

On the Training of Reinforcement Learning-based

Algorithms in 5G and Beyond Radio Access

Networks

I. Vilà, J. Pérez-Romero, O. Sallent

Dept. of Signal Theory and Communications, Universitat Politècnica de Catalunya (UPC)

Barcelona, Spain
[irene.vila.munoz, jordi.perez-romero]@upc.edu, sallent@tsc.upc.edu

Abstract—Reinforcement Learning (RL)-based algorithmic
solutions have been profusely proposed in recent years for
addressing multiple problems in the Radio Access Network
(RAN). However, how RL algorithms have to be trained for a
successful exploitation has not received sufficient attention. To
address this limitation, which is particularly relevant given the
peculiarities of wireless communications, this paper proposes a
functional framework for training RL strategies in the RAN.
The framework is aligned with the O-RAN Alliance machine
learning workflow and introduces specific functionalities for
RL, such as the way of specifying the training datasets, the
mechanisms to monitor the performance of the trained policies
during inference in the real network, and the capability to
conduct a retraining if necessary. The proposed framework is
illustrated with a relevant use case in 5G, namely RAN slicing,
by considering a Deep Q-Network algorithm for capacity
sharing. Finally, insights on other possible applicability
examples of the proposed framework are provided.

Keywords—Radio Access Network, Network slicing,

Reinforcement Learning, Training.

I. INTRODUCTION

The advent of 5G promises to deliver a wide range of new
services (e.g., self-driving car, virtual reality, eHealth, etc.)
with heterogeneous requirements (e.g., high data rates,
reliability, low latencies, massive connection densities, etc.).
To meet the demands of all these services and to provide a
high level of flexibility, the 5G New Radio (NR) technology
comes with a number of substantially new features in relation
to previous Long Term Evolution (LTE) standard. These are
included both from an architectural perspective, e.g. through
the support of network slicing or the split of the gNB network
function, and from a radio access technology perspective, e.g.
through the support of higher frequency ranges, flexible
numerologies or enhanced multi-antenna transmission. In
turn, increasing virtualization and embedding data-driven
intelligence into the Radio Access Network (RAN) are two of
the major paradigm changes associated with 5G and beyond
systems. In this way, the RAN industry is re-shaping towards
more intelligent, autonomous, open, virtualised and fully
interoperable mobile networks.

A key driving force in this transformation towards more
autonomous mobile networks comes from the exploitation of
Artificial Intelligence (AI) and, more specifically, Machine
Learning (ML) techniques. These are permeating almost all
layers of the next generation RAN architecture and the
associated operations and support systems (OSS) for network
management. There is a vast literature in the application of
AI/ML in the RAN, which is profusely captured in survey
papers (e.g., [1]-[4]) or tutorial-like papers discussing the
challenges, opportunities and applicability areas (e.g., [5]-[7]).
In turn, the interest of the industry in this area is also reflected
by a number of standardisation initiatives started in the last
years for introducing AI/ML techniques in wireless networks

through the specification of supporting architectures or
AI/ML workflows. This is the case of the Open RAN (O-
RAN) Alliance [8], the ITU-T Y.3172 recommendation [9] or
the ETSI Industry Specification Groups (ISG) on Zero-touch
network and Service Management (ZSM) [10] and on
Experiential Networked Intelligence (ENI) [11]. In turn, Third
Generation Partnership Project (3GPP) has also approved very
recently a new Rel. 18 study item on AI/ML for the New
Radio (NR) air interface [12] that will explore the benefits of
augmenting the air interface with features enabling improved
support of AI/ML-based algorithms.

Reinforcement Learning (RL) techniques [13], a subset
within the ML domain, are of special interest in the RAN
because they are conceived for solving decision-making
problems in an optimal way. As such, they have been
proposed in the literature for multiple functionalities in the
RAN, as presented in [1]-[7] and references therein. Most of
these works focus on the formulation of RL-based algorithmic
solutions and the assessment of their performance.
Nevertheless, the current literature lacks from a consolidated
view on how an RL algorithm has to be trained in order that it
can be successfully and safely deployed in a RAN. Not
sufficient attention has been paid in making explicit
distinction between the training environment and the
execution of the algorithm in the real network or in studying
in detail practical aspects such as the time needed to achieve
convergence, the impact of the trial and error process or the
capability of the algorithm to react in front of changes in the
environment. To the authors' best knowledge, only a few
works have considered to some extent such practical issues in
the evaluation of RL, such as [14], which proposes deep RL
for RAN slicing and distinguishes between an initial training
of the algorithm conducted on a training scenario and a
subsequent evaluation of the trained algorithm in an
evaluation scenario, [15], which analyses the robustness of a
Q-learning algorithm for channel selection to relearn proper
solutions when changes in the environment occur, or [16],
which trains a deep RL-based mobility load balancing (MLB)
algorithm in an offline network evaluation system based on
historical performance records. The research interest in the
area of model training for the RAN is also sustained by the
abovementioned new 3GPP Rel. 18 study item [12], which
will pay special attention to considering adequate model
training strategies and to defining common assumptions for
training dataset construction.

The abovementioned aspects constitute the research gap
addressed by this paper, which contributes to fill it by
proposing a functional model for training RL algorithms
operating in the RAN. The proposed model is aligned with the
vision on ML functionality of O-RAN [8]. The model
distinguishes between the training stage, executed on a
specific training environment, and the inference stage,
executed on the real network, and proposes specific functions

for controlling the training process of RL models. These are
in charge of specifying the configurations of the training
environment through datasets, monitoring the training process
and the operation in the real environment to detect situations
when the model needs to be retrained. The functional model
is illustrated with an applicability example of a deep RL
algorithm for capacity sharing in RAN slicing.

The rest of the paper is organized as follows. Section II
presents some initial background on RL for better
understanding of their capabilities. This is followed by a
discussion on the applicability domains of RL in the RAN.
Then, Section III highlights the main challenges for training
an RL algorithm in the RAN and presents the proposed
functional model. Section IV presents a specific applicability
example of the proposed model illustrated with some results.
Finally, conclusions and future work are summarized in
Section V.

II. PRELIMINARIES ON REINFORCEMENT LEARNING AND ITS

APPLICABILITY IN THE RAN

A. Background on RL

Machine learning techniques are usually subdivided into
three main categories. The first one is supervised learning that
consists in learning from training examples provided by an
external supervisor in the form of pairs of inputs and desired
outputs, so it is not valid for interactive problems where the
desired behaviour is not known. The second category is the
unsupervised learning, consisting in learning to represent
particular input patterns (e.g. independent samples of an
underlying unknown probability distribution) in a way that
reflects their statistical structure. The third category is
reinforcement learning, which consists in learning a
behavioral model through the dynamic interaction with an
environment. This interaction is based on the execution of
actions that provide as a result a reinforcement signal in the
form of a reward that encodes the success of the action
outcome. In this way, the learner, referred to as the agent,
seeks to learn the actions that maximize the reward. RL
provides a mathematical formalism for learning-based
control that allows acquiring near-optimal behavioral skills
and, for this reason, RL methods have applicability in many
decision making problems.

The operation of an RL system relies on the following
elements [13]: (i) State: It conveys to the agent some sense of
how the environment is at a certain time. (ii) Policy: It defines
the agent behavior by mapping states of the environment to
actions to be taken when being in those states. (iii) Reward
signal: It is provided by the environment to the agent defining
what are the good and bad actions, constituting the primary
basis for modifying the policy with the objective of
maximizing the total reward accumulated by the agent in the
future, referred to as return. (iv) Value functions (state-value
function and action-value function): The state-value function
of a state under a given policy is the return that the agent can
expect to obtain over the future, starting from that state and
following the policy. Similarly, the action-value function for
a state-action pair and under a policy is defined as the
expected return starting from the state, taking the action and
thereafter following the policy. In this way, these functions
capture what is good in the long run, in contrast to the reward,
which defines what is good in an immediate sense.

With these elements, the target of RL methods is to find
an optimal policy, i.e. a policy whose value functions are the

highest ones among any other policy for all possible states.
This search is done by means of a policy iteration process in
which a policy is evaluated to estimate the value functions.
Then, this estimation is used to improve the policy, and the
process is repeated until reaching a termination condition.
This policy iteration is the basis for the training of RL
methods, understood as the process for acquiring the optimal
policy of the RL agent.

RL methods can be either model-based or model-free
depending on whether they use or not a model of the
environment for finding the optimal policy. In model-based
methods, such as Dynamic Programming (DP), a perfect
(mathematical) model of the environment is used. Instead,
model-free methods do not assume complete knowledge of
the environment, but instead, they learn from experiences,
i.e., sample sequences of states, actions, and rewards obtained
from actual or simulated interaction with an environment.
Depending on how the policy iteration is performed, model-
free methods can in turn be categorized as Monte Carlo
methods or Temporal-Difference (TD) methods. Monte Carlo
methods are defined for episodic tasks (i.e., in which the
agent-environment interaction ends in a termination state), so
that policies are only updated at the end of an episode based
on the obtained return. Instead, in TD methods the policy
updates are done on a time-step basis by using the observed
reward, so they are valid for both episodic and continuing
tasks (i.e., in which the agent-environment interaction does
not break naturally into episodes, but goes on continually
without limit). Examples of TD methods are Q-learning or
SARSA. TD methods are the most widely used RL methods,
mainly due to the fact that they can be applied online and to
their simplicity, as they can be expressed almost entirely by
single equations that can be implemented with small
computer programs.

Another relevant aspect of RL is how to determine,
represent and store the value functions and policies. When the
state and action spaces are small, they can be exhaustively
represented as arrays or lookup tables and in this case
methods can often find exact solutions for the optimal value
functions and policies. However, in many practical problems
the state space can be extremely large, so it is unpractical to
find an optimal policy or value function. Therefore, in these
cases, the goal is to find a good approximate solution using
limited computational resources. Moreover, the problem with
large state spaces is not just the memory needed for
representing them with large tables, but the time and data
needed to fill them accurately because there will be many
states that will never have seen before. Thus, to make sensible
decisions in one of these states it is necessary to generalize
from previous encounters with different states that are in
some sense similar to the current one. Such generalization can
be achieved by means of function approximation methods
that take examples from a desired function and attempt to
generalize from them to construct an approximation of the
entire function. Deep neural networks can be used as effective
function approximation methods, and its combination with
RL methods has been successfully applied along a wide range
of applications. One example is the Deep Q-Network (DQN),
that combines Q-learning with a deep convolutional neural
network [17].

B. Applicability domains of RL in the RAN

Machine learning techniques have applicability for
dealing with multiple problems in different areas of the RAN
such as physical layer processing, Medium Access Control

(MAC), Radio Resource Management (RRM), Radio
Network Management (RNM) or Self-Organized Networks
(SON). However, given the different nature of the involved
problems and the different principles behind the operation of
each category of ML techniques, some of them become more
appropriate than others in front of a given problem. Then, in
contrast to supervised and unsupervised techniques, which
are trained based on labeled and unlabeled data, respectively,
and are typically used for tasks involving classification,
regression, prediction or feature extraction, RL algorithms
are conceived for decision making by learning from the
interactions with the environment on the basis of trial and
error. Therefore, they are suitable for problems involving
some sort of decisions that can be translated into actions. As
noted by [2], they have been used in the literature for
problems such as cell selection, channel selection, resource
allocation (scheduling), power allocation, small cell
activation/deactivation for energy efficiency, adaptive
modulation and coding, etc. Overall, the problems where RL
techniques are applicable are mainly associated to the RRM
functions, which dynamically manage the provisioned
resources operating at different time scales from the
milliseconds to a few seconds, and to the RNM and SON
functions, which support the network planning,
configuration, optimization and fault management of the
RAN operating at longer term time scales.

III. TRAINING RL MODELS IN THE RAN

In relation to the training, the most important feature
distinguishing RL from other types of learning is that the
training uses evaluative feedback (i.e. indicates how good the
action taken was), rather than instructive feedback (i.e.
indicates the correct action to take), which is the basis for
supervised learning. This characteristic creates the need for
active exploration, searching explicitly for good behavior
[13]. Indeed, the need to balance exploitation and exploration
is a distinctive challenge that arises in RL. Exploitation refers
to selecting the greedy actions, i.e. the actions whose
estimated value is the highest one with the current knowledge
that has been acquired at a certain time. In turn, exploration
refers to selecting non-greedy actions, e.g., actions selected
randomly. Exploration allows identifying actions that may
produce greater total reward in the long run.

Indeed, one of the key claimed advantages of RL
techniques, which is the ability to progressively learn from
the interactions with an environment without any a-priori
knowledge of what are the good and bad decisions, becomes
paradoxically one of the key challenges that needs to be
addressed to facilitate the practical adoption of RL in real
RANs. This is because the fundamentally online learning
behaviour based on trial and error of RL in the real RAN
environment may lead to unacceptable degradations in
network performance during the learning or even to
dangerous situations (e.g., in autonomous driving or
healthcare).

In order to deal with this problem, the possibility of
training RL algorithms in simulated environments has been
considered in different areas, such as robotics [18],
cooperative driving [19] or healthcare [20]. Similarly,
another approach is the so-called offline RL [21]. It is a data-
driven RL in which the algorithm is trained using only
previously collected offline data without any further
additional online interaction with the environment. This
offline data will be a static dataset of transitions between

states, the actions taken and the associated rewards. For
example, in a healthcare problem, this offline data could be
obtained from previous treatment histories of real patients,
including the actions that were selected by their doctors.

These approaches have already been considered when
dealing with solutions for some functionalities in the RAN.
The use of simulated environments for training has been
considered in the coverage and capacity optimization (CCO)
solution in [22], which uses a pre-trained policy in a simulator
to adjust the user scheduling parameters in each antenna
sector in the real network, and in the capacity sharing solution
in [23], where training is also performed in a network
simulator based on synthetically generated data. Moreover,
the offline RL approach has been considered in the Deep
Reinforcement Learning (DRL)-based mobility load
balancing (MLB) solution in [16], which performs the
training on a network evaluation system based on historical
performance records gathered from the real environment. We
note that the decisions made by these MLB, CCO and
capacity sharing functionalities impact on a large number of
users, so bad actions can highly impact on network
performance (e.g., increase call blocking or call dropping
rate).

A. Functional model of the RL training process

Fig. 1 depicts the functional model for RL training
proposed in this paper. It starts from the main components
involved in the O-RAN’s Alliance ML workflow [8], colored
in blue in Fig. 1. The figure also depicts in orange color
different components that are proposed in this work to deal
with the peculiarities of the training of RL-based models. The
proposed RL-specific components are split between the
training host, where the RL model is trained using a training
environment, and the inference host, where the trained model
is executed directly on the subject of actions, which is the
entity of the real RAN environment that is configured by the
actions of the model. Examples of subjects of actions in the
O-RAN architecture are the O-RAN Central Unit (O-CU),
which hosts the upper layers of the radio interface protocol
stack in a gNB, the O-RAN Distributed Unit (O-DU), which
hosts the lower layers of the protocol stack, and the O-RAN
Radio Unit (O-RU), which hosts radio-frequency and low
physical layer functions. Other subjects of actions can be the
RAN Intelligent Controllers (RICs), namely, the near-real
time RIC (near-RT RIC), which enables the optimization of
the RAN through, e.g., RRM functions operating at short
term time scales, or the non-real time RIC (non-RT RIC),
which allows the optimization of the RAN from the service
management and orchestration layer.

The RL model training is carried out by the RL agent at
the training host under the model training & testing
functionality through the dynamic interaction with the
training environment, which could be a simulated model of
the real RAN or a trial RAN (i.e., a RAN deployed in a real
environment though carrying test traffic instead of real
customers). The model training consists in a policy iteration
process in which the RL agent iteratively observes the state
of the environment, triggers an action, obtains the reward and
uses this information to improve the policy. When selecting
the actions, the RL agent makes use of the both exploration
and exploitation in order to select the actions. For example,

this can be done by means of an ε-greedy policy that, with

probability 1-ε selects the best action based on the currently
available policy at that time (i.e. exploitation), and with

probability ε selects a random action (i.e. exploration). The
amount of exploration can be progressively reduced as the

training evolves, e.g., by reducing the value of ε. The training
is monitored to control the model convergence and gather
Key Performance Indicators (KPIs) from the agent such as
memory used, loss, accuracy, etc. Based on this, the decision
on whether the training process is completed or not can be
taken in accordance with a given termination criterion (e.g.,
a convergence condition is met, a maximum number of
iterations is reached, etc.). Once this occurs, the model testing
can be executed, consisting in validating the behavior of the
resulting model using the training environment and gathering
different RAN-related KPIs (e.g., throughput, error rates,
etc.).

Within the training host, the model selection function
selects the configurations for the inference and the training of
the RL model based on the analysis of the requirements of the
RL solution e.g., training accuracy, training time, hardware
resources in training and inference, inference speed, etc. To
control and configure the RL training process, the
environment specification function and the training dataset
specification function are proposed to be included in the
model selection functionality. The environment specification
function defines the relevant features of the real environment
that need to be captured by the training environment. In a
RAN, this includes the characterization of aspects such as the
supported services, the propagation conditions, the mobility,
as well as the relevant RAN functionalities to be considered,
such as the scheduling, handover or admission control
functions. Further details are given in Section III.B.

Complex environments are typically characterized by a
multiplicity of (possibly dynamic) configuration parameters
(e.g. different load distributions in time/space in a RAN,
different cell parameters, etc.) that will eventually determine
the visited states by the RL agent. All these different
configurations need to be captured in a properly designed
training dataset by the training dataset specification function,
which determines the set of configurations of the training
environment to be used when training the RL model. This
includes configuration parameters of the RAN nodes (e.g.
transmitted power levels, handover parameters, etc.), service
requirements (e.g. required throughput, required delay, etc.)
and dynamic distributions of the load in time and space for

the different cells of the RAN. The selection of the training
dataset configurations should be done to cover the relevant
situations that the RL agent will have to face when deployed
on the real RAN environment. Further details are discussed
in Section III.C.

Moreover, the training host includes the model
optimization and model refine functions. The former allows
the optimization of the hyperparameters of the RL model
based on certain hardware or performance metrics
requirements such as model accuracy, model size, inference
speed, memory used, etc. In turn, the model refine
functionality allows, if required, the upgrade of the model
through re-training after the model has been already deployed
in the inference host.

The management of the deployed RL model in the
inference host is performed by the model management
function. Once the training is completed, this function
onboards the resulting trained policy to the RL agent in the
model inference engine of the inference host. In this way, the
RL model is deployed on the real RAN environment.
Depending on the RL algorithm the transferred policy can
take different forms. For example, in the case of a Q-learning
algorithm the model will be a look-up table with the action
value functions for each action/state pair. Similarly, in the
case of DQN the model will consist in the set of weights of
the deep neural network. Moreover, the model management
function is responsible for the termination of a RL model
deployment or its replacement by a different one.

The RL agent at the inference host applies the trained
policy on the subject of actions. The policy is applied
continuously, repeating the process of observing the state and
following the trained policy to decide the best action for that
state. No exploration (or at maximum a limited and controlled
exploration) is considered at this stage when selecting the
actions, to prevent the potential performance degradation
associated to random action selections.

The continuous operations function provides a series of
online functionalities to support the continuous improvement
of the RL model within its lifecycle (i.e., deployment,
modification, retraining and termination of a RL model).
This includes the functions for the verification, monitoring,
analysis, model improvement recommendation or the

Fig. 1.- Functional model of the RL model training process.

continuous optimization of the RL model. Therefore, while
the RL model is executed, the continuous operations function
continuously analyzes measurements and KPIs from the real
RAN environment and the RL agent. This allows the
detection of changes in the real environment conditions with
respect to those that were considered in the training (e.g.,
different channel conditions, load distributions that
substantially differ from those considered in the training
dataset, changes in the deployed network such as the addition
of a new base station, etc.).

In some cases, the capability of the RL agent to generalize
from the situations observed in the training dataset may still
allow a satisfactory performance. However, in some other
cases, these new conditions may lead to performance
degradations because the trained policy will no longer be
optimal. Hence, a retraining of the policy is needed to update
the policy so that an optimal behavior is achieved under the
new conditions. To detect the need of retraining, the model
management function should include a retraining condition,
dependent of the specific RL problem. For example, this can
be based on the definition of target KPIs thresholds, so that
the retraining is triggered when certain KPIs are above or
below these thresholds.

Depending on the nature of the detected changes, the
model management function may decide to activate the
retraining through the ML online learning function to update
the RL model based on the real interaction with the subject of
actions in the real RAN environment. This can be done by
configuring a certain amount of exploration of the RL agent

(e.g., by increasing the value of ε in case of an ε-greedy
policy). In this case, the reward signal obtained from the
subject of actions can be used to progressively update the
policy. In turn, in case of substantial changes that may
severely impact on the performance, the model management
function may activate the model refine function in the
training host to retrain the RL model to derive a new policy
able to deal with the new conditions. For this purpose, it will
send updated information about the real RAN environment to
the environment specification and training dataset
specification functions so that they take it into consideration
when defining the new features of the training environment
and an upgraded training dataset. This information can be
gathered from the data collection & preparation function.
The way of performing this retraining in terms of required
data and retraining duration highly depends on the specific
RL problem. In addition to the retraining capability, the
model management function should also include protection
mechanisms to terminate the deployment of a RL model in
case a malfunctioning of the RL model is detected (e.g.
extreme KPIs degradation, anomalies, etc.). Thus, a
termination criterion needs to be established and a backup
solution needs to be deployed in the ML inference host. The
backup solution can be either another well-trained RL model
or, a non-AI-based algorithm. For example, this can be
relevant in case that the retraining duration is long and the
performance of the actual model further degrades before the
retraining is completed.

B. RL training environment

The RL training environment enables the execution of the
trial and error process inherent to RL under a safe operation
environment that does not suffer the consequences of bad
decisions. Whether the RL training environment is a
simulated model of the RAN or a trial RAN, it needs to
include the elements that are relevant for the RL model under

test and should be configured to properly capture similar
operation conditions than those that the RL agent will
experience when deployed on the real RAN environment, for
example, in terms of propagation environment, types of
traffic, number of users, etc.

In the case that the RL training environment is a simulated
model, the different RAN functionalities can be modeled with
different level of detail in the simulator depending on their
relevance for the problem at hand, thus arising a trade-off
between simulator complexity, agility in the training process
and accuracy of the trained model. For example, the
introduction of a detailed model for the physical signal
transmission and reception at the symbol level will
significantly slow down the simulation process but it might
not have any relevant impact on the accuracy of the results if
the RL model only cares about average transmitted/received
signal levels (e.g. when RL is used by the handover function).

Then, it is envisaged that, for RL models supporting MAC
level functionalities (e.g. scheduling) operating in the
millisecond time scale, the RL training environment should
accurately model aspects such as the instantaneous channel
conditions (e.g. Channel Quality Indicator) of each user in a
cell, the packet queues impacted by the per-user traffic
generation process, the retransmission schemes (i.e.
Automatic Repeat reQuest (ARQ) and Hybrid ARQ at Radio
Link Control (RLC) and MAC layers, respectively) or the
beamforming and spatial multiplexing approaches. In turn,
when training RL models for RRM or RNM functions
operating at longer term time scales, some of the
abovementioned effects may be modelled in a more averaged
and/or aggregated way (e.g. by considering only average
channel conditions or an aggregate model of the traffic in a
cell). Instead, other elements such as user mobility may need
to be considered and properly modelled.

C. RL training dataset specification

The training dataset should be specified in a way that the
RL training environment is driven to produce those situations
(i.e., states) that the RL agent may face when it will run in the
real RAN environment, including not only those that are
expected to occur frequently but also those that will be less
usual. For this purpose, the relevant parameters of the training
environment impacting on the RL model need to be identified
and adequately configured to ensure that a sufficiently
representative number of states are encountered by the RL
agent, so that the agent can properly generalize from them.

The relevant parameters to configure the environment
will be typically related with how the state is defined and their
values in the dataset should be set in accordance with a
dynamic range that reflects those situations in which the
agent is supposed to learn how to behave. Moreover, it should
be ensured that the different situations are observed a
sufficient number of times so that the RL agent is able to
consolidate the actions to be selected when being in these
situations. All these aspects will determine the size of the
training dataset that will eventually impact on the training
duration. In practice, it may happen that the specification of
a dataset that covers a big range of possible situations leads
to an extremely large dataset that makes impractical the
training process. In this case, a trade-off can be found by
having a more reduced training dataset and then relying on
model retraining if needed to deal with new situations.

The specification of the training dataset will be highly
dependent of the RL problem at hand. For example, when

training an RL model for scheduling, the training dataset can
be configured to produce different channel model statistics
(e.g. doppler frequencies, line-of-sight and non-line-of-sight
situations), different numbers of users per cell and per service
or different service requirements.

The training dataset can make use of data collected from
the real network (e.g. actual channel measurements,
measurements of the number of users connected to a cell at
different periods of time, etc.). This data can be extended with
other synthetic data in order to generate those situations that
are more difficult to encounter in the real network.

IV. APPLICABILITY EXAMPLE

The O-RAN-based functional framework for the training
of RL in Fig. 1 can be adopted for multiple RL problems in
the RAN. In this section, an applicability example of the
functional model of the RL training process is provided for
the use case of capacity sharing in RAN slicing. The
considered use case and the scenario for evaluation are
described in Section IV.A and Section IV.B, respectively.
The evaluation presented in Section IV.C focuses on the
retraining aspects of the proposed functional model. Finally,
Section IV.D provides some insight on other possible
applicability examples.

A. Use case description

This section illustrates the operation of the proposed
functional framework and the role of its components when
applied to the problem of capacity sharing in RAN slicing.
The DQN-Multi-Agent Reinforcement Learning (MARL)
capacity sharing solution for multi-tenant and multi-cell
scenarios defined in our recent publication [23] is considered.
The solution dynamically distributes the available capacity in
a RAN infrastructure composed of N cells, where each cell n
has a total cell capacity cn (b/s), among K tenants, each of
them provided with a RAN slice. The solution targets the
efficient use of the available capacity in the cells and, at the
same time, the satisfaction of the Service Level Agreement
(SLA) of the tenants. The SLA established for the k-th tenant
is defined in terms of: (a) the Scenario Aggregated
Guaranteed Bit Rate, SAGBRk, which is the aggregated
capacity to be provided across all cells to tenant k if
requested, and (b) the Maximum Cell Bit Rate, MCBRk,n,
which is the maximum bit rate that can be provided to tenant
k in cell n.

The DQN-MARL capacity sharing solution considers that
each tenant is associated to a different RL agent as depicted
in Fig. 2, which shows the deployment of the DQN-MARL
capacity sharing solution in the model inference engine of the
inference host. An RL agent tunes the resource quota (i.e. the
fraction of capacity) assigned to the tenant's slice in the
different cells in time steps of duration Δt. For this purpose,
the RL agent obtains the state of the tenant in the different
cells of the environment. The state is defined as a tuple with
different metrics. These include, for each cell, the resource
usage and resource quota of the tenant, the resource quota not
assigned to any tenant and the resources not used in the cell.
In addition, the state includes the SLA parameters of the
tenant. According to the obtained state, the RL agent decides
the actions to perform in each cell, which can be to increase

the resource quota in ∆, to decrease it in ∆ or to keep it
unaltered. The action selection is performed dynamically in

time steps of duration ∆t. Based on the selected actions by the

Fig. 2. Deployment of the DQN-MARL solution in the ML inference host.

different RL agents, and given that the decisions are taken
separately by each agent, the resource usage quota
computation function of Fig. 2 determines the actual resource
quota to apply in each cell, ensuring e.g., that the resulting
resource quota of all slices within a cell do not exceed 1 (i.e.,
the total cell capacity). For further details on definitions of
the state and action, the reader is referred to [23].

From an implementation perspective, the resource quota
of a slice is configured through the so-called
rRMPolicyDedicatedRatio attribute of each cell, as detailed
in [24]. As seen in Fig. 2, this attribute is configured in the O-
DU unit that handles each cell and that is responsible of the
high-physical layer processing of 5G New Radio, MAC and
RLC functionalities. Then, the O-DU acts as the subject of
actions and its MAC layer performs the allocation of Physical
Resource Blocks (PRBs) to the users of the RAN slice based
on the value of rRMPolicyDedicatedRatio. The configuration
of this attribute is conducted through the O1 interface,
defined in the O-RAN architecture for the management
provisioning services [26]. Moreover, this interface is also
used to obtain the performance measurements from the O-DU
of each cell. These measurements are used to determine the
states of the RL agents used to select new actions.

The training of the DQN-MARL solution is performed in
the training host, where the training environment
specification considers the same values of K, N, cn, SAGBRk,
MCBRk,n and cells distribution as in the real RAN
environment. The training environment is fed with the data of
the training dataset, which is composed of multiple temporal
patterns of the offered load of the K tenants (i.e., slices) and
different combinations of their SLA values. The offered load
is defined as the requested capacity in bits/s of a tenant
normalised to the total cell capacity and averaged during a
time step. An offered load pattern includes the time evolution
of the offered load of a tenant during T time steps. The
training dataset specification function specifies the number
of offered load patterns included in the dataset, the range of
values of offered loads and the SLA parameters of the
different tenants, as discussed in our previous work [27]. The
optimization function selects the hyperparameter values of
the DQN agents in the DQN-MARL solution after following
a try and error procedure and choosing those values that
achieve a better training performance.

Using the selected hyperparameters configuration, the
training is performed by consecutively applying the temporal

patterns in the training dataset to the training environment and
by letting the DQN algorithm update the policy based on the
interactions with this environment. During the training, the RL
agent of each slice obtains the state from the training
environment and, accordingly selects an action to update the

resource quota using an ε-greedy strategy. At the next time
step, a reward is obtained. The reward formulation (see [23]
for details) promotes the satisfaction of the SLA parameters
and the minimization of overprovisioning situations. Then, the
RL agent stores in a dataset the experience composed by the
last state and action and the resulting state and obtained
reward. The policy update is performed in every time step
during the training process using the information of the dataset
of experiences and following the procedure of [25]. The
training process is monitored in terms of the loss function until
reaching a convergence criterion [27].

Once the training is completed, the model management
function on-boards the trained policies for the different tenants
in the RL agents of the model inference engine. During the
inference, the continuous operations monitors the model
performance feedback in terms of the following KPIs:

• Average SLA satisfaction per tenant: computed as the
average ratio between the aggregate throughput of the
tenant in the scenario and the minimum between the
aggregate of the offered load in the cell, bounded to the
MCBRk,n, over all cells and the SAGBRk. This average is
computed during a window of T time steps.

• Average utilization ratio: average ratio between the system
utilization and the aggregated assigned capacity to all
tenants in the system during T time steps. The system
utilization is computed by dividing the aggregated
throughput of all tenants among all cells by the system
capacity.

• Average distance between the training and the inference
data: This quantifies the similarity between the training
and inference data and is obtained by computing the
Euclidean distance between the offered load values in each
cell at each time step during inference and the closest
offered load of the training dataset and then by performing
the average of this distance over the last T time steps.

Using the above KPIs obtained by the continuous
operation function, the model management function can
detect if a re-training of the solution is required and
consequently it can activate the model refine function to
upgrade the trained policies.

B. Considered scenario

The DQN-MARL capacity sharing solution is applied in a
RAN scenario with K=2 tenants, denoted as Tenant 1 and
Tenant 2, and N=5 cells, which are distributed in an area of
3km x 3km. Each cell has a total cell capacity cn= 140 Mb/s,
so the total system capacity is C=700 Mb/s. The established
SLAs are SAGBR1=420 Mb/s and SAGBR2=280 Mb/s,
corresponding to the 60% and 40% of the system capacity,
respectively, and the MCBR1,n=MCBR2,n=112 Mb/s,
corresponding to the 80% of cn.

For evaluation purposes, both the training environment
and the real RAN environment are implemented by a RAN
simulator configured according to the considered scenario.
The optimization function considers the hyperparameters
shown in Table I. The selected values in Table I correspond to
the those providing the best trade-off between the training
duration and loss after testing different possibilities.

The DQN-MARL capacity sharing solution has been
initially trained with an action step Δ=0.03 and applying the
offered loads patterns of the training dataset, each one with
duration T=288 time steps. These patterns have been defined
considering a homogenous distribution of the offered load
among the different cells, which means that, for a given tenant,
very similar offered loads are assumed in all the cells. The
training is completed after 2·106 time steps. The performance
of the learnt policy, denoted as Initial Policy, has been
monitored in the RAN environment during T=288 time steps.

C. Performance results

This section analyses the performance achieved during
the inference stage. The achieved performance of a policy
during inference depends on the generalization capability of
the trained policy to adapt to situations not included in the
training dataset but also on the similarity between the training
dataset and the experienced data during inference, as
discussed in our previous work [27]. Deepening into these
aspects, the presented results intend to, on the one hand,
quantify the performance degradations that arise if the initial
training does not match the actual conditions experienced
during inference and, on the other hand, to illustrate the
capability to retrain the RL model, as considered in the
proposed functional model of Fig. 1.

To this end, we start by considering that the
abovementioned Initial Policy is generated and deployed by
the model management in the model inference engine, which
starts applying it at time to. Fig. 3 shows the evolution of the
average SLA satisfaction for Tenant 1 and Tenant 2 and the
average utilization ratio. Starting at to and for the first 600
time steps the traffic distribution across cells is
homogeneous. Correspondingly, since the traffic considered
for the training of the Initial Policy exhibited this feature,
high KPI values are observed in Fig. 3 during this period,
reflecting the good performance of this policy. Specifically,
the average SLA satisfaction is around 96% for both tenants
and the average utilization ratio around 95%.

TABLE I. DQN-MARL MODEL HYPERPARAMETERS

Parameter Value

Initial collect steps 5000

Maximum number of time

steps for training
2·106

Experience Replay buffer
maximum length (l)

107

Mini-batch size (J) 256

Learning rate (�) 0.0001

Discount factor(γ) 0.9

ɛ value (ɛ-Greedy) 0.1

DNN configuration

Input layer: 17 nodes

1 full connected layer: 100 nodes
Output layer: 243 nodes

Fig. 3. Evolution of the average SLA satisfaction and utilization ratio.

50%

60%

70%

80%

90%

100%

0 200 400 600 800 1000 1200 1400 1600 1800

Time steps
Av. SLA satisf.Tenant 1 Av. SLA satisf.Tenant 2 Av. ut. ratio

t1 t3
t2t0

Then, at t1, we assume that a change of the offered load
distribution of both tenants occurs due to the appearance of
hotspots, leading to a heterogeneous load distribution across
cells. This is represented in Fig. 4, which depicts the offered
load density in Mb/s/km2 of Tenant 1 and Tenant 2 at some
illustrative time instants relative to t1. This pattern is repeated
every 288 time steps from t1 until the end of the analyzed
period. While the average utilization ratio remains high after
t1, as seen in Fig. 3, the average SLA satisfaction values of
both tenants decrease significantly. Then, the continuous
operations function assesses the average distance between
the training and inference data. Fig. 5 shows the evolution of
this average distance during the same period of Fig. 3. From
t0 to t1 the average distance remains at a low value of around
0.08, indicating that the experienced data during inference
and the training dataset are similar. However, when the
offered load distribution among cells becomes strongly
heterogeneous at t1, the average distance starts increasing
abruptly and a decrease of the SLA satisfaction of both
tenants follows. Based on this, the model management
function determines that a retraining of the RL model is
required and activates the model refine function in the
training host. Indeed, the observations made in Fig. 3 and Fig.
5 reflect the trade-off between the achieved performance and
the complexity of the training process. While the initial
training has been sufficient to achieve a satisfactory
performance until t1 without the need of a complex training
dataset, this has not been enough to generalize the policy to
the offered load situations that arise after t1 and thus the
average SLA satisfaction values of both tenants degrade in
around 25%. Therefore, a richer and more complex training
dataset with a wider range of offered load values for the
different cells is needed for the retraining stage. This new
dataset is built considering the offered load conditions

Fig. 4.- Offered load density maps of Tenant 1 and 2 at some illustrative time
instants.

Fig. 5. Average distance between the training and inference data.

observed after t1 during inference, gathered by the data
collection & preparation function, and applying data
augmentation to increase the size of the training dataset.

After retraining, the model management replaces the
Initial Policy by the upgraded policy, denoted as Re-trained
Policy, in the inference host at time t2. As a result, an increase
of the average SLA satisfaction of both tenants is experienced
in Fig. 3, achieving again values above 0.9 from t3 until the
end of the analyzed period. Indeed, improvements of 22%
with respect to the ones in t2 are achieved for both tenants.
This improvement is also justified by the smaller average
distance between the training and inference data shown in
Fig. 5. It is observed that this average distance starts to
decrease when the Re-trained Policy is applied at t2 and
achieves again low values of around 0.15 after t3.

The above results suggest that the practical exploitation
of the proposed framework could embrace an initial
simulation-based training keeping the simulator complexity
at a relatively low extent and a subsequent retraining
exploiting data extracted from the real RAN environment
with proper data augmentation techniques to speed up the
process if needed. In this way, the learnt policy can be
upgraded to capture the new situations that may arise during
inference.

D. Other applicability examples

In order to provide a wider view on the applicability of
the proposed framework, two other use cases are discussed in
the following.

The first example is the MLB problem, in which cells
suffering congestion can transfer load to other cells with less
traffic. The control of this load transfer is typically done using
the handover function executed at the O-CU, and can make
use of RL algorithms. An example is given in [16], which
proposes a DRL solution to tune a parameter named cell
individual offset considered in the handover decision for a
user. The proposed framework can be used to train an RL-
based MLB solution using a training environment composed
of multiple cells in a certain area and considering multiple
heterogeneous spatial distributions of the load in the different
cells. Then, the training dataset will be defined by these
spatial distributions, together with the cell configuration
parameters and the user mobility patterns. This data could be
based on real data gathered and processed by data collection
& preparation function but also on synthetic models for
generating user trajectories. The trained policies will be
deployed in the ML inference host by considering as subject
of actions the O-CU. To monitor the performance of the
deployed MLB policies, relevant KPI parameters to check are
the occupation among the cells and the quality metrics of the
UE, such as the Signal to Noise and Interference Ratio
(SINR). These quality metrics are particularly important
because wrong MLB decisions may lead to significant
interference increases if a UE is not served by an adequate
cell, so they can be used to detect if a retraining is needed.

Another applicability example is the CCO problem,
which consists in adjusting certain cell parameters (e.g.
antenna tilts, reference signal powers, scheduling parameters,
etc.) to optimize the resulting capacity and coverage. An
example of the use of DRL for CCO is given in [22], which
adjusts two specific parameters of their scheduling algorithm.
DRL-based solution to configure user scheduling parameters.
For this type of solutions, the training environment has to
consider multiple cells serving multiple users and needs to

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 200 400 600 800 1000 1200 1400 1600 1800

A
v

e
ra

g
e

 d
is

ta
n

c
e

Time steps

t1
t3t2t0

carefully model the short term channel variations of each user
and the scheduling process, thus having to operate at time
scales in the order of 1 ms. The training dataset should then
include different numbers of users and requirements and can
be enriched with Channel Quality Indicators of real cells to
characterize a certain network environment. The ML
inference host and the subject of actions would depend on the
specific parameter adjusted by the CCO. For example, in the
solution of [22], both of them would be the O-DU function.

V. CONCLUSIONS AND FUTURE WORK

Motivated by the high interest that the applicability of RL
techniques has raised for different problems in the RAN and
by the little attention that has been paid so far to the training
of these algorithms, this paper has presented a framework for
training RL algorithms in the RAN that is aligned with the
ongoing work by O-RAN Alliance on the application of ML
for the RAN. The proposed framework complements the O-
RAN approach through the incorporation of specific
functions for the training of RL solutions. These include
different functionalities for specifying training datasets to
capture the situations that will be faced by the model in the
real network and for continuously monitoring the
performance of the inference stage to trigger a retraining if
needed. The operation of the proposed framework has been
illustrated with a DQN-based algorithm for capacity sharing.
It has been shown that, when there are significant differences
between inference and training data, performance
degradations of around 25% are observed, which can be
overcome by means of a proper retraining process. In
addition, the applicability of the framework for RL-based
solutions to the problems of mobility load balancing and
coverage and capacity optimizations are discussed.

The considered DQN-MARL capacity sharing solution
has allowed illustrating the operation of the O-RAN-based
functional framework proposed in this paper for the specific
problem of capacity sharing in RAN slicing scenarios. Two
future research directions are identified. The first one is the
validation of the proposed framework using a testbed in order
to study its feasibility and implementation complexity when
deploying it in a real RAN, treating aspects such as the
software and virtualization tools required to deploy the
different components of the proposed framework as well as
the interfaces that enable the interaction between them. The
second research direction is the assessment of the proposed
framework for a wider range of problems other than the
capacity sharing, in order to validate the generality of the
proposed framework and to identify potential enhancements.

ACKNOWLEDGMENT

This paper is part of ARTIST project (ref. PID2020-
115104RB-I00) funded by MCIN/AEI/10.13039/
501100011033 and PORTRAIT project (ref. PDC2021-
120797-I00) funded by MCIN/AEI/10.13039/501100011033
and by European Union Next GenerationEU/PRTR.

REFERENCES

[1] Y. Sun, M. Peng, Y. Zhou, Y. Huang and S. Mao, "Application of
Machine Learning in Wireless Networks: Key Techniques and Open
Issues," IEEE Comms. Surveys & Tutorials, vol. 21, no. 4, pp. 3072-
3108, 4th Quarter 2019.

[2] J. Wang, et.al, “Thirty Years of Machine Learning: The Road to Pareto-
Optimal Wireless Networks” IEEE Comms. Surveys & Tutorials, Vol.
22, No. 3, 3rd Quarter, 2020.

[3] C. Zhang, P. Patras, H. Haddadi, “Deep Learning in Mobile and
Wireless Networking: A Survey”, IEEE Comms. Surveys & Tutorials,
Vol. 21, No. 3, 3rd Quarter, 2019.

[4] Q. Mao, F. Hu, Q. Hao, “Deep Learning for Intelligent Wireless
Networks: A Comprehensive Survey”, IEEE Comms. Surveys &
Tutorials, Vol. 20, No. 4, 4th Quarter, 2018.

[5] M. Elsayed, M. Erol-Kantarci, “AI-enabled Future Wireless Networks.
Challenges, Opportunities and Open Issues”, IEEE Vehicular
Technology Magazine, Sept. 2019.

[6] F. D. Calabrese, et. al, “Learning radio resource management in RANs:
Framework, opportunities, and challenges,” IEEE Commun. Mag.,
vol.56, No. 9, Sept. 2018

[7] R. Ferrús, O. Sallent, J. Pérez-Romero, R. Agustí, “Applicability
Domains of Machine Learning in Next Generation Radio Access
Networks”, 6th Annual Conference on Computational Science &
Computational Intelligence (CSCI-2019), Las Vegas, USA, Dec. 2019

[8] O-RAN Alliance O-RAN.WG2.AIML-v01.03, “AI/ML Workflow
Description and Requirements 01.01”, July, 2021.

[9] ITU-T Y.3172, “Architectural framework for machine learning in
future networks including IMT-2020”, June 2019.

[10] ETSI GR ZSM 005 V1.1.1, “Zero-touch network and Service
Management (ZSM); Means of Automation”, May, 2020.

[11] ETSI GS ENI 005 V1.1.1, “Experiential Networked Intelligence (ENI);
System Architecture”, September, 2019.

[12] RP-213599, "Study on Artificial Intelligence (AI)/Machine Learning
(ML) for NR Air Interface", 3GPP TSG RAN Meeting #94e,
December, 2021.

[13] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction,
2nd edition, The MIT Press, 2018.

[14] Y. Abiko, et. al "Flexible Resource Block Allocation to Multiple Slices
for Radio Access Network Slicing Using Deep Reinforcement
Learning," in IEEE Access, vol. 8, pp. 68183-68198, 2020.

[15] J. Pérez-Romero, O. Sallent, R. Ferrús, R. Agustí, “A Robustness
Analysis of Learning-based Coexistence Mechanisms for LTE-U
Operation in Non-Stationary Conditions”, IEEE Vehicular Technology
Conference Fall (VTC Fall 2015), Boston, USA, Sept., 2015.

[16] Y. Xu, W. Xu, Z. Wang, J. Lin and S. Cui, "Load Balancing for
Ultradense Networks: A Deep Reinforcement Learning-Based
Approach," in IEEE Int. of Things Journal, vol. 6, no. 6, Dec. 2019.

[17] V. Mnih, et al. “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[18] W. Zhao, J. Peña Queralta, T. Westerlund, “Sim-to-Real Transfer in
Deep Reinforcement Learning for Robotics: a Survey”, IEEE Symp.
Series on Computational Intelligence (SSCI), 2020.

[19] A. Chandramohan, et al. “Machine Learning for Cooperative Driving
in Multi-Lane Highway Environments”, 2019 Wireless Days (WD).

[20] E. Tagliabue et al. “UnityFlexML: Training Reinforcement Learning
Agents in a Simulated Surgical Environment”, I-RIM Conf., 2020.

[21] S. Levine, A. Kumar, G. Tucker, J. Fu, “Offline Reinforcement
Learning: Tutorial, Review and Perspectives on Open Problems”, Nov.
2020, https://arxiv.org/abs/2005.01643v3

[22] Y. Yang et al., "DECCO: Deep-Learning Enabled Coverage and
Capacity Optimization for Massive MIMO Systems," in IEEE Access,
vol. 6, pp. 23361-23371, 2018.

[23] I. Vilà, J. Pérez-Romero, O. Sallent, A. Umbert, “A Multi-Agent
Reinforcement Learning Approach for Capacity Sharing in Multi-
tenant Scenarios,” in IEEE Trans. Veh. Tech., vol. 70 no. 9, July 2021.

[24] 3GPP TS 28.541 V16.5.0, “Management and orchestration; 5G
Network Resource Model (NRM) (Release 16)”, June, 2020.

[25] V. Mnih, et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[26] O-RAN.WG1.O-RAN-Architecture-Description-v05.00, “O-RAN
Architecture Description version 5.00,” O-RAN Alliance, Working
Group 1, Technical specification, July 2021.

[27] I. Vilà, J. Pérez-Romero, O. Sallent, A. Umbert, “Impact Analysis of
Training in Deep Reinforcement Learning-based Radio Access
Network Slicing,” Accepted in IEEE Cons. Comms. & Net. Conf. 2022.

