
THE COST OF AN ABSTRACTION LAYER ON FPGA DEVICES FOR SOFTWARE RADIO
APPLICATIONS

Xavier Revés, Vuk Marojevic, Antoni Gelonch, Ramon Ferrús

Universitat Politècnica de Catalunya, C/Jordi Girona 1-3 08034 Barcelona, Spain,

{xavier.reves,marojevic,antoni,ferrus}@tsc.upc.es

Abstract – Software Radio applications require a
framework to develop and deploy applications, especially
those related to radio infrastructure. It is interesting that a
given application may be executed on any software radio.
But, since the hardware platforms used in this context will
have multiple architectures and devices, a software layer to
make applications independent from hardware is mandatory.
Ad-hoc software for a given hardware platform may
produce the best software performance. Conversely, when
software is not targeted to any concrete platform the lost of
performance may be excessive and the overhead introduced
by any platform-dependent library could become intolerable.
In this paper the resource utilization of a software radio
application using a simple hardware abstraction layer is
studied and compared to an ad-hoc implementation to make
an assessment of the introduced overhead. The particularity
of the hardware abstraction layer is that it runs on a platform
which only processors are FPGA devices.

Keywords – Software Radio, Abstraction Layer, CDMA
Implementation, FPGA.

I. INTRODUCTION

There exist an interest to provide increased flexibility to the
radio equipment to be used in future wireless access
networks. The additional flexibility may be obtained
through radios that implement almost every radio function
by means of software running on digital processors. When
in this situation, it is possible to talk about a Software Radio,
that is, a radio terminal where radio tasks are “simple”
programs [1]. This concept is widely extended at present
and the possible advantages of having software radio
terminals and how to achieve such advantages to improve
service provisioning (from the point of view of users,
operators, service providers, etc.) are object of studies [2].

Although some software radio key features are easily
assumed, like reconfigurability through software download
(from any source, local or remote) making possible, for
instance, the adaptation of terminal or network infrastructure
to the equipment at the end other of the radio link, or
providing ubiquitous connectivity throughout the wide
scope of standards, it is not yet clear which has to be the
common framework to deploy such features and any other
additional to come in the future.

There are actually a wide bunch of issues to finally reach the
envisaged software radio terminal. In this paper the software

portability and deployment and their costs are focused.
Concretely, section II makes an overview to what motivated
the presented work. Following, section III, presents the key
concepts of a platform abstraction mechanism implemented
to deploy software radio applications on heterogeneous
hardware/software platforms. Sections IV and V treat the
development of such mechanism for FPGA devices and
analyze the different overhead sources experienced when
comparing the same system implementation for both cases,
ad-hoc and abstraction-based. Finally, section VI draws
some conclusions on the presented work.

II. MOTIVATION AND OBJECTIVE

A. General discussion

Most of software radio implementations found in the
literature implement their low-level software (understood as
functions dealing with intensive physical layer tasks) taking
into account the hardware resources and features of the
platform that is going to execute such application. The
software constructed this way is hardly portable across
different platforms and, although the core of software is
programmed to make it easily adaptable to other
applications (e.g. object-oriented approaches to simplify
software reuse), there exists a period during which this core
may be profiled to adequately work (e.g. correct real-time
behavior) on a different hardware platform. This is because
it does not exist a software context dealing with the arduous
task of providing all the support that a software radio
application requires. This support must include real-time,
monitoring, inter-process communication, among others, at
a reduced cost, that is, with low overhead. Even though
there are multiple real-time operating systems running on
different hardware machines with an important set of
libraries to make software portable (e.g. POSIX), their
features are not the most adequate to support the
development of intensive processing tasks like those found
in software radios. Consider, for instance, an intermediate
frequency (IF) digital filter of 256 coefficients at a sampling
rate of 50MHz. The processing required for such
implementation reaches the astonishing (maybe at present
not as much astonishing as some years ago) value of 12800
MMAC (Millions of Multiply-Accumulate operations). This
processing demand must be covered, at present, by ASIC or
FPGA [3][4] devices. These processors, strictly speaking, do
not include the possibility to execute any OS in the market

like those found for general-purpose processors (GPP) or
even digital signal processors (DSP).

The previous example put on the table the fact that not all
the digital processors are equally treated and used. Although
this is obvious, since the context where GPPs are generally
found includes an OS and many support libraries to develop
applications, why not considering a similar approach for
DSP and FPGA? Here similar approach does not mean
“similar philosophy”, that is, programming by using
libraries, but using the same libraries with the same
functions that are compatible with GPP, DSP and FPGA
environments. After all, the present state-of-the-art may
require the combined use of FPGA, DSP and GPP for
software radios. Unfortunately, it is not likely, although it is
possible after some effort, to see an FPGA with RT-Linux or
a DSP with Vx-Works. It would be simply a waste of
resources because such processors must use their resources
for other purposes. However, a mechanism to make
programs portable across platforms, and that may use the
platform resources independently of actual hardware
configuration, is very interesting. Such approach, together
with the concept of network distributed computing applied
to embedded systems, would help the development of
software radio equipment and applications where multiple
embedded boards of different brands would collaborate to
achieve the application objective.

B. Objective

In the previous paragraph, the need for a software
development and deployment framework for Software
Radios has been implicitly introduced. To make software
applications portable across platforms, some kind of
hardware abstraction layer is required since not all the
hardware for software radios uses the same processors and
has the same architecture. But beyond the hardware
compatibility there is the software one. It may also be
necessary to construct a software abstraction layer to make a
given application to run on certain platforms with full
software support (e.g. OS).

Then, given the exposed context, the objective is to provide
a uniform library and/or software abstraction layer that
works indistinctly on GPP (and associated OS), DSP
(without any additional support but the mentioned software)
and FPGA. Additionally, the abstraction layer must provide
a seamless mechanism to aggregate to the overall hardware
platform as much processing devices as required, of any
brand, to distribute the software radio application across
such devices in the optimum way. This feature offers the
possibility to interoperate different platforms from different
manufacturers within single radio equipment (base stations
and even terminals), thus facilitating the implementation of
open architecture radio systems where innovative software
and/or hardware may be added as soon as they come to
market, as it happens in the PC sector. Returning to
heterogeneous processor environment, note that while the

two first processor types (GPP and DSP) offer a similar
programming paradigm, the last one (FPGA) offers a
completely different paradigm. The design of the abstraction
layer has to remind the processor differences and provide an
adequate, single solution, for all of them. This single
adaptation may produce an excessive cost in FPGA devices
if their features are not taken into account.

III. THE PLATFORM ABSTRACTION LAYER

A. The application structure

Before entering into detail about the abstraction layer
structure and features, some words about the structure of a
software radio application must be given. This is important
because application structure and abstraction layer are
highly correlated.

Object 1

Object 2

Object 3

Object 4 Object 5

Monitoring and Control Plane

Application Plane

Resource

Algorithm
Kernel

Object 1

Object 2

Object 3

Object 4 Object 5

Monitoring and Control Plane

Application Plane

Resource

Algorithm
Kernel

Fig. 1. Application structure and detail of an object.

A software radio application can be described as a set of
objects concurrently running (see Fig. 1) on one or more
processors (depending on their capabilities). Each one of the
objects is programmed independently from the context
(other objects surrounding) and has a set of interfaces to
exchange data with other objects or with system controlling
entity. To allow an almost seamless integration of objects,
interfaces have a very simple model: data traveling through
interfaces are like a sequence of samples of a signal. This
model is valid to transmit any radio transceiver internal
signal, parameters, etc. As shown in Fig. 1, the algorithm
kernel (e.g. FIR filter, Trellis decoder, Wave generator, etc.)
is isolated from the environment through a set of
functions/blocks provided within the abstraction layer API
(Application Programming Interface). This means that the
abstraction layer, the only one that knows the hardware
where the algorithm is being executed, deals with anything
but the algorithm.

Bandwidth of interfaces and computing capabilities of
processors on a given set of hardware are the most important
aspects to take into account when translating the application
to the hidden platforms.

B. P-HAL

Since the abstraction layer constructed deals with highly
developed platforms (e.g. workstation) and also with almost
pure hardware ones (e.g. multi-DSP/FPGA boards), it has
been named P-HAL (Platform-Hardware Abstraction
Layer).

The identified support that this abstraction layer has to
provide, according to the application structure, can be
summarized in the next few aspects (see also Fig. 2).

Fig. 2. Schematic representation of P-HAL

1) Seamless communication

P-HAL provides transparent communication mechanisms
among on-board and off-board application objects. Each
object is assigned an identifier, similarly as IP addresses are
assigned to machines, and application data packets flow
through routing mechanisms. This means that it is not
strictly required a direct connection between the platform
running an object and the platform running another object
linked by a given interface.

Different P-HALs interface through any standardized
connection, like an Ethernet, PCI backplane, etc., where
only the connection address (and port) is known of other P-
HALs, following the IP concept.

2) Monitoring and control

Through monitoring and control interfaces, each object
offers the possibility to periodically observe or modify the
value of internal parameters or gathered information. It is
crucial in software radio environments to obtain information
about the radio interface and modify its behavior if required.
Such interfaces allow doing it.

3) Real-time

A software radio application requires tight timing control to
work properly. Since the application runs distributed on
different platforms, the timing control has to be extended to
all of them. Although each individual platform controls the

local timing of processes, there is a synchronization
procedure among platforms that allows them keeping the
same timing. To make the synchronization precision and
real-time monitoring less critical, time is divided into slots
that determine the periodicity of execution of tasks,
distribution of data and CPU assignment.

4) Object launch and mapping

Since the application is described independently from the
hardware, given a particular hardware organization, the
software objects have to be distributed on the different
processors according to computing demand and interfacing
bandwidth. After this initial procedure is done, interfaces
have to be configured (virtual circuits) to carry data
accordingly. Each platform P-HAL is in charge of its
internal resources. The last step is making the objects to run.

Note that the objects must be available as binary executable
for the targeted processor. Another possibility would be
providing the source code and compiling it to obtain the
executable file. If only P-HAL API is used, there should be
no problem to obtain such executable. But the used language
is another step to cover since there can be different
languages involved when several objects independently
programmed are joined in a single application. For instance,
C/C++ is a good candidate for GPP or DSP but VHDL or
Verilog are adequate for FPGA. Anyway, this is a problem
likely solved in the future by new generations of CAD tools.

IV. P-HAL FOR AN FPGA BOARD

A. Constituent blocks

The selected language to describe the P-HAL functions for
FPGA is VHDL. The resulting blocks are grouped under a
black box that has an interface (what we could call the API)
that allows connecting the algorithms to it. The blocks
included within this black box are in charge of carrying out
all the P-HAL tasks. In Fig. 3 a detail of an example of these
blocks is shown.

For simplicity in Fig. 3 only one task is assigned to one
FPGA device, although there is no limit on it. Actually this
may represent a part of a partially reconfigurable FPGA.
What remains unaltered is the fact that each task has a set of
associated blocks that run concurrently on the same FPGA
(or maybe on another FPGA with direct connection) to
provide the adequate support for the local hardware.

Note that the required blocs from one platform to another
may differ depending on the actual hardware to interface.
The example shown in Fig. 3 corresponds to an FPGA that
provides access to a local high-speed bus with capabilities to
access other boards, two ad-hoc interfaces with other
FPGAs (or other devices on the same or on another board)
and access to SRAM memory (some objects may require
this resource, like Direct Digital Synthesizers). To provide

P-HAL

P-HAL P-HAL
Platform 2, DSP

Application

Platform 1, GPP

Platform 3, FPGA

Abstract P-HAL

P-HAL

P-HAL P-HAL
Platform 2, DSP

Application

Platform 1, GPP

Platform 3, FPGA

Abstract P-HAL

maximum flexibility to the process of mapping algorithms
on the hardware set, all the interfaces are made available.
Moreover of resources dedicated to interfaces and
switching/routing packets among them, there is a packet
routing table to adequately configure virtual connections and
the timing control block to guarantee the correct timing
behavior.

Local bus

Object Task

IBUS
Interface

Packet
Switching

Local
Interface

Arbitration
and Control

Board
Timing

Object
Interface

RAM
Interface

Routing Table

FPGA

SRAM

D
ai

sy
-c

ha
in

In
te

rfa
ce

D
ai

sy
-c

ha
in

In
te

rfa
ce

IBUSLocal bus

Object Task

IBUS
Interface

Packet
Switching

Local
Interface

Arbitration
and Control

Board
Timing

Object
Interface

RAM
Interface

Routing Table

Object Task

IBUS
Interface

Packet
Switching

Local
Interface

Arbitration
and Control

Board
Timing

Object
Interface

RAM
Interface

Routing Table

FPGA

SRAM

D
ai

sy
-c

ha
in

In
te

rfa
ce

D
ai

sy
-c

ha
in

In
te

rfa
ce

IBUS

Fig. 3. Example of blocks on a FPGA to implement P-HAL

B. Resource utilization

Table 1 summarizes the amount of resources consumed by
this set of functions when measured on Xilinx Virtex family
of FPGAs [5]. The measurement is made using logic
elements (LE), each one considered to have one flip-flop
and one 4-input look-up-table (LUT). Those
implementations that do not use LUTs or flip-flops are
translated to approximately equivalent LEs. Additional
resources for proper internal FPGA routing are not
accounted. In the table the transfer speed achieved by the
32-bit interfaces is also shown. That some overhead is added
because of the abstraction layer cannot be discussed, like
happens in DSP and GPP. The extra amount of required
computing capabilities (used basically for interfacing
functions) has to be assumed when implementing the true
application with platform abstraction. Note that figures in
Table 1 are relative to the implementation on a given
environment. A different context would lead to different
resource demand. Additionally, for comparison purposes,
the occupancy results are approximately unified under LEs
to avoid mixing other available FPGA resources, like
dedicated memory blocks, which are actually used to
implement P-HAL.

There are two major issues to consider in the overhead. The
first one is the problem of increased clock frequency
(compared to data sampling rate) to consume the inactivity
periods. The second one is the problem of buffering data to
accept interface latencies. As shown in Table 1, buffering
may be the most consuming resource in terms of chip area.
By the other hand, increased clock frequency, despite the
inactivity periods, increases the power consumption.

Buffering seems to be the worst element to combat in this
implementation of P-HAL. In DSP and GPP there exist
inherent buffering because everything has to be stored in
memory, but FPGA devices can be seen like stream

processors that do not store data but only process them.
When the concept of packets is introduced it is necessary to
have the capability to store, modify, route, compound, etc.
packets. Unavoidably, this adds storage requirements to
FPGAs. If external memories are used, like in other families
of processors, the latency when accessing memory
transforms and FPGA into something similar to such other
processors, loosing part of the performance. So it seems that
FPGA suffer the consequence of having taken the software
model from the more extended GPP paradigm (easily
extended to DSP).

Table 1
 Rounded resource utilization example of P-HAL.

 Speed* LEs
IBUS Master/Slave, Bi-dir.,
64bytes buffer

4 (~1.5) 280

Local Interface, Bi-dir.,
64bytes buffer

4 (~2) 160

Object Interface, Bi-dir.,
64bytes buffer

4 (~2) 220

RAM Interface, Bi-dir.,
64bytes buffer

4 (~2) 150

Packet switching, four
interfaces Bi-dir. switch

4 (~2) 350

Arbitration and control N/A 40
Routing Table, 16 entries N/A 50
Timing N/A 80
Buffering (one FIFO byte) 1 1

* Peak transfer unidirectional (approximated maximum average
bidirectional) in bytes per second relative to clock.

To reduce buffering, the packets may be shorter but this
implies increased traffic on interfaces, thus reducing their
actual bandwidth and also reducing the maximum allowed
latency. Then, a trade-off between interface bandwidth and
buffering occupancy is unavoidable. Just as an example, a
FIR filter generating at its output a stream of 16-bit samples
at 1MHz requires a sustained bandwidth of 2Mbytes/second.
If, for instance, the interface used to carry this stream has a
peak transfer rate of 100Mbytes/second but uses to have a
latency of about 10us before transmitting (e.g. round-robin
bus arbitration with many bus users), a buffering of at least
20 bytes is required.

V. A REAL IMPLEMENTATION ON AN ABSTRACTED
FPGA PLATFORM

In [6], the implementation of an indoor CDMA system
implemented on FPGAs was presented. There the
implementation was ad-hoc, adapting each block to the well-
known available hardware. With this in mind, a reasonably
small FPGA board could be used but when the abstract
functions are used much more resources are required. As a
summary, the number of LEs used for that implementation
is shown (see [6] for details):

• Mobile terminal: required 6380 LEs, fitted on one
board with 9216 LEs (8 FPGA).

• Base station for 16 users: required 99350 LEs,
fitted on 17 boards with 9216 LEs (156672 LEs).

To compare the previous figures with real devices, just to
say that a Virtex XCV400 could store the aforementioned
LEs for the mobile terminal. More modern devices of this
family include on-chip dedicated arithmetic that would help
the improvement of the ad-hoc solution. But it does not exist
the possibility to specify these special functions when the
application is programmed without any knowledge about the
hardware that is going to execute it. There only exist the
possibility that the compiler is able to map the program to
the actually available resources, which are variable from
family to family.

There are different sources of overhead when using the
abstraction layer:

• The additional LEs for P-HAL added to each
application object.

• Inefficient mapping of application objects on
FPGAs. That is, some FPGAs may be partially
empty because the available room is not enough for
another object.

Considering a board (or a set of them) including several
FPGAs (XCV150: medium-small size to allow
reconfiguration of individual blocks) with the previously
mentioned interfaces and dividing the terminal and base
station functions into conceptually separated objects (11
objects for one user mobile terminal, 4 for 16-users base
station transmitter and 5 double objects, because of
diversity, for each base station receiver), the occupancy
would reach the following rounded figures:

• Mobile terminal: 16510 LEs, fitted on six FPGAs
with 3456 LEs each (20736 LEs).

• Base station for 16 users: 250510 LEs, fitted on 98
FPGAs (338688 LEs).

To obtain these results a manual mapping of objects has
been done, which in general is better than an automatic
mapping. On each FPGA all the P-HAL resources are
allocated plus one additional object interface per each
additional object running on the same FPGA and an
additional packet switch if more than one object and per
every three additional ones.

The first approach results in poor resource utilization that
represents an increment exceeding 150% at both ends. A
second approach would try to reduce the amount of
resources for interfaces, but to provide full support (control,
monitoring, timing, etc.) almost nothing can be reduced.
Instead of dividing the design into multiple FPGA, if all the
terminal or base station could fit within a large FPGA, the
figures would relax:

• Mobile terminal: with P-HAL support for 11
objects, 10960 LEs (fits into one XCV600).

• Base station for each user: with P-HAL support for
14 objects, 155440 LEs (each user considered
individually could fit into one XCV600).

Now the increase in resource utilization is limited to about
72% in the terminal and only about 56% in the base station.
From one approach to the other the basic difference is that
P-HAL resources are shared among more objects (thus
increasing required P-HAL performance). Then, the
conclusion is that abstraction makes more sense in large
FPGAs where overhead has lower impact. The same is
found in GPP or DSP since software abstraction layers gain
validity in powerful processors and not in small ones.

VI. CONCLUSIONS

In this paper the cost in terms of resource utilization when
implementing Software Radio applications on abstracted
FPGA platforms has been evaluated. When adapting FPGAs
to work in distributed processing environments there is a
very large increment in resource demand. A possible
structure of such adaptation, P-HAL, has been presented and
figures derived from its implementation together with
figures obtained from an ad-hoc radio implementation have
been compared. The result shows how abstraction in FPGAs
has a great impact on system available resources.

AKNOWLEDGEMENTS

This work has been supported by CYCIT (Spanish National
Science Council) under grant TIC2003-08609.

REFERENCES

[1] J. Mitola III, “The Software Radio Architecture”, IEEE
Communications Magazine, vol. 33, pp. 26-37, May
1995.

[2] http://www.sdrforum.org
[3] A. Gathener, T. Stetzler, M. McMahan and E.

Auslander, “DSP-Based Architectures for Mobile
Communications: Past, Present and Future”, IEEE
Communications Magazine, vol. 38, pp. 84-90, January
2000.

[4] M. Cummings and S. Haruyama, “FPGA in the Software
Radio”, IEEE Communications Magazine, vol. 37, pp.
108-112, February 1999.

[5] http://www.xilinx.com
[6] X. Revés, A. Gelonch and F. Casadevall, “Software

Radio implementation of a DS-CDMA indoor subsystem
based on FPGA devices”, in Proceedings of the 12th
IEEE International Symposium on PIMRC, vol: 1, San
Diego (USA), 30 Sept.-3 Oct. 2001

