportunities and applicability areas (e.g., [5]-[7]). 
In turn, the interest of the industry in this area is also reflected 
by a number of standardisation initiatives started in the last 
years for introducing AI/ML techniques in wireless networks 

through the specification of supporting architectures or 
AI/ML workflows. This is the case of the Open RAN (O-
RAN) Alliance [8], the ITU-T Y.3172 recommendation [9] or 
the ETSI Industry Specification Groups (ISG) on Zero-touch 
network and Service Management (ZSM) [10] and on 
Experiential Networked Intelligence (ENI) [11]. In turn, Third 
Generation Partnership Project (3GPP) has also approved very 
recently a new Rel. 18 study item on AI/ML for the New 
Radio (NR) air interface [12] that will explore the benefits of 
augmenting the air interface with features enabling improved 
support of AI/ML-based algorithms. 

Reinforcement Learning (RL) techniques [13], a subset 
within the ML domain, are of special interest in the RAN 
because they are conceived for solving decision-making 
problems in an optimal way. As such, they have been 
proposed in the literature for multiple functionalities in the 
RAN, as presented in [1]-[7] and references therein. Most of 
these works focus on the formulation of RL-based algorithmic 
solutions and the assessment of their performance. 
Nevertheless, the current literature lacks from a consolidated 
view on how an RL algorithm has to be trained in order that it 
can be successfully and safely deployed in a RAN. Not 
sufficient attention has been paid in making explicit 
distinction between the training environment and the 
execution of the algorithm in the real network or in studying 
in detail practical aspects such as the time needed to achieve 
convergence, the impact of the trial and error process or the 
capability of the algorithm to react in front of changes in the 
environment. To the authors' best knowledge, only a few 
works have considered to some extent such practical issues in 
the evaluation of RL, such as [14], which proposes deep RL 
for RAN slicing and distinguishes between an initial training 
of the algorithm conducted on a training scenario and a 
subsequent evaluation of the trained algorithm in an 
evaluation scenario, [15], which analyses the robustness of a 
Q-learning algorithm for channel selection to relearn proper 
solutions when changes in the environment occur, or [16], 
which trains a deep RL-based mobility load balancing (MLB) 
algorithm in an offline network evaluation system based on 
historical performance records. The research interest in the 
area of model training for the RAN is also sustained by the 
abovementioned new 3GPP Rel. 18 study item [12], which 
will pay special attention to considering adequate model 
training strategies and to defining common assumptions for 
training dataset construction. 

The abovementioned aspects constitute the research gap 
addressed by this paper, which contributes to fill it by 
proposing a functional model for training RL algorithms 
operating in the RAN. The proposed model is aligned with the 
vision on ML functionality of O-RAN [8]. The model 
distinguishes between the training stage, executed on a 
specific training environment, and the inference stage, 
executed on the real network, and proposes specific functions 



for controlling the training process of RL models. These are 
in charge of specifying the configurations of the training 
environment through datasets, monitoring the training process 
and the operation in the real environment to detect situations 
when the model needs to be retrained. The functional model 
is illustrated with an applicability example of a deep RL 
algorithm for capacity sharing in RAN slicing. 

The rest of the paper is organized as follows. Section II 
presents some initial background on RL for better 
understanding of their capabilities. This is followed by a 
discussion on the applicability domains of RL in the RAN. 
Then, Section III highlights the main challenges for training 
an RL algorithm in the RAN and presents the proposed 
functional model. Section IV presents a specific applicability 
example of the proposed model illustrated with some results. 
Finally, conclusions and future work are summarized in 
Section V.         

II. PRELIMINARIES ON REINFORCEMENT LEARNING AND ITS 

APPLICABILITY IN THE RAN  

A. Background on RL 

Machine learning techniques are usually subdivided into 
three main categories. The first one is supervised learning that 
consists in learning from training examples provided by an 
external supervisor in the form of pairs of inputs and desired 
outputs, so it is not valid for interactive problems where the 
desired behaviour is not known. The second category is the 
unsupervised learning, consisting in learning to represent 
particular input patterns (e.g. independent samples of an 
underlying unknown probability distribution) in a way that 
reflects their statistical structure. The third category is 
reinforcement learning, which consists in learning a 
behavioral model through the dynamic interaction with an 
environment. This interaction is based on the execution of 
actions that provide as a result a reinforcement signal in the 
form of a reward that encodes the success of the action 
outcome. In this way, the learner, referred to as the agent, 
seeks to learn the actions that maximize the reward. RL 
provides a mathematical formalism for learning-based 
control that allows acquiring near-optimal behavioral skills 
and, for this reason, RL methods have applicability in many 
decision making problems.  

The operation of an RL system relies on the following 
elements [13]: (i) State: It conveys to the agent some sense of 
how the environment is at a certain time. (ii) Policy: It defines 
the agent behavior by mapping states of the environment to 
actions to be taken when being in those states. (iii) Reward 
signal: It is provided by the environment to the agent defining 
what are the good and bad actions, constituting the primary 
basis for modifying the policy with the objective of 
maximizing the total reward accumulated by the agent in the 
future, referred to as return. (iv) Value functions (state-value 
function and action-value function): The state-value function 
of a state under a given policy is the return that the agent can 
expect to obtain over the future, starting from that state and 
following the policy. Similarly, the action-value function for 
a state-action pair and under a policy is defined as the 
expected return starting from the state, taking the action and 
thereafter following the policy. In this way, these functions 
capture what is good in the long run, in contrast to the reward, 
which defines what is good in an immediate sense. 

With these elements, the target of RL methods is to find 
an optimal policy, i.e. a policy whose value functions are the 

highest ones among any other policy for all possible states. 
This search is done by means of a policy iteration process in 
which a policy is evaluated to estimate the value functions.  
Then, this estimation is used to improve the policy, and the 
process is repeated until reaching a termination condition. 
This policy iteration is the basis for the training of RL 
methods, understood as the process for acquiring the optimal 
policy of the RL agent.   

RL methods can be either model-based or model-free 
depending on whether they use or not a model of the 
environment for finding the optimal policy. In model-based 
methods, such as Dynamic Programming (DP), a perfect 
(mathematical) model of the environment is used. Instead, 
model-free methods do not assume complete knowledge of 
the environment, but instead, they learn from experiences, 
i.e., sample sequences of states, actions, and rewards obtained 
from actual or simulated interaction with an environment. 
Depending on how the policy iteration is performed, model-
free methods can in turn be categorized as Monte Carlo 
methods or Temporal-Difference (TD) methods. Monte Carlo 
methods are defined for episodic tasks (i.e., in which the 
agent-environment interaction ends in a termination state), so 
that policies are only updated at the end of an episode based 
on the obtained return. Instead, in TD methods the policy 
updates are done on a time-step basis by using the observed 
reward, so they are valid for both episodic and continuing 
tasks (i.e., in which the agent-environment interaction does 
not break naturally into episodes, but goes on continually 
without limit). Examples of TD methods are Q-learning or 
SARSA. TD methods are the most widely used RL methods, 
mainly due to the fact that they can be applied online and to 
their simplicity, as they can be expressed almost entirely by 
single equations that can be implemented with small 
computer programs. 

Another relevant aspect of RL is how to determine, 
represent and store the value functions and policies. When the 
state and action spaces are small, they can be exhaustively 
represented as arrays or lookup tables and in this case 
methods can often find exact solutions for the optimal value 
functions and policies. However, in many practical problems 
the state space can be extremely large, so it is unpractical to 
find an optimal policy or value function. Therefore, in these 
cases, the goal is to find a good approximate solution using 
limited computational resources. Moreover, the problem with 
large state spaces is not just the memory needed for 
representing them with large tables, but the time and data 
needed to fill them accurately because there will be many 
states that will never have seen before. Thus, to make sensible 
decisions in one of these states it is necessary to generalize 
from previous encounters with different states that are in 
some sense similar to the current one. Such generalization can 
be achieved by means of function approximation methods 
that take examples from a desired function and attempt to 
generalize from them to construct an approximation of the 
entire function. Deep neural networks can be used as effective 
function approximation methods, and its combination with 
RL methods has been successfully applied along a wide range 
of applications. One example is the Deep Q-Network (DQN), 
that combines Q-learning with a deep convolutional neural 
network [17].    

B. Applicability domains of RL in the RAN 

Machine learning techniques have applicability for 
dealing with multiple problems in different areas of the RAN 
such as physical layer processing, Medium Access Control 



(MAC), Radio Resource Management (RRM), Radio 
Network Management (RNM) or Self-Organized Networks 
(SON). However, given the different nature of the involved 
problems and the different principles behind the operation of 
each category of ML techniques, some of them become more 
appropriate than others in front of a given problem. Then, in 
contrast to supervised and unsupervised techniques, which 
are trained based on labeled and unlabeled data, respectively, 
and are typically used for tasks involving classification, 
regression, prediction or feature extraction, RL algorithms 
are conceived for decision making by learning from the 
interactions with the environment on the basis of trial and 
error. Therefore, they are suitable for problems involving 
some sort of decisions that can be translated into actions. As 
noted by [2], they have been used in the literature for 
problems such as cell selection, channel selection, resource 
allocation (scheduling), power allocation, small cell 
activation/deactivation for energy efficiency, adaptive 
modulation and coding, etc. Overall, the problems where RL 
techniques are applicable are mainly associated to the RRM 
functions, which dynamically manage the provisioned 
resources operating at different time scales from the 
milliseconds to a few seconds, and to the RNM and SON 
functions, which support the network planning, 
configuration, optimization and fault management of the 
RAN operating at longer term time scales. 

III. TRAINING RL MODELS IN THE RAN  

In relation to the training, the most important feature 
distinguishing RL from other types of learning is that the 
training uses evaluative feedback (i.e. indicates how good the 
action taken was), rather than instructive feedback (i.e. 
indicates the correct action to take), which is the basis for 
supervised learning. This characteristic creates the need for 
active exploration, searching explicitly for good behavior 
[13]. Indeed, the need to balance exploitation and exploration 
is a distinctive challenge that arises in RL. Exploitation refers 
to selecting the greedy actions, i.e. the actions whose 
estimated value is the highest one with the current knowledge 
that has been acquired at a certain time. In turn, exploration 
refers to selecting non-greedy actions, e.g., actions selected 
randomly. Exploration allows identifying actions that may 
produce greater total reward in the long run. 

Indeed, one of the key claimed advantages of RL 
techniques, which is the ability to progressively learn from 
the interactions with an environment without any a-priori 
knowledge of what are the good and bad decisions, becomes 
paradoxically one of the key challenges that needs to be 
addressed to facilitate the practical adoption of RL in real 
RANs. This is because the fundamentally online learning 
behaviour based on trial and error of RL in the real RAN 
environment may lead to unacceptable degradations in 
network performance during the learning or even to 
dangerous situations (e.g., in autonomous driving or 
healthcare).  

In order to deal with this problem, the possibility of 
training RL algorithms in simulated environments has been 
considered in different areas, such as robotics [18], 
cooperative driving [19] or healthcare [20]. Similarly, 
another approach is the so-called offline RL [21]. It is a data-
driven RL in which the algorithm is trained using only 
previously collected offline data without any further 
additional online interaction with the environment. This 
offline data will be a static dataset of transitions between 

states, the actions taken and the associated rewards. For 
example, in a healthcare problem, this offline data could be 
obtained from previous treatment histories of real patients, 
including the actions that were selected by their doctors.  

These approaches have already been considered when 
dealing with solutions for some functionalities in the RAN. 
The use of simulated environments for training has been 
considered in the coverage and capacity optimization (CCO) 
solution in [22], which uses a pre-trained policy in a simulator 
to adjust the user scheduling parameters in each antenna 
sector in the real network, and in the capacity sharing solution 
in [23], where training is also performed in a network 
simulator based on synthetically generated data. Moreover, 
the offline RL approach has been considered in the Deep 
Reinforcement Learning (DRL)-based mobility load 
balancing (MLB) solution in [16], which performs the 
training on a network evaluation system based on historical 
performance records gathered from the real environment. We 
note that the decisions made by these MLB, CCO and 
capacity sharing functionalities impact on a large number of 
users, so bad actions can highly impact on network 
performance (e.g., increase call blocking or call dropping 
rate).   

A. Functional model of the RL training process 

Fig. 1 depicts the functional model for RL training 
proposed in this paper. It starts from the main components 
involved in the O-RAN’s Alliance ML workflow [8], colored 
in blue in Fig. 1. The figure also depicts in orange color 
different components that are proposed in this work to deal 
with the peculiarities of the training of RL-based models. The 
proposed RL-specific components are split between the 
training host, where the RL model is trained using a training 
environment, and the inference host, where the trained model 
is executed directly on the subject of actions, which is the 
entity of the real RAN environment that is configured by the 
actions of the model. Examples of subjects of actions in the 
O-RAN architecture are the O-RAN Central Unit (O-CU), 
which hosts the upper layers of the radio interface protocol 
stack in a gNB, the O-RAN Distributed Unit (O-DU), which 
hosts the lower layers of the protocol stack, and the O-RAN 
Radio Unit (O-RU), which hosts radio-frequency and low 
physical layer functions. Other subjects of actions can be the 
RAN Intelligent Controllers (RICs), namely, the near-real 
time RIC (near-RT RIC), which enables the optimization of 
the RAN through, e.g., RRM functions operating at short 
term time scales, or the non-real time RIC (non-RT RIC), 
which allows the optimization of the RAN from the service 
management and orchestration layer.  

The RL model training is carried out by the RL agent at 
the training host under the model training & testing 
functionality through the dynamic interaction with the 
training environment, which could be a simulated model of 
the real RAN or a trial RAN (i.e., a RAN deployed in a real 
environment though carrying test traffic instead of real 
customers). The model training consists in a policy iteration 
process in which the RL agent iteratively observes the state 
of the environment, triggers an action, obtains the reward and 
uses this information to improve the policy. When selecting 
the actions, the RL agent makes use of the both exploration 
and exploitation in order to select the actions. For example, 

this can be done by means of an ε-greedy policy that, with 

probability 1-ε selects the best action based on the currently 
available policy at that time (i.e. exploitation), and with 



probability ε selects a random action (i.e. exploration). The 
amount of exploration can be progressively reduced as the 

training evolves, e.g., by reducing the value of ε. The training 
is monitored to control the model convergence and gather 
Key Performance Indicators (KPIs) from the agent such as 
memory used, loss, accuracy, etc. Based on this, the decision 
on whether the training process is completed or not can be 
taken in accordance with a given termination criterion (e.g., 
a convergence condition is met, a maximum number of 
iterations is reached, etc.). Once this occurs, the model testing 
can be executed, consisting in validating the behavior of the 
resulting model using the training environment and gathering 
different RAN-related KPIs (e.g., throughput, error rates, 
etc.). 

Within the training host, the model selection function 
selects the configurations for the inference and the training of 
the RL model based on the analysis of the requirements of the 
RL solution e.g., training accuracy, training time, hardware 
resources in training and inference, inference speed, etc. To 
control and configure the RL training process, the 
environment specification function and the training dataset 
specification function are proposed to be included in the 
model selection functionality. The environment specification 
function defines the relevant features of the real environment 
that need to be captured by the training environment. In a 
RAN, this includes the characterization of aspects such as the 
supported services, the propagation conditions, the mobility, 
as well as the relevant RAN functionalities to be considered, 
such as the scheduling, handover or admission control 
functions. Further details are given in Section III.B.  

Complex environments are typically characterized by a 
multiplicity of (possibly dynamic) configuration parameters 
(e.g. different load distributions in time/space in a RAN, 
different cell parameters, etc.) that will eventually determine 
the visited states by the RL agent. All these different 
configurations need to be captured in a properly designed 
training dataset by the training dataset specification function, 
which determines the set of configurations of the training 
environment to be used when training the RL model. This 
includes configuration parameters of the RAN nodes (e.g. 
transmitted power levels, handover parameters, etc.), service 
requirements (e.g. required throughput, required delay, etc.) 
and dynamic distributions of the load in time and space for 

the different cells of the RAN. The selection of the training 
dataset configurations should be done to cover the relevant 
situations that the RL agent will have to face when deployed 
on the real RAN environment. Further details are discussed 
in Section III.C. 

Moreover, the training host includes the model 
optimization and model refine functions. The former allows 
the optimization of the hyperparameters of the RL model 
based on certain hardware or performance metrics 
requirements such as model accuracy, model size, inference 
speed, memory used, etc. In turn, the model refine 
functionality allows, if required, the upgrade of the model 
through re-training after the model has been already deployed 
in the inference host.  

The management of the deployed RL model in the 
inference host is performed by the model management 
function. Once the training is completed, this function 
onboards the resulting trained policy to the RL agent in the 
model inference engine of the inference host. In this way, the 
RL model is deployed on the real RAN environment. 
Depending on the RL algorithm the transferred policy can 
take different forms. For example, in the case of a Q-learning 
algorithm the model will be a look-up table with the action 
value functions for each action/state pair. Similarly, in the 
case of DQN the model will consist in the set of weights of 
the deep neural network. Moreover, the model management 
function is responsible for the termination of a RL model 
deployment or its replacement by a different one.   

The RL agent at the inference host applies the trained 
policy on the subject of actions. The policy is applied 
continuously, repeating the process of observing the state and 
following the trained policy to decide the best action for that 
state. No exploration (or at maximum a limited and controlled 
exploration) is considered at this stage when selecting the 
actions, to prevent the potential performance degradation 
associated to random action selections.  

The continuous operations function provides a series of 
online functionalities to support the continuous improvement 
of the RL model within its lifecycle (i.e., deployment, 
modification, retraining and termination of a RL model).  
This includes the functions for the verification, monitoring, 
analysis, model improvement recommendation or the 

Fig. 1.- Functional model of the RL model training process. 



continuous optimization of the RL model. Therefore, while 
the RL model is executed, the continuous operations function 
continuously analyzes measurements and KPIs from the real 
RAN environment and the RL agent. This allows the 
detection of changes in the real environment conditions with 
respect to those that were considered in the training (e.g., 
different channel conditions, load distributions that 
substantially differ from those considered in the training 
dataset, changes in the deployed network such as the addition 
of a new base station, etc.). 

In some cases, the capability of the RL agent to generalize 
from the situations observed in the training dataset may still 
allow a satisfactory performance. However, in some other 
cases, these new conditions may lead to performance 
degradations because the trained policy will no longer be 
optimal. Hence, a retraining of the policy is needed to update 
the policy so that an optimal behavior is achieved under the 
new conditions. To detect the need of retraining, the model 
management function should include a retraining condition, 
dependent of the specific RL problem. For example, this can 
be based on the definition of target KPIs thresholds, so that 
the retraining is triggered when certain KPIs are above or 
below these thresholds.  

Depending on the nature of the detected changes, the 
model management function may decide to activate the 
retraining through the ML online learning function to update 
the RL model based on the real interaction with the subject of 
actions in the real RAN environment. This can be done by 
configuring a certain amount of exploration of the RL agent 

(e.g., by increasing the value of ε in case of an ε-greedy 
policy). In this case, the reward signal obtained from the 
subject of actions can be used to progressively update the 
policy. In turn, in case of substantial changes that may 
severely impact on the performance, the model management 
function may activate the model refine function in the 
training host to retrain the RL model to derive a new policy 
able to deal with the new conditions. For this purpose, it will 
send updated information about the real RAN environment to 
the environment specification and training dataset 
specification functions so that they take it into consideration 
when defining the new features of the training environment 
and an upgraded training dataset. This information can be 
gathered from the data collection & preparation function. 
The way of performing this retraining in terms of required 
data and retraining duration highly depends on the specific 
RL problem. In addition to the retraining capability, the 
model management function should also include protection 
mechanisms to terminate the deployment of a RL model in 
case a malfunctioning of the RL model is detected (e.g. 
extreme KPIs degradation, anomalies, etc.). Thus, a 
termination criterion needs to be established and a backup 
solution needs to be deployed in the ML inference host. The 
backup solution can be either another well-trained RL model 
or, a non-AI-based algorithm. For example, this can be 
relevant in case that the retraining duration is long and the 
performance of the actual model further degrades before the 
retraining is completed. 

B. RL training environment 

The RL training environment enables the execution of the 
trial and error process inherent to RL under a safe operation 
environment that does not suffer the consequences of bad 
decisions. Whether the RL training environment is a 
simulated model of the RAN or a trial RAN, it needs to 
include the elements that are relevant for the RL model under 

test and should be configured to properly capture similar 
operation conditions than those that the RL agent will 
experience when deployed on the real RAN environment, for 
example, in terms of propagation environment, types of 
traffic, number of users, etc.  

In the case that the RL training environment is a simulated 
model, the different RAN functionalities can be modeled with 
different level of detail in the simulator depending on their 
relevance for the problem at hand, thus arising a trade-off 
between simulator complexity, agility in the training process 
and accuracy of the trained model. For example, the 
introduction of a detailed model for the physical signal 
transmission and reception at the symbol level will 
significantly slow down the simulation process but it might 
not have any relevant impact on the accuracy of the results if 
the RL model only cares about average transmitted/received 
signal levels (e.g. when RL is used by the handover function).  

Then, it is envisaged that, for RL models supporting MAC 
level functionalities (e.g. scheduling) operating in the 
millisecond time scale, the RL training environment should 
accurately model aspects such as the instantaneous channel 
conditions (e.g. Channel Quality Indicator) of each user in a 
cell, the packet queues impacted by the per-user traffic 
generation process, the retransmission schemes (i.e. 
Automatic Repeat reQuest (ARQ) and Hybrid ARQ at Radio 
Link Control (RLC) and MAC layers, respectively) or the 
beamforming and spatial multiplexing approaches. In turn, 
when training RL models for RRM or RNM functions 
operating at longer term time scales, some of the 
abovementioned effects may be modelled in a more averaged 
and/or aggregated way (e.g. by considering only average 
channel conditions or an aggregate model of the traffic in a 
cell). Instead, other elements such as user mobility may need 
to be considered and properly modelled.     

C. RL training dataset specification 

The training dataset should be specified in a way that the 
RL training environment is driven to produce those situations 
(i.e., states) that the RL agent may face when it will run in the 
real RAN environment, including not only those that are 
expected to occur frequently but also those that will be less 
usual. For this purpose, the relevant parameters of the training 
environment impacting on the RL model need to be identified 
and adequately configured to ensure that a sufficiently 
representative number of states are encountered by the RL 
agent, so that the agent can properly generalize from them. 

The relevant parameters to configure the environment 
will be typically related with how the state is defined and their 
values in the dataset should be set in accordance with a 
dynamic range that reflects those situations in which the 
agent is supposed to learn how to behave. Moreover, it should 
be ensured that the different situations are observed a 
sufficient number of times so that the RL agent is able to 
consolidate the actions to be selected when being in these 
situations. All these aspects will determine the size of the 
training dataset that will eventually impact on the training 
duration. In practice, it may happen that the specification of 
a dataset that covers a big range of possible situations leads 
to an extremely large dataset that makes impractical the 
training process. In this case, a trade-off can be found by 
having a more reduced training dataset and then relying on 
model retraining if needed to deal with new situations.  

The specification of the training dataset will be highly 
dependent of the RL problem at hand. For example, when 



training an RL model for scheduling, the training dataset can 
be configured to produce different channel model statistics 
(e.g. doppler frequencies, line-of-sight and non-line-of-sight 
situations), different numbers of users per cell and per service 
or different service requirements.  

The training dataset can make use of data collected from 
the real network (e.g. actual channel measurements, 
measurements of the number of users connected to a cell at 
different periods of time, etc.). This data can be extended with 
other synthetic data in order to generate those situations that 
are more difficult to encounter in the real network.  

IV. APPLICABILITY EXAMPLE  

The O-RAN-based functional framework for the training 
of RL in Fig. 1 can be adopted for multiple RL problems in 
the RAN. In this section, an applicability example of the 
functional model of the RL training process is provided for 
the use case of capacity sharing in RAN slicing. The 
considered use case and the scenario for evaluation are 
described in Section IV.A and Section IV.B, respectively. 
The evaluation presented in Section IV.C focuses on the 
retraining aspects of the proposed functional model. Finally, 
Section IV.D provides some insight on other possible 
applicability examples.  

A. Use case description 

This section illustrates the operation of the proposed 
functional framework and the role of its components when 
applied to the problem of capacity sharing in RAN slicing. 
The DQN-Multi-Agent Reinforcement Learning (MARL) 
capacity sharing solution for multi-tenant and multi-cell 
scenarios defined in our recent publication [23] is considered. 
The solution dynamically distributes the available capacity in 
a RAN infrastructure composed of N cells, where each cell n 
has a total cell capacity cn (b/s), among K tenants, each of 
them provided with a RAN slice. The solution targets the 
efficient use of the available capacity in the cells and, at the 
same time, the satisfaction of the Service Level Agreement 
(SLA) of the tenants. The SLA established for the k-th tenant 
is defined in terms of: (a) the Scenario Aggregated 
Guaranteed Bit Rate, SAGBRk, which is the aggregated 
capacity to be provided across all cells to tenant k if 
requested, and (b) the Maximum Cell Bit Rate, MCBRk,n, 
which is the maximum bit rate that can be provided to tenant 
k in cell n.   

The DQN-MARL capacity sharing solution considers that 
each tenant is associated to a different RL agent as depicted 
in Fig. 2, which shows the deployment of the DQN-MARL 
capacity sharing solution in the model inference engine of the 
inference host. An RL agent tunes the resource quota (i.e. the 
fraction of capacity) assigned to the tenant's slice in the 
different cells in time steps of duration Δt.  For this purpose, 
the RL agent obtains the state of the tenant in the different 
cells of the environment. The state is defined as a tuple with 
different metrics. These include, for each cell, the resource 
usage and resource quota of the tenant, the resource quota not 
assigned to any tenant and the resources not used in the cell. 
In addition, the state includes the SLA parameters of the 
tenant. According to the obtained state, the RL agent decides 
the actions to perform in each cell, which can be to increase 

the resource quota in ∆, to decrease it in ∆ or to keep it 
unaltered. The action selection is performed dynamically in 

time steps of duration ∆t. Based on the selected actions by the  
  

 
Fig. 2. Deployment of the DQN-MARL solution in the ML inference host.  

different RL agents, and given that the decisions are taken 
separately by each agent, the resource usage quota 
computation function of Fig. 2 determines the actual resource 
quota to apply in each cell, ensuring e.g., that the resulting 
resource quota of all slices within a cell do not exceed 1 (i.e., 
the total cell capacity). For further details on definitions of 
the state and action, the reader is referred to [23].  

From an implementation perspective, the resource quota 
of a slice is configured through the so-called 
rRMPolicyDedicatedRatio attribute of each cell, as detailed 
in [24]. As seen in Fig. 2, this attribute is configured in the O-
DU unit that handles each cell and that is responsible of the 
high-physical layer processing of 5G New Radio, MAC and 
RLC functionalities. Then, the O-DU acts as the subject of 
actions and its MAC layer performs the allocation of Physical 
Resource Blocks (PRBs) to the users of the RAN slice based 
on the value of rRMPolicyDedicatedRatio. The configuration 
of this attribute is conducted through the O1 interface, 
defined in the O-RAN architecture for the management 
provisioning services [26]. Moreover, this interface is also 
used to obtain the performance measurements from the O-DU 
of each cell. These measurements are used to determine the 
states of the RL agents used to select new actions.  

The training of the DQN-MARL solution is performed in 
the training host, where the training environment 
specification considers the same values of K, N, cn, SAGBRk, 
MCBRk,n and cells distribution as in the real RAN 
environment. The training environment is fed with the data of 
the training dataset, which is composed of multiple temporal 
patterns of the offered load of the K tenants (i.e., slices) and 
different combinations of their SLA values. The offered load 
is defined as the requested capacity in bits/s of a tenant 
normalised to the total cell capacity and averaged during a 
time step. An offered load pattern includes the time evolution 
of the offered load of a tenant during T time steps. The 
training dataset specification function specifies the number 
of offered load patterns included in the dataset, the range of 
values of offered loads and the SLA parameters of the 
different tenants, as discussed in our previous work [27]. The 
optimization function selects the hyperparameter values of 
the DQN agents in the DQN-MARL solution after following 
a try and error procedure and choosing those values that 
achieve a better training performance.  

Using the selected hyperparameters configuration, the 
training is performed by consecutively applying the temporal 



patterns in the training dataset to the training environment and 
by letting the DQN algorithm update the policy based on the 
interactions with this environment. During the training, the RL 
agent of each slice obtains the state from the training 
environment and, accordingly selects an action to update the 

resource quota using an ε-greedy strategy. At the next time 
step, a reward is obtained. The reward formulation (see [23] 
for details) promotes the satisfaction of the SLA parameters  
and the minimization of overprovisioning situations. Then, the 
RL agent stores in a dataset the experience composed by the 
last state and action and the resulting state and obtained 
reward. The policy update is performed in every time step 
during the training process using the information of the dataset 
of experiences and following the procedure of [25]. The 
training process is monitored in terms of the loss function until 
reaching a convergence criterion [27].  

Once the training is completed, the model management 
function on-boards the trained policies for the different tenants 
in the RL agents of the model inference engine. During the 
inference, the continuous operations monitors the model 
performance feedback in terms of the following KPIs: 

• Average SLA satisfaction per tenant: computed as the 
average ratio between the aggregate throughput of the 
tenant in the scenario and the minimum between the 
aggregate of the offered load in the cell, bounded to the 
MCBRk,n, over all cells and the SAGBRk. This average is 
computed during a window of T time steps.  

• Average utilization ratio: average ratio between the system 
utilization and the aggregated assigned capacity to all 
tenants in the system during T time steps. The system 
utilization is computed by dividing the aggregated 
throughput of all tenants among all cells by the system 
capacity.  

• Average distance between the training and the inference 
data: This quantifies the similarity between the training 
and inference data and is obtained by computing the 
Euclidean distance between the offered load values in each 
cell at each time step during inference and the closest 
offered load of the training dataset and then by performing 
the average of this distance over the last T time steps.  

Using the above KPIs obtained by the continuous 
operation function, the model management function can 
detect if a re-training of the solution is required and 
consequently it can activate the model refine function to 
upgrade the trained policies.  

B. Considered scenario 

The DQN-MARL capacity sharing solution is applied in a 
RAN scenario with K=2 tenants, denoted as Tenant 1 and 
Tenant 2, and N=5 cells, which are distributed in an area of 
3km x 3km. Each cell has a total cell capacity cn= 140 Mb/s, 
so the total system capacity is C=700 Mb/s. The established 
SLAs are SAGBR1=420 Mb/s and SAGBR2=280 Mb/s, 
corresponding to the 60% and 40% of the system capacity, 
respectively, and the MCBR1,n=MCBR2,n=112 Mb/s, 
corresponding to the 80% of cn.  

For evaluation purposes, both the training environment 
and the real RAN environment are implemented by a RAN 
simulator configured according to the considered scenario. 
The optimization function considers the hyperparameters 
shown in Table I. The selected values in Table I correspond to 
the those providing the best trade-off between the training 
duration and loss after testing different possibilities.  

The DQN-MARL capacity sharing solution has been 
initially trained with an action step Δ=0.03 and applying the 
offered loads patterns of the training dataset, each one with 
duration T=288 time steps. These patterns have been defined 
considering a homogenous distribution of the offered load 
among the different cells, which means that, for a given tenant, 
very similar offered loads are assumed in all the cells. The 
training is completed after 2·106 time steps. The performance 
of the learnt policy, denoted as Initial Policy, has been 
monitored in the RAN environment during T=288 time steps.   

C. Performance results 

This section analyses the performance achieved during 
the inference stage. The achieved performance of a policy 
during inference depends on the generalization capability of 
the trained policy to adapt to situations not included in the 
training dataset but also on the similarity between the training 
dataset and the experienced data during inference, as 
discussed in our previous work [27]. Deepening into these 
aspects, the presented results intend to, on the one hand, 
quantify the performance degradations that arise if the initial 
training does not match the actual conditions experienced 
during inference and, on the other hand, to illustrate the 
capability to retrain the RL model, as considered in the 
proposed functional model of Fig. 1. 

To this end, we start by considering that the 
abovementioned Initial Policy is generated and deployed by 
the model management in the model inference engine, which 
starts applying it at time to. Fig. 3 shows the evolution of the 
average SLA satisfaction for Tenant 1 and Tenant 2 and the 
average utilization ratio. Starting at to and for the first 600 
time steps the traffic distribution across cells is 
homogeneous. Correspondingly, since the traffic considered 
for the training of the Initial Policy exhibited this feature, 
high KPI values are observed in Fig. 3 during this period, 
reflecting the good performance of this policy. Specifically, 
the average SLA satisfaction is around 96% for both tenants 
and the average utilization ratio around 95%.  

TABLE I. DQN-MARL MODEL HYPERPARAMETERS 

Parameter Value 

Initial collect steps 5000 

Maximum number of time 

steps for training 
2·106 

Experience Replay buffer 
maximum length (l) 

107 

Mini-batch size (J) 256 

Learning rate (�) 0.0001 

Discount factor(γ) 0.9 

ɛ value (ɛ-Greedy) 0.1 

DNN configuration 

Input layer: 17 nodes 

1 full connected layer: 100 nodes 
Output layer: 243 nodes 

 

 
Fig. 3. Evolution of the average SLA satisfaction and utilization ratio.  
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Then, at t1, we assume that a change of the offered load 
distribution of both tenants occurs due to the appearance of 
hotspots, leading to a heterogeneous load distribution across 
cells. This is represented in Fig. 4, which depicts the offered 
load density in Mb/s/km2 of Tenant 1 and Tenant 2 at some 
illustrative time instants relative to t1. This pattern is repeated 
every 288 time steps from t1 until the end of the analyzed 
period. While the average utilization ratio remains high after 
t1, as seen in Fig. 3, the average SLA satisfaction values of 
both tenants decrease significantly. Then, the continuous 
operations function assesses the average distance between 
the training and inference data. Fig. 5 shows the evolution of 
this average distance during the same period of Fig. 3. From 
t0 to t1 the average distance remains at a low value of around 
0.08, indicating that the experienced data during inference 
and the training dataset are similar. However, when the 
offered load distribution among cells becomes strongly 
heterogeneous at t1, the average distance starts increasing 
abruptly and a decrease of the SLA satisfaction of both 
tenants follows. Based on this, the model management 
function determines that a retraining of the RL model is 
required and activates the model refine function in the 
training host. Indeed, the observations made in Fig. 3 and Fig. 
5 reflect the trade-off between the achieved performance and 
the complexity of the training process. While the initial 
training has been sufficient to achieve a satisfactory 
performance until t1 without the need of a complex training 
dataset, this has not been enough to generalize the policy to 
the offered load situations that arise after t1 and thus the 
average SLA satisfaction values of both tenants degrade in 
around 25%. Therefore, a richer and more complex training 
dataset with a wider range of offered load values for the 
different cells is needed for the retraining stage. This new 
dataset is built considering the offered load conditions 
 

 
Fig. 4.- Offered load density maps of Tenant 1 and 2 at some illustrative time 
instants.  

 
Fig. 5. Average distance between the training and inference data.  

observed after t1 during inference, gathered by the data 
collection & preparation function, and applying data 
augmentation to increase the size of the training dataset. 

After retraining, the model management replaces the 
Initial Policy by the upgraded policy, denoted as Re-trained 
Policy, in the inference host at time t2. As a result, an increase 
of the average SLA satisfaction of both tenants is experienced 
in Fig. 3, achieving again values above 0.9 from t3 until the 
end of the analyzed period. Indeed, improvements of 22% 
with respect to the ones in t2 are achieved for both tenants. 
This improvement is also justified by the smaller average 
distance between the training and inference data shown in 
Fig. 5. It is observed that this average distance starts to 
decrease when the Re-trained Policy is applied at t2 and 
achieves again low values of around 0.15 after t3. 

The above results suggest that the practical exploitation 
of the proposed framework could embrace an initial 
simulation-based training keeping the simulator complexity 
at a relatively low extent and a subsequent retraining 
exploiting data extracted from the real RAN environment 
with proper data augmentation techniques to speed up the 
process if needed. In this way, the learnt policy can be 
upgraded to capture the new situations that may arise during 
inference. 

D. Other applicability examples 

In order to provide a wider view on the applicability of 
the proposed framework, two other use cases are discussed in 
the following.  

The first example is the MLB problem, in which cells 
suffering congestion can transfer load to other cells with less 
traffic. The control of this load transfer is typically done using 
the handover function executed at the O-CU, and can make 
use of RL algorithms. An example is given in [16], which 
proposes a DRL solution to tune a parameter named cell 
individual offset considered in the handover decision for a 
user. The proposed framework can be used to train an RL-
based MLB solution using a training environment composed 
of multiple cells in a certain area and considering multiple 
heterogeneous spatial distributions of the load in the different 
cells. Then, the training dataset will be defined by these 
spatial distributions, together with the cell configuration 
parameters and the user mobility patterns. This data could be 
based on real data gathered and processed by data collection 
& preparation function but also on synthetic models for 
generating user trajectories. The trained policies will be 
deployed in the ML inference host by considering as subject 
of actions the O-CU. To monitor the performance of the 
deployed MLB policies, relevant KPI parameters to check are 
the occupation among the cells and the quality metrics of the 
UE, such as the Signal to Noise and Interference Ratio 
(SINR). These quality metrics are particularly important 
because wrong MLB decisions may lead to significant 
interference increases if a UE is not served by an adequate 
cell, so they can be used to detect if a retraining is needed.  

Another applicability example is the CCO problem, 
which consists in adjusting certain cell parameters (e.g. 
antenna tilts, reference signal powers, scheduling parameters, 
etc.) to optimize the resulting capacity and coverage. An 
example of the use of DRL for CCO is given in [22], which 
adjusts two specific parameters of their scheduling algorithm. 
DRL-based solution to configure user scheduling parameters. 
For this type of solutions, the training environment has to 
consider multiple cells serving multiple users and needs to 
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carefully model the short term channel variations of each user 
and the scheduling process, thus having to operate at time 
scales in the order of 1 ms. The training dataset should then 
include different numbers of users and requirements and can 
be enriched with Channel Quality Indicators of real cells to 
characterize a certain network environment. The ML 
inference host and the subject of actions would depend on the 
specific parameter adjusted by the CCO. For example, in the 
solution of [22], both of them would be the O-DU function.  

V. CONCLUSIONS AND FUTURE WORK 

Motivated by the high interest that the applicability of RL 
techniques has raised for different problems in the RAN and 
by the little attention that has been paid so far to the training 
of these algorithms, this paper has presented a framework for 
training RL algorithms in the RAN that is aligned with the 
ongoing work by O-RAN Alliance on the application of ML 
for the RAN. The proposed framework complements the O-
RAN approach through the incorporation of specific 
functions for the training of RL solutions. These include 
different functionalities for specifying training datasets to 
capture the situations that will be faced by the model in the 
real network and for continuously monitoring the 
performance of the inference stage to trigger a retraining if 
needed. The operation of the proposed framework has been 
illustrated with a DQN-based algorithm for capacity sharing. 
It has been shown that, when there are significant differences 
between inference and training data, performance 
degradations of around 25% are observed, which can be 
overcome by means of a proper retraining process. In 
addition, the applicability of the framework for RL-based 
solutions to the problems of mobility load balancing and 
coverage and capacity optimizations are discussed.  

The considered DQN-MARL capacity sharing solution 
has allowed illustrating the operation of the O-RAN-based 
functional framework proposed in this paper for the specific 
problem of capacity sharing in RAN slicing scenarios. Two 
future research directions are identified. The first one is the 
validation of the proposed framework using a testbed in order 
to study its feasibility and implementation complexity when 
deploying it in a real RAN, treating aspects such as the 
software and virtualization tools required to deploy the 
different components of the proposed framework as well as 
the interfaces that enable the interaction between them. The 
second research direction is the assessment of the proposed 
framework for a wider range of problems other than the 
capacity sharing, in order to validate the generality of the 
proposed framework and to identify potential enhancements.  
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