Software Radio Reconfigurable Hardware System
(SHaRe)

Xavier Revés, Antoni Gelonch, Ferran Casadevall, and José L. Garcia

Universitat Politecnica de Catalunya, Signal Theory and Communication Department
Jordi Girona 1-3, 08034 Barcelona (Spain)
{xreves, antoni, ferran}@xaloc.upc.es
garciam@teleline.es

Abstract. Recent requirements and evolution of personal communications
systems will tend to increase the number of applications that will run over the
same hardware/software. While an option is providing this platform with all the
algorithms needed, a more suitable one is providing such a platform with the
capacity to evolve, along time, from one function to another. Here we present a
hardware platform with self reconfiguration abilities depending on system
demand. The reconfiguration can be partial or complete within a short time to
cope with the current application. This capability has an important effect on the
software radio techniques applied to terminals and base stations as it will add
extra value through a quick support to new standards and the incorporation of
new software-designed applications.

1 Introduction

When working in mobile systems, the present third generation (3G) deploying has
produced a substantial growth of services offered by network providers. Multiplicity
of bands, data formats and rates, and processing demands in general will be common
attributes. These diversity requires a quite complex structure with separate silicon for
each possible standard. Another solution is using an application-multiplexed structure
able to bear all this dispersion. It is clear that an aspect that can reduce
implementation costs is reusing as many times as possible the same system in several
applications. In this case, the second approach is quite reasonable when designing
terminals from the point of view of the Software Radio techniques [1], [2], [3]. Those
terminals must be capable of managing new and different standards and/or
applications but with only part of them being executed concurrently. It's reasonable
considering that different applications share part of the structure so it seems
interesting to change only part of the processing structure. Also, software radios can
reduce manufacturing costs and allow upgrading of the system as soon as different
processing techniques and applications appear.

One important aspect in reconfigurable systems is the cost in terms of time, that is,
the time spent on reconfiguring the system. In mobile communications area,
reconfiguration times are not specially stressing when a user changes from one data
stream format to another since a certain delay will be allowed. Perhaps a harder
requirement should take this delay into account, like in the case where a mobile user

R.W. Hartenstein and H. Griinbacher (Eds.): FPL 2000, LNCS 1896, pp. 332—-341, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Software Radio Reconfigurable Hardware System (SHaRe) 333

changes from one standard protocol to another trying to maintain the current call.
Moreover, we must not forget that an important design issue of this kind of systems is
the scalability, that is, the capability to provide increasing processing power without
increasing complexity.

By other hand, it is well known that Field Programmable Gate Arrays (FPGA)
offer the possibility to designer of reshaping the application as many times as wished.
Taking advantage of that, it is possible building hardware systems that change their
functionality at any time. Also several options appear when focusing on what parts of
the system can be modified or how you are actually doing it. Totally or partially
reconfigurable FPGAs are suitable if the overall system flexibility is kept to allow, at
least, working within the selected area. This can be accomplished using many
different architectures where inherent FPGA flexibility can polish errors in the
previous design stages. But choosing an adequate initial architecture can help
reaching final objectives. One important aspect when designing the system
architecture is the minimum reconfigurable block size. Each of these blocks must be
small enough to avoid reconfiguration overhead when only a small part of the system
is to be modified. Conversely, large blocks have the ability to simplify the
architecture.

With this in mind, and considering the structures usually implemented in a typical
radio link, a Reconfigurable Hardware System (SHaRe) was designed and built. This
partially auto-reconfigurable platform is being presented in more detail further on.

The final objective of this research work was to develop a reconfigurable hardware
platform, mixing FPGAs and DSP technology, able to test, in real time, the proposed
third generation mobile system radio access technologies and evaluate its
performance. This platform should be as flexible as possible to allow the
characterisation by software of the different radio access techniques proposed. From
the viewpoint of the Software Radio implementation requirements, the aggregate
processing demand of a generic mobile cellular base station managing 30 users,
without considering the IF processing demand, can be estimated around 150 MOPS
(Million Operations per Second). This value include only the baseband, bitstream,
source and the signaling processing demand. About the IF processing demand it is
estimated around 2500 MOPS which is assumed, until now, carried out by special-
purpose digital receiver chips.

2 SHaRe Platform Architecture

Considering all the previously commented ideas, our aim was building a system
based on a set of blocks made of non-partially reconfigurable FPGA [4] of an
undetermined size. Each of these blocks will include one or more clusters which will
be the smallest reconfigurable portions of the system. Defining the blocks dimensions
can be done on the basis of the knowledge of the set of possible applications (a priori
knowledge) and associating every block with one ore more clusters. If those
applications are not known the definition can be done on the basis of certain abstract
criteria. The second approach requires to define a flexible platform that allowing the
union of several clusters to accommodate a single block. Again the size of these
clusters must be a trade-off between the available number of them and the range of
valid sizes for each one. It cannot go unnoticed that a highly clustered system

334 X. Revés et al.

increases designer effort as the underlying hardware must be known and the desing
must be partitioned. Conversely, a not much clustered system, although simplifies
architecture and designer effort (must deal with fewer and larger FPGAs) can drift
towards high reconfiguration cycles or towards scarcely used clusters what represents
a lost of resources.

The final clustered architecture can be supported by an automation software at a
high level language with a compiler having perfect knowledge of the underlying
structure. This approach is out of the scope of this document, but the actual structure
of the system being presented has grossly been thought as a tridimensional, simple but
flexible, data, control and configuration flow so that the "only" task of the compiler
would be to identify those data flows present into the design.

2.1 Defined Blocks

The proposed flat architecture for the FPGA network board (SHaRe) is shown in the
Fig. 1. Three different modules are shown: the Peripheral and Processing
Management (PPM) module, the VME [5] Interface and Programming (VIP) module
and the Intensive Processing Unit (IPU) module. All them are constituted of several
FPGAs as "intelligent" part. The modules are housed over a printed circuit board with
a VME physical interface in 6U format which allow the scalability of the system.
Notice the possibility of SHaRe to be connected to a typical VME backplane and to
be concatenated with another VME compliant board.

/0

A
y

PPM VIP |

USER

Back VME BUS

_| USER IPU _USER|

Frontal VME BUS Backplane

SHaRe Platform
a)

Fig. 1. General SHaRe block diagram

The most important block from the point of view of managing physical resources
and system scalability is the VIP one. It provides support to the different buses
defined in VME standard. The accessibility to all these buses together with the
potential capabilities of the rest of elements gives the system the ability to build a
complete VME structure (needless to say that without data sources or sinks that
structure is useless) with transfer rates beyond 60Mbytes/sec.

The VIP module provides the necessary link between the VME bus and the inner
part of the SHARE board through the internal bus (IBUS: Synchronous Burst User

Software Radio Reconfigurable Hardware System (SHaRe) 335

Interface). It also manages the reprogramming facilities of the FPGAs included in the
rest of modules. The VIP FPGA is the only one that starts-up automatically, and only
automatically, (in normal operation) to make the system functional at power-up.

—
- e [T e

‘ I.‘-. FPGA - I
;“Towards IPU
a)

Fig. 2. PPM module internal structure

Back Upper Socket

SRAM SRAM IPU
D = E (= A
E TO PPM E
e T I g
3 e
a SRAM SRAM =
C = F @ B

Fig. 3. IPU module internal structure

A simplified diagram of PPM and IPU appear in Fig. 2 and Fig. 3 respectively.
PPM module is built around two FPGAs, and IPU one is basically made up of six
FPGAs, each of them constituting a cluster. PPM module is designed to be able to
perform CPU-like tasks and to communicate through serial/parallel ports to external
environments. As the serial/parallel ports can be redefined, no limitations are
introduced about used interface or speed (some FPGAs can easily reach 100Mbit/sec
serial interfaces), thus allowing an easy migration to different communications
protocols (e.g. Ethernet, X.25, RS232, IEEE-488 etc.) only adding the appropriate
physical level link. This is because no drivers at physical level have been introduced
to have available a wide range of possibilities. Then, the corresponding drivers,
depending on the interface required, must be appended at the socket.

With regard to what has been called CPU-like tasks, the idea in mind is having the
possibility to introduce a small processor core into one or both FPGAs to execute a

336 X. Revés et al.

rather simple managing program. The aim is not getting the performance of a
commercial processor (otherwise placing one instead of the FPGA would have been a
better approach) but being able to check how an FPGA working this way can help the
system. For this purpose, up to 1Mbyte of SRAM and 512kbytes of ROM have been
supplied. Not only managing or CPU tasks can be assigned to PPM but also signal
processing tasks interacting with IPU.

The last block (IPU) consists of an FPGA network connected in a software-defined
basis. The main processing will be assigned to this matrix. As a processing unit, will
include most of digital processing system capabilities, which don't need to be the
same along application's life since in this case the structure can be modified
dynamically thus allowing reusing the hardware platform. Moreover, several SRAM
blocks (up to a maximum of 256kbytes) have been distributed inside this network in
order to provide additional support to the processing task.

2.2 Programming Methods

As mentioned above, VIP module programs itself at power-up as the corresponding
FPGA acts as glue logic between buses and general configuration registers and
utilities. This option can also be used for PPM block which is useful when building a
stand-alone system, including a CPU, or in similar cases. For IPU module, no self-
programming possibility exists.

All PPM or IPU FPGAs have the possibility to be programmed individually by
means of a host processor over VME bus through functions implemented into VIP.
This can be done, at any time and as many times as required, in a similar way as code
for general purpose processors is loaded into memory. This feature allows to an
external process to determine when any functionality must by modified and then load
the correct code into any of the FPGAs building PPM or IPU clusters. Notice that any
FPGA into PPM can only be dynamically reprogrammed if autoboot is disabled for it.

Much more important than the external reconfiguration is the possibility of
implementing it internally. From the figures shown, VIP connection to the internal
bus gives the opportunity to PPM module to access the resources that allow to
program/reprogram the FPGAs over the board. The strong interaction of PPM with
IPU allows it to monitor application-dependent variables for watching system
evolution. Then, when a modification in any of the clusters into IPU is required, a
programming cycle can be done. This ability is which we have called auto-reprogram.
Of course PPM can participate in the application tasks, but the designer can take
advantage of that capacity to build an auto-managed application.

Each IPU cluster may require several kilobytes of data. Storing mechanisms have
been provided to PPM (the same resources that allow it to act as a CPU) to retain
different configurations of more than one cluster. When the diversity of
configurations required for the present application exceeds storage capabilities, more
data can be found into VME domains through VIP IBUS-VME bridge.

In any case, reconfiguration is parallel to any processing since a dedicated
programming bus has been installed on the board. At any point of the application
some devices can be working while others are being reconfigured. A certain
mechanism puts reconfiguracion on record so that working application may wait until
a concrete part is ready.

Software Radio Reconfigurable Hardware System (SHaRe) 337

2.3 Soft Radio Architecture

Until this point a description of SHaRe's architecture has been presented to allow a
general understanding of the system. The blocks depicted have been considered flat
representations of the ensemble. But the blocks can be reordered and represented in
another way. This representation will give a hierarchical representation per layers of
SHaRe and is shown in Fig. 4. It can be seen the presence of three layers. The lower
one will perform basic system functions (modulation/demodulation, bitstream
processing, etc.). This corresponds completely to IPU. The next level above will deal
with higher system tasks (channel parameter extraction, synchronism functions, etc.)
and is shared between IPU and PPM. Finally, the top level will manage the part of
application running over the board. This task will be exclusively performed by PPM.

Main VME Processor

Control
Processing

SHaRe Board

| Data Source/Sink |

Fig. 4. SHaRe Hierarchy Stack

Viewing the architecture this way it can be understood that the system can modify
parameters corresponding to any of the levels through data being received from either
the channel or the system administrator. This approach is useful in a canonical
Software Radio transceiver because evolution from environment analysis is a key
point. Evolution is not only done online by the same system but is also done through
system operation enhancement.

Another important aspect to highlight is the system scalability that provides
SHaRe. Although it is given the complete set of resources to cope with a complex
application, those can be insufficient for the current one. SHaRe gives a simple
solution to this problem. A set of boards can be joined as showed in Fig. 4 getting a
more complex system but also a more powerful processing machine. It is important to
see that the hierarchical structure is kept.

338 X. Revés et al.

2.4 Data Communication

As main paths of data between clusters we define dedicated paths allowing word
transfer widths of up to 32 bits (if data is transferred synchronously several hundreds
of megabytes per second can be achieved although generally not required), large
enough for most of signal processing applications even if complex data are used.
These datapaths are specially useful when signal sampling rates are high and give the
structure the capability of sequentially concatenate different blocks, each one of them
performing a different task, or implementing parallel paths with cross-passing
information.

These dedicated paths would be the main data flow, but to transfer data at lower
mean rates, as it can happen when sending control parameters or tables to be updated
from time to time, a shared bus structure is acceptable. In our case, as observed in the
figures, several clusters have access to a common IBUS. This bus is mainly for
bidireccional interaction between PPM and the external world, represented as a VME
bus, but it can optionally be used to send and receive data from IPU clusters.

IBUS allows the transaction of data synchronously at high speed rates (128Mbytes
per second with 32MHz clock) with a simple mechanism that uses few resources into
the FPGAs. Using an address and data multiplexed scheme, only some few
handshaking signals are used between bus master and slave, having a very simple
protocol. The method allows new and more complex versions to interact with older
ones and gives a flexible way to deal with a large amount of addressable resources.
By other hand, it is important not spending a lot a resources in the transfer of data
(configuration and/or processing) to leave as much room as possible to the
application. Even when using the smaller of possible FPGAs, IBUS master and slave
occupies less than 10% of resources (additional resources may be necessary
depending on the options implemented).

2.5 Applications, Software Tools and Current Works

An example application developed is the uplink in a indoor mobile multimedia DS-
CDMA system which represents a system of complexity similar to that of WCDMA
for UMTS. In the transmitter a maximum of 256kbps were allowed per user in eight
different channels of 32kbps separated each other by Gold sequences. Data were
spread at 4Mchips/sec and, after a QPSK modulation, translated to the digital to
analog converter at a sampling rate of 32Msps. The receiver, after analog to digital
conversion, performed the corresponding tasks of synchronization (lock and follow)
and CDMA demodulation. The complete system gross processing demand is about
2Giga operations (some more complex than others) per second in the transmitter and
about twice as much in the receiver. Most of processing capacity was used in channel
and I/Q demodulator filtering in reception (32Msps and 9-11 bits). The whole
transmitter could be inserted into a XC4013 FPGA. Also the synchronism algorithm
and CDMA demodulation could be implemented into a XC4013. Notice that this is
the smallest FPGA that can be placed over SHaRe. Reception I/Q demodulator and
filtering was using almost three times more of space depending on the algorithm
used. Using larger FPGAs and taking into account that the complexity (in terms of
resources) of the system implemented does not increment as fast as the number of

Software Radio Reconfigurable Hardware System (SHaRe) 339

users does, it is deduced that over a single SHaRe board some tenths of users can be
implemented.

By other hand, software tools are important when managing a complex hardware
structure. The knowledge of every corner of the structure is hard for novel users but is
the only way of doing it without an automated tool. At present developing and
programming applications can be done through definition of the different cluster tasks
and loading the code generated into FPGAs. The code is sent through a driver running
on a Sparc processor card over VME bus with a Solaris operating system. The
definition of FPGA code can be done by means of a hardware description language
(VHDL).

At present, a tool based on IEEE 1149.1 (Boundary-Scan and Test Access Port) is
being developed which will allow the user to test, debug and monitor applications
remotely or locally with the help of analysis systems. This can be done from the top
of the hierarchy presented before.

3 SHaRe Features

The main Share board features and performances are described in the Table 1. The
most important features indicates us the capacity that the system has to communicate
with the environment and the maximum processing capacity that can be obtained.

Table 1. SHaRe's set of features

Description Feature

Host bus VMEG64 (ANSI/VITA 1-1994)
Up to 66Mbytes/sec.

Test Port JTAG TAP (IEEE 1149.1)

Board’s Devices Up to 9 Xilinx® FPGA

Devices Family (5V or 3.3V) Xilinx® XC4000E/EX/XL/XLA (4013-4085)
Xilinx® Spartan/XL (30-40)

SRAM Memory per board 2 Mbytes maximum

ROM Memory per board 8 Mbits maximum

FIFOs input/output size From 2k x 32 bits up to 64k x 32 bits
Number of MACs| Up to 40 Giga MACs with larger devices
IBUS mean transfer speed Up to 110 Mbytes/sec with 32MHz clock.

over sustained transfer

4 Conclusions

Partially reconfigurable platforms with high processing capabilities can help
supporting many standards and applications by reusing the same hardware. Software
Radio techniques can take advantage of the efficiency of reconfigurable or self-

! Estimated peak capacity per full board based on a Xilinx® 16 bits FIR filter benchmark.
(MAC: multiply-accumulate). One DSPTMS320C6x can perform about 0.5 Giga MAC/sec.

340 X.Revésetal.

configurable platforms to improve system behaviour without lost of flexibility. The
diversification of services, protocols and access topologies will require the
introduction of clever multiband and multi-standard terminals able to implement new
applications without hardware modification, so partially reconfigurable systems will
likely be next generation terminals. In this paper a partially self-reconfigurable system
(SHaRe, Fig. 5) has been presented based exclusively on FPGAs. As a testbed,
SHaRe will allow checking multiple digital environments and, as a tool, will allow to
add quickly and easily new improvements and functions into commercial mobile
terminals by using hardware description languages (e.g. VHDL, Verilog) in a first
step and even high level languages (like C/C++ or JAVA) for system-level
description. SHaRe's properties make it suitable for checking auto-reconfiguration
algorithms on the basis of self-evolution control.

Fig. 5. Frontal photograph of first SHaRe prototype

Acknowledgement

This work has been supported by CYCIT (Spanish National Science Council) under
grant TIC98-0684

Software Radio Reconfigurable Hardware System (SHaRe) 341

References

1. Joe Mitola. "The Software Radio Architecture". IEEE Communications Magazine. May
1995.

2. Srikathyayani Srikanteswara, Jeffrey H. Reed, Peter Athanas and Robert Boyle. "A Soft
Radio Architecture for Reconfigurable Platforms". IEEE Communications Magazine.
February 2000.

3. Mark Cummings, Shinichiro Haruyama. "FPGA in the Software Radio". IEEE
Communications Magazine. February 1999.

4. XILINX XC4000E XC4000X Series Field Programmable Gate Arrays. Xilinx. May 1999.

5. VME bus Specification, ANSI/IEEE STD1014-1987. VITA 1987.

	1 Introduction
	2 SHaRe Platform Architecture
	2.1 Defined Blocks
	2.2 Programming Methods
	2.3 Soft Radio Architecture
	2.4 Data Communication
	2.5 Applications, Software Tools and Current Works

	3 SHaRe Features
	4 Conclusions
	References

