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ABSTRACT 

The division in several layers of the implementation of 

systems is a solution adopted to avoid complexity, provide 

flexibility and improve portability and code reusability 

through different hardware. Middleware (intermediate layer 

between two other layers) implementations are based on the 

use of increasingly high-level languages and Application 

Programming Interfaces (API). The Field Programmable 

Gate Arrays (FPGA) world can also apply this approach to 

produce building blocks independent from hardware 

platforms and devices. This paper presents details of the 

implementation of a Middleware, called Platform and 

Hardware Abstraction Layer (P-HAL) when applied to 

FPGA devices. It was specially designed for radio 

applications and allows designing specific functions 

independently of the hardware context where they are 

applied, thus providing flexibility to the so-called Software 

Radios employing FPGA devices. 

1. INTRODUCTION 

The Flexibility parameter has more and more relevance in 

today’s radio systems and has become part of the metrics 

that define the quality of a product, together with power 

consumption, sensibility, range, etc [1]. Flexibility is in this 

case applied to the management of the execution of the hard 

tasks that are in charge of processing the signal waveform 

and bit stream, the radio physical layer. It is well known 

that flexibility goes in the opposite sense than power 

consumption and size because optimised designs for a 

particular task always exhibit lower power demand than 

designs that can alternate different tasks [2]. However, the 

increasing need of flexibility necessarily forces the 

exploration of flexible solutions that can be applied to the 

programming of radio Layer 1 applications, and that can be 

extended to Layers 2 and 3 (hereafter, “application” will 

mean “radio application dealing with lower layers”). 

 If the application is detached from the optimisation that 

represents a custom design and is moved towards the 

software level, those concepts that are applied in the 

general-purpose software design can also be employed. 

Among them, the most interesting here is the possibility to 

develop parts of the application software without knowing 

the hardware in advance. This requires an abstraction layer. 

For each layer an API provides access to the specific 

resources or functions that it hides. Despite the advantages 

that this model has demonstrated to have in GPP (General-

Purpose Processing), its usage has not spanned over the 

radio processors technology. The reasons of this include 

power consumption, communications network security, 

manufacturer design confidentiality and tight dependency 

of programs on support hardware. However, these 

limitations can be overcome with technological evolutions 

and proper manufacturer agreements. As a conclusion, a 

software model to apply on radio technology that allows for 

open software development is not a utopia at present.  

 In this paper the translation of the software model to 

FPGA devices is discussed. Section 2 presents the main 

lines that can be applied to program Software Radio [3] 

applications. Section 3 provides an insight to the FPGA 

API part for a possible general device context. Section 4 

deals with the usage of the structure described in section 3 

on a concrete programmable hardware platform.  

2. SOFTWARE MODEL TO BUILD RADIO 

APPLICATIONS 

2.1. Requirements 

The software model must encompass the utilisation of 

hardware platforms compound of different processing 

boards. Therefore, the model for the hardware platform is 

understood as an array of heterogeneous processors 

showing different interconnection mechanisms among 

them. Some of such processors will work under high-level 

software support, like an operating system (OS), or simply 

under some firmware. Because of that, our definition of 

hardware platform includes systems like a workstation or 
PC with its GPP and OS, but also devices well suited to 

radio applications like embedded arrays of DSPs (Digital 

Signal Processor) or FPGAs. 

 The model provides mechanisms to add as much 

platforms as required to the processing set, just to obtain 

enough computational performance for the target 

application. Some protocols and procedures are used to 

merge all the platforms into a single virtual one. 
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 In the Software Radio environment, all the processing 

devices that are connected together to build the hardware 

platform must cooperate to run in real-time the desired 

application. In this context, the ability to isochronously 

exchange data is crucial. Then, the requirements of having 

enough computing power and suitable communication and 

synchronisation mechanisms are obvious. In addition, 

reconfiguration demands the possibility to change, 

completely or partially, the running application whenever 

the system management requires it. 

 Another crucial aspect to be considered in the 

application area is the possibility to monitor the application 

behaviour or even information delivered by its processing 

entities. Such feature is mandatory in a system that expects 

to agree with the basic “rules” of Software Radio or 

Cognitive Radio [4]. As a consequence, a set of 

mechanisms to extract control data in real time from the 

application has to be contemplated. Not to mention that the 

transport of this information is bi-directional since the 

application management can alter the relative behaviour of 

some parts of the software, according to the possibilities of 

such software to accept modifications at runtime.  

 All the aforementioned abilities, to be portable and 

independent from platforms but also from software 

components, require the inclusion of rules to the design of 

software to be included in any application. Such rules only 

apply to the interface of a given software entity but not to 

the task that it is programmed to perform. 

2.2. Architecture and elements 

In the Fig. 1. a schematic representation of the software 

model appears. Four different layers have been identified. 

At the top there is the application, which is described as a 

set of independent objects exchanging data streams. This is 

the only connection between objects: a set of discrete-time 

ordered samples representing waveforms, bits, bytes, etc. 

Interfaces are viewed as mere pipes (FIFO-like) where the 

application can write to and read from. 

 The next level downwards represents the software 

support layer to the application, which offers an abstract 

environment to construct the application. The name that we 

assign to this layer is P-HAL (Platform and Hardware 

Abstraction Layer). In the third layer there are the different 

parts that compound the supporting software. Note that 

every single hardware platform (moved down to the fourth 

layer) contains identical functional units that build up the 

aforementioned abstraction layer. These entities exchange 

information to show up to the application as a single 

execution framework, independently from the actual 

platform composition and architecture.  

 The abstraction layer elements that are identified in the 

Fig. 1. are the following: 

BRIDGE. Move application data generated on a given 

platform by an application object to another platform. 

SYNC. Maintain the local time reference to a value 

close enough to the reference in other platforms. 

STATS. Retrieve/provide information from/to the 

application object for monitoring purposes. 

KERNEL. Maintain a stable union of all the platforms 

that are under the abstraction layer. 
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Fig. 1.  The software model architecture 

2.3. Programming applications 

Using this simple approach it is possible to program the 

applications independently from hardware, following the 

traditional API programming approach. A set of functions 

is available to the object’s programmer to interact with 

other objects and with the system. The novelty of the 

approach relies on using it for the focused application type 

and on using it as well for GPP or DSP as for FPGA. That 

is, the same API is implemented to program objects on 

these different families of processors. Although FPGAs are 

usually considered in a quite different manner than other 

processors, not doing any difference in advance can add 

some advantages. One result from this consideration is that 

the overall model fulfils the constraints that were imposed 

to cope with radio applications. For instance, the 

simplification of procedures to not excessively load the 

FPGA side result in low overhead in the processors side, 

and then, in high performance of the applications even 

running on the abstraction layer. To find other advantages 

of the equal treatment of processors and FPGA, consider, 

for example a set of hardware not containing FPGAs. The 

same algorithms can be executed on hardware sets with 

other processors or even accelerators (ASIC) matching the 

algorithm. In general, the objective is to have the 

application programmed using a single high-level language 

that can be ported to any device. Using adequate compilers 

and mapping and scheduling techniques the abstract 

application can be applied to any hardware set that provides 

the abstraction layer functionalities. However, having a 

given algorithm programmed using a single language to be 
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translated either to GPP, DSP or FPGA is not realistic at 

present. It is not because of syntax but because of structure. 

In the meanwhile, two separate languages are considered: 

C/C++ and VHDL for GPP/DSP and FPGA respectively. 

3. THE FPGA API FUNCTIONS 

The initial version of the API was firstly designed to run on 

GPP with a Linux OS. After seeing its conceptual validity 

for real-time applications it was moved to DSP and finally 

to FPGA. The translation did not offer much difficult since 

the basic features accessed with the API were defined so 

that they could be easily implemented on FPGAs. The 

following list summarises the actions that can be performed 

using the API: 

Read or Write data to one virtual interface. 

Acquire initialisation data (at start-up). 

Watch and change the value of parameters. 

Execution, sequencing and time control. 

Whichever are the actions that one API allows, within a 

GPP the executable code organisation can be represented as 

well as it is shown in Fig. 2. . Different parts of code 

(surroundings) are accessed by means of a mechanism that 

allows executing those instructions that have knowledge of 

the platform and offer the requested service (or simply 

stating, a function call). From the point of view of the 

FPGA the procedure is exactly the same. The API is just an 

interface to interact with another piece of code that in this 

case is running concurrently with the algorithmic part of the 

object on the same FPGA. The number of objects within a 

single FPGA is not limited to one but each one must have 

its own API “routines”. In partially reconfigurable FPGAs 

it is interesting to have the possibility to combine relatively 

small objects within a single device reusing part of the 

resources used by P-HAL to offer the services that are 

accessed through the API. The basic elements shown in Fig. 

2. are for a general implementation. They are the interface 

traffic switch, the RAM adaptation, the control port and the 

execution and time control. Apart from the algorithm core, 

all the remaining pieces of code belong to the P-HAL 

library specific for a given device and hardware resources.  

Within P-HAL data are conveyed using packets. The 

interface traffic switch is in charge of routing them in and 

out the object. The packet header contains information 

about origin and destination object and interfaces and origin 

time stamp, among others. This packet-oriented architecture 

is adequate for FPGA implementations where there are 

physical interfaces shared by multiple devices. Short 

packets stored within internal FPGA RAM are delivered to 

the object, which reads data as if it were reading from a 

FIFO. Conversely, data written by the object is treated as 

going to a FIFO. When enough data are available a packet 

is constructed and sent through the appropriate physical 

interface. The routing table, which contents are established 

by the local platform P-HAL “master” through the control 

port, indicates the right physical interface. 
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Fig. 2.  Program parts in FPGA 

The control port, moreover of serving for management 

purposes, has also a relationship with the algorithm part. 

With a serial interface, it may request to the object the value 

of a given parameter or even modify it. When an object has 

to request a given parameter (e.g. initialisation), it also does 

it by using the control port. 

 A special interface, the RAM adaptation, is introduced 

for those objects that request access to RAM. The object is 

designed to have a single-cycle synchronous access to 

RAM. The P-HAL adapter converts cycles to the actual 

available RAM, including possible wait states. It has been 

included in the case that FPGA internal RAM is not used or 

not enough for the application. 

 Finally, the timing and status resources are just used to 

allow the algorithm to run in the specific time intervals and 

under some given circumstances. It must be noted here that 

one important factor within P-HAL is the absolute control 

of the execution of the application. Since real-time has to be 

kept, it is mandatory that the packets arrive within some 

time bounds and that the objects finish their processing 

before some deadline. 

4. AN FPGA API IMPLEMENTATION CASE 

The boxes shown in Fig. 2. can translate to very different 

implementations depending on the concrete hardware 

interfaces and algorithm linked to P-HAL library. In the 

Fig. 3. a slightly more detailed diagram of an API 

implementation is shown. The FPGA device is inserted in a 

context where two daisy chain, one bus and one SRAM 

interfaces are available. Since the filter only has one input 

interface and another output interface just one input FIFO 

and an output FIFO are required. The dimensioning of the 

FIFOs is a key aspect to avoid data overruns. In this case, 

since the bus interface uses a synchronous protocol with 

bursts of up to 64 bytes, FIFOs have been dimensioned to 

have at least 128 bytes (64 words of 16 bits). Since the used 

FPGA device has some internal memory blocks 

(BlockRAM of Xilinx Virtex FPGA [5]) that can be used as 

256-words of 16-bits FIFO, this has been the finally 
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selected configuration. Note that the algorithm is not 

necessarily working at a frequency that has any rational 

relationship with the sampling frequency. It uses a 

frequency that is related to the interfaces operation clock, 

thus avoiding multiple device clocks and synchronisation 

stages. The clock frequency has to be larger than the 

samples output rate to compensate the latencies in the 

interfaces. For low occupancy or dedicated interfaces the 

increase in clock frequency is not very relevant but in 

highly busy interfaces it can even twofold or threefold to 

compensate for inactivity periods. Such increase can be 

dramatic since the FPGA may not be able to perform 

computations at this high speed. 

 The sample algorithm is an in-phase down converter 

with carrier centred at 1/4, including a symmetric FIR filter 

of 51 taps (odd coefficients are zero except central one) and 

a down sampling by a factor of two. The non-zero 

coefficients are programmable provided that they decay at a 

minimum rate of 1/t (e.g. windowed sinc low pass filter). It 

computes an output sample every four cycles of clock by 

using internal RAM tables and distributed arithmetic partial 

multiplications. Input samples are 10-bits wide while 

coefficients and output are quantified using 16 bits.  
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Fig. 3.  Simplified diagram of an application of the API 

 The comparison of resources used by the two parts of 

the design says that filter requires about 550 Virtex slices (1 

slice = 4-bit input 1-bit output LUT + 1 Flip-Flop) while the 

implementation of P-HAL API requires 2 Block RAM and 

250 Virtex slices, both running at a maximum speed of 

about 64MHz in a Virtex 150 FPGA. This indicates that the 

complexity of implementing the API for the particular 

situation presented above (but interesting due to the quite 

generic approach) is comparable to the implementation of a 

digital down converter (DDC) without carrier adjust for a 

radio interface like that used in UTRAN. However, it 

employs, in this particular implementation, only about the 

15% of the total FPGA resources. This figure can 

significantly change depending on the reference 

architecture that is taken and on the device being used. The 

variation is as significant as requiring about the 50% of 

total resources for API (when using small FPGAs and 

generic interface configurations, like in the example) to 

only 0.5% when using large FPGA (> 1M gates) with 

reduced interfaces. 

5. CONCLUSIONS  

In this paper it has been presented the translation of the 

typical software architecture in common processors to 

FPGA devices. This translation, applied to Software Radio 

implementations, is seamlessly linked to similar software 

structures for GPP or DSP to construct abstract radio 

applications. The abstract context is obtained from the 

usage of a middleware, called P-HAL, which enables the 

interaction of different application objects located on 

different processors of different platforms. 

 With the presented structure, a suitable framework to 

build and develop radio applications in a very flexible 

manner is obtained. The cost of flexibility is an extra 

utilisation of logical resources, but to confront to future 

radio access network requirements a high degree of 

flexibility is required, and FPGAs can incorporate it at a 

moderated cost. Extending the mechanisms that permit a 

short development time and low integration cost of software 

to FPGAs is an interesting path to explore. This represents 

that the FPGAs have to be considered as processors with 

their own entity and not mere accelerators attached to other 

processors. 
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