
FPGA’S MIDDLEWARE FOR SOFTWARE DEFINED RADIO APPLICATIONS

Xavier Revés, Vuk Marojevic, Ramon Ferrús, Antoni Gelonch

Universitat Politècnica de Catalunya - Signal Theory and Communications Department

Av. Canal Olímpic s/n, 08860 Castelldefels, Barcelona (Spain)

{xavier.reves, marojevic, ferrus, antoni}@tsc.upc.edu

ABSTRACT

The division in several layers of the implementation of

systems is a solution adopted to avoid complexity, provide

flexibility and improve portability and code reusability

through different hardware. Middleware (intermediate layer

between two other layers) implementations are based on the

use of increasingly high-level languages and Application

Programming Interfaces (API). The Field Programmable

Gate Arrays (FPGA) world can also apply this approach to

produce building blocks independent from hardware

platforms and devices. This paper presents details of the

implementation of a Middleware, called Platform and

Hardware Abstraction Layer (P-HAL) when applied to

FPGA devices. It was specially designed for radio

applications and allows designing specific functions

independently of the hardware context where they are

applied, thus providing flexibility to the so-called Software

Radios employing FPGA devices.

1. INTRODUCTION

The Flexibility parameter has more and more relevance in

today’s radio systems and has become part of the metrics

that define the quality of a product, together with power

consumption, sensibility, range, etc [1]. Flexibility is in this

case applied to the management of the execution of the hard

tasks that are in charge of processing the signal waveform

and bit stream, the radio physical layer. It is well known

that flexibility goes in the opposite sense than power

consumption and size because optimised designs for a

particular task always exhibit lower power demand than

designs that can alternate different tasks [2]. However, the

increasing need of flexibility necessarily forces the

exploration of flexible solutions that can be applied to the

programming of radio Layer 1 applications, and that can be

extended to Layers 2 and 3 (hereafter, “application” will

mean “radio application dealing with lower layers”).

 If the application is detached from the optimisation that

represents a custom design and is moved towards the

software level, those concepts that are applied in the

general-purpose software design can also be employed.

Among them, the most interesting here is the possibility to

develop parts of the application software without knowing

the hardware in advance. This requires an abstraction layer.

For each layer an API provides access to the specific

resources or functions that it hides. Despite the advantages

that this model has demonstrated to have in GPP (General-

Purpose Processing), its usage has not spanned over the

radio processors technology. The reasons of this include

power consumption, communications network security,

manufacturer design confidentiality and tight dependency

of programs on support hardware. However, these

limitations can be overcome with technological evolutions

and proper manufacturer agreements. As a conclusion, a

software model to apply on radio technology that allows for

open software development is not a utopia at present.

 In this paper the translation of the software model to

FPGA devices is discussed. Section 2 presents the main

lines that can be applied to program Software Radio [3]

applications. Section 3 provides an insight to the FPGA

API part for a possible general device context. Section 4

deals with the usage of the structure described in section 3

on a concrete programmable hardware platform.

2. SOFTWARE MODEL TO BUILD RADIO

APPLICATIONS

2.1. Requirements

The software model must encompass the utilisation of

hardware platforms compound of different processing

boards. Therefore, the model for the hardware platform is

understood as an array of heterogeneous processors

showing different interconnection mechanisms among

them. Some of such processors will work under high-level

software support, like an operating system (OS), or simply

under some firmware. Because of that, our definition of

hardware platform includes systems like a workstation or
PC with its GPP and OS, but also devices well suited to

radio applications like embedded arrays of DSPs (Digital

Signal Processor) or FPGAs.

 The model provides mechanisms to add as much

platforms as required to the processing set, just to obtain

enough computational performance for the target

application. Some protocols and procedures are used to

merge all the platforms into a single virtual one.

0-7803-9362-7/05/$20.00 ©2005 IEEE 598

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on November 17, 2009 at 11:19 from IEEE Xplore. Restrictions apply.

 In the Software Radio environment, all the processing

devices that are connected together to build the hardware

platform must cooperate to run in real-time the desired

application. In this context, the ability to isochronously

exchange data is crucial. Then, the requirements of having

enough computing power and suitable communication and

synchronisation mechanisms are obvious. In addition,

reconfiguration demands the possibility to change,

completely or partially, the running application whenever

the system management requires it.

 Another crucial aspect to be considered in the

application area is the possibility to monitor the application

behaviour or even information delivered by its processing

entities. Such feature is mandatory in a system that expects

to agree with the basic “rules” of Software Radio or

Cognitive Radio [4]. As a consequence, a set of

mechanisms to extract control data in real time from the

application has to be contemplated. Not to mention that the

transport of this information is bi-directional since the

application management can alter the relative behaviour of

some parts of the software, according to the possibilities of

such software to accept modifications at runtime.

 All the aforementioned abilities, to be portable and

independent from platforms but also from software

components, require the inclusion of rules to the design of

software to be included in any application. Such rules only

apply to the interface of a given software entity but not to

the task that it is programmed to perform.

2.2. Architecture and elements

In the Fig. 1. a schematic representation of the software

model appears. Four different layers have been identified.

At the top there is the application, which is described as a

set of independent objects exchanging data streams. This is

the only connection between objects: a set of discrete-time

ordered samples representing waveforms, bits, bytes, etc.

Interfaces are viewed as mere pipes (FIFO-like) where the

application can write to and read from.

 The next level downwards represents the software

support layer to the application, which offers an abstract

environment to construct the application. The name that we

assign to this layer is P-HAL (Platform and Hardware

Abstraction Layer). In the third layer there are the different

parts that compound the supporting software. Note that

every single hardware platform (moved down to the fourth

layer) contains identical functional units that build up the

aforementioned abstraction layer. These entities exchange

information to show up to the application as a single

execution framework, independently from the actual

platform composition and architecture.

 The abstraction layer elements that are identified in the

Fig. 1. are the following:

BRIDGE. Move application data generated on a given

platform by an application object to another platform.

SYNC. Maintain the local time reference to a value

close enough to the reference in other platforms.

STATS. Retrieve/provide information from/to the

application object for monitoring purposes.

KERNEL. Maintain a stable union of all the platforms

that are under the abstraction layer.

Middleware Abstraction Software Layer (P-HAL)

Platform 2 Platform 3 Platform 4Platform 1Hardware

Layer

Platform

Software

Layer P-HAL Kernel
Sync

Bridge
Stats

P-HAL Kernel

SW
Map

Sync
Bridge
Stats

Physical Interfaces

P-HAL Kernel
Sync

Bridge
Stats

P-HAL Kernel
Sync

Bridge
Stats

Application

Object
Task 1

Object
Task 2

Object
Task 3

Object
Task 4

Object
Task 6

Object
Task 5

Monitoring and Control Plane

Execution Plane
Algorithm

Kernel

API

Middleware Abstraction Software Layer (P-HAL)

Platform 2 Platform 3 Platform 4Platform 1Hardware

Layer

Platform

Software

Layer P-HAL Kernel
Sync

Bridge
Stats

P-HAL Kernel

SW
Map

Sync
Bridge
Stats

Physical Interfaces

P-HAL Kernel
Sync

Bridge
Stats

P-HAL Kernel
Sync

Bridge
Stats

Application

Object
Task 1

Object
Task 2

Object
Task 3

Object
Task 4

Object
Task 6

Object
Task 5

Monitoring and Control Plane

Execution Plane
Algorithm

Kernel

API

Fig. 1. The software model architecture

2.3. Programming applications

Using this simple approach it is possible to program the

applications independently from hardware, following the

traditional API programming approach. A set of functions

is available to the object’s programmer to interact with

other objects and with the system. The novelty of the

approach relies on using it for the focused application type

and on using it as well for GPP or DSP as for FPGA. That

is, the same API is implemented to program objects on

these different families of processors. Although FPGAs are

usually considered in a quite different manner than other

processors, not doing any difference in advance can add

some advantages. One result from this consideration is that

the overall model fulfils the constraints that were imposed

to cope with radio applications. For instance, the

simplification of procedures to not excessively load the

FPGA side result in low overhead in the processors side,

and then, in high performance of the applications even

running on the abstraction layer. To find other advantages

of the equal treatment of processors and FPGA, consider,

for example a set of hardware not containing FPGAs. The

same algorithms can be executed on hardware sets with

other processors or even accelerators (ASIC) matching the

algorithm. In general, the objective is to have the

application programmed using a single high-level language

that can be ported to any device. Using adequate compilers

and mapping and scheduling techniques the abstract

application can be applied to any hardware set that provides

the abstraction layer functionalities. However, having a

given algorithm programmed using a single language to be

599

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on November 17, 2009 at 11:19 from IEEE Xplore. Restrictions apply.

translated either to GPP, DSP or FPGA is not realistic at

present. It is not because of syntax but because of structure.

In the meanwhile, two separate languages are considered:

C/C++ and VHDL for GPP/DSP and FPGA respectively.

3. THE FPGA API FUNCTIONS

The initial version of the API was firstly designed to run on

GPP with a Linux OS. After seeing its conceptual validity

for real-time applications it was moved to DSP and finally

to FPGA. The translation did not offer much difficult since

the basic features accessed with the API were defined so

that they could be easily implemented on FPGAs. The

following list summarises the actions that can be performed

using the API:

Read or Write data to one virtual interface.

Acquire initialisation data (at start-up).

Watch and change the value of parameters.

Execution, sequencing and time control.

Whichever are the actions that one API allows, within a

GPP the executable code organisation can be represented as

well as it is shown in Fig. 2. . Different parts of code

(surroundings) are accessed by means of a mechanism that

allows executing those instructions that have knowledge of

the platform and offer the requested service (or simply

stating, a function call). From the point of view of the

FPGA the procedure is exactly the same. The API is just an

interface to interact with another piece of code that in this

case is running concurrently with the algorithmic part of the

object on the same FPGA. The number of objects within a

single FPGA is not limited to one but each one must have

its own API “routines”. In partially reconfigurable FPGAs

it is interesting to have the possibility to combine relatively

small objects within a single device reusing part of the

resources used by P-HAL to offer the services that are

accessed through the API. The basic elements shown in Fig.

2. are for a general implementation. They are the interface

traffic switch, the RAM adaptation, the control port and the

execution and time control. Apart from the algorithm core,

all the remaining pieces of code belong to the P-HAL

library specific for a given device and hardware resources.

Within P-HAL data are conveyed using packets. The

interface traffic switch is in charge of routing them in and

out the object. The packet header contains information

about origin and destination object and interfaces and origin

time stamp, among others. This packet-oriented architecture

is adequate for FPGA implementations where there are

physical interfaces shared by multiple devices. Short

packets stored within internal FPGA RAM are delivered to

the object, which reads data as if it were reading from a

FIFO. Conversely, data written by the object is treated as

going to a FIFO. When enough data are available a packet

is constructed and sent through the appropriate physical

interface. The routing table, which contents are established

by the local platform P-HAL “master” through the control

port, indicates the right physical interface.

OBJECT

ALGORITHM

P-HAL

INTERFACE

SWITCH

(ROUTING TABLE)

DATA LOGICAL
INTERFACES: FIFO-LIKE

PHYSICAL
INTERFACES

P-HAL RAM

ADAPTATION

LOGICAL RAM
INTERFACE

SBSRAM

SDRAM

SRAM

MEMORY
POOL

ENABLE/DISABLE/RESET

STATUS MONITOR

P-HAL

CONTROL

PORT

CONTROL WORD

BIDIRECTIONAL SERIAL PORT
FOR REQUESTS (IN/OUT)PHYSICAL

INTERFACE

TIME

REGISTER

TIME STAMP
ON-BOARD TIME
INTERFACE

OBJECT

ALGORITHM

P-HAL

INTERFACE

SWITCH

(ROUTING TABLE)

DATA LOGICAL
INTERFACES: FIFO-LIKE

PHYSICAL
INTERFACES

P-HAL RAM

ADAPTATION

LOGICAL RAM
INTERFACE

SBSRAM

SDRAM

SRAM

MEMORY
POOL

ENABLE/DISABLE/RESET

STATUS MONITOR

P-HAL

CONTROL

PORT

CONTROL WORD

BIDIRECTIONAL SERIAL PORT
FOR REQUESTS (IN/OUT)PHYSICAL

INTERFACE

TIME

REGISTER

TIME STAMP
ON-BOARD TIME
INTERFACE

Fig. 2. Program parts in FPGA

The control port, moreover of serving for management

purposes, has also a relationship with the algorithm part.

With a serial interface, it may request to the object the value

of a given parameter or even modify it. When an object has

to request a given parameter (e.g. initialisation), it also does

it by using the control port.

 A special interface, the RAM adaptation, is introduced

for those objects that request access to RAM. The object is

designed to have a single-cycle synchronous access to

RAM. The P-HAL adapter converts cycles to the actual

available RAM, including possible wait states. It has been

included in the case that FPGA internal RAM is not used or

not enough for the application.

 Finally, the timing and status resources are just used to

allow the algorithm to run in the specific time intervals and

under some given circumstances. It must be noted here that

one important factor within P-HAL is the absolute control

of the execution of the application. Since real-time has to be

kept, it is mandatory that the packets arrive within some

time bounds and that the objects finish their processing

before some deadline.

4. AN FPGA API IMPLEMENTATION CASE

The boxes shown in Fig. 2. can translate to very different

implementations depending on the concrete hardware

interfaces and algorithm linked to P-HAL library. In the

Fig. 3. a slightly more detailed diagram of an API

implementation is shown. The FPGA device is inserted in a

context where two daisy chain, one bus and one SRAM

interfaces are available. Since the filter only has one input

interface and another output interface just one input FIFO

and an output FIFO are required. The dimensioning of the

FIFOs is a key aspect to avoid data overruns. In this case,

since the bus interface uses a synchronous protocol with

bursts of up to 64 bytes, FIFOs have been dimensioned to

have at least 128 bytes (64 words of 16 bits). Since the used

FPGA device has some internal memory blocks

(BlockRAM of Xilinx Virtex FPGA [5]) that can be used as

256-words of 16-bits FIFO, this has been the finally

600

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on November 17, 2009 at 11:19 from IEEE Xplore. Restrictions apply.

selected configuration. Note that the algorithm is not

necessarily working at a frequency that has any rational

relationship with the sampling frequency. It uses a

frequency that is related to the interfaces operation clock,

thus avoiding multiple device clocks and synchronisation

stages. The clock frequency has to be larger than the

samples output rate to compensate the latencies in the

interfaces. For low occupancy or dedicated interfaces the

increase in clock frequency is not very relevant but in

highly busy interfaces it can even twofold or threefold to

compensate for inactivity periods. Such increase can be

dramatic since the FPGA may not be able to perform

computations at this high speed.

 The sample algorithm is an in-phase down converter

with carrier centred at 1/4, including a symmetric FIR filter

of 51 taps (odd coefficients are zero except central one) and

a down sampling by a factor of two. The non-zero

coefficients are programmable provided that they decay at a

minimum rate of 1/t (e.g. windowed sinc low pass filter). It

computes an output sample every four cycles of clock by

using internal RAM tables and distributed arithmetic partial

multiplications. Input samples are 10-bits wide while

coefficients and output are quantified using 16 bits.

Local bus

FPGA

SRAM

Daisy-chain
Interface

Filter Coefficient Multiplier

Filter Coefficient Multiplier

Serial
Interface

Operation Control

FIFOFIFO

In
p

u
t

S
ta

g
e

Internal Bus

CONTROL PORT

X[9]

X[8:6]

X[5:3]

X[2:0]

R
A

M

+

+/-

X[9]

X[8:6]

X[5:3]

X[2:0]

R
A

M

+

+/-

R_ITFL_ITF

IBUSPACKET ROUTING / BUS ARBITER

Serial
Interface

TIME / STATUS

Daisy-chain
Interface

Local bus

FPGA

SRAM

Daisy-chain
Interface

Filter Coefficient Multiplier

Filter Coefficient Multiplier

Serial
Interface

Operation Control

FIFOFIFO

In
p

u
t

S
ta

g
e

Internal Bus

CONTROL PORT

X[9]

X[8:6]

X[5:3]

X[2:0]

R
A

M

+

+/-

X[9]

X[8:6]

X[5:3]

X[2:0]

R
A

M

+

+/-

R_ITFL_ITF

IBUSPACKET ROUTING / BUS ARBITER

Serial
Interface

TIME / STATUS

Daisy-chain
Interface

Fig. 3. Simplified diagram of an application of the API

 The comparison of resources used by the two parts of

the design says that filter requires about 550 Virtex slices (1

slice = 4-bit input 1-bit output LUT + 1 Flip-Flop) while the

implementation of P-HAL API requires 2 Block RAM and

250 Virtex slices, both running at a maximum speed of

about 64MHz in a Virtex 150 FPGA. This indicates that the

complexity of implementing the API for the particular

situation presented above (but interesting due to the quite

generic approach) is comparable to the implementation of a

digital down converter (DDC) without carrier adjust for a

radio interface like that used in UTRAN. However, it

employs, in this particular implementation, only about the

15% of the total FPGA resources. This figure can

significantly change depending on the reference

architecture that is taken and on the device being used. The

variation is as significant as requiring about the 50% of

total resources for API (when using small FPGAs and

generic interface configurations, like in the example) to

only 0.5% when using large FPGA (> 1M gates) with

reduced interfaces.

5. CONCLUSIONS

In this paper it has been presented the translation of the

typical software architecture in common processors to

FPGA devices. This translation, applied to Software Radio

implementations, is seamlessly linked to similar software

structures for GPP or DSP to construct abstract radio

applications. The abstract context is obtained from the

usage of a middleware, called P-HAL, which enables the

interaction of different application objects located on

different processors of different platforms.

 With the presented structure, a suitable framework to

build and develop radio applications in a very flexible

manner is obtained. The cost of flexibility is an extra

utilisation of logical resources, but to confront to future

radio access network requirements a high degree of

flexibility is required, and FPGAs can incorporate it at a

moderated cost. Extending the mechanisms that permit a

short development time and low integration cost of software

to FPGAs is an interesting path to explore. This represents

that the FPGAs have to be considered as processors with

their own entity and not mere accelerators attached to other

processors.

6. REFERENCES

[1] Jun-Zhao Sun, J. Sauvola, D. Howie, “Features in future: 4G

visions from a technical perspective”, IEEE Global

Telecommunications Conference. 2001. pp. 3533-3537.

[2] A. K. Salkinitzis, Hong Nie, P. Takis Mathiopoulos, “ADC

and DSP Challenges in the Development of Software Radio

Base Stations”, IEEE Personal Communications, August

1999, pp. 47-55.

[3] J. Mitola III, “The Software Radio Architecture”, IEEE

Communications Magazine, Vol. 33, No. 5, pp. 26-37, May

1995.

[4] J. Mitola, G. Q. Maguire Jr., “Cognitive Radio: Making

Software Radios More Personal”, IEEE Communications

Magazine, August 1999, pp. 13-18.

[5] Xilinx, Inc. “Virtex FPGAs Data Sheet”, 2002.

ACKNOLEDGEMENT: This work has been supported

by CYCIT (Spanish National Science Council) under grant

TIC2003-08609, which is partially financed from

European Community through the FEDER program.

601

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on November 17, 2009 at 11:19 from IEEE Xplore. Restrictions apply.

