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Abstract 
This paper focuses on the analysis of the training 

mechanisms of a Fuzzy Neural Network (FNN) 
designed to perform Joint Radio Resource 
Management (JRRM) in a multi-Radio Access 
Technology (multi-RAT) scenario. Two supervised 
learning algorithms based on reinforcement learning 
mechanisms are presented. The first one modifies the 
membership function shapes (i.e. the mean and 
standard deviation parameters) in order to minimize a 
particular error function. The second one, according to 
the same guiding principle, is as well capable of 
modifying the structure of the FNN, either adding 
granularity to the fuzzy description of the output 
linguistic variables (i.e. adding new nodes), or 
modifying the consequences inferred by the fuzzy 
control rules. Simulation results will show that the 
Fuzzy Neural JRRM performances can be improved 
by means of the proposed on-line structure/parameter 
learning algorithm. 

Keywords: Joint Radio Resource Management, 
RAT Selection, QoS, Supervised learning. 

1 Introduction 
In the forthcoming heterogeneous wireless 

scenarios, the multiple available access systems will be 
combined on a common platform in an optimum way 
according to the Always Best Connected (ABC) 
concept [1]: the perspective of Beyond 3G networks is 
to allow users to access any kind of wireless service in 
any geographical location at any given time by making 
use of the multiplicity of access technologies together 
with terminals with reconfigurability capabilities [2]. 
The internetworking among different Radio Access 
Technologies (RATs) proposed in the Beyond 3G 
networks introduces a new dimension in the radio 
resource management. New algorithms taking into 
account the overall amount of resources in the RATs 
have to be introduced. In this scenario, Joint Radio 
Resource Management (JRRM) is the identified 
process to manage dynamically and co-ordinately the 
allocation and de-allocation of radio resources (e.g. 
time slots, codes, frequency carriers, etc.) between 

different RATs for the spectrum bands allocated to 
each of these systems so that a more efficient usage of 
the radio resources will follow.  

The development of JRRM solutions should deal 
with imprecise and dissimilar information in order to 
make appropriate decisions on e.g. RAT and 
bandwidth allocation. In fact, the key driving inputs of 
the decision making process, such as the received pilot 
signal and the cell loads may not be comparable for the 
different RATs. In addition to this, the QoS versus cost 
qualitative information as perceived by the user, as 
well as the operator policies can impact the RAT 
decision. As a result of that, fuzzy logic, which has 
been proved to be able to provide an effective mean of 
capturing the approximate and inexact nature of 
complex problems, has been considered as an 
appropriate candidate to solve the JRRM problem. 
However, the performances of a Fuzzy Controller 
depend on the way it is designed, particularly on the 
size of the term sets, on the membership function 
shapes and on the Fuzzy Inference rules, which keep a 
certain subjectivity in the way how they are set. 
Therefore, and to avoid this subjectivity, our proposal 
also takes into account reinforcement learning 
mechanisms based on Neural networks, which tune the 
membership function shapes and consequently the 
input/output variables of the fuzzy control rules. This 
innovative Fuzzy Neural JRRM algorithm has already 
been presented by the authors in [3][4], where the 
Fuzzy Neural Network (FNN) modifies the values of 
the parameters (i.e. membership function shapes) by 
means of the reinforcement learning algorithm to 
maintain a desired QoS constraint, thus constituting a 
parameter learning approach. However, the 
modification of the structure of the network in the 
learning procedure is not considered in the previous 
studies. Then, as a difference from the previous 
publications in which the FNN structure is an input of 
the JRRM algorithm, this paper analyses the benefits 
that can be obtained by introducing a combined 
structure and parameter learning approach in a FNN-
based JRRM algorithm.  

Hybrid learning algorithms for neural networks 
have been used in different applications in the 



literature. Specifically, in [5] a hybrid learning 
algorithm combining an unsupervised learning 
algorithm to first train the network and a supervised 
learning procedure to tune the membership function 
shapes has been presented. The hybrid learning 
algorithm performs well if the training data are 
available off-line. Nevertheless, for the JRRM 
application, it is not possible to obtain a precise 
training data file to set up the neural network because 
JRRM decisions depend on many time-variant factors 
(e.g. traffic loads, signal strengths, etc.) which can 
hardly be captured in a training data file. These 
training data would be difficult and expensive to 
obtain off-line. Furthermore, this approach does not 
have the ability to change the network structure 
dynamically, which may be foundational for the JRRM 
application in a heterogeneous reconfigurable network. 
Therefore, a different approach based on an on-line 
supervised structure/parameter learning algorithm and 
already proposed in [6] is here retained as a solution 
for the JRRM FNN training. This approach combines 
the error back propagation algorithm for the parameter 
learning (i.e. modification of means and standard 
deviations of the membership functions used in the 
fuzzification and defuzzification processes)  with the 
fuzzy similarity concept to determine the degree of 
equality of two fuzzy sets in order to perform the 
structure learning (i.e. the inclusion of new additional 
membership functions to define the output linguist 
variables and the modification of the consequences of 
the fuzzy inference rules). So the proposed supervised 
structure/parameter learning algorithm can learn the 
proper size of the output linguistic variable term sets, 
the correct fuzzy inference rules and membership 
functions.  

The rest of the paper is organized as follows. 
Section 2 introduces the proposed Fuzzy Neural JRRM 
algorithm, whose main functionalities, respectively the 
Fuzzy Logic Controller (FLC) and the On-line 
supervised structure/parameter learning algorithm, are 
presented in Section 3 and Section 4. Section 5 
describes the multi-RAT scenario where the proposed 
strategy is evaluated. Section 6 is devoted to present 
some representative results. Finally, Section 7 
summarizes the conclusions. 

2 Fuzzy Neural JRRM algorithm 
The proposed JRRM algorithm operates in a 

heterogeneous scenario with three available RATs, 
namely UMTS (Universal Mobile 
Telecommunications System), GERAN (GSM EDGE 
Radio Access Network) and WLAN (Wireless Local 

Area Network) and the objective is to provide, for each 
user, the most appropriate RAT and bit rate allocation, 
taking into account the user Quality of Service (QoS) 
constraints as well as different measurements. The 
Fuzzy Neural feature allows the introduction of 
learning procedures that provide the system with 
adaptive capabilities to achieve specific QoS 
requirements. Specifically, the proposed algorithm 
consists of the blocks shown in Figure 1 and identified 
as Fuzzy Logic Controller (FLC) and Reinforcement 
Learning. 

It is assumed that the three RATs are numbered as 
follows: j=1 for UMTS, j=2 for GERAN and j=3 for 
WLAN, and the input linguistic variables of the 
algorithm are the signal strength SSj (j=1,2,3) and the 
amount of resources available RAj in each RAT (the 
concept of “resource availability” is RAT-dependant 
and will be detailed in Section 5 for each specific 
RAT), together with the mobile speed MS. 
Furthermore, the reinforcement learning algorithm 
operates according to the measured user dissatisfaction 
probability, PI(t), here defined as the probability that 
the bit rate allocated to a user is below a threshold 
specified in its Variable Bit Rate service contract. 
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Figure 1 Procedures in the proposed JRRM 

algorithm 

In the following sections, the FLC and the 
supervised learning algorithm based on reinforcement 
learning mechanisms will be detailed. 

3 Fuzzy Logic Controller 
The fuzzy-based decision procedure operates in 

three steps, namely fuzzification, inference engine and 
defuzzification, which can be graphically represented 
by means of a 5-layered network structure shown in 
Figure 2. The i-th of the FLC k-th layer is characterized 
by p input signals ui

k, by an integration function 
( )k

p
kkk

i uuuf ,...,, 21 , which combines the different inputs 
and  by an activation function ( )fa k

i
, which provides 

the output. Notice that p is the number of the (k-1)-th 
layer nodes connected to the i-th node in the k-th layer. 
In the following, the characterization of the different 
layers defining the FLC implementing the proposed 
JRRM algorithm is presented. 
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Figure 2 Layered Fuzzy Neural Structure (µX(y) represents the degree of membership of LVi y to the fuzzy set x

Layer 1. In this layer there are as many nodes as the 
number of input linguistic variables (LVi), i.e. 7 in the 
considered approach. The nodes in this layer just 
transmit input values to the next layer, so that: 

11
ii uf =  i=1,…,7  (1)

11
ii fa = i=1,…,7 (2)

Layer 2. The nodes in this layer execute the 
fuzzification procedure, which assigns to each input 
linguistic variable a value between 0 and 1 
corresponding to the degree of membership in a given 
fuzzy set. For the signal strength SSj (j=1,2,3) input 
linguistic variables, the term set contains the fuzzy sets 
L(low) and H(high). For the resource availability RAj 
(j=1,2,3) variables the fuzzy sets are L(low), 
M(medium) and H(high) reflecting that a higher level 
of granularity is required for this input since it has a 
stronger impact over the resource allocation. Finally, 
for the mobile speed MS, the fuzzy sets are L(low) and 
H(high). The speed is used only as an indication for the 
RAT selection in the sense that some RATs (e.g. 
WLAN) may not be appropriate for high speed users. 
However, not much granularity is required when using 
this parameter. The selected term sets lead to a total of 
17 layer 2 nodes in the FNN. Each layer 2 node 
performs a bell-shaped membership function defined 
by: 
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(3)

22 if
i ea −=  i=1,…,17 (4)

where mi
2 and σi

2 are respectively the mean and 
variance of the bell-shaped function associated to the i-
th node in layer 2. 

Layer 3. This layer corresponds to the inference 
engine, which is the control mechanism that applies the 
if-then fuzzy inference rules in the fuzzy rule base. 
Each rule is associated with a node in layer 3 and the 7 
inputs to this node are the precondition of the fuzzy 
inference rule. According to the input linguistic 
variable term set dimension, layer 3 consists of 

432322 33 =⋅⋅ nodes. The function of a layer 3 node is: 
( ) inaf ni  node 3layer   tolinked  node 2layer min 23 ∀=

 
    

(5) 
33

ii fa =      
(6) 

where i=1,…,432. The output connections of layer 3 
nodes are the consequences inferred by the fuzzy rules, 
which provide a linguistic indication Dj (j=1,2,3) of the 
suitability of selecting each RAT and an indication Bj 
(j=1,2) of the bit rate to allocate. Notice that with 
respect to the bandwidth no specific allocation is given 



in case of WLAN (j=3) as much as IEEE 802.11b can 
not guarantee any rate. Nevertheless, the extension to 
include also bandwidth allocation in WLAN would be 
straightforward. The dimension of the term sets for Dj 
and Bj can be increased by the structure learning 
procedure. The initial simple structure designed 
consists of the following fuzzy sets for Dj: Y(yes), and 
N (not). In turn, for Bj they are L(low) and H(high).  

Layer 4. In the forth layer the degree of 
membership of the consequent parts of the fuzzy rules 
is calculated by a fuzzy OR operation integrating the 
inputs coming from the layer 3 nodes that have the 
same consequence. The initial simple FNN structure 
considered consists of 10 nodes at layer 4. 

),1min( 34 ∑
∈

=
Cin

ni af  i=1,…,10  (7)
44

ii fa =  i=1,…,10 (8)
where Ci is the set of layer 3 nodes that are connected 
to the considered layer 4 node.  

Layer 5. The output of the inference engine is so far 
a fuzzy set, so that a defuzzification procedure is 
necessary to transform the fuzzy quantities into crisp 
values. Each node of layer 5 carries out the 
defuzzification procedure, which provides, for each 
RAT, an indicator of the suitability to select it, denoted 
as Fuzzy Selected Decision (FSD), and the allocated bit 
rate. There is a total of 5 nodes in this layer. For the 
three nodes providing the FSD, (i.e. FSD1 for UMTS, 
FSD2 for GERAN and FSD3 for WLAN) the function 
is: 
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where Ti is the set of layer 4 nodes connected with the 
considered layer 5 node. mj

5 and σj
5 are the centers and 

the widths of membership functions. Similarly, for the 
two nodes providing the allocated bit rate the function 
is: 
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BWi,MAX is the maximum bit rate that can be allocated 
in the corresponding RAT. Wi is the set of layer 4 
nodes connected with the considered layer 5 node.  

4 On-Line Supervised Structure/Parameter 
Learning Algorithm 

The proposed algorithm uses the fuzzy similarity 
measure to perform the structure learning and the 
backpropagation algorithm to perform parameter 
learning. At every JRRM decision making, the 

supervised learning algorithm is activated and first it is 
established whether or not to perform the structure 
learning. A new node (i.e. a new membership 
function) may be added in this case, otherwise just 
some fuzzy inference rule consequences may be 
properly modified. After the structure learning process, 
the current membership functions are adjusted by 
means of the parameter learning procedure already 
presented in [4]. Before the network is trained, the 
initial simple structure with 10 layer 4 nodes, 
introduced in section 3, is considered. 

The goal of the supervised learning procedure is to 
minimize the error function given by: 

( ) ( ) ( )( )2*2

2
1

2
1 tPPtrtE II −==  (11)

where PI(t) is the current measured dissatisfaction 
probability (i.e. the average ratio between  the  number 
of dissatisfied users and the total number of users) and 
PI* is its desired target value. Then, let assume that w is 
a general adjustable parameter (e.g. any of the means 
and deviations of the membership functions at layers 5 
and 2). The general learning rule for this parameter is 
given by: 
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where γ is the learning rate. 
At layer 5, the updated values for the mean and 

standard deviation for the i-th node are indicated as 
m5
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In this step, the fuzzy similarity concept, introduced 
in section 4.1, is used in order to establish whether or 
not the FNN structure should be changed. In the 
following sub-sections, the fuzzy similarity concept 
and the way it is used to learn the FNN structure are 
introduced.  

4.1 Fuzzy Similarity Measure 
The fuzzy similarity measure E(A,B)  of two fuzzy 

sets A and B with membership functions µA and µB 
indicates the degree of equality between A and B. 
E(A,B) takes values in the range [0,1] and the higher 
E(A,B) is, the more similar A and B are. Thus, 
E(A,B)=1, if A=B. The geometric derivation of the 
fuzzy similarity measure E(A,B) used in this paper is 
provided in [7]. 



 

4.2 Steps of the Supervised Structure/ 
Parameter Learning Algorithm 

Based on the Fuzzy Similarity Measure concept 
introduced above, the proposed learning algorithm 
operates in the following steps at every decision 
making instant and for every pair ( )55 , newinewim −− σ .   

Step 1- Find the closest node at layer 4 

Among the current membership functions of the 
output linguistic variables, the procedure aims at 
finding the most similar one (i.e. that of the closest 
node) to the expected membership function, by 
measuring their fuzzy similarity. Let M(mi,σi) represent 
a bell-shaped membership function with mean mi and 
standard deviation σi.  Then, the selected node, denoted 
as i-closest, is the one having the maximum of this 
similarity, given by: 
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Notice that Ti (i.e. the layer 4 nodes connected to 
the layer 5 node) contains 2 nodes when considering 
the initial simple structure introduced in Section 3. 

Step 2- Analysis of the Fuzzy Similarity Measure 

After the most similar membership function 









−−
55 , closesticlosestimM σ  to the expected membership function 

( )55 , newinewimM −− σ  has been found, the following 
adjustments are made: 

• If the degree of similarity SIM is below a value 
α properly selected, then a new node (i.e. a new 
membership function) ( )55 , newinewimM −− σ  has to be 
created at layer 4, and this will be now the i-closest 
node. Besides, the structure learning process to 
properly modify the inference rules taking into account 
the new node and detailed in the following subsection 
4.3, has to be executed. 

• Otherwise, if the degree of similarity SIM is 
higher than a value α, and the i-closest node is not the 
i-th node the learning procedure is dealing with, no 
additional nodes are added, but the structure learning 
defined in the following sub-section 4.3 has to be 
executed in order to modify some consequences 
inferred by some inference rules. 

• If none of the previous conditions is satisfied 
(i.e. the degree of similarity SIM is higher than α and 
the i-closest node is the i-th node), then the following 
parameter adjustments are made effective: 

( ) ( ) ( ) ( )ttandtmtm newiinewii
5555 11 −− =+=+ σσ  (16)

Step 3- Layer 2 Parameter Learning 

From layer 3 only the parameter learning is 
performed. In layer 4 and 3 there are no parameters to 
tune. In relation to the membership functions of layer 
2, the error term given by (11) that is propagated from 
the top to the bottom of the multilayered structure, the 
partial derivatives and the adaptive rules for a generic 
mean and dispersion of the i-th node of layer 2 are 
given in [4]. 

4.3 Structure Learning 
When entering this process, it means that the i-th 

term node in layer 4 is not properly assigned as 
consequence of some fuzzy inference rules and, on the 
contrary, its more proper consequence should be the i-
closest node. It should be mentioned that in this 
procedure only those rules having one or more 
consequences with a degree of membership higher 
than a threshold β are considered for modification. The 
reason of this is that only these rules have 
consequences with a degree of membership high 
enough to contribute to the wrong result of judgment. 

So, let consider the i-th node at layer 4 which has 
inputs from the j-th node at layer 3. Let 3

ja  be the 
degree of membership of the j-th rule (node) at layer 3. 
If ( ) β≥ta j

3 , then the consequences of the jth rule 
node should be changed from the i-th to the i-closest 
node. 

5 Scenario For JRRM Evaluation 
In order to evaluate the effects of the on-line 

supervised structure/parameter learning algorithm over 
the Fuzzy Neural JRRM, a scenario consisting of three 
RATs, namely, UMTS, GERAN and WLAN, has been 
identified and modeled. Each cell is characterized by a 
circular coverage area. The cell radius for UMTS is 
650 m, for GERAN is 1 Km and for WLAN is 150m. 
A mobility model with users moving according to a 
random walk model is adopted, with randomly 
assigned speed between 0 and 50 Km/h. 

The 1800 MHz band is assumed for GERAN. 
Consequently, due to the proximity between UMTS 
and GERAN bands, the same propagation model can 
be considered for both systems. It is given by 
L(dB)=128.1+37.6log(d(Km)) [8]. The shadowing 
model considers a standard deviation of 7 dB and a 
decorrelation length of 20m. For WLAN, the 
propagation losses inside the hotspot are modelled by 



L(dB)=20log(d(m))+40 [9]. The beginning and the end 
of the user activity periods are defined according to a 
Poisson scheme with an average arrival rate of 6 calls 
per hours and user, and average call duration of 180 s. 
The simulation time is measured in frames of 10ms. 
Results are presented for the uplink direction. A single 
UTRAN FDD carrier is considered for UMTS, with a 
maximum uplink factor of 0.75. For GERAN, four 
carriers are considered, using coding scheme CS-4, 
thus having a maximum aggregated bit rate in each 
cell of 640 Kb/s. The considered potential bit rates are:  

UMTS: {32, 48, 64, 80, 96, 112, 128, 192, 256, 
320, 384} Kb/s 

GERAN: {32, 48, 64, 80, 96} Kb/s 
For WLAN, a single access point is considered and 

the total bandwidth available (i.e.11 Mb/s) is equally 
shared by the users assigned to this RAT.  

The resource availability used as input of the Fuzzy 
Neural algorithm is defined for UMTS as RA1=1-ηUL, 
where ηUL is the uplink cell load factor [10]. For 
GERAN, RA2=640-ρ, where ρ is the current amount of 
Kb/s already allocated in the corresponding cell. 
Finally, for WLAN, RA3=28-ρ, where ρ is the number 
of users currently allocated in WLAN. 

The retained performance measurements are: 
• Service dissatisfaction: A user is not satisfied 

either when the allocated bit rate is below the 
contractual bit rate (i.e. 192 kb/s for UMTS and 40 kb/s 
for GERAN) or when the allocated bit rate is higher 
than the contractual bit rate but the user is in outage. A 
user is in outage in UMTS whenever the required 
transmission power is higher than 21 dBm the 
maximum power available at the terminal. In turn, in 
GERAN and WLAN, the user is in outage when the 
received power is below the sensitivity, defined as -87 
dBm for GERAN and -93 dBm for WLAN.  

• Blocking: A user is blocked if at the session start 
the JRRM algorithm assigns a bit rate of 0 kb/s. 

• Dropping: A user is dropped if after a change in 
the camping cell, the JRRM algorithm assigns a bit rate 
of 0Kb/s. 

6 Discussion and Results 
In order to show the benefits that can be obtained 

by means of the on-line supervised structure/parameter 
learning algorithm, simulation results expressed in 
terms of blocking and dropping performances are 
compared to the ones obtained by the FNN with only 
parameter learning (i.e. tuning the membership 
function shapes). In both cases, the FNN is first set up 
off-line in the following way: the term set dimension 
of the input/output linguistic variable is the one 

described in Section 3; the fuzzy inference rules are 
determined by the expert knowledge of the decision 
policies and the membership function initial shape is 
defined by the statistical clustering technique of 
Kohonen’s feature-maps algorithm [11]. 

Figure 3 and Figure 4 plot the blocking and 
dropping probabilities as a function of the number of 
users in the scenario for the two considered 
approaches. It can be observed that the capability of 
learning from experience the most appropriate FNN 
structure allows providing a JRRM able to reduce 
blocking and dropping probabilities very significantly, 
as it is shown in Figure 3 and Figure 4. 

These simulations have been carried out 
considering β=0.45 and P*=10%. In turn, the setting of 
the parameter α in the supervised learning strongly 
depends on the learning rate γ selected for layer 5 
parameters. Particularly, the higher is γ, the faster the 
parameters of the different nodes will vary, which will 
impact on the threshold α to decide the addition of a 
new node.  Consequently, it has been observed from 
previous experiments that an adequate setting of this 
threshold is α=1-0.5γ, for γ=10-4.  On the other hand, 
and simply as a reference of the way how the FNN 
structure has been modified by the learning algorithm, 
when 45 users are moving in the scenario, it has been 
observed that the structure learning procedure has 
increased the number of layer 4 nodes from 10 to 30, 
thus obtaining a higher granularity in the description of 
the output linguistic variables. In addition to this, 
Figure 5 shows the evolution of the dissatisfaction 
probability for different target values PI

*, revealing 
that the predefined QoS parameter PI

* is kept constant 
thanks to the structure/parameter learning. 
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Figure 3 Blocking Performance Comparison 

7 Conclusion 
A supervised learning algorithm capable of 

modifying the structure and the parameters of a FNN 
implementing JRRM in a multi-RAT scenario has 
been presented. Reinforcement learning mechanisms 
allow maintaining to any desired rate a defined QoS 



parameter referred to as the dissatisfaction probability. 
Simulation results have shown that this procedure is 
able to improve performances, expressed in terms of 
blocking and dropping probability, with respect to a 
procedure applying just parameter learning. In addition 
to this, an on-line supervised learning algorithm is 
more suitable in a real-time environment, since it 
allows dynamic and automatic modifications of the 
structure of the FNN performing JRRM decisions, 
depending on the scenario conditions. 
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Figure 4 Dropping Performance Comparison 
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Figure 5 Behaviour of the evolution of 

dissatisfaction probability for different targets 
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