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Abstract – Software Radio applications require a 
framework to develop and deploy applications, especially 
those related to radio infrastructure.  It is interesting that a 
given application may be executed on any software radio. 
But, since the hardware platforms used in this context will 
have multiple architectures and devices, a software layer to 
make applications independent from hardware is mandatory.  
Ad-hoc software for a given hardware platform may 
produce the best software performance. Conversely, when 
software is not targeted to any concrete platform the lost of 
performance may be excessive and the overhead introduced 
by any platform-dependent library could become intolerable. 
In this paper the resource utilization of a software radio 
application using a simple hardware abstraction layer is 
studied and compared to an ad-hoc implementation to make 
an assessment of the introduced overhead. The particularity 
of the hardware abstraction layer is that it runs on a platform 
which only processors are FPGA devices. 
 
Keywords – Software Radio, Abstraction Layer, CDMA 
Implementation, FPGA. 

I. INTRODUCTION 

There exist an interest to provide increased flexibility to the 
radio equipment to be used in future wireless access 
networks. The additional flexibility may be obtained 
through radios that implement almost every radio function 
by means of software running on digital processors. When 
in this situation, it is possible to talk about a Software Radio, 
that is, a radio terminal where radio tasks are “simple” 
programs [1]. This concept is widely extended at present 
and the possible advantages of having software radio 
terminals and how to achieve such advantages to improve 
service provisioning (from the point of view of users, 
operators, service providers, etc.) are object of studies [2]. 

Although some software radio key features are easily 
assumed, like reconfigurability through software download 
(from any source, local or remote) making possible, for 
instance, the adaptation of terminal or network infrastructure 
to the equipment at the end other of the radio link, or 
providing ubiquitous connectivity throughout the wide 
scope of standards, it is not yet clear which has to be the 
common framework to deploy such features and any other 
additional to come in the future. 

There are actually a wide bunch of issues to finally reach the 
envisaged software radio terminal. In this paper the software 

portability and deployment and their costs are focused. 
Concretely, section II makes an overview to what motivated 
the presented work. Following, section III, presents the key 
concepts of a platform abstraction mechanism implemented 
to deploy software radio applications on heterogeneous 
hardware/software platforms. Sections IV and V treat the 
development of such mechanism for FPGA devices and 
analyze the different overhead sources experienced when 
comparing the same system implementation for both cases, 
ad-hoc and abstraction-based. Finally, section VI draws 
some conclusions on the presented work. 

II. MOTIVATION AND OBJECTIVE 

A. General discussion 

Most of software radio implementations found in the 
literature implement their low-level software (understood as 
functions dealing with intensive physical layer tasks) taking 
into account the hardware resources and features of the 
platform that is going to execute such application. The 
software constructed this way is hardly portable across 
different platforms and, although the core of software is 
programmed to make it easily adaptable to other 
applications (e.g. object-oriented approaches to simplify 
software reuse), there exists a period during which this core 
may be profiled to adequately work (e.g. correct real-time 
behavior) on a different hardware platform. This is because 
it does not exist a software context dealing with the arduous 
task of providing all the support that a software radio 
application requires. This support must include real-time, 
monitoring, inter-process communication, among others, at 
a reduced cost, that is, with low overhead. Even though 
there are multiple real-time operating systems running on 
different hardware machines with an important set of 
libraries to make software portable (e.g. POSIX), their 
features are not the most adequate to support the 
development of intensive processing tasks like those found 
in software radios. Consider, for instance, an intermediate 
frequency (IF) digital filter of 256 coefficients at a sampling 
rate of 50MHz. The processing required for such 
implementation reaches the astonishing (maybe at present 
not as much astonishing as some years ago) value of 12800 
MMAC (Millions of Multiply-Accumulate operations). This 
processing demand must be covered, at present, by ASIC or 
FPGA [3][4] devices. These processors, strictly speaking, do 
not include the possibility to execute any OS in the market 



like those found for general-purpose processors (GPP) or 
even digital signal processors (DSP). 

The previous example put on the table the fact that not all 
the digital processors are equally treated and used. Although 
this is obvious, since the context where GPPs are generally 
found includes an OS and many support libraries to develop 
applications, why not considering a similar approach for 
DSP and FPGA? Here similar approach does not mean 
“similar philosophy”, that is, programming by using 
libraries, but using the same libraries with the same 
functions that are compatible with GPP, DSP and FPGA 
environments. After all, the present state-of-the-art may 
require the combined use of FPGA, DSP and GPP for 
software radios. Unfortunately, it is not likely, although it is 
possible after some effort, to see an FPGA with RT-Linux or 
a DSP with Vx-Works. It would be simply a waste of 
resources because such processors must use their resources 
for other purposes. However, a mechanism to make 
programs portable across platforms, and that may use the 
platform resources independently of actual hardware 
configuration, is very interesting. Such approach, together 
with the concept of network distributed computing applied 
to embedded systems, would help the development of 
software radio equipment and applications where multiple 
embedded boards of different brands would collaborate to 
achieve the application objective. 

B. Objective 

In the previous paragraph, the need for a software 
development and deployment framework for Software 
Radios has been implicitly introduced. To make software 
applications portable across platforms, some kind of 
hardware abstraction layer is required since not all the 
hardware for software radios uses the same processors and 
has the same architecture. But beyond the hardware 
compatibility there is the software one. It may also be 
necessary to construct a software abstraction layer to make a 
given application to run on certain platforms with full 
software support (e.g. OS). 

Then, given the exposed context, the objective is to provide 
a uniform library and/or software abstraction layer that 
works indistinctly on GPP (and associated OS), DSP 
(without any additional support but the mentioned software) 
and FPGA. Additionally, the abstraction layer must provide 
a seamless mechanism to aggregate to the overall hardware 
platform as much processing devices as required, of any 
brand, to distribute the software radio application across 
such devices in the optimum way. This feature offers the 
possibility to interoperate different platforms from different 
manufacturers within single radio equipment (base stations 
and even terminals), thus facilitating the implementation of 
open architecture radio systems where innovative software 
and/or hardware may be added as soon as they come to 
market, as it happens in the PC sector. Returning to 
heterogeneous processor environment, note that while the 

two first processor types (GPP and DSP) offer a similar 
programming paradigm, the last one (FPGA) offers a 
completely different paradigm. The design of the abstraction 
layer has to remind the processor differences and provide an 
adequate, single solution, for all of them. This single 
adaptation may produce an excessive cost in FPGA devices 
if their features are not taken into account. 

III. THE PLATFORM ABSTRACTION LAYER 

A. The application structure 

Before entering into detail about the abstraction layer 
structure and features, some words about the structure of a 
software radio application must be given. This is important 
because application structure and abstraction layer are 
highly correlated. 
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Fig. 1. Application structure and detail of an object. 

A software radio application can be described as a set of 
objects concurrently running (see Fig. 1) on one or more 
processors (depending on their capabilities). Each one of the 
objects is programmed independently from the context 
(other objects surrounding) and has a set of interfaces to 
exchange data with other objects or with system controlling 
entity. To allow an almost seamless integration of objects, 
interfaces have a very simple model: data traveling through 
interfaces are like a sequence of samples of a signal. This 
model is valid to transmit any radio transceiver internal 
signal, parameters, etc. As shown in Fig. 1, the algorithm 
kernel (e.g. FIR filter, Trellis decoder, Wave generator, etc.) 
is isolated from the environment through a set of 
functions/blocks provided within the abstraction layer API 
(Application Programming Interface). This means that the 
abstraction layer, the only one that knows the hardware 
where the algorithm is being executed, deals with anything 
but the algorithm. 

Bandwidth of interfaces and computing capabilities of 
processors on a given set of hardware are the most important 
aspects to take into account when translating the application 
to the hidden platforms. 



B. P-HAL 

Since the abstraction layer constructed deals with highly 
developed platforms (e.g. workstation) and also with almost 
pure hardware ones (e.g. multi-DSP/FPGA boards), it has 
been named P-HAL (Platform-Hardware Abstraction 
Layer). 

The identified support that this abstraction layer has to 
provide, according to the application structure, can be 
summarized in the next few aspects (see also Fig. 2). 

 

 

 

 

 

 

 

 

 

Fig. 2. Schematic representation of P-HAL 

1) Seamless communication 

P-HAL provides transparent communication mechanisms 
among on-board and off-board application objects. Each 
object is assigned an identifier, similarly as IP addresses are 
assigned to machines, and application data packets flow 
through routing mechanisms. This means that it is not 
strictly required a direct connection between the platform 
running an object and the platform running another object 
linked by a given interface. 

Different P-HALs interface through any standardized 
connection, like an Ethernet, PCI backplane, etc., where 
only the connection address (and port) is known of other P-
HALs, following the IP concept. 

2) Monitoring and control 

Through monitoring and control interfaces, each object 
offers the possibility to periodically observe or modify the 
value of internal parameters or gathered information. It is 
crucial in software radio environments to obtain information 
about the radio interface and modify its behavior if required. 
Such interfaces allow doing it. 

3) Real-time 

A software radio application requires tight timing control to 
work properly. Since the application runs distributed on 
different platforms, the timing control has to be extended to 
all of them. Although each individual platform controls the 

local timing of processes, there is a synchronization 
procedure among platforms that allows them keeping the 
same timing. To make the synchronization precision and 
real-time monitoring less critical, time is divided into slots 
that determine the periodicity of execution of tasks, 
distribution of data and CPU assignment. 

4) Object launch and mapping 

Since the application is described independently from the 
hardware, given a particular hardware organization, the 
software objects have to be distributed on the different 
processors according to computing demand and interfacing 
bandwidth. After this initial procedure is done, interfaces 
have to be configured (virtual circuits) to carry data 
accordingly. Each platform P-HAL is in charge of its 
internal resources. The last step is making the objects to run.  

Note that the objects must be available as binary executable 
for the targeted processor. Another possibility would be 
providing the source code and compiling it to obtain the 
executable file. If only P-HAL API is used, there should be 
no problem to obtain such executable. But the used language 
is another step to cover since there can be different 
languages involved when several objects independently 
programmed are joined in a single application. For instance, 
C/C++ is a good candidate for GPP or DSP but VHDL or 
Verilog are adequate for FPGA. Anyway, this is a problem 
likely solved in the future by new generations of CAD tools. 

IV. P-HAL FOR AN FPGA BOARD 

A. Constituent blocks 

The selected language to describe the P-HAL functions for 
FPGA is VHDL. The resulting blocks are grouped under a 
black box that has an interface (what we could call the API) 
that allows connecting the algorithms to it. The blocks 
included within this black box are in charge of carrying out 
all the P-HAL tasks. In Fig. 3 a detail of an example of these 
blocks is shown. 

For simplicity in Fig. 3 only one task is assigned to one 
FPGA device, although there is no limit on it. Actually this 
may represent a part of a partially reconfigurable FPGA. 
What remains unaltered is the fact that each task has a set of 
associated blocks that run concurrently on the same FPGA 
(or maybe on another FPGA with direct connection) to 
provide the adequate support for the local hardware. 

Note that the required blocs from one platform to another 
may differ depending on the actual hardware to interface. 
The example shown in Fig. 3 corresponds to an FPGA that 
provides access to a local high-speed bus with capabilities to 
access other boards, two ad-hoc interfaces with other 
FPGAs (or other devices on the same or on another board) 
and access to SRAM memory (some objects may require 
this resource, like Direct Digital Synthesizers). To provide 
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maximum flexibility to the process of mapping algorithms 
on the hardware set, all the interfaces are made available. 
Moreover of resources dedicated to interfaces and 
switching/routing packets among them, there is a packet 
routing table to adequately configure virtual connections and 
the timing control block to guarantee the correct timing 
behavior. 
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Fig. 3. Example of blocks on a FPGA to implement P-HAL  

B. Resource utilization 

Table 1 summarizes the amount of resources consumed by 
this set of functions when measured on Xilinx Virtex family 
of FPGAs [5]. The measurement is made using logic 
elements (LE), each one considered to have one flip-flop 
and one 4-input look-up-table (LUT). Those 
implementations that do not use LUTs or flip-flops are 
translated to approximately equivalent LEs. Additional 
resources for proper internal FPGA routing are not 
accounted. In the table the transfer speed achieved by the 
32-bit interfaces is also shown. That some overhead is added 
because of the abstraction layer cannot be discussed, like 
happens in DSP and GPP. The extra amount of required 
computing capabilities (used basically for interfacing 
functions) has to be assumed when implementing the true 
application with platform abstraction. Note that figures in 
Table 1 are relative to the implementation on a given 
environment. A different context would lead to different 
resource demand. Additionally, for comparison purposes, 
the occupancy results are approximately unified under LEs 
to avoid mixing other available FPGA resources, like 
dedicated memory blocks, which are actually used to 
implement P-HAL. 

There are two major issues to consider in the overhead. The 
first one is the problem of increased clock frequency 
(compared to data sampling rate) to consume the inactivity 
periods. The second one is the problem of buffering data to 
accept interface latencies. As shown in Table 1, buffering 
may be the most consuming resource in terms of chip area. 
By the other hand, increased clock frequency, despite the 
inactivity periods, increases the power consumption. 

Buffering seems to be the worst element to combat in this 
implementation of P-HAL. In DSP and GPP there exist 
inherent buffering because everything has to be stored in 
memory, but FPGA devices can be seen like stream 

processors that do not store data but only process them. 
When the concept of packets is introduced it is necessary to 
have the capability to store, modify, route, compound, etc. 
packets. Unavoidably, this adds storage requirements to 
FPGAs. If external memories are used, like in other families 
of processors, the latency when accessing memory 
transforms and FPGA into something similar to such other 
processors, loosing part of the performance. So it seems that 
FPGA suffer the consequence of having taken the software 
model from the more extended GPP paradigm (easily 
extended to DSP). 

Table 1 
 Rounded resource utilization example of P-HAL. 

 Speed* LEs 
IBUS Master/Slave, Bi-dir., 
64bytes buffer 

4 (~1.5) 280 

Local Interface, Bi-dir., 
64bytes buffer 

4 (~2) 160 

Object Interface, Bi-dir., 
64bytes buffer 

4 (~2) 220 

RAM Interface, Bi-dir., 
64bytes buffer 

4 (~2) 150 

Packet switching, four 
interfaces Bi-dir. switch 

4 (~2) 350 

Arbitration and control N/A 40 
Routing Table, 16 entries N/A 50 
Timing N/A 80 
Buffering (one FIFO byte) 1 1 

* Peak transfer unidirectional (approximated maximum average 
bidirectional) in bytes per second relative to clock. 

To reduce buffering, the packets may be shorter but this 
implies increased traffic on interfaces, thus reducing their 
actual bandwidth and also reducing the maximum allowed 
latency. Then, a trade-off between interface bandwidth and 
buffering occupancy is unavoidable. Just as an example, a 
FIR filter generating at its output a stream of 16-bit samples 
at 1MHz requires a sustained bandwidth of 2Mbytes/second. 
If, for instance, the interface used to carry this stream has a 
peak transfer rate of 100Mbytes/second but uses to have a 
latency of about 10us before transmitting (e.g. round-robin 
bus arbitration with many bus users), a buffering of at least 
20 bytes is required.   

V. A REAL IMPLEMENTATION ON AN ABSTRACTED 
FPGA PLATFORM 

In [6], the implementation of an indoor CDMA system 
implemented on FPGAs was presented. There the 
implementation was ad-hoc, adapting each block to the well-
known available hardware. With this in mind, a reasonably 
small FPGA board could be used but when the abstract 
functions are used much more resources are required. As a 
summary, the number of LEs used for that implementation 
is shown (see [6] for details): 



• Mobile terminal: required 6380 LEs, fitted on one 
board with 9216 LEs (8 FPGA). 

• Base station for 16 users: required 99350 LEs, 
fitted on 17 boards with 9216 LEs (156672 LEs).  

To compare the previous figures with real devices, just to 
say that a Virtex XCV400 could store the aforementioned 
LEs for the mobile terminal. More modern devices of this 
family include on-chip dedicated arithmetic that would help 
the improvement of the ad-hoc solution. But it does not exist 
the possibility to specify these special functions when the 
application is programmed without any knowledge about the 
hardware that is going to execute it. There only exist the 
possibility that the compiler is able to map the program to 
the actually available resources, which are variable from 
family to family. 

There are different sources of overhead when using the 
abstraction layer: 

• The additional LEs for P-HAL added to each 
application object. 

• Inefficient mapping of application objects on 
FPGAs. That is, some FPGAs may be partially 
empty because the available room is not enough for 
another object. 

Considering a board (or a set of them) including several 
FPGAs (XCV150: medium-small size to allow 
reconfiguration of individual blocks) with the previously 
mentioned interfaces and dividing the terminal and base 
station functions into conceptually separated objects (11 
objects for one user mobile terminal, 4 for 16-users base 
station transmitter and 5 double objects, because of 
diversity, for each base station receiver), the occupancy 
would reach the following rounded figures: 

• Mobile terminal: 16510 LEs, fitted on six FPGAs 
with 3456 LEs each (20736 LEs). 

• Base station for 16 users: 250510 LEs, fitted on 98 
FPGAs (338688 LEs). 

To obtain these results a manual mapping of objects has 
been done, which in general is better than an automatic 
mapping. On each FPGA all the P-HAL resources are 
allocated plus one additional object interface per each 
additional object running on the same FPGA and an 
additional packet switch if more than one object and per 
every three additional ones. 

The first approach results in poor resource utilization that 
represents an increment exceeding 150% at both ends. A 
second approach would try to reduce the amount of 
resources for interfaces, but to provide full support (control, 
monitoring, timing, etc.) almost nothing can be reduced. 
Instead of dividing the design into multiple FPGA, if all the 
terminal or base station could fit within a large FPGA, the 
figures would relax: 

• Mobile terminal: with P-HAL support for 11 
objects, 10960 LEs (fits into one XCV600). 

• Base station for each user: with P-HAL support for 
14 objects, 155440 LEs (each user considered 
individually could fit into one XCV600). 

 
Now the increase in resource utilization is limited to about 
72% in the terminal and only about 56% in the base station.  
From one approach to the other the basic difference is that 
P-HAL resources are shared among more objects (thus 
increasing required P-HAL performance). Then, the 
conclusion is that abstraction makes more sense in large 
FPGAs where overhead has lower impact. The same is 
found in GPP or DSP since software abstraction layers gain 
validity in powerful processors and not in small ones. 

VI. CONCLUSIONS 

In this paper the cost in terms of resource utilization when 
implementing Software Radio applications on abstracted 
FPGA platforms has been evaluated. When adapting FPGAs 
to work in distributed processing environments there is a 
very large increment in resource demand. A possible 
structure of such adaptation, P-HAL, has been presented and 
figures derived from its implementation together with 
figures obtained from an ad-hoc radio implementation have 
been compared. The result shows how abstraction in FPGAs 
has a great impact on system available resources.  
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