
RUN-TIME AND DEVELOPMENT FRAMEWORK FOR HETEROGENEOUS HARDWARE
RADIOS

Xavier Revés, Vuk Marojevic, Antoni Gelonch

Universitat Politècnica de Catalunya, C/Jordi Girona 1-3 08034 Barcelona, Spain,

{xavier.reves,marojevic,antoni}@tsc.upc.es

Abstract

Software Radio concept provides increased features to radio
access networks. The reconfiguration of radio equipment
requires the existence of an architecture, a common
framework, that allows a flexible management, in any sense,
of software running on radio processors. Such framework
must take into account the heterogeneity of hardware
devices and platforms where the radio applications will run.
To avoid excessive overhead, a conceptually simple but at
the same time useful structure has been developed to deploy
radio applications, from physical layer to application layer,
on heterogeneous software and hardware environments.

1. INTRODUCTION

Some years ago the Software Radio (SR) concept came to
scene promising a revolutionary change in radio
infrastructure. The concept, initially focused on physical
radio layer, has spanned to any layer within the protocol
stack of radio terminals and to network management. But
the advantages associated to SR will not be achieved if it
does not exist a common framework and a formal design
methodology to fully expand them.

Even though the coverage area of SR has dramatically
increased, the core concept still remains not completely
solved. The core software is basically that dealing with
harder real-time tasks which is not easy to separate from
underlying hardware (interrupts, memory addresses,
processor instructions, etc.), thus creating a dependency of
software on hardware. This dependency may limit the actual
flexibility of radio terminals to accommodate different
configurations as requested by the access network.
Removing such dependency is generally achieved through
abstraction layers (e.g. HAL, Hardware Abstraction Layer),
a well-known concept in computing world. Then, following
this idea, radio capabilities empowered through use of
software should be separated from digital hardware
processors available on a given platform, including general
purpose processors (GPP), digital signal processors (DSP),
field programmable gate arrays (FPGA) and others.
Whichever is the abstraction layer finally used, it must
provide a framework that, at least, includes mechanisms to
uniquely specify which software must run on the terminal
and to ensure a safe behaviour of such software, keeping
radio terminal within standard restrictions and respecting the
user-operator contract bounds.

In this document one possible abstraction layer architecture
being currently developed, P-HAL (Platform-Hardware
Abstraction Layer), is described. It has been found useful to
implement radio algorithms and covers raw devices as well
as more complex platforms. It goes beyond the simple
abstraction mechanism offering also an execution
environment and run-time control of the radio application.

2. THE ABSTRACTION LAYER

2.1 General Overview

The basic concept under P-HAL is providing a location and
time context to create software pieces completely
independent of the platform where they have to be executed.
Here the platform term includes a high-level system based
on GPP and an operating system (OS) as well as raw
hardware (boards with DSP or FPGA devices). Because of
currently available tools, algorithms within the presented
environment are programmed using standard programming
languages, like C/C++ and VHDL. Note that even there
exist paradigmatic programming differences between GPP
or DSP and FPGA processors, the aim is treating them the
same way, not necessarily making the software/hardware
division found in heterogeneous systems. It is expected that
future development tools allow creating a binary executable
file for any of the previous processors from a single source
code.

A key aspect of P-HAL is that it provides the means to add
as much processing resources (hardware) as required for a
given application, not having to modify the software of the
application at all. The addition (or removal) of plug-and-
play hardware on a system is closely related to the
possibility of building-up the radio terminal with different
hardware from different providers. The different hardware
topologies, configurations and, above all, the way as tasks
are assigned impose restrictions to the way that different
hardware is integrated to construct SR platforms. Figure 1
shows a representation of context where P-HAL works
providing the following set of features:

• Real-time seamless exchange of information from
one P-HAL compliant platform to another
(BRIDGE).

• Isochronism of data and processes running on
different platforms (SYNC).

• Platform-wide coordinated process control,
scheduling, logging and error control (KERNEL).

• Real-time system monitoring, data and statistics
retrieval and adaptation of processes set-up
parameters (STATS).

All the previous features (and other not included for
simplicity) are accessible to the application through P-HAL
Application Programming Interface (API).

Platform 2 Platform 3 Platform 4Platform 1Hardware
Layer

Platform
Software

Layer

Virtual
Layer

P-HAL Kernel
Sync

Bridge
Stats

P-HAL Kernel

SW
Map

Sync
Bridge
Stats

Overall P-HAL

Task 1
Task 2

Task 3
Task 4

Task 5
Task 6

Real
Application

Layer

Abstract
Application

Layer

Object
Task 1

Object
Task 2

Object
Task 3

Physical Interfaces

P-HAL Kernel
Sync

Bridge
Stats

P-HAL Kernel
Sync

Bridge
Stats

Object
Task 4

Object
Task 6

Object
Task 5

Platform 2 Platform 3 Platform 4Platform 1Hardware
Layer

Platform
Software

Layer

Virtual
Layer

P-HAL Kernel
Sync

Bridge
Stats

P-HAL Kernel
Sync

Bridge
Stats

P-HAL Kernel

SW
Map

Sync
Bridge
Stats

P-HAL Kernel

SW
Map

Sync
Bridge
Stats

Overall P-HAL

Task 1
Task 2

Task 3
Task 4

Task 5
Task 6

Real
Application

Layer

Abstract
Application

Layer

Object
Task 1

Object
Task 2

Object
Task 3

Physical Interfaces

P-HAL Kernel
Sync

Bridge
Stats

P-HAL Kernel
Sync

Bridge
Stats

P-HAL Kernel
Sync

Bridge
Stats

P-HAL Kernel
Sync

Bridge
Stats

Object
Task 4

Object
Task 6

Object
Task 5

Fig. 1. P-HAL schematic representation

The three first features in the list produce the effect, from
the application view side, of having a single, unified,
platform. Then, the same application description works on a
single machine or on multiple distributed machines,
provided that a P-HAL layer exists in between the
application and the hardware. It does not matter what
hardware runs an specific part of the application, this part
will just observe other parts as being aside. In the figure four
processing machines (platforms) have their respective P-
HAL running and only an executive virtual P-HAL entity is
shown to application distributed blocks. In any case the
application is not aware of the underlying hardware.

2.2 Other Considerations

In principle platforms only have some minor information
about other platforms to work together. One or more (direct
or indirect) shared interfaces are the only liaison between
each pair of platforms (e.g. network, bus, etc. interface).
Through such interfaces P-HAL compliant software on each
platform builds-up a virtual larger platform. Of course the
performance of this interface may limit the aggregate
computational capacity of the overall platform but in general
not more than internal platform interfaces may do.

Since some parts of the application have to deal with real-
time issues two important timing considerations have been
added to P-HAL. First one, isochronisms of platforms,
requires that the existent interfaces between them are used to
create a local time reference adjusted with the local
reference of one platform. A synchronism procedure is
required overcoming those delays present in the

aforementioned interfaces. To limit the effect of some
synchronism misalignments and to create a temporal
execution framework for the application, time is divided into
slots. Such time slots are large enough to allow each P-HAL
to schedule all the application tasks. At the same time, slots
are short enough to limit the amount of buffering in the
interfaces.

By other hand, the application should not be aware of the
actual time slot length. The SR application, which is
organised as a set of software blocks or objects (see figure
1), is mapped to the different processors available on the
platform that are hidden under P-HAL. Each software block
or task is programmed independently of the processor that is
going to execute it. Then, the only things that blocks may
see are P-HAL functionalities accessed through its API.
Strictly speaking, application software blocks are simple
data processors. Data at their outputs are provided to the
blocks where they are connected to. The receiver is not even
known at programming time. When developing the
application different software objects are plugged creating a
processing stream. Every time slot a block receives data and
has to process it within such time slot. The correct real-time
behaviour is achieved if each software block is able to
process before the end of the slot all data available at the
beginning of the slot. Moreover, P-HAL has to guarantee
that each block receives at each time slot any data sent to it
in the previous one.

2.3 Current Implementation

P-HAL is currently under final steps of development for
four different platforms of a SR heterogeneous platform.
One Linux PC (completed), one VME bus diskless Sparc
workstation (completed), one VME bus quad DSP board (to
complete kernel) and one VME bus octal FPGA board. Each
individual platform requires different skills to offer a P-
HAL compliant interface. Just as an example of the different
approaches followed in the latest two platforms, figure 2
shows the organisation of P-HAL on them. For each DSP,
tasks are distributed along time (dispatching kernel) while,
for each FPGA, tasks are distributed along space.

P-HAL front-end
P-HAL local

Dispatch kernel
Tasks P1

P-HAL local
Dispatch kernel

Tasks P2

P-HAL local
Dispatch kernel

Tasks P3

P-HAL local
Dispatch kernel

Tasks P4

D
S

P
4

D
S

P
3

D
S

P
2

D
S

P
1

Local bus

I/O Interface

VME Interface

FP
G

A
 X

Task

IBUS

IBUS
Interface

Packet
Switching

I/O
Interface

VME Interface

P-HAL
Control

Local Dedicated
Interconnect

I/O

Task Interface
Adapter

Board
Timing

P-HAL front-end
P-HAL local

Dispatch kernel
Tasks P1

P-HAL local
Dispatch kernel

Tasks P2

P-HAL local
Dispatch kernel

Tasks P3

P-HAL local
Dispatch kernel

Tasks P4

D
S

P
4

D
S

P
3

D
S

P
2

D
S

P
1

Local bus

I/O Interface

VME Interface

P-HAL front-end
P-HAL local

Dispatch kernel
Tasks P1

P-HAL local
Dispatch kernel

Tasks P2

P-HAL local
Dispatch kernel

Tasks P3

P-HAL local
Dispatch kernel

Tasks P4

D
S

P
4

D
S

P
3

D
S

P
2

D
S

P
1

Local bus

I/O Interface

VME Interface

FP
G

A
 X

Task

IBUS

IBUS
Interface

Packet
Switching

I/O
Interface

VME Interface

P-HAL
Control

Local Dedicated
Interconnect

I/O

Task Interface
Adapter

Board
Timing

FP
G

A
 X

Task

IBUS

IBUS
Interface

Packet
Switching

I/O
Interface

VME Interface

P-HAL
Control

Local Dedicated
Interconnect

I/O

Task Interface
Adapter

Board
Timing

Fig. 2. P-HAL implementation case on DSP and FPGA

AKNOWLEDGEMENT

This work has been supported by CYCIT (Spanish National
Science Council) under grant TIC2003-08609.

