
RUN-TIME AND DEVELOPMENT FRAMEWORK FOR HETEROGENEOUS HARDWARE 
RADIOS 

 
Xavier Revés, Vuk Marojevic, Antoni Gelonch 

 
Universitat Politècnica de Catalunya, C/Jordi Girona 1-3 08034 Barcelona, Spain, 

{xavier.reves,marojevic,antoni}@tsc.upc.es 

 
Abstract 

 
Software Radio concept provides increased features to radio 
access networks. The reconfiguration of radio equipment 
requires the existence of an architecture, a common 
framework, that allows a flexible management, in any sense, 
of software running on radio processors. Such framework 
must take into account the heterogeneity of hardware 
devices and platforms where the radio applications will run. 
To avoid excessive overhead, a conceptually simple but at 
the same time useful structure has been developed to deploy 
radio applications, from physical layer to application layer, 
on heterogeneous software and hardware environments. 

1. INTRODUCTION 

Some years ago the Software Radio (SR) concept came to 
scene promising a revolutionary change in radio 
infrastructure. The concept, initially focused on physical 
radio layer, has spanned to any layer within the protocol 
stack of radio terminals and to network management. But 
the advantages associated to SR will not be achieved if it 
does not exist a common framework and a formal design 
methodology to fully expand them.  

Even though the coverage area of SR has dramatically 
increased, the core concept still remains not completely 
solved. The core software is basically that dealing with 
harder real-time tasks which is not easy to separate from 
underlying hardware (interrupts, memory addresses, 
processor instructions, etc.), thus creating a dependency of 
software on hardware. This dependency may limit the actual 
flexibility of radio terminals to accommodate different 
configurations as requested by the access network. 
Removing such dependency is generally achieved through 
abstraction layers (e.g. HAL, Hardware Abstraction Layer), 
a well-known concept in computing world. Then, following 
this idea, radio capabilities empowered through use of 
software should be separated from digital hardware 
processors available on a given platform, including general 
purpose processors (GPP), digital signal processors (DSP), 
field programmable gate arrays (FPGA) and others. 
Whichever is the abstraction layer finally used, it must 
provide a framework that, at least, includes mechanisms to 
uniquely specify which software must run on the terminal 
and to ensure a safe behaviour of such software, keeping 
radio terminal within standard restrictions and respecting the 
user-operator contract bounds. 

In this document one possible abstraction layer architecture 
being currently developed, P-HAL (Platform-Hardware 
Abstraction Layer), is described. It has been found useful to 
implement radio algorithms and covers raw devices as well 
as more complex platforms. It goes beyond the simple 
abstraction mechanism offering also an execution 
environment and run-time control of the radio application. 

2. THE ABSTRACTION LAYER 

2.1 General Overview 

The basic concept under P-HAL is providing a location and 
time context to create software pieces completely 
independent of the platform where they have to be executed. 
Here the platform term includes a high-level system based 
on GPP and an operating system (OS) as well as raw 
hardware (boards with DSP or FPGA devices). Because of 
currently available tools, algorithms within the presented 
environment are programmed using standard programming 
languages, like C/C++ and VHDL. Note that even there 
exist paradigmatic programming differences between GPP 
or DSP and FPGA processors, the aim is treating them the 
same way, not necessarily making the software/hardware 
division found in heterogeneous systems. It is expected that 
future development tools allow creating a binary executable 
file for any of the previous processors from a single source 
code. 

A key aspect of P-HAL is that it provides the means to add 
as much processing resources (hardware) as required for a 
given application, not having to modify the software of the 
application at all. The addition (or removal) of plug-and-
play hardware on a system is closely related to the 
possibility of building-up the radio terminal with different 
hardware from different providers. The different hardware 
topologies, configurations and, above all, the way as tasks 
are assigned impose restrictions to the way that different 
hardware is integrated to construct SR platforms. Figure 1 
shows a representation of context where P-HAL works 
providing the following set of features: 

• Real-time seamless exchange of information from 
one P-HAL compliant platform to another 
(BRIDGE). 

• Isochronism of data and processes running on 
different platforms (SYNC). 



• Platform-wide coordinated process control, 
scheduling, logging and error control (KERNEL). 

• Real-time system monitoring, data and statistics 
retrieval and adaptation of processes set-up 
parameters (STATS). 

All the previous features (and other not included for 
simplicity) are accessible to the application through P-HAL 
Application Programming Interface (API). 
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Fig. 1. P-HAL schematic representation 

The three first features in the list produce the effect, from 
the application view side, of having a single, unified, 
platform. Then, the same application description works on a 
single machine or on multiple distributed machines, 
provided that a P-HAL layer exists in between the 
application and the hardware. It does not matter what 
hardware runs an specific part of the application, this part 
will just observe other parts as being aside. In the figure four 
processing machines (platforms) have their respective P-
HAL running and only an executive virtual P-HAL entity is 
shown to application distributed blocks. In any case the 
application is not aware of the underlying hardware. 

2.2 Other Considerations 

In principle platforms only have some minor information 
about other platforms to work together. One or more (direct 
or indirect) shared interfaces are the only liaison between 
each pair of platforms (e.g. network, bus, etc. interface). 
Through such interfaces P-HAL compliant software on each 
platform builds-up a virtual larger platform. Of course the 
performance of this interface may limit the aggregate 
computational capacity of the overall platform but in general 
not more than internal platform interfaces may do. 

Since some parts of the application have to deal with real-
time issues two important timing considerations have been 
added to P-HAL. First one, isochronisms of platforms, 
requires that the existent interfaces between them are used to 
create a local time reference adjusted with the local 
reference of one platform. A synchronism procedure is 
required overcoming those delays present in the 

aforementioned interfaces. To limit the effect of some 
synchronism misalignments and to create a temporal 
execution framework for the application, time is divided into 
slots. Such time slots are large enough to allow each P-HAL 
to schedule all the application tasks. At the same time, slots 
are short enough to limit the amount of buffering in the 
interfaces. 

By other hand, the application should not be aware of the 
actual time slot length. The SR application, which is 
organised as a set of software blocks or objects (see figure 
1), is mapped to the different processors available on the 
platform that are hidden under P-HAL. Each software block 
or task is programmed independently of the processor that is 
going to execute it. Then, the only things that blocks may 
see are P-HAL functionalities accessed through its API. 
Strictly speaking, application software blocks are simple 
data processors. Data at their outputs are provided to the 
blocks where they are connected to. The receiver is not even 
known at programming time. When developing the 
application different software objects are plugged creating a 
processing stream. Every time slot a block receives data and 
has to process it within such time slot. The correct real-time 
behaviour is achieved if each software block is able to 
process before the end of the slot all data available at the 
beginning of the slot. Moreover, P-HAL has to guarantee 
that each block receives at each time slot any data sent to it 
in the previous one. 

2.3 Current Implementation 

P-HAL is currently under final steps of development for 
four different platforms of a SR heterogeneous platform. 
One Linux PC (completed), one VME bus diskless Sparc 
workstation (completed), one VME bus quad DSP board (to 
complete kernel) and one VME bus octal FPGA board. Each 
individual platform requires different skills to offer a P-
HAL compliant interface. Just as an example of the different 
approaches followed in the latest two platforms, figure 2 
shows the organisation of P-HAL on them. For each DSP, 
tasks are distributed along time (dispatching kernel) while, 
for each FPGA, tasks are distributed along space. 
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Fig. 2. P-HAL implementation case on DSP and FPGA 
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