
Implementation of a VME bus to internal bus bridge FPGA 
core  

Xavier Revés 
Universitat Politècnica de 

Catalunya 
Departament de Teoria del 

Senyal i Comunicacions 
 Jordi Girona 1-3 08034 

Barcelona (Spain) 
 +34 93 401 71 95 

xreves@xaloc.upc.es 

Antoni Gelonch 
Universitat Politècnica de 

Catalunya 
Departament de Teoria del 

Senyal i Comunicacions 
 Jordi Girona 1-3 08034 

Barcelona (Spain) 
 +34 93 401 71 97 

antoni@xaloc.upc.es 

J. L. García 
Universitat Politècnica de 

Catalunya 
Departament de Teoria del 

Senyal i Comunicacions 
 Jordi Girona 1-3 08034 

Barcelona (Spain) 
 +34 93 401 71 97 

garciam@teleline.es 

Ferran Casadevall 
Universitat Politècnica de 

Catalunya 
Departament de Teoria del 

Senyal i Comunicacions 
 Jordi Girona 1-3 08034 

Barcelona (Spain) 
 +34 93 401 64 25 

ferranc@tsc.upc.es 
 
 

ABSTRACT 
Since several years ago a wide variety of FPGA-based cores have 
been appearing all round. This is fruit of the versatility of these 
devices due basically to the amount of system gates that can 
implement. Many of the cores are in the market as IP (Intellectual 
Property) but many others implemented by an engineering team 
when developing a platform never come out. In this paper we 
present an FPGA core implementing the required bridging 
between the standard VME bus and a defined internal bus. This 
core, while using relatively few resources, has a high level of 
performance and supports most of functions defined in the 
standard. This core, when inserted into a system will significantly 
reduce the complexity of interfacing a complete VME backplane 
because it can map the elemental behavior of the internal bus to 
the multiple VME accesses.   

Keywords 
FPGA, VME bus, microprocessor, interface.  

1. INTRODUCTION 
The VME bus [1][2] was first introduced in 1981 coming from the 
architectural concepts of the VERSAbus developed by Motorola 
in the late 1970s. It established a framework for different 
computer architectures that can implement single and 
multiprocessor systems. The VMEbus specification defines an 
interfacing system used to interconnect microprocessors, data 
storage, and peripheral control devices in a closely coupled 
hardware configuration.  
The standard soon became an interesting interfacing system 
because of its robustness, versatility and possibility of linking 
platforms built with different state-of-the-art. The asynchronous 
nature of the VME signals give the possibility of interfacing two 
fast boards and also the possibility of interfacing one board with 

another much slower. This capability translates to a longer life of 
the platforms available. For instance, an A/D and D/A board 
useful for a low/medium speed application requiring at most 1 
Msamples/second will do with a 5 Mbytes/second interface, while 
another platform requiring 10 Msamples/second may need a 50 
Mbytes/second interface. Both platforms, even having quite 
different transfer rates, can be integrated under the same VME 
backplane. Following with the example, the first board may be at 
this time 10 years old while the other, together with the main 
system processor, may be only 1 year old. This gives us an idea of 
the persistence of the platforms over a VME bus.  
Obviously the terms commented above are important when 
choosing the VME bus to build the system but many others can be 
found depending of the interest of every one. It is not our aim to 
describe the features and drawbacks of an VME system. In the 
next sections a high performance master and slave VME interface 
bridging to a simple internal bus will be described. This interface 
can be completely implemented into an FPGA [3] and provides 
most of functions established in the standard. 

2. MOTIVATION OF THE WORKING 
In our research laboratory a reconfigurable hardware system 
working under VME bus was built. This system is based on a set 
of FPGAs ready to perform different kind of tasks (signal 
processing, I/O communication, system management, etc.). Some 
of the FPGAs on the board require access to a high performance 
data transfer bus for the correct execution of the tasks generally 
assigned to those FPGAs. This bus should be viewed by the VME 
processors and should be able address other cards on the VME 
backplane. Moreover, this bus must be simple enough to use only 
few resources into the FPGAs interfacing to it leaving as much 
resources as possible for the application-related task assigned to 
the FPGA.  
Several ASIC bridges to VME bus are present in the market. 
Some give a quite simple interface but sometimes also reduced 
possibilities (slave only) and others allow more complex tasks 
with the drawback of more complex interfaces (e.g. PCI bus). 
Moreover of the bridging interface, more logic was required to 
accomplish with the requirements of the platform. So it was 
mandatory adding some glue logic (maybe an FPGA) to the ASIC. 
So the question is easy, why do not using a single FPGA 
implementing both the bridging and the glue logic? 

 

 



 
For those and other minor reasons, a customised bridge between 
the VME bus and the internal bus was implemented. Into the same 
FPGA could be placed all the logic required for the platform 
accessed, as it will be seen later on, through the register set 
defined in the interface. This register set is in part definable and 
represents the main customisable portion of the bridge as it will 
depend on the requirements of every platform. In general this set 
of variable registers will not be required if only bridging is wished 
but they have a permanent address range reserved for an eventual 
future use. 

3. THE INTERNAL BUS 
The internal bus has been called IBUS (Synchronous Burst User 
Interface). As its name indicates, it is a synchronous bus, that is, 
data are sent and/or received at every validated clock edge. 
Address lines and data lines are multiplexed in time to reduce the 
number of connections required among the different elements 
connected to the bus. Although the use of IBUS is mainly for fast 
data transfers, some capabilities (as interrupt request and service) 
have been added to get a more complete set of features. 

IBUS
Arbitration

IBUS
Controller

IBUS
Master

IBUS
Slave

IBUS
Slave

IB
U

S 
da

ta
 se

ct
io

n

IB
U

S 
El

em
en

ta
l I

nt
er

ru
pt

 se
ct

io
n

IBUS Main Interrupt section

 
Figure 1. Internal Bus Hierarchy 

A total of 40 to 44 signals are enough to completely interface the 
bus where 32 are for address or data. Only 4 lines are used for 
control during a data transfer process. The rest are destined to 
initialization and interrupts and its use depend on the location into 
the IBUS hierarchy. The way this hierarchy is defined can be 
observed in figure 1. There exist one bus controller, which can be 
a bus master, one bus master, which must be also slave, and then a 
set of slave-only interfaces. No electrical characteristics have been 
defined for the IBUS, then the designer must take into account bus 
delays when defining the operating frequency. Bus controller has 
the task of deciding which master owns the bus, avoiding any kind 
of contention. 
The address size represents an addressing range of 4 Gwords 
being each word 4 bytes wide. A typical data transfer is divided 
into three sections: addressing phase, data phase and release phase 
as it is shown in the figure 2. The first phase consists of a 
minimum of 4 clock cycles where the master addresses the slave 
and waits for a recognition. Initial placement is framed with a 
control signal After these minimum 4 cycles the data flow starts 
with the first possible word to transmit of the first burst. Each 
clock cycle that has been validated by the sender of data (the 

master in write cycles and the slave in read cycles) represents a 
word of the burst. The first burst ends when 16 words (64 bytes) 
have been sent/received. After this burst, if more data have to be 
sent/received, a new data-only handshake of at least 2 cycles 
follows. The number of bursts that follow the first one has no limit 
if the bus is not requested by another possible master. To finish 
the transfer, a minimum of 2 cycles must be left before starting a 
new one. This is necessary specially when the master decides not 
completing the current burst because it has no more data or it does 
not wish more data and the 16 words of the burst have not yet 
been reached.  

AP+H1 First Burst Other Bursts and HandshakesH2 R

AP=Addressing Phase

R=Release Phase

H1=First Data Handshake

H2=Second Data Handshake

min 4
cycles

min 2
cycles

min 2
cycles

Data Phase

 
Figure 2. Data transfer sequence defined for IBUS 

The addressing phase will determine where data is sent to or 
where data is read from. When dividing the complete 4 Gword 
addressing range, there are several rules to follow to make easier 
and simplify master and slave operation as well as address 
handling. Consider these main rules. First of all, 2 different slaves 
cannot have their spaces mapped into the same 256 kwords region 
(regions are considered starting from address 0h). One slave can 
have as many regions of 256 kwords as required. Moreover, 
accesses to slaves are circular, that is, when the data range of the 
slave has been all read/written and more bursts are initiated data 
are read/written from/to the beginning of that slave range.  
The burst size is strongly related  to the family of FPGAs used. 
The core presented has been implemented over the Xilinx 
XC4000 family. This family can implement small quantities of 
RAM internally. One possible configuration is specially suitable 
to build FIFOs and the minimum depth of the RAM is of 16 
different addresses. More deep configurations of RAM can be 
achieved through logic multiplexing but a maximum of 64 bytes 
per burst has been considered a very interesting quantity as it is a 
balance between large amounts of RAM into the FPGAs and data 
transfer reduction due to burst handshakes.  
The quite simple bus structure described requires only about 60 
CLBs (that slightly depends on the address range width to handle 
because wide edge decoders in family XC4000 are used) 
including the 64 bytes FIFO (16 words of 32 bits) for slave 
operation. For master/slave operation, the part corresponding to 
IBUS can be implemented using about 80-90 CLBs. This amount 
of CLBs has been extracted from the core presented in this paper 
and can be different depending on the master and slave interfaces 
to a CPU, memory, etc. Anyway, in most of cases where the bus 
will be used (for instance, the platform mentioned before) only 
slave functions are required to sink data. That amount of CLBs for 
slave is about 10% of a XC4013 but only 5% for XC4036 or 
going to the new Xilinx Virtex family only about 15-20 CLBs 
(Virtex family CLBs have twice as much logic elements than 
XC4000 family CLBs but has no wide edge decoders) and some 
Bloc SelectRAM+ will be required. Then it can be concluded that 
IBUS meets the area requirements requested.  
What concerns to data transfer speed, as IBUS is a synchronous 
bus, it is easy to calculate the peak performance. Measured in 
bytes per second, maximum transfer rate will be of 4 times the 



clock frequency. Taking into account the additional 2 cycles per 
burst for handshaking, the maximum transfer speed will be of  
about 89% of  4*fclk. But the clock frequency can be very high 
because of the protocol used. Due to the nature of transactions, 
where no flow control exist in a burst except for one bit used by 
the sender to validate data, delays to be accounted in the bus are 
those in between the flip-flops of the sender and the flip-flops of 
the receiver. It’s not difficult to achieve frequencies of 40-60MHz 
if the printed circuit board is properly designed and using an 
FPGA with a moderated speed grade. This system speed can be 
exceeded when using fastest FPGAs. Having clock speeds 
relatively high in a large area (10 to 20 centimetres) requires a 
good clock distribution. For IBUS an star clock distribution with 
one driver per branch has been chosen with all branches of the 
same length to minimise skew. 

4. VME TO IBUS BRIDGE 
4.1 Functional Diagram 
The functional diagram of the bridge is as it is shown in the figure 
3. The main blocks are the master and slave blocks for VME and 
IBUS respectively, the bi-directional FIFO to send data from one 
bus to the other and the register area. In this register area there is 
information about how the bridge has to operate. This information 
not only concerns to data transfer interfaces but also to the aspects 
of automatic mapping of cycles (both directions), error handling, 
interrupt management, identification, addressing and DMA 
(Direct Memory Access) transfers. Also some registers that 
depend on the environment where the bridge is placed can be 
located in this block. Its behaviour should be adjusted to the 
general register behavior. 
 

VME 

Slave

VME 

MasterBidirectional FIFO

 or RAM

IBUS 

Master

IBUS 

Slave

Bridge 

Registers

Other 

Registers

CBUS[31:0]
FBUS[31:0]

DMA

V
M

E 
D

at
a

V
M

E 
Ad

dr
es

s
V

M
E 

C
on

tro
l &

 U
til

ity

IB
US

 C
on

tro
l

IB
US

 D
at

a 
& 

A
dd

re
ss VME

FIFO
Access

VME
Register
Access

Interrupts

Other non-bridge functions

Cycle Map

VME utilities 

 
Figure 3. VME to IBUS block diagram 

All the functions, registers, memory and buses present in figure 3 
can be placed into a XC4013 FPGA from Xilinx. Into the same 
FPGA some additional logic concerning the specific platform 
could be placed. The total amount of CLBs used is of about 520 
that represents an occupancy of 90% of resources available. 
Without the particular registers and associated functions it can 
decrease to about 450 CLBs. Note that the design has been 
properly mapped to the underlying structure of X4000 family to 
get the maximum density without compromising the routing task. 
To get an optimum performance in terms of area and speed, as 
most of resources were used to store configuration bits and data 

related to them, a combination of registers and RAM was done. 
Also all the internal resources that could be shared among 
different operation modes were carefully designed to avoid having 
redundant logic and save space and even sometimes increase 
speed. For instance, FIFO block is used as FIFO but also is used 
as cache RAM to allow the correct mapping of several types of 
VME cycles to the data transfer structure of the IBUS. The less 
expensive blocks in terms of area are the control state machines 
for every function.  
One important aspect to be highlighted is the clock used by each 
one of the blocks present in figure 3. Registers, FIFO and IBUS 
control blocks run at IBUS clock frequency while control 
machines related to VME interface run at twice that speed. This is 
because VME signals are asynchronous with IBUS ones. To 
provide a good time resolution and performance of the interface, 
that has to move data from/to registers or internal RAM 
synchronously, is interesting running this part with such a clock. 
To have a completely synchronous system exist 2 possibilities. 
One is providing only the fastest clock to the FPGA and activating 
IBUS related areas only half of the rising edges of the clock. 
Another possibility is to provide 2 input clocks with aligned 
edges. One of them will have twice the frequency of the other. 
This last has been the option chosen although it requires an 
external device to generate those clocks. The main reason of that 
is the distribution of clock along the IBUS described before. This 
problem will be overcome when translating the bridge to Virtex 
family because it incorporates DLLs that will allow doubling de 
clock frequency of the IBUS for internal use with virtual 0ns 
delay. 

4.2 Some Special Blocks 
In the figure 3 appear several features of the bridge to highlight. 
First note the presence of DMA (Direct Memory Access) related 
functions and their corresponding registers. The DMA block will 
be able to start read/write cycles in both masters and transfer data 
from one side to the other. The rules that govern the DMA block 
behaviour are the same used to translate cycles from one side to 
the other and addressing is managed accordingly to IBUS 
addresses. Start block address for IBUS and VME sides and block 
length are provided into registers area. 
An interrupt manager can also be seen. It will do the tasks of 
translation of interrupt requests from IBUS and eventually 
activate the VME master to give service to interrupts. VME bus 
has 7 different levels of interrupts but only 2 can be activated at a 
time by IBUS requesting structure. These 2 levels can be selected 
among the 7 valid ones and modified when required writing to the 
corresponding register. Also internal registers are used to store the 
interrupt status word to be supplied to the corresponding interrupt 
handler over the VME bus. In the reverse sense, the VME master 
has the capability to handle non-masked interrupts and store into 
internal registers the status word. Additional interrupt capabilities 
are associated with extra logic added to the bridge. 
One important feature is the automatic mapping of the different 
cycles present in the VME bus. As IBUS has only one transfer 
mode and VME has several ones, some kind of translation has to 
be done. To go from IBUS to VME, the address and cycle 
translation is performed in conjunction with the known 
capabilities of VME slave addressed by the bridge VME master. 
These capabilities are stored into registers and selected as a 
function of the address generated by the IBUS master. Up to a 
maximum of 16 different slaves with different capabilities can be 



addressed. Capabilities include data and address width supported 
by the slave but also other parameters can be determined, as block 
transfer capabilities. These 16 translated addresses can point to the 
same slave or grouped in any way. The maximum addressing 
range supplied is of 16 Mbytes over VME bus (1 Mbyte each 
address) but the 16 Mbytes window can be modified writing to the 
associated register. In the figure 4 the translation mechanism and a 
possible mapping used to go from IBUS to VME is represented. 
Note that an internal IBUS window is used to access VME 
resources. This window can move along the whole IBUS address 
range. 

16
 M

by
te

s

VME bus
A32 Mode

4 
G

by
te

s

VME Bridge
Window

8 bits 24 bits

16 Mbytes

4 b 20 bits

Map to
20 bits14 bits

IMAGE

1 Mbyte

1 Mbyte

1 Mbyte

1 Mbyte

1 Mbyte

4 
G

w
or

ds

IBUS
Range

New 32 bits IBUS Address  

16
 M

by
te

s

VME bus
A32 Mode

4 
G

by
te

s

IBUS Bridge
Window

10 bits 22 bits

16 Mbytes = 4 Mwords

4 b 18 bits

Map to
18 bits12 bits

IMAGE

1 Mbyte

1 Mbyte

1 Mbyte

1 Mbyte

1 Mbyte

4 
G

w
or

ds

IBUS
Range

New 32 bits VME Address

2

1 Mbyte

 
Figure 4. Address translation from IBUS to VME and from 

VME to IBUS 
When going from VME to IBUS the translation is done in a 
similar way (see figure 4) but without requiring a capabilities 
register (like the one mentioned before) as IBUS has a single 
operation mode. Some kind of VME cycles started by the current 
master cannot be directly translated to an IBUS cycle as data 
width resolution into IBUS is 32 bits and VME resolution is 8 
bits. For these special cycles, specially in write modes, data on 
IBUS are internally stored into the bridge and resent to the 
addressee to grant data integrity. The VME window used to access 

to IBUS can be chosen writing to the dedicated register but the 
bridge has the possibility to read a hardware address (selected 
through switches or jumpers) before connecting to the VME 
backplane. 
Another important block to highlight is the Utilities one. It will 
not be entirely required in many cases as it implements some 
special tasks assigned to a determined position into VME bus. 
This feature will allow managing VME bus arbitration, system 
reset and interrupt chains. But it will be generally present as these 
functions of special location are mixed with the related ones that 
must implement every system connected to the backplane, 
although they will be deactivated.  
Registers required for this bridge version occupy 170 bytes of the 
total 1 kbyte of internal addressing organised in 32 bits words but 
accessible with one byte resolution. Most of them are stored into 
RAM to minimise area. The remaining 830 bytes can be used for 
any other thing while there is room enough into the FPGA. For 
instance, in the platform used as example 10 additional bytes 
stored in flip-flops are required to perform several actions.  

4.3 VME Features  
Part of the complexity of the bridge relies on the VME complexity 
to be hidden to IBUS. The standard over which the bridge has 
been built is VITA 1-1994 (VME64) that specifies a framework 
for 8, 16, 32 and 64 bits bus computer architectures. 
The bridge being presented has internally implemented most of 
the features described in the standard mentioned before. What 
concerns data transfer, VME bus protocol is very straight forward. 
The master puts addresses onto the bus, delays a minimum of 35 
ns and then asserts address strobe (AS*). For a write operation, 
the master puts data onto the bus, delays a minimum of 35 ns, and 
then asserts one or both of its data strobes (DS0* and/or DS1*). 
All the slave cards on the bus monitor the addresses and know that 
the address is valid after AS* assertion. In a write cycle the 
selected slave must read data of the bus after DS0* and/or DS1* 
and assert data acknowledge (DTACK*) to signal that the data has 
been captured. Read processes are similar changing dada 
direction. Although this process is quite simple, there exist a lot of 
variants concerning addressing modes, data modes, transfer types, 
etc. That is what makes VME bus more complex, and more if you 
consider that a master or slave must support all transfer types 
classified in the VME standard under the one wished. For 
instance, if you wish to transfer data using 32 bits words you must 
be able to use also transfers using 16 and 8 bits. 
The bridge being presented supports a large set of transfer types as 
the minimum desired level had some under it. Address width 
handled by the VME slave is only 24 (A24 or standard mode) or 
32 (A32 or extended mode) bits modes, but as a master can 
generate 16 (A16), 24 and 32 bits addresses. It must be taken into 
account that VME bus uses 6 additional lines to specify different 
addressing modes. 
Data transfer capabilities are wider. As slave, all modes of 8 bits 
(D8(OE), D8(O), D8BLT), 16 bits (D16, D16BLT), 32 bits (D32, 
D32BLT) and 64 bits (D64 or MBLT) are supported together with 
special cycles as unaligned transfers (UAT) or read-modify-write 
cycles (RMW). This gives enough flexibility to interact with any 
kind of master. Observe that 32 and 64 bits modes can be directly 
mapped to IBUS but 8 and 16 bits modes will require some 
additional translation mechanisms. Working as a master the set is 
slightly reduced as IBUS cannot generate unaligned transfers or 



read-modify-write. Then UAT and RMW cycles are not 
implemented in the bridge VME master. 
Access to internal registers from VME can be done through an 
A24 addressing mode as A32 addressing mode is reserved to 
bridge to IBUS. But the set of registers has also been mapped to 
the Configuration ROM / Control & Status Register (CR/CSR) 
area accessed by means of an special addressing mode (using 24 
bits address). The Configuration ROM / Control & Status 
Registers provide a mechanism for manufacturer identification, 
board identification, automatic board initialisation, board test and 
board configuration. All the mandatory fields required to correctly 
incorporate CR/CSR feature are included into the bridge. 

30 40 50 60 70 80 90 100
15

20

25

30

35

40

45

50

N=8 bytes

N=64 bytes

N=256 bytes

SLAVE BLT Write

Clock frequency (MHz)

Tr
an

sf
er

 ra
te

 (M
by

te
s/

se
c)

30 40 50 60 70 80 90 100
10

15

20

25

30

35

40

45

50

N=8 bytes

N=64 bytes

N=256 bytes

SLAVE BLT Read

Clock frequency (MHz)

Tr
an

sf
er

 ra
te

 (M
by

te
s/

se
c)

 
Figure 5. VME Slave BLT performance 

One important point is the data transfer performance that can be 
achieved by the bridge. Before has been presented the IBUS 
interface where determining the data transfer speed is easy due to 
its synchronous behaviour. But VME is asynchronous and 
measurements are slightly more difficult. As the bridge has been 
built into an FPGA and designs into this kind of devices should be 
done (although obviously it is not mandatory) synchronous there 
exist the needing of synchronise signals to move data from/to 
VME bus. In the previous section has been mentioned that VME 
interface has a clock 2 times faster than IBUS to improve time 
resolution and then also performance.  

 

In the figures 5,6,7 and 8 can be observed the performance of the 
VME master and slave interacting with an ideal slave or master 
respectively. These figures show the peak transfer rate in the 
fastest 32 (BLT) and 64 (MBLT) bits transfer modes (block 
transfer modes) as well as the mean transfer rate for different 
block lengths (8, 64 and 256 bytes for BLT and 32, 256 and 1024 
for MBLT) that takes account of the whole cycle including 
addressing. It can be expected that for large block transfers the 
mean transfer rate will be close to peak transfer rate, as it is shown 
in the figures except for master BLT read transfer where all the 
cycles take the same time from the beginning to the end of 
transfer. Note that for not very large transfer block size mean rate 
approximates to peak rate. When viewing the figures, it should be 
taken into account that in every case it has been considered that 
the corresponding VME signals are present on the bus a minimum 
of one cycle before being captured. This is generally more setup 
time than required. Anyhow, plots are represented only to show 
that the interface is able to work at high VME transfer rates.  

30 40 50 60 70 80 90 100
30

40

50

60

70

80

90

100

N=32 bytes

N=256 bytes

N=1024 bytes

SLAVE MBLT Write

Clock frequency (MHz)

Tr
an

sf
er

 ra
te

 (M
by

te
s/

se
c)

 

30 40 50 60 70 80 90 100
20

30

40

50

60

70

80

90

N=32 bytes

N=256 bytes

N=1024 bytes

SLAVE MBLT Read

Clock frequency (MHz)

Tr
an

sf
er

 ra
te

 (M
by

te
s/

se
c)

Figure 6. VME Slave MBLT performance 
The slave performance could reach 90-100 Mbytes in front of an 
ideal master although this speed can increase if clock speed is 
increased. No ideal masters can be found but this demonstrates 
that masters able to work at high speed rates will take advantage 
of the bridge presented. Master performance is about 20% inferior 
(comparing those processes that move data in, master read and 



slave write, and those that move data out, master write and slave 
read) but still very high. This is mainly because of mandatory 
timings in VME standard. 
The clock frequency represented in the abscise axis of the figures 
5, 6, 7 and 8 corresponds to twice the IBUS clock frequency. They 
cover a wide range of possible frequencies but not all the possible 
in the FPGA family targeted. Only for reference, the clock 
frequency for an XC4013E-3 (relatively slow 5V device) can 
reach 64MHz (32MHz IBUS clock), for an XC4013E-1 (fastest 
5V speed grade) the clock frequency can go beyond 80MHz and 
for an XC4013XLA-09 (3V family) it is possible to implement the 
bridge at speeds reaching 120MHz. 

30 40 50 60 70 80 90 100
15

20

25

30

35

40

45

N=8 bytes

N=64 bytes

N=256 bytes

MASTER BLT Write

Clock frequency (MHz)

Tr
an

sf
er

 ra
te

 (M
by

te
s/

se
c)

30 40 50 60 70 80 90 100
20

25

30

35

40

45

N=8 bytes
N=64 bytes

N=256 bytes

MASTER BLT Read

Clock frequency (MHz)

Tr
an

sf
er

 ra
te

 (M
by

te
s/

se
c)

Figure 7. VME master BLT performance 
It can be observed that the master curves of performance are 
jagged because of adjustments in those mandatory timings 
mentioned before. Timing adjustment is done by means of clock 
cycle delays. VME specifies some minimum setup and cycle-to-
cycle times that the master must respect and depending on the 
frequency more or less cycles have to be introduced from one 
event to the next. This produces a drop in the performance around 
the frequency where one cycle has to be added. In our case the 
delay can be increased by half a period each time what reduces 
impact in the lost of transfer speed.  

30 40 50 60 70 80 90 100
35

40

45

50

55

60

65

70

75

80

N=32 bytes

N=256 bytes

N=1024 bytes

MASTER MBLT Write

Clock frequency (MHz)

Tr
an

sf
er

 ra
te

 (M
by

te
s/

se
c)

30 40 50 60 70 80 90 100
35

40

45

50

55

60

65

70

75

80

N=32 bytes

N=256 bytes

N=1024 bytes

MASTER MBLT Read

Clock frequency (MHz)

Tr
an

sf
er

 ra
te

 (M
by

te
s/

se
c)

Figure 7. VME master MBLT performance 

5. FUTURE WORK AND CONCLUSIONS 
The bridge presented in this paper has some characteristics that 
can make it interesting in many applications. It fits into a 
relatively small FPGA and offers a large set of features and high 
performance supporting a recent revision of a nearly twenty years 
old bus interface. During this time VME bus has evolved from the 
initial 32 bits interface (IEEE 1014-1987) to the 64 bits interface 
in 1994. But today's platforms increase performance and require 
faster interfaces to give the desired throughput, so VME evolution 
has not stopped there and other mechanisms to transfer data have 
appeared. With this bridge the possibility of evolving towards 
these new approaches has been left open. 

6. ACKNOWLEDGEMENT 
This work has been supported by CYCIT (Spanish National 
Science Council) under grant TIC98-0684 

7. REFERENCES 
[1] VITA. VME bus Specification, ANSI/IEEE STD1014-

1987. 
[2] VITA. VME bus Specification, ANSI/VITA 1-1994. 
[3] XILINX. XILINX XC4000E XC4000X Series Field 

Programmable Gate Arrays. 1999. 


