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Universitat Politècnica de Catalunya
08034 Barcelona, Spain

ferranc@tsc.upc.edu

Abstract—Since the maximum likelihood (ML) decoding re-
sults too complex when the modulation order and the number
of receive antennas increase, an efficient reduced complexity
ML-based decoding scheme applied to a multiple-input-multiple-
output (MIMO) antenna systems with quasi-orthogonal space-
time block code (QO-STBC) is proposed, and named reduced
cluster search ML decoding (RCS-ML). Its performance and
complexity aspects are compared to the conventional ML de-
coding approach. High-order modulation indexes and short low
density parity check codes (LDPC) are considered. Numerical
results have indicated no degradation in the performance and
an increasing reduction in the complexity of RCS-ML decoding
with respect to the conventional ML when the modulation order
increases.

Index Terms—MIMO system, QO-STBC, ML decoding, cluster
search, LDPC.

I. INTRODUCTION

The last five years have been dominated by high demands
on video and audio data with reliability real-time applications.
Multiple-input-multiple-output (MIMO) schemes, associated
with space-time block codes (STBC), for instance, Alamouti
rate 1 STBC [1] (R1 STBC), represent a suitable solution and
are frequently incorporated by many standards like WiMAX.
Furthermore, higher throughput with acceptable performance
× complexity trade-off can be achieved through the inclusion
of a bit-mapped coded modulation (BMCM) structure. BMCM
in conjunction with parallel short low density parity check
codes (LDPC), quasi-orthogonal STBC (QO-STBC) [2], and
iterative soft parallel interference cancellation (PIC) detector,
is discussed in [3]. The aim is to achieve low complexity
schemes, high throughput with good performance and to
generate low processing delay in the overall processing of
detection and decoding. Good STBC designs must take into
account jointly performance criteria coding gain, diversity
gain, multiplexing gain, and the decoder complexity.

In this scenario, the so called fast-decodable SBTC MIMO
schemes have been considered recently with great interest. Pre-
vious works on fast-decodable low-complexity SBTC MIMO
systems includes [4]–[9]. In [7], a family of full-rate, full-
diversity 2× 2 codes, whose detection complexity grows only
quadratically with the size of the signal constellation have been
proposed. Thus, the optimum decoder complexity reduced by

a factor of 256 for the 16-QAM signal constellation (and by
4, 096 for the 64-QAM modulation). A different approach to
achieve low-complexity near-maximum likelihood QO-STBC
decoding based on iterative interference cancellation (IICIS)
was proposed in [6].

In order to fulfill the requirements of system capacity, low
power consumption and low terminal size, development of
LDPC decoders1 has been focused by many recent papers.
However, the LDPC were introduced since 1962 by Gallager
[10], showing the possibility of achieving capacity by coding
a message using long codes, resulting in a good trade-off
between complexity and performance. At that time there was
no way to implement LDPC codes and they remained forgotten
until 1999, when Mackay brought them back to scene [11].

This paper proposes a low-complexity and efficient decod-
ing algorithm for QO-STBCs schemes, based on reduced ML
cluster search. The RCS-ML decoder performs similarly to
the conventional ML in terms of bit error rate (BER), but
with lower complexity that is more evident for higher order
modulations. Performance results were obtained with and
without LDPC codes. The remaining sections are organized
as follows: Section II describes the QO-STBC MIMO system
with short parallel LDPC inner codes. The proposed reduced
cluster search ML decoder in the context of QO-STBC codes
is discussed in Section III. Numerical results and complexity
analysis for the proposed QO-STBC decoder with an arbitrary
number of receive antennas are analysed in Section IV. Main
conclusions are presented in Section VI.

II. QO-STBC SYSTEM MODEL

A MIMO system with nT = 4 transmit antennas and nR ≥
1 receive antennas is considered, with 4 symbols transmitted
simultaneously. Additionally, nT nR independent flat fading
subchannels, M -QAM modulation, Rate 1 QO-STBC scheme
of [2], and short LDPC (optionally) are employed, Fig. 1.

A. LDPC Encoding

In order to achieve high throughput (herein, up to 4 bits per
symbol period was considered, depending on the modulation

1In many of them, complexity scales linearly with code length.
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Figure 1. QO-STBC with short LDPC MIMO system and reduced cluster
search ML decoding approach (RCS-ML). nT = 4 and nR ≥ 1 antennas.

index and coding rate), associated to suitable performance and
simplicity of decoding at the receiver, the bit-mapped coded
modulation (BMCM) scheme is used, jointly with m short
parallel LDPC coding [12]. The adopted modulation is high-
order squared-QAM modulation and m = 2, 4, 6 or 8.

Initially, as shown in Fig. 1, the input data stream is demul-
tiplexed into m data substreams {Bi}m

i=1 with block lengths
Ki. To keep the decoding complexity low, each substream
Bi is encoded using a LDPC code, obtaining m codewords
Ci, i.e., {Ci}m

i=1, of length N ; the pth encoded bit in Ci is
denoted ci

p. Observe that there is an inherent flexibility in the
BMCM structure: substreams can be encoded using LDPC
codes with different values of Ki, as long as all m codes
produce codewords of the same length N . Hence, the overall
rate of the m LDPC codes is given by

Rldpc =
∑m

i Ki

mN
. (1)

Assuming identical block lengths, Ki = K, the overall rate
of the m LDPC(N,K) codes is simplified to: Rldpc = K

N .
All the m LDPC encoding processes are simply done in

parallel. The ith LDPC encoding process is given by Ci =
BiGi, where Gi is the Ki × N generator matrix of the ith
LDPC code component.

B. R1 QO-STBC

The pth bits from all m LDPC codewords simultaneously
select the pth 2m-ary constellation point si ∈ S, where S is a
set of all valid symbols belonging to the adopted constellation
at the transmitter.

The topology of Fig. 1 employs rate 1 quasi-orthogonal
space-time block code (R1 QO-STBC) proposed in [13],
described by the code matrix

A =

⎛⎜⎜⎝
s1 s2 s3 s4

−s∗2 s∗1 −s∗4 s∗3
−s∗3 −s∗4 s∗1 s∗2

s4 −s3 −s2 s1

⎞⎟⎟⎠ . (2)

Four new constellation points (s1, s2, s3, s4) are transmitted
using nT = 4 and L = 4 time slots, such that

Rstbc =
#symbols transmitted
#time slots used, L

= 1 (Rate 1), (3)

and the overall throughput for a system using a M -ary
constellation is defined as

Θ = RstbcRldpc log2 M [bits per symbol period]. (4)

C. Receiver

Let x(i) be the ith modulated symbol with duration Ts,
and sj(t) the transmitted symbol by the jth transmit antenna
at time t. Each transmitted symbol goes through the wireless
channel to arrive at each of nR receive antennas. Denoting the
path gain from transmit antenna j to receive antenna k at each
symbol interval by hkj(t), the baseband discrete-time signal
received at the kth antenna is given by

rk(t) =
nT∑
j=1

hkj(t)sj(t) + nk(t), t = 1, ..., L, (5)

where hkj(t),∀k ∈ {1, 2, . . . , nR},∀j ∈ {1, 2, . . . , nT } are
assumed to be i.i.d. complex Gaussian random variables
(fading amplitudes are Rayleigh distributed) with zero mean
and E[(hI

kj)
2] = E[(hQ

kj)
2] = 1

2 , where hI
kj and hQ

kj are
the real and imaginary parts of hkj(t). The complex additive
white Gaussian noise (AWGN) at the kth receive antenna,
{nk}, k = 1, . . . , nR, has zero mean and variance

E[n2
k] = N0 =

nT Es

γ
=

nT Es

m10
SNR
10 RstbcRldpc

, (6)

where Es is the average energy of the transmitted symbols,
given a constellation format, SNR is the signal-to-noise ratio
per receive antenna in decibels (dB), and γ is the average SNR
per receive antenna [2].

The received signals from all receive antennas can be
rearranged in a vectorial form, such that

r(t) = H(t)s(t) + n(t), t = 1, ..., L, (7)

where, in each time slot t = 1, ..., 4 of the adopted QO-STBC
scheme, r(t) = [r1(t) r2(t) . . . rnR

(t)]T is the received signal
vector, s(t) = [s1(t) s2(t) . . . snT

(t)]T is the transmitted sym-
bol vector, H(t) is the nR × nT channel matrix with channel
coefficients {hkj}nT ,nR

k,j=1 between the jth transmitted antenna
and kth receive antenna, and n(t) = [n1(t)n2(t) . . . nnR

(t)]T

is the sampled noise vector. The channel matrix coefficients are
assumed to be perfectly known at the receiver, but completely
unknown at the transmitter.

D. ML Decoding

The maximum likelihood decision metric is obtained by
minimizing the two sum terms [13]

(ŝ1, ŝ2, ŝ3, ŝ4) = (8)

arg min
s1,s4∈S

f1,4(s1, s4), arg min
s2,s3∈S

f2,3(s2, s3),

514949494949494949
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f1,4(s1, s4) =

nR∑
k=1

⎡⎣⎛⎝nT =4∑
j=1

|hjk|2
⎞⎠ (|s1|2 + |s4|2

)
+ 2�{(−h1kr∗k(1) − h∗

2krk(2) − h∗
3krk(3) − h4kr∗k(4))s1

+ (−h4kr∗k(1) + h∗
3krk(2) + h∗

2krk(3) − h1kr∗k(4)) s4 + (h1kh∗
4k − h∗

2kh3k − h2kh∗
3k + h∗

1kh4k)s1s∗4}] (9)

f2,3(s2, s3) =

nR∑
k=1

⎡⎣⎛⎝nT =4∑
j=1

|hjk|2
⎞⎠ (|s2|2 + |s3|2

)
+ 2�{(−h2kr∗k(1) + h∗

1krk(2) − h∗
4krk(3) + h3kr∗k(4))s2

+ (−h3kr∗k(1) − h∗
4krk(2) + h∗

1krk(3) − h2kr∗k(4))s3 + (h2kh∗
3k − h∗

1kh4k − h1kh∗
4k + h∗

2kh3k)s2s∗3}] (10)

where the cost function to be independently minimized are
given by (9) and (10), at the top of the page.

So, for MIMO system with small constellation size, it is
computationally viable to evaluate, independently, all possible
values for the pairs (s1, s4) and (s2, s3), using the two cost
functions (9) and (10), obtaining directly the ML estimates.
However, once the computation complexity increases exponen-
tially with m, it is computationally inefficient to evaluate all
pair combinations when the dimension of the constellation is
high, for instance M ≥ 16. Section III describes an alternative
low complexity procedure to compute (9) and (10), suitable
for high squared-order modulation MIMO QO-STBC with
nT = 4 and nR ≥ 1.

E. Bit Metric and Belief Propagation Decoders

The last block in the decoding process is performed by
low complexity m short parallel LDPC decoders. Herein,
the LDPC decoders use belief propagation (BP) decoding
algorithm, with a maximum number of iterations ItBP .

As BP decoders require soft symbol estimates L0
m,i,L1

m,i,
and admitting identical noise variance in all nT receive anten-
nas E[n2

k] = σ2, k = 1, . . . , nT , the bit metrics are calculated
as:

L0
m,i =

1
1 + e−λm

i
, m = 1, . . . , m, (11)

with L1
m,i = 1 − L0

m,i, and

λm
i =

1
2σ2

(
min

s∈S
m,(0)
i

‖ŝi − κs‖2 − min
p∈S

m,(1)
i

‖ŝi − κp‖2

)
,

(12)
where κ takes into account path loss and shadowing effects,
and the channel coefficients associated to si in (9) or (10) as
well; S

m,(0)
i is the set of all constellation points with a zero

at i-th position and S
m,(1)
i is the set of all constellation points

with one at i-th position. In fact, the soft estimates symbols
can be interpreted as

ŝi = κsi + ηi, (13)

where ηi is the sum of receiver noise plus interference terms
in (9) or (10).

The soft symbol estimates L0
m,i and L1

m,i are used by BP
decoders to compute the log-likelihood ratios (LLRs) passed
from variable nodes to check nodes. LLRs are used instead
of probabilities because of their higher numerical stability
[14]. Hence, BP decoders [12] in Fig. 1 consist of an iterative

algorithm that passes messages (LLR values) between variable
nodes and check nodes. Computation of (12) is performed
recursively until the BP iteration process finishes.

If the matrix of parity checks is satisfied or the algorithm
reaches the maximum number of iterations, a hard decision
is performed, where positive values of LLRs are considered
bit one and negative values are bit zero. After all, each LDPC
decoder outputs B̂m.

III. REDUCED CLUSTER SEARCH ML DECODING

(RCS-ML)

The idea of cluster search came up from observing the cost
function behavior, Eqs. (9) and (10), for all possible symbol
combinations. As can be seen from the illustrative example in
Fig. 2, there is a pattern that repeats itself. This figure was
generated considering 16-QAM modulation, resulting in 16
4 × 4 clusters.
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Figure 2. Typical f14 values, considering (s1, s4) mapping symbol
pairs in a 16-QAM modulation as described in Fig. 4.a) and 4.b);
circles indicate search values inside the first cluster, and the filled
circle is the local minimum. The positions of local minima within
the other clusters have the same pattern, regarding the first cluster, as
represented by square markers. The same behavior is observed with
f23 values, considering (s2, s3).

This pattern can be described intuitively as follows: given
a QAM constellation and a received symbol corrupted by
noise, firstly, from constellation mapping in Fig. 3, it could
be considered the symbols belonging to one column (or row);

525050505050505050
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these columns (rows) identifying cluster regions. For 16-QAM,
four symbols of first column (i.e., first cluster, constituted by
symbols index 1, 2, 3, and 4) are considered. In terms of
Euclidean distance from received symbol to the constellation
column (row) symbols, two cases can be distinguished:

a) received symbol is closer to the symbol located at the
extremities of the selected constellation column (row);
in the Fig. 3, this situation is identified by hypothetical
received symbols � and ♦, located on cluster-regions I
and III, respectively.

b) received symbol is located closer to one or two (if half-
way situation) internal symbols of the same column
(row) in the constellation; in this example, the received
symbol ∗.

In case of hypothesis a) occurs, and if the 1, 2, 3 and 4-th
symbol constellation distances computation order is assumed,
a monotonic decreasing (received symbols into Region I) or
increasing (Region III) pattern for cost functions f1,4 or f2,3

values is observed. On the other hand, in case of hypothesis b)
take place, a parabolic pattern with upwards concavity appears
on the f1,4 or f2,3 evaluations. Besides, this behavior repeats
if we consider other columns (or clusters) of the constellation,
as can be inferred from Fig. 2. This figure explains the case of
cost function be employed to evaluate the distance of a pair
of symbols, s1 and s4 (or alternatively s2 and s3), instead
of only one symbol evaluation in eq. (9), say s1, holding s4

fixed. Hence, the monotonic (de)creasing or parabolic patterns
become 3D surfaces.

symbol mapping index

I)

III)

selected column

II)

1                 5                  9                  13

2                 6                 10                 14

3                 7                 11                 15

4                 8                 12                 16

quadrature

si

si�

♦

*
in-fase

si

Figure 3. 16-QAM Euclidean distance evaluation by clusters. Two situation
can be identified: external and internal received symbol si, i = 1, . . . , 4,
location regards the selected constellation column symbols.

In summary, the basic idea is to perform a ML search
only inside one cluster (for instance, in Figure 2 the first
cluster was chosen) in order to find a local minimum, and to
generate a sub-set of symbol pairs from the other cluster (other
15 clusters in the 16-QAM example) with the same relative
position regarding the local minimum primarily found in the
first cluster, resulting in a set of local minima (square markers
in Figure 2). The pattern observed in Figure 2 repeats itself

at each
√

2m symbols for symbol pairs (s1, s4) (alternatively
(s2, s3)), and all pairs inside this pattern constitute a cluster.
Finally, the ML search is performed over the generated set of
local minima in order to find the global minimum of (9) (or
alternatively (10)). Figure 2 shows f1,4 values, obtained via
cluster search procedure, with global minimum occurrence at
(s1 = 2, s4 = 16) indexes, square bold marker.

In order to implement the RCS-ML QO-STBC decoding,
three steps are carried out considering each of 2m clusters as
indicated in Algorithm 1.

Algorithm 1 RCS-ML QO-STBC
Input: r, H Output: ŝ1, ŝ2, ŝ3, ŝ4

step 1: Perform a ML search decoding inside of the first
cluster over (s1, s4) and (s2, s3) symbol pairs,
Eqs. (9) and (10);

Symbols of M -QAM constellation are hypotheti-
cally mapping as s1, s2, s3, s4 ∈ {1, 2, · · · ,

√
2m}.

step 2: Record the two pairs (š1, š4) and (š2, š3) that
locally minimize Eqs. (9) and (10), respectively.

step 3: Generate sets

Sclst
i = {ši + k

√
2m | k = 0, . . . ,

√
2m − 1}, i = 1, . . . , 4;

Perform decoding through all possible cluster
pairs (s1, s4) and (s2, s3), where si ∈ Sclst

i :

(ŝ1, ŝ4) = arg min
s1∈Sclst

1 ;

s4∈Sclst
4

f1,4(s1, s4), and

(ŝ2, ŝ3) = arg min
s2∈Sclst

2 ;

s3∈Sclst
3

f2,3(s2, s3)

In order to illustrate the steps of the Algorithm RCS-ML,
consider the clustered 16-QAM QO-STBC decoding sketched
in Figure 4. Since the clusters pattern is similar for (s1, s4)
and (s2, s3) pairs, only the cluster search for the (s1, s4) pair
is described. Initially (step 1), the first column of symbols
in Figure 4.a is chosen as a cluster to be evaluated; this
set generates all symbol pairs in the white shading cluster
of Figure 4.d, used in computation of f1,4, and is called
Sclst1

i = {1, 2, 3, 4}. The dark (red) block into white shading
cluster of Figure 4.d, (s1 = 2, s4 = 4), indicates the selected
pair indexes that yields the minimum value of f1,4 inside
step 2 (local minimum). The cluster-sets for (s1, s4) symbol
pair, labelled

{
Sclstm

1 , Sclstm
4

}
, m = 1, . . . , m, are obtained

by selecting (š1)-th and (š4)-th row of constellation mapping
in Figure 4.a and 4.b, respectively. The resulting symbol pair
set (s1, s4) calculated inside step 3 is shown in Figure 4.c.
After all, the ML search is performed over all pairs generated
by the symbol set of Figure 4.c, i.e., in this hypothetical
example, Sclst

1 = {2, 6, 10, 14} and Sclst
4 = {4, 8, 12, 16}. The

estimated symbol pair (ŝ1, ŝ4) will be that which produces the
minimum f1,4 value.
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Figure 4. Clusters mapping employed in RCS-ML procedure, considering
16-QAM: hypothetical cluster search for a) symbol s1; b) symbol s4; c)
symbol pair (s1, s4), and d) all clusters mapping for symbol pair (s1, s4).

IV. NUMERICAL RESULTS

The main system and channel parameters used in Monte-
Carlo simulations are summarized in Table I. In all numer-
ical results shown here, QO-STBC and M − QAM mod-
ulation were adopted; in the cases of source coding, short
LDPC(204,102) was adopted. For simplicity, it is assumed
perfect knowledge of channel state information (CSI) at the
receiver side.

In accordance with the most common channel model in the
literature [1], [13], herein a quasi-static time-varying channel
model is adopted: the fading coefficients remain fixed during
each QO-STBC block of L = 4 time slots (the quasi-static
fading condition is satisfied: L · Ts < (Δt)c, the channel
coherence time), and vary independently from one block to
the next.

Fig. 5 describes the performance of ML and RCS-ML
decoding, both in the absence of LDPC coding, for the case
of QO-STBC MIMO system with nT = 4×nR = 1 antennas.
Besides, Fig. 6 indicates the behavior of both decoders for the
case of short LDPC(204,102) QO-STBC MIMO system with
nT = 4 × nR = 1 antennas employing the ML against RCS-
ML decoding. Finally, Fig. 7 compares the performance of
both decoders but considering nR = 4 receive antennas under
the same short LDPC and QO-STBC coding. It is worth noting
that the difference in system performances with RCS-ML and
conventional ML decoding is undistinguished for all SNR and
constellation size conditions. Those results indicate that even
for undetermined system condition (nT > nR) the RCS-ML
algorithm achieves the same BER performances of the ML
with exhaustive search. This is due to the adoption of cluster
search strategy, allowing a reduction in space search by the

Table I
MIMO SYSTEM, RCS-ML DECODING AND CHANNEL PARAMETERS.

Parameter Adopted Values
QO-STBC MIMO System

# Tx antennas nT = 4
# Rx antennas nR = 1 or 4
Modulation format squared M -QAM: M = 4, 16, 64, 256
QO-STBC code Rate 1, Rstbc = 1 [13]
Rx SNR per antenna SNR ∈ [−10; 42] dB
Throughput Θ = 1.0, 2.0, 3.0, or 4.0 [bits/symb. period]

LDPC codes
Number and size m short LDPC [12], [15]
Rate LDPC(204, 102), ⇒ Rldpc = 1

2
Belief Prop. Decoder ItBP ≤ 20 iterations

Rayleigh Channel
sub-channel fading flat-Rayleigh
channel type quasi-static (slow), L = 4
Channel state info. perfectly known at Rx

RCS-ML Decoding
cluster size

√
2m ×√

2m

use of clustering approach, but yet performing the ML testing
overall clustering pair-candidates.

0 5 10 15 20 25 30 35 40
10
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B
E

R

n
T
=4 × n

R
=1;  R1;  Unocoded

 

 

4x1−4QAM ML
4x1−4QAM RCS
4x1−16QAM ML
4x1−16QAM RCS
4x1−64QAM ML
4x1−64QAM RCS
4x1−256QAM ML
4x1−256QAM RCS

Figure 5. ML against RCS-ML decoding performance comparison for the
QO-STBC MIMO system with different QAM constellation size, nT = 4 ×
nR = 1 antennas.

V. COMPLEXITY ANALYSIS FOR THE RCS-ML DECODING

In order to evaluate the complexity of the proposed algo-
rithm, real multiplications and sums are considered. Analyzing
(9) and (10) and considering each complex multiplication as
four real multiplications and each complex sum as two real
sums, there are 90 real multiplications and 27 real sums for
each f14 or f23 evaluation. As the proposed algorithm needs
only 2m ML evaluation for step 1 and 2m for step 2, so, the
overall evaluation number is only 2m+1. Table II compares
the complexity of RCS-ML QO-STBC and ML QO-STBC
decoding schemes. Those complexities can be compared using
the perceptual complexity reduction factor, expressed by

CR =
CRCS

CML
× 100 = 21−m × 100 [%]. (14)

where the second equally holds for all analyzed constellations
and number of received antennas.

From Table II one can conclude an increasing reduction in
the computational complexity index CR when the modulation
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Figure 6. ML against RCS-ML decoding performance comparison for the
QO-STBC MIMO system with short LDPC(204,102) and nT = 4×nR = 1
antennas.
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Figure 7. ML against RCS-ML decoding performance comparison for the
QO-STBC MIMO system with short LDPC(204,102) and nT = 4×nR = 4
antennas.

Table II
NUMBER OF REAL MULTIPLICATIONS/SUMS PER RECEIVE ANTENNA PER

SYMBOL PAIR NECESSARY FOR QO-STBC DECODING, nT = 4×nR = 1.

Decoder 4-QAM 16-QAM 64-QAM 256-QAM
RCS-ML 720/216 2880/864 11520/3456 46080/13824
ML 1440/432 23040/6912 368640/110592 5898240/1769472
CRRCS 50% 12.5% 3.125% 0.781%

order increases, indicating that the RCS-ML becomes an
attractive option when M > 16.

VI. CONCLUSIONS

In this work, a reduced complexity ML decoding scheme
based on cluster search, suitable for QO-STBC coded MIMO
systems with higher-order modulation indexes, has been pro-
posed.

Numerical results for the RCS-ML have indicated no degra-

dation in the performance in all analyzed cases. Thanks to re-
duced cluster search procedure, the RCS-ML achieves the ML
performance with an increasing reduction in the computational
complexity when the modulation order increases, being 12.5%
of ML decoding complexity for 16-QAM, and < 1% for 256-
QAM.
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