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Abstract—This paper analyzes the performance of two heuris-
tic approaches applied to a synchronous multicarrier multiuser
detection (MUD) of multiple receive antennas code division
multiple access (SIMO MC-CDMA) system. The particle swarm
optimization (PSO) with weighting particle position based on
combining multi-fitness functions (woPSO) is proposed and
compared with the conventional PSO SIMO MC-CDMA. The
woPSO strategy deal with the multi-objective dilemma imposed
by the spatial diversity that results in independent likelihood
function for each receive antenna. Additionally, the computa-
tional complexity of these algorithms was taken into account
in order to show which one has the best trade-off in terms of
performance and implementation complexity aspects.

Index Terms—MC-CDMA, multiuser detection, particle swarm
optimization, single/multiple-objective optimization.

I. INTRODUCTION AND SYSTEM MODEL

Multiuser reception under AWGN and selective frequency
single-input single-output (SISO) channels using genetic al-
gorithm [1], local search with unitary Hamming distance (1-
Opt LS) [2], and particle swarm optimization (PSO) [3],
[4] based detectors have earlier been studied and shown to
have excellent sub-optimum performance. Recently, heuristics
algorithms have been applied to symbol detection in multiple-
input multiple-output channels (MIMO) systems [5]. A survey
on MIMO based-OFDMA systems, focused on MuD and
estimation heuristics approaches is provided in [6].

Considering antenna-diversity-aided detection in syn-
chronous single-input multiple-output (SIMO) MC-CDMA
systems, the antennas are assumed to be sufficiently separated
such that the received signals at each element are faded inde-
pendently, resulting in an independent log-likelihood function
(LLF) for each antenna. It poses a multi-objective optimization
problem (MOOP) [7] due to the fact that while a specific
signal estimation may be deemed optimum on the basis of
one antenna LLF, the same estimation may not necessarily be
deemed optimum in terms of another antenna LFF [8].

Various population-based approaches, such as evolutionary
or genetic algorithms, were proposed in the last decade in
order to solve MOOPs. Since PSO and evolutionary algorithms
have some similarities, it is a natural extension apply PSO
to MOOP; this combination has been denominated multi-
objective PSO [9], [10].

1This work was supported in part by CAPES fellowship, BEX0556/07-6.

This work analyzes the performance-complexity trade-off
of two heuristic multiuser detectors (HEUR-MUD) suitable
for MC-CDMA systems under antenna-diversity-aided syn-
chronous SIMO and flat fading channels: PSO and weighted
multi-objective PSO version (woPSO) are compared.

The uplink of a multiuser synchronous MC-CDMA commu-
nications system with Q receive antennas at the base station
and K mobile users equipped with single antenna terminals
is considered. The single-antenna transmitter employs both
time- and frequency-domain spreading. The information bit
of the kth user with duration Tb is spread in M parallel
subcarriers. In each subcarrier, the resultant signal is time-
domain spreading by a sequence ck,m(t), m = 0, ...,M − 1,
with N chips with Tc period, such that N = Tb/Tc. The
transmitted signal of the kth user has the form:

sk(t) = Ak

∞∑
i=−∞

M−1∑
m=0

ck,m(t)b(i)
k ejωmt, (1)

where Ak =
√

Ebk/M , Ebk is the kth signal energy per bit
and b

(i)
k ∈ [−1, 1] is the ith transmitted bit related to the kth

user. The spreading sequence signed to the mth subcarrier of
the kth user can be expressed as

ck,m(t) =
N−1∑
n=0

c
(n)
k,m p (t − nTc), (2)

where c
(n)
k,m is the nth sequence chip with Tc duration and p(t)

is the rectangular pulse shape considered. Note that the total
processing gain is NM . Additionally, it is assumed that the
signature waveforms have normalized energy,

∫ Tb

0
c2
k,m(t)dt =

1
M , ∀k, m. An equivalent independent Rayleigh flat channel
is assumed in each subcarrier over all Q receive antenna.
Hence, the channel impulse response of the mth subcarrier
of the kth user in the qth receive antenna is given by
h

(i)
q,k,m = β

(i)
q,k,m exp

[
jϕ

(i)
q,k,m

]
, where the amplitude β

(i)
q,k,m is

a Rayleigh distributed random variable and the phase ϕ
(i)
q,k,m

is uniformly distributed in the [0, 2π). In the following, we
ignore the discrete-time index i over channel coefficients for
simplicity. The received signal of the mth subcarrier, qth
receive antenna, considering all K users is given by: rq,m(t) =

∞∑
i=−∞

K∑
k=1

Ak b
(i)
k ck,m(t − iTb)βq,k,m e(jωmt+ϕq,k,m) + η(t),
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where η(t) is the additive white Gaussian noise (AWGN) term
associated to the qth antenna and mth subcarrier, admitted
identical average noise power in all Q receive antennas and
M subcarriers, and bilateral power spectral density given by
N0/2.

For each receive antenna of multiple-antenna receiver, the
signal is demodulated in each one of the M subcarriers and
passed through a matched filter (MF) for each of the K
users, generating zq,k,m. The resulting signal is submitted to a
heuristic-assisted MUD, described in Section II. The channel
state information (CSI) must be estimated at the receiver either
by training or some blind methods. The received signal rq,m(t)
can be more convenient expressed in matrix notation:

rq,m(t) = CmWq,mb + nq, (3)

with Cm = [c1,m(t), ..., cK,m(t)] ; ck,m(t) =
[
c
(0)
k,m, ..., c

(N−1)
k,m

]
;

Wq,m = diag [A1βq,1,m ejϕq,1,m , . . . , AKβq,K,mejϕq,K,m ] ;b =

[b1, b2, ..., bK ]� ;nq = [η0, η1, ..., ηN−1]
�, and (·)� represent-

ing the transpose operator and n is the filtered N−sampled
AWGN. The MF output of the mth subcarrier can also be
expressed in vector notation:

zq,m = [zq,1,m, ..., zq,K,m]� = RmWq,mb + nq,m (4)

where nq,m = [ñq,1,m, ñq,2,m, . . . , ñq,K,m] is the filtered noise
vector with ñq,k,m =

∫ Tb

0
η(t) · ck,m(t) dt and the correlation

matrix

Rm =

⎡⎢⎢⎢⎢⎣
ρ
(m)
0,0 ρ

(m)
0,1 · · · ρ

(m)
0,K−1

ρ
(m)
1,0 ρ

(m)
1,1 · · · ρ

(m)
1,K−1

...
...

. . .
...

ρ
(m)
K−1,0 ρ

(m)
K−1,1 · · · ρ

(m)
K−1,K−1

⎤⎥⎥⎥⎥⎦ , (5)

with the auto- and cross-correlation of the spreading code
represented as ρ

(m)
i,j =

∫ Tb

0
ci,m(t) · cj,m(t) dt.

For kth user’ bit estimation, the conventional detector (CD)
linearly combines decision variables overall M subcarriers and
Q receive antennas:

bcMFB
k = sign

(
Q∑

q=1

M−1∑
m=0

zq,k,mĥ∗
q,k,m

)
, k = 1, . . . ,K, (6)

with bcMFB =
[
bcMFB
1 , . . . , bcMFB

K

]�
, sign(x) = x/abs(x)

and ∗ is the conjugate complex operator. The bit esti-
mation on each receive antenna is given by: bMFB,q =
sign

(∑M−1
m=0 zq,m ◦ ĥ∗

q,m

)
, q = 1, 2, . . . , Q, where ĥ∗

q,m =

[ĥ∗
q,1,m, . . . , ĥ∗

q,K,m] is an estimation channel vector, ◦ is the
element wise multiplication operator, and the entire estimation
is the vector composition: bMFB =

[
bMFB,1, . . . ,bMFB,Q

]
.

At the receiver, the maximum likelihood detector (MLD)
jointly detects the data of all users and minimizes the effects
of multiple access interference (MAI). The optimum multiuser
detection (OMUD) considering each subcarrier m of the qth
receive antenna maximizes the following objective function:

Ωq,m (b) = 2�
{
b�Ŵ∗

q,mzq,m

}
− b�Ŵq,mRq,mŴ∗

q,mb, (7)

where Ŵq,m is an estimate for the channel matrix. The OMUD
[11] is based on the maximum likelihood criterion that choose
b which maximizes the metric

b̂ = arg

{
max

b∈AMK
[f (Ω (b))]

}
, (8)

where f (Ω (b)) is a multi- or single-objective function
that takes into account some combination rule considering
Ωq,m (b) functions, Q antennas and M subcarriers in (7); M
is the message length and A is the symbol alphabet dimension;
in the optimization context, b is the decision vector and AMK

is a feasible region into the decision space. Here, it was
adopted M = 1.

In this work, it was considered two heuristic antenna-
diversity-aided strategies: one based on linearly combining
log-likelihood functions (LC-LLFs) and other is a weighting
multi-objective approach (WO-LLFs). In the first heuristic
strategy, each particle of length K (bits) on the mth subcarrier
of the qth receive antenna is linearity combined considering all
M subcarriers and Q receive antennas. The objective function
is described in similar way of [8]:

Ω(b) =
1
Q

Q∑
q=1

M−1∑
m=0

Ωq,m (b) (9)

and the fitness value of the ith K−bits vector-candidate is:

f(bi) = [Ω(bi)] (10)

Since the channel fading associated with different receive
antennas are independent, then Ωq(b) �= Ωp(b) for q �= p.
Therefore, under deep fading condition in some antennas,
the data estimation corresponding to different antennas may
result different. Thus, the LLFs corresponding to different
antennas combined according to (9) may not result in the best
performance in terms of bit error rate (BER) minimization.

The second heuristic strategy based on weighting multi-
fitness functions can be established according to:

f(bi) = [Ω1(bi), . . . , ΩQ(bi), Ω(bi)]= [f1(bi), . . . , fQ+1(bi)]
(11)

where (Q+1) LLFs objective functions are separately applied
to the ith K−bits particle-candidate bi; the first Q fitness
values are the LLFs related to the Q receive antennas, given
by fq(bi) =

∑M−1
m=0 Ωq,m(bi), and the (Q+1)th fitness value

is the LC Q-LLFs, (9), i.e., fQ+1(bi) = Ω(bi). Indeed, due to
the independent fading of different receive antennas, in most
cases, it’s impossible to find a K-bits particle that results the
best optimal for Ωq(b), ∀q. Thus, the 2nd strategy consists to
evaluate the K-bits particles for the next heuristic generation
over Q+1 objective function, according to the rules described
in Section II-B.

II. PSO MUD ALGORITHMS FOR SIMO MC-CDMA

In the LC-LLFs strategy, the particle(s) selection for evolv-
ing is based on the the highest fitness values in (10), and deci-
sions is based on a single entity by combining the subcarriers
and antenna informations (9). On the other hand, in the WO-
LLFs particle-selection strategy the LLF values information
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from Q receive antennas are used independently as well as
in a combined way [last one LLF in (11)], in order to decide
which K-particle will be selected for evolving.

A. LC-LLFs Selection PSO SIMO MC-CDMA

The ith PSO particle’ position at instant t is represented by
the K × 1 vector:

bi[t] = [bi1[t] bi2[t] . . . biK [t]]� (12)

The interaction among particles is inserted in the calculation
of particles’ velocity. For the LC-LLF selection strategy, the
ith particle’s velocity, vi[t], is given by:

vi[t + 1] = ω · vi[t] + φ1 · Ui1 [t](b
best
i [t] − bi[t]) +

+φ2 · Ui2 [t](b
best
g [t] − bi[t]) (13)

where ω is the weight of the previous velocity in the present
speed calculation; Ui1 [t] and Ui2 [t] are diagonal matrices with
dimension K, and elements are r.v. with uniform distribution
U ∈ [0, 1], generated for the ith particle at instant t; bbest

g [t] and
bbest

i [t] are the best global position and the best local positions
found until the tth iteration, respectively; φ1 and φ2 are
weight factors regarding the best particles and the best global
positions’ influences in the velocity update, respectively.

Note that the adoption of the conventional PSO implies in
the selection of only one bbest

i [t] for each particle and only
one bbest

g [t] for the entire population, obtained considering the
linear combination signals over Q antennas.

In order to obtain fast convergence without losing a certain
exploration and exploitation capabilities, φ2 can be increased,
being chosen from the range [3]: φ2 ∈ [2; 10] (while φ1 = 2),
witch results in an intensification search for the best global
position.

For MuD optimization, each element bik[t] in (13) just
assumes the “0” or “1” values. This implies in a discrete mode
for the position choice. That is carried out inserting in the
algorithm a command of choice, dependent of the velocity.
However, the velocity needs to be adjusted in a probabilistic
mode. Several functions possess this characteristic, among
those the sigmoid function: S(vik[t]) = {1+e−vik[t]}−1 where
vik[t] is the kth element of the ith particle’s velocity. This
function is limited in the interval [0, 1]. The selection of the
future particle position is obtained through the statement:

bik[t + 1] = 1, ifuik[t] < S(vik[t]); bik[t + 1] = 0, otherwise
(14)

where uik[t] is a r.v. with uniform distribution U ∈ [0, 1].
In order to obtain larger diversification for the search

universe, a factor (Vmax) is added to PSO model, which will be
responsible for limiting the velocity in the range [±Vmax]. The
insertion of this factor in the velocity calculation, makes pos-
sible the algorithm to escape from eventual local maximum.
The bit chance is more probable every time that the particle
velocity crosses the limits established by [±Vmax], Table I.

After the conventional PSO’s search finishes (G iterations),
the estimation vector is proceed: b̂ = bbest

g [G], which is
associated with the particle’s position that maximizes (10).

B. WO-LLF Selection PSO SIMO MC-CDMA

In each iteration the new particle’ velocity is calculated
weighting the contribution of the particle position associated
to each receive antenna based on multi-objective function (11):

vi[t + 1] = ω · vi[t] +
Q+1∑
q=1

[
φq

1 · Uq
i1

[t]
(
bbest,q

i [t] − bi[t]
)

+ φq
2 · Uq

i2
[t]
(
bbest,q

g [t] − bi[t]
)]

(15)

where all parameters are defined as explained previously,
excepting φq

p and Uq
ip[t], p = 1, 2 are defined for each q

antenna and the positive acceleration coefficients satisfying∑Q+1
q=1 φq

1 + φq
2 = C, a real constant number. In general,

this constant is assumed equal 4 [12], but increasing φq
2 the

convergence is faster [3], due to the intensification of the best
global position search.

TABLE I
MINIMUM BIT CHANCE PROBABILITY AS A FUNCTION OF Vmax .

Vmax 1 2 3 4 5
1 − S(Vmax) 0.2690 0.1192 0.0474 0.0180 0.0067

Note that in (15), the (Q + 1)th bbest,q
i [t] and (Q + 1)th

bbest,q
g [t] positions allow the exploration capability of the

woPSO SIMO, while the others bbest,q
i [t] and bbest,q

g [t] po-
sitions bring additional exploitation capability. In order to
balance the exploration and exploitation capabilities, we set:
φQ+1

1 = φQ+1
2 = 1

2 (exploration), and φq
1 = φq

2 = 1
2Q , 1 ≥

q ≥ Q (exploitation).
The final estimation vector for the woPSO is determined

by the vector b̂ = bbest,Q+1
g [G], which is associated with the

particle’s position that maximizing Ω(b). For lack of space,
detailed steps and explanations for the PSO and woPSO SIMO
MC-CDMA algorithms are given in [13].

III. NUMERICAL RESULTS AND COMPARISONS

The main system and channel parameters used in Monte-
Carlo simulations are summarized in Table II. It was adopted
binary random generated sequences of length 32 (PN32) or
Walsh-Hadamard sequences (WH32). In some performance
plots its was included the single-user bound BER performance
for SIMO synchronous MC-CDMA (SuB). In all simulated
systems, the standard processing gain was N = 8, but the
MC-CDMA equivalent processing gain is NM = 32, i.e., the
adopted number of subcarrier is M = 4.

For simplicity, in this section we have assumed perfect CSI
estimates, except for the Fig. 2, where errors in the chan-
nels estimates were modeled through the continuous uniform
distributions U [1 ± ε] centralized on the true values of the
coefficients, resulting:

β̂q,k,m = U [1 ± εβ ] × βq,k,m; ϕ̂q,k,m = U [1 ± εϕ] × ϕq,k,m,
(16)

where εβ and εϕ are the maximum module and phase normal-
ized errors for the channel coefficients, respectively.
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A. Convergence and BER Performance

Fig. 1 and 2 show the PSO and woPSO SIMO MC-CDMA
convergence for high loading system L = K

NM = 1, consider-
ing CSI perfectly estimated and with errors modeled by (16),
respectively; in Fig. 2 it was used WH32 which propitiates
smaller MAI than PN32. The conventional detector is identified
by CD. Under perfect CSI knowledge, both PSO algorithms
reach the same BER performance after convergence, for L = 1
and other lower system loading conditions (not shown here).
The product PG = 800 is enough to guarantee convergence
under high system loading, CSI errors, Eb/N0 ≤ 12 dB and
Q ≤ 5 Rx antennas. However, the woPSO taking advantage
of a larger diversity strategy through Q + 1 fitness function
evaluations in (11), reaches convergence somewhat faster than
the conventional PSO. Under about 20% CSI error estimates
even with high system loading, Fig. 2.c shows that for both
PSO and woPSO the BER performance degradation (regard
to near-perfect channel estimates, Fig. 2.a) is less than a half
decade for Q ≤ 5 and medium SNR scenario. Besides, woPSO
shows an increasing speed convergence advantage over PSO
as long as the number of Rx antennas increase.

TABLE II
SYSTEM, ALGORITHM AND CHANNEL PARAMETERS.

Parameter Adopted Values
SIMO MC-CDMA System

# Rx antennas Q = 1 to 5
Spreading sequences PN32 or WH32

Processing gain N = 8
Subcarriers M = 4
Bit period, Tb 300 μs
# mobile users K = 5; 10; 15; 20; 25; 32
Received SNR Eb/N0 ∈ [0; 18] dB
Near-far ratio NFR = 0 dB

PSO Algorithms Parameters
Swarm pop. size P = 10; 20; 28; 30 individuals
# iterations G(K, Q) ∈ [10; 80]
Veloc. bound factor Vmax = 4
Veloc. weight factor ω = 1
Weight particle factor φ1 = 2 (local); φ2 = 10 (global)

Rayleigh Channel
Max. Doppler freq. fDpl = 100 & 200 Hz
Per subcarrier flat-frequency
Channel state info. perfectly known at Rx and with errors
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Fig. 1. PSO and woPSO convergence performance for high system loading
(K = 32) and perfect CSI estimates. Eb/N0 = 12dB and P = 10.

Fig. 3 shows the same BER ×Eb/N0 performance after

convergence reached by PSO and woPSO MuD, denoted in
legend by Heur-MuD, considering a system with K = 20 and
Q = 1 to 5; a similar convergence behavior observed in the
systems of Fig. 1 and 2 was obtained here. The product Pg
(where g : # iterations needs for convergence) decreases when
the SNR increases and/or K decreases. Indeed, at Q = 3,
Pg ≈ 680 (Fig. 1) against ≈ 30 × 13 = 390 (Fig. 3).

Fig. 4 shows the behavior of the two Heur-MuD as a func-
tion of simultaneous users sharing the system, K ∈ [5, 30].
In spite of the increasing loading provokes a performance
degradation, the BER is really superior to CD, including high
system loading; this performance improvement grows as Q
and/or SNR increases.
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Fig. 2. Heur-MuD convergence under K = 32 users and channel error
estimates: a) εβ,ϕ = 5%; b) εβ,ϕ = 15%; c) εβ,ϕ = 20%; d) εβ,ϕ = 50%.
Q = 1, ..., 5, Eb/N0 = 8dB, P = 28, WH32 and fDpl = 200Hz.
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Fig. 3. BER performance for PSO and woPSO SIMO MC-CDMA. Q = 1
to 5 receive antennas, PN32, K = 20 users, and P = 30.

B. Computational Complexity
In spite of the two heuristic SIMO MC-CDMA multiuser

detectors reach a similar performance, the number of opera-
tions can differ somewhat, depending on the degree of antenna
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diversity, the system and channel operation conditions, and if
the convergence was reached or not. In order to accomplish
a good efficiency measure for the Heur-MuD, it is taken into
account the number of floating point operations needed for
each one achieve the convergence. For sake of simplification,
the analysis taken here considers that multiplication, transpo-
sition, comparison and random number generation operations
all have the same computational cost. Thus, the complexity
is expressed as a function of the number of users (K),
receivers (Q), subcarriers (M ), iterations for convergence (g)
and population size (P).

5 10 15 20 25 30
10
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10
−4

10
−3

10
−2
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A

vg

 

 

CD
Heur
SuB
E

b
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0
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E
b
/N

0
 = 6dB

E
b
/N

0
 = 9dB

Fig. 4. BER performance for conventional PSO and woPSO SIMO MC-
CDMA as a function of loading system. Q = 2 receive antennas and P = 20

The cost function calculation (7) is the most significant fac-
tor in determining the MuD complexity. The terms Ŵ∗

q,mzq,m

and Ŵq,mRq,mŴ∗
q,m are evaluated outside the iterations loop

and adopted constant during the detector search. It is accom-
plished 4K3 + K2 operations in these two terms, being this
calculation evaluated QM times (for each subcarrier and each
antenna). Inside the iterations loop, the number of operations
needed for each candidate-vector evaluation through cost func-
tion becomes QM(K2 + 2K).

For the PSO-MuD, it is accomplished P cost function
evaluations in each iteration, being also necessary 3gPK +
(P − 1)K random number generations, g (3PK + 2P + 1)
comparisons and g (3PK + 1) multiplications. While for the
woPSO-MuD, the additional steps in relation to PSO implies
in a higher quantity of multiplications and random number
generations in the velocity calculation. The total number of
operations C is summarized in Table III.

TABLE III
COMPUTATIONAL COMPLEXITY C FOR THE HEUR-MUDS.

MUD Operations

OMUD 2KQM
(
K2 + 2K

)
+ QM(4K3 + K2)

PSO g[QMP(K2 + 2K) + 9PK + 2K + 2]
QM(4K3 + K2) + (P − 1)K

woPSO g[QMP(K2 + 2K) + P(4QK + 9K + 2Q + 2) + Q + 2]
QM(4K3 + K2) + (P − 1)K

Furthermore, Table IV shows the number of operations
needed for the three algorithms reach the convergence under
perfect CSI estimates conditions, Fig. 1, and with channel
errors of εβ,ϕ = 15%, Fig. 2.b. The complexity ratio CR =

CwoPSO/CPSO shows that the woPSO complexity gain grows
when we have high antenna diversity, even under error channel
estimates, Fig. 2.b.

TABLE IV
NUMBER OF OPERATIONS FOR THE CONVERGENCE, C, AND CR.

SIMO, K = 32 Fig.1 Fig. 2.b
MC-CDMA MuD Q = 1 Q = 2 Q = 3 Q = 4 Q = 5

OMUD [×1013] 1.87 3.74 5.61 7.48 9.35
PSO [×106] 2.76 6.46 10.7 14.5 16.2
woPSO [×106] 2.82 6.42 9.83 13.6 12.2

Complexity ratio, CR: 1.02 0.99 0.92 0.94 0.75

IV. CONCLUSIONS

Simulation results show that the proposed antenna-diversity-
aided woPSO SIMO MC-CDMA detectors have capabilities
to scape from local solutions, thanks to a balance between
exploration and exploitation and presents somewhat advantage
of convergence speed in relation to the conventional PSO,
evidencing the potentiality of this technique in multiple-access
wireless applications, specially in high system loading and
increasing antenna diversity gain conditions.
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