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Abstract—This paper presents a novel distributed framework
to decide the spectrum assignment in a primary cellular radio
access network. The distributed nature of the framework allows
each cell to autonomously decide (by means of machine learning
procedures) the best frequencies to use in order to maximize spec-
tral efficiency, preserve quality-of-service, and generate spectrum
gaps, so that secondary cognitive radio networks can improve
overall spectrum usage. The proposed distributed framework has
been validated over a downlink multicell OFDMA radio access
network, showing comparable performance results with respect
to its centralized counterpart and superior performance with
respect to fixed frequency planning schemes.

Index Terms—Spectrum Management, Reinforcement Learn-
ing, Cognitive Radio, Self-organization, Autonomic Systems,
OFDMA.

I. INTRODUCTION

Current primary cellular networks are difficult to manage
and require a lot of human interaction. For example, tasks
such as assigning spectrum resources to cells (i.e., network
planning to avoid intercell interference) are carried out off-
line during network deployment and remain unaltered until
new infrastructure is added to the system. Moreover, spectrum
is allocated regularly among cells expecting to cover the
maximum demand at any place of the service area. This
spectrum assignment strategy is proved to be clearly inefficient
with variable traffic demands. It could also become intractable
with the advent of new technologies like femtocells [1] (small
range base stations introduced at a considerable amount of
random locations to increase coverage and capacity) or in the
framework of new regulation scenarios like private commons
[2], which may require a primary spectrum re-assignment in
a dynamic and unpredictable manner to allow both the QoS
guarantee for primary users and the release of spectrum chunks
for secondary usage. Hence, it becomes necessary to include
cognitive and autonomic capabilities in primary network ele-
ments to automatically reconfigure spectrum assignment and
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minimize human interaction. In this context, self-organization
arises as a promising solution.

Self-organization is the ability of a system composed of
several entities to adopt a particular structure and perform
certain functions to fulfill a global purpose without any exter-
nal supervisor or central dedicated control entity [3]. Intuitive
examples of self-organization are swarms of ants looking for
food, or schools of fish protecting against predators. In the
field of radio access networks (RAN), self-organization can
be applied to network planning, deployment, optimization
and maintenance bringing operational and capital expenditures
reductions [4]. Therefore, certain activities of several projects
and standardization bodies (e.g., 3GPP, IEEE) are steered to
study the automation of network procedures.

The main characteristics of a self-organized system are its
distributed nature and the localized interactivity between sys-
tem elements. That is, each entity performs its operation based
only on the information retrieved from other entities in its
vicinity. Hence, overall system’s organization and performance
is achieved from an autonomous behavior of each entity that,
from the experience acquired from a variable environment,
decides the proper actions to adapt to it. In this context,
Reinforcement Learning (RL) arises as a potential approach to
implement autonomic self-organizing procedures in each of the
system entities [5]. RL shows inherent cognitive capabilities
since it consists in learning the suitable set of actions to choose
in order to maximize a numerical reward given that there is
a continuous interaction with an environment. Hence, RL has
been successfully applied to spectrum sensing [6] or spectrum
sharing [7] procedures in Cognitive Radio (CR). Also, in our
previous work, we showed that RL can be used to implement
centralized dynamic spectrum assignment (DSA) strategies for
primary cellular networks [8].

This paper presents a novel distributed framework for the
spectrum assignment in a cellular RAN. Each cell behaves as
an autonomous entity that executes a RL Dynamic Spectrum
Assignment strategy (RL-DSA). The objective of the RL-
DSA strategy is to maximize spectral efficiency per cell (in
bits/s/Hz) while quality of service (QoS) of primary commu-
nications is preserved. In addition, if primary traffic demands
are low enough, RL-DSA generates spectrum gaps in the
cell to enable that secondary spectrum markets can make
a cognitive opportunistic access and hence enhance overall



spectrum usage. Thus, the proposed approach is a distributed
self-organized framework aimed to ease the deployment of
future RANs where it is expected to have lots of base stations,
relay nodes, and femtocells. Moreover, it encompasses future
CR applications, making the primary network aware that not
used spectrum could be used by secondary networks.

The framework is validated over a primary downlink RAN
based on Orthogonal Frequency Division Multiple Access
(OFDMA), which is in the main stream of future RANs such
as 3GPP LTE or WiMax. The proposed framework exhibits a
performance in terms of spectral efficiency comparable with
that offered by its centralized version and superior perfor-
mance with respect to classical network planning strategies.
Certainly, the distributed approach allows for much lower sig-
naling load and implementation complexity than its centralized
version.

The paper is organized as follows. Section II presents our
distributed framework for spectrum management, including
system model, cell functional scheme, and functionalities
descriptions. Proposed framework is based on the RL-DSA al-
gorithm, which each cell executes to decide the best spectrum
assignment. Thus, section III presents the RL-DSA functional
scheme and its detailed description and section IV details
procedures of each component of the framework necessary
for the RL-DSA execution. Section V is devoted to present
the simulation model and results for two case studies: one
compares the performance of the proposed framework with a
centralized version and fixed network planning schemes, and
the other shows the autonomous and adaptable behavior of the
self-organized system by adding new cells that automatically
decide their spectrum assignment regarding nearby environ-
ment. Finally, section VI states final conclusions.

II. DISTRIBUTED FRAMEWORK DESCRIPTION

The proposed distributed framework is depicted in Fig.
1. Fig. 1(a) shows the system model where an autonomous
cell surrounded of other cells is depicted. Each cell performs

autonomous spectrum assignment decisions with the objective
of improving spectral efficiency while guaranteeing cell users’
QoS. A generalized OFDMA radio interface is supposed in
downlink, where a common system bandwidth W for the ser-
vice area is divided into N chunks (i.e., groups of contiguous
OFDM subcarriers). Moreover, time is divided into frames and
then, the minimum radio resource block assignable to users is a
specific chunk into a frame. There is an uplink control channel
where users report their measurements in terms of signal-to-
interference plus noise ratio (SINR) in the different chunks.
As it will be explained in section IV, this is the way a cell
obtains information about neighboring cells spectrum usage
useful to estimate chunks capacities of the own cell. Hence
no explicit coordination between cells is needed.

Fig. 1(b) depicts the cell functional scheme. Operation of the
cell is divided into two timescales. In the short-term (i.e., at the
frame time scale), the cell schedules users’ transmissions into
available frequency resources following standard scheduling
strategies implemented in the Short-Term Scheduler (STS). On
the other hand, in the medium-term (i.e., from tens of seconds
to tens of minutes), the cell determines which frequencies
should use and which not. To this end, a Cell DSA Controller is
included in each cell. Other distributed [9] or semi-distributed
[10] approaches have been found in literature for spectrum
assignment. However, they perform dynamic spectrum as-
signment to users in the short-term, what may lead to high
computational requirements, and in some cases may need a
centralized coordinator to perform the spectrum assignment
among cells. On the other hand, the proposed framework here
is entirely distributed among cells and spectrum assignment
is provided in medium-term considerably reducing execution
time requirements and signaling overhead.

The core of the Cell DSA controller is the RL-DSA algo-
rithm, which provides the final spectrum assignment for the
cell. Once in execution, the RL-DSA continuously interacts
with a Cell Characterization Entity (CCE) by exchanging
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actions and rewards. Each action of the RL-DSA represents a
candidate spectrum assignment for the cell. The CCE, which
implements a model of the cell’s behavior, returns a reward
representing the suitability of a given action allowing the RL-
DSA to learn the most appropriate spectrum assignment for
the cell. The Status Observer is in charge of triggering the
execution of the RL-DSA algorithm and providing current
status of the cell (e.g., cell load). It also collects and builds
the necessary metrics to cope with the iterative learning
procedures.

III. RL-DSA ALGORITHM

Consider N available chunks (numbered from 1 to N )
in a downlink OFDMA cellular system. Each cell should
select a spectrum assignment defined as a binary 1×N vector
Υ= (y1, · · ·, yN ), where yn∈{0, 1} denotes that n−th chunk
is assigned to the cell if yn=1 (and not assigned if yn=0).
The RL-DSA algorithm is based on the RL REINFORCE
methods that assure the maximization of an average reward in
the long-term [11]. Hence, we propose a feed-forward network
composed of N RL REINFORCE agents (Fig. 2) to implement
the RL-DSA algorithm in each cell. This network interacts
with the CCE on a step by step basis maximizing average
reward obtained from CCE. The RL-DSA is periodically
triggered by Status Observer that provides current status of
the cell as a constant input for RL-DSA execution. Decision
Maker stops RL-DSA when it has converged by continuously
examining RL-DSA status, and obtains the new spectrum
assignment learnt.

The n−th RL agent in the feed-forward network is devoted
to learn whether the n−th chunk should be assigned to the cell
or not. To this end, the n−th RL agent’s output yn(t)∈{0, 1}
in a step t is a Bernoulli random variable, so that each action
taken by the set of agents in the network represents a candidate
spectrum assignment Υ(t). Knowledge of each RL agent is
contained in parameter pn(t), which represents the probability
that the output yn(t) is 1. Probability pn(t) depends on the
current status of the cell x and a corresponding weight wn(t).

The first time that RL-DSA is run a random assignment is
set, and in next executions RL-DSA algorithm begins from
the assignment learnt in the previous execution so that the
know-ledge acquired until that moment is retained. With these
definitions RL-DSA procedure is given in the following:
1) For each RL step t, assignment Υ(t) is obtained consid-

ering that the n−th chunk is assigned to the cell if the
output yn(t) is 1.

2) For each assignment Υ(t) the CCE returns a reward r(t)
that is used by the respective RL agents to update its
internal weights for the next step as [11]

wn(t+1) = wn(t)+∆wn(t), (1)

∆wn(t)=α(t) (r(t)−r̄(t−1)) (yn(t)−pn(t))x. (2)

Notice that the learning from reward is enforced in the
weighting value. Parameter α(t) is called the learning rate.
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r̄(t) is the reinforcement baseline or average reward calcu-
lated using a exponential moving average with parameter
β. Finally, in this paper, we use the current status x to
modify the weight update ∆wn(t) in accordance with the
current load of the cell as follows

x = max
{
W/W,ω

}
(3)

where W is the amount of unused bandwidth in the cell
and 0 < ω � 1 is a parameter that simply assures a non-
zero minimum value of x if W = 0.

3) Probabilities for the next step pn(t+1) are updated with
the new weights wn(t+1) as

pn(t)= max
{

min{1/(1+e−wn(t)x), 1−pexp}, pexp

}
(4)

where probability pexp is introduced as a small bias in
order to enforce some exploratory behavior in the agent
even if its internal probability pn(t) is very near to 1 or 0
(when approaching to algorithm’s convergence).

4) Outputs yn(t+1) are obtained for next assignment from
the random Bernoulli generators. Decision Maker keeps
track of RL-DSA status (internal probabilities evolution
and current step t). If it detects that the variation of all pn

between two successive steps is below ε during S steps, or
if t > MAX STEPS, then phase 4) is executed. Otherwise,
next assignment is tested from 1).

5) Decision Maker stops RL-DSA. It decides the spectrum
assignment for the cell from the knowledge acquired by
RL-DSA. Hence, it assigns (de-assigns) a chunk to the cell
if pn is greater (lower) than 0.5.

Speed of convergence of an RL algorithm can be increased
by increasing the value of the learning rate. However, this
compromises the algorithm’s accuracy to converge to a correct
action in a finite number of steps [12]. Thus, to provide some
tradeoff between speed of convergence and accuracy, α(t)
in (2) is linearly decreased as α(t)=α(t−1)−∆, where ∆
is a factor that should be small enough to assure a smooth
transition between steps. On the other hand, for high traffic
load situations the number of suitable spectrum assignments
is considerably reduced. Note that, under such conditions, the
inclusion in (2) of the cell status x given in (3), improves the
convergence to suitable solutions, since the learning rate α(t)
is weighted by x� 1.



IV. RL-DSA SUPPORTING PROCEDURES

The RL-DSA algorithm in the Cell DSA controller im-
plements the adaptable behavior of the proposed framework.
The following procedures support RL-DSA execution and
complete the functionalities description of the framework.

1. Short-Term Scheduler (STS). Short-term exploitation of
multiuser diversity at the cell is carried out by the STS
that dynamically assigns available chunks (assigned by Cell
DSA controller) to users. The well-known Round-Robin (RR)
strategy [13] has been retained as illustrative and implemented
in this paper. Transmitted chunk power is supposed to be con-
stant and users’ transmission bit rate is variable by means of
Adaptive Coding and Modulation (ACM). The detailed SINR
thresholds for each modulation and coding rate considered are
given in TABLE I. The instantaneous SINR (γm,n) for the
m−th user is computed for each active chunk n in the cell
considering distance dependant pathloss and shadowing (both
not frequency dependant), and frequency selective fast fading
for both serving cell and interfering cells. γm,n is reported in
uplink to perform scheduling. Then, the m−th user achievable
bit rate for each chunk n is computed as Rm,n = Bq(γm,n),
where B is the chunk bandwidth in Hz and q(γm,n) stands
for the achievable spectral efficiency in bits/s/Hz for a given
SINR threshold.

2. Status Observer. Inputs for the Cell DSA controller in
each cell come only from local information and measurements
reported by users from neighboring cells. The Status Observer
entity collects those inputs, builds necessary metrics, and
averages them over a period of l seconds. The local metrics
used are the average number of users in the cell (U ), average
throughput per user (th), average user throughput in the cell
(TH), and spectral efficiency defined as the aggregate user
throughput in the cell per hertz (η). Additionally, the so-called
average user dissatisfaction probability in the cell (PTth ) is
defined as the percentage of seconds in which th is below
a target throughput Tth. On the other side, Status Observer
computes for each chunk the Probability Density Function
(PDF) fn(γ) of the average SINR γm,n estimated and reported
by each user in the same chunk during a period of l seconds.
γm,n can be computed as:

γm,n=
Pm

Im,n
, (5)

Im,n=

PTotal,n−Pm if chunk n is used in the cell;

PTotal,n otherwise.
(6)

where Pm is the average received power of m−th user from
serving cell. Im,n is the average intercell interference plus
thermal noise power per chunk n, and PTotal,n the total
measured power in the chunk. Control signaling to inform
users about the chunks that are used in the cell is assumed.
Notice also that Pm does not depend of the chunk in (5)
and (6). This is because transmitted power per chunk is
constant and average path loss and shadowing is assumed to
be non-frequency dependent into the service bandwidth. Users
estimate and report γm,n for all chunks n = 1..N .

Finally, the Status Observer entity in each cell is also
responsible of triggering the RL-DSA algorithm in periods of
L seconds.These periods are not aligned between cells, that is,
RL-DSA is not executed simultaneously in the different cells.

3. CCE. The CCE constitutes the environment for the RL-
DSA and tries to mimic the response of the cell for a given
spectrum assignment. It returns the reward value reflecting the
suitability of each candidate spectrum assignment Υ(t) given
by RL-DSA in step t. Since RL-DSA maximizes reward value
in the long-run, a reward function that captures the perfor-
mance of the cell for an assignment Υ(t)= (y1(t), · · ·, yN (t))
has to be defined. Reward value r(t) is obtained as

r(t)=

0 if T̂H (Υ(t))<Tth;

λη̂ (Υ(t)) +µW (Υ(t))
B otherwise,

(7)

where T̂H (Υ(t)) and η̂ (Υ(t)) are estimations of aver-
age user throughput and spectral efficiency in the cell for
a given spectrum assignment, respectively. W (Υ(t)) is the
bandwidth released in the cell for e.g., secondary usage and
then W (Υ(t)) /B is the number of free chunks. λ and µ
are positive weighting constants. Then the reward signal r(t)
reflects the suitability of the spectrum assignment for the cell
in terms of spectral efficiency, QoS and released bandwidth.
Note that reward is zero for T̂H (Υ(t)) lower than QoS
throughput Tth.

Released bandwidth W (Υ(t)) can be written as
W (Υ(t)) =W−B

∣∣ΩΥ(t)

∣∣, where ΩΥ(t) is the set of
chunks assigned to the cell by the RL-DSA for a given action
(i.e., n∈ΩΥ(t) if yn(t)=1) and |X| denotes cardinality of
set X. Hence, B

∣∣ΩΥ(t)

∣∣ is the assigned bandwidth. CCE
estimates T̂H (Υ(t)) and η̂ (Υ(t)) as follows

η̂ (Υ(t)) =
1∣∣ΩΥ(t)

∣∣ ∑
n∈ΩΥ(t)

∫ ∞
−∞

q(γ)fn(γ)dγ, (8)

T̂H (Υ(t)) =
B
∣∣ΩΥ(t)

∣∣ η̂ (Υ(t))
U

, (9)

where q(γ) is the achievable spectral efficiency for a given
SINR γ (TABLE I).

V. SIMULATION MODEL AND RESULTS

Results were obtained by means of dynamic simulations
over a 7 hexagonal cells scenario representing a simulated
time of 1 hour. A total of 6 chunks are available for the entire
system. At the beginning 105 users are equally distributed
among cells (i.e., 15 users per cell). Users move at 3Km/h
with a random walk model [14] and always remain within
their cell. A full-buffer traffic model is assumed. During the
10 minutes period between the minutes 25 and 35, 4 new
sessions per minute are started in the central cell and one
session per minute is stopped in the rest of cells. In this way,
simulations consider both spatial and temporal variations of
the traffic. Satisfaction throughput is set to Tth=128 kbps.
More simulation parameters values including RL parameters
are given in TABLE II.



TABLE I
MODULATION AND CODING SCHEMES

Modulation m Coding Rate r Spectral efficiency SINR threshold
(bits/s/Hz) (bits/s/Hz) q (bits/s/Hz) (dB)
2 (QPSK) 1/3 0.66 ≥ 0.9
2 (QPSK) 1/2 1 ≥ 2.1
2 (QPSK) 2/3 1.33 ≥ 3.8

4 (16QAM) 1/2 2 ≥ 7.7
4 (16QAM) 2/3 2.66 ≥ 9.8
4 (16QAM) 5/6 3.33 ≥ 12.6
6 (64QAM) 2/3 4 ≥ 15.0
6 (64QAM) 5/6 5 ≥ 18.2

TABLE II
SIMULATION PARAMETERS

Number of cells K = 7
Cell Radius R = 500 meters

Antenna patterns Omnidirectional
Frame time 2 ms

Number of chunks N = 6
Chunk bandwidth B = 375 KHz
Power per chunk P = 33 dBm

Path loss in dB at d km 128.1 + 37.6log10(d) [14]
Shadowing standard deviation 8 dB [14]

Shadowing decorrelation distance 5 m [14]
Small Scale Fading model ITU Ped. A [14]

UE thermal noise −174 dBm/Hz
UE noise factor 9 dB

RL parameters [α, β,∆, ω]
[
10, 0.01, 10−5, 0.02

]
Exploratory probability pexp 1%

Reward constants [λ, µ] [100, 10]

RL convergence criterion [ε, S]
[
10−4, 5000

]
MAX STEPS 100000

Measurements averaging window l = 10 s
RL-Trigger period L = 60 s

A. Case Study 1. Performance comparison

Performance of distributed framework is compared with
classical frequency planning schemes (Frequency Reuse Fac-
tors (FRF)), such as FRF1 (6 chunks per cell) and FRF3 (2
chunks per cell). Also, a centralized version of the RL-DSA
algorithm is simulated [8]. It is expected that this centralized
strategy outperforms distributed RL-DSA thanks to its global
vision of the spectrum assignment, but self-organized systems,
and in particular the distributed RL-DSA presented here, aim
at approximate centralized performance while scalability and
autonomous capabilities are given to the system.

Fig. 3 depicts the average dissatisfaction probability, average
spectral efficiency, and average user throughput fairness for
the considered schemes. User throughput fairness reflects the
balance between the throughput obtained by users in the
system. To this end, we consider as fairness metric the 5-th
percentile user throughput normalized to average throughput to
allow fair comparison between spectrum assignment schemes.

Fig. 3(a) shows the dissatisfaction probability performance.
It can be seen that both centralized and distributed RL-DSA
schemes achieve the lowest dissatisfaction along simulation.
On the other hand, both FRF schemes fail to guarantee
dissatisfaction especially when the distribution of the traffic
load is heterogeneous (from minute 35). These poor results
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are also reported in terms of spectral efficiency (Fig. 3(b)) and
fairness (Fig 3(c)), demonstrating that fixed frequency plan-
ning schemes are inefficient. For example, FRF1 shows the
worst average spectral efficiency results because of intercell
interference. Moreover, the high spectral efficiency of FRF3
from minute 35 is useless because dissatisfaction probability
and fairness are unacceptable (60% of the users are dissatisfied
and fairness dramatically decays).

In contrast, RL-DSA schemes demonstrate the best tradeoff
between spectral efficiency, dissatisfaction probability and fair-
ness, by dynamically selecting the proper chunks to cope with
variable traffic demands. Comparing the distributed RL-DSA
with the centralized version, it can be observed that distributed
RL-DSA achieves a similar performance. Finally, regarding
spectrum used by the RL-DSA strategies, both centralized and
distributed approaches allocate 2 chunks per cell from minutes
0 to 25, and 5 chunks for the central cell and 1 chunk for the
rest of the cells from minutes 35 to 60. Notice that these values
suppose a reduction of used bandwidth compared with fixed
frequency planning schemes, especially with respect to FRF1
that allocates 6 chunks in all the cells.

B. Case Study 2. System adaptability

This case study pretends to demonstrate the adaptability of
the proposed distributed self-organized spectrum assignment
scheme through an illustrative example. Suppose that a traffic
hot-spot emerges on the macrocell scenario described at the
beginning of this section (Fig. 4). Traffic hot-spot has 30 uni-
formly distributed static users that connect to nearest macrocell



and has a radius of 100 meters. In addition to that, there are 15
uniformly distributed users already operating in each cell area.
Then, the performance in most affected macrocells (average
dissatisfaction probability and spectral efficiency) is negatively
impacted by the hot-spot, whose users experience low signal
strength from macrocells, and hence are more sensitive to
intercell interference. To cope with this loss of performance,
a microcell is activated in the hot-spot area at a certain point
of the time T . Then, users in the hot-spot perform handover
to the microcell after microcell’s activation.

Fig. 5 shows how the microcell and macrocells rearrange
their spectrum, as well as the performance evolution of the
distributed spectrum management for the microcell and macro-
cells 1, 5, and 6. Notice in Fig. 5 that, before microcell activa-
tion, macrocells use between 3 and 5 chunks and that average
dissatisfaction probability and spectral efficiency are poor.
After microcell activation, spectrum is dynamically managed
in micro- and macrocells, activating 4 chunks in the microcell
and only 2 chunks per macrocell, which are enough to cope
with users’ requirements. It can be seen that dissatisfaction
improves very significantly by falling below 5% and spectral
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Fig. 4. Scenario layout with hot-spot.
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efficiency increases accordingly after microcell activation.

VI. CONCLUSION

In this paper a distributed framework for spectrum as-
signment in the context of cellular primary networks has
been presented. System model has been designed following
self-organization paradigms: distributed and autonomous na-
ture, implicit coordination, reduced state system modeling
and adaptive procedures. A dynamic spectrum assignment
algorithm based of Reinforcement Learning (RL-DSA) has
been included in each autonomous cell. Compared with other
fixed spectrum planning and dynamic centralized strategies,
the proposed algorithm demonstrates the best tradeoff between
spectral efficiency and QoS fulfillment thanks to an adequate
adaptability to temporal and spatial variations of the spectrum
demands. Additionally, the proposed distributed framework
thanks to its autonomous, self-organized nature, appropriately
manages the spectrum configuration of the system when new
infrastructure is added reducing thus operational expenditures.
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