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Abstract—In order to increase spectrum utilization efficiency,
CRs (Cognitive Radios) have been introduced to reuse white
spaces left unused by legacy services under the strict constraint
of not interfering them. In this context, this paper proposes
to exploit a statistical characterisation of Primary User (PU)
activity to be retained in Radio Environment Maps (REMs) for
spectrum selection purposes. The objective is to match multi-
service secondary traffic to heterogeneous primary spectrum
opportunities minimizing the SpHO (Spectrum handOver) rate.
Specifically focusing on dependence structures potentially ex-
hibited by primary ON/OFF periods, two spectrum selection
criteria have been first proposed to benchmark the utility of the
embedded statistical patterns in the REM. Results have shown
that the one or the other criterion can introduce significant gains
with respect to a random selection depending on the secondary
configuration and characteristics of PUs. Therefore, a novel
pro-active spectrum selection strategy combining the proposed
criteria has been developed and proven to achieve in most of the
cases the best performance for a given secondary service mix and
the dependence level between primary ON/OFF periods.

I. CONTEXT/MOTIVATION

The CR (Cognitive Radio) paradigm has emerged as the
solution to the problem of spectrum scarcity for wireless
applications [1, 2]. It is the key technology that enables
flexible, efficient and reliable spectrum use by adapting the
radio operating characteristics to the real-time conditions of
the environment. In this context, there has been a recent trend
towards improving the awareness level of CR systems by
strengthening their observation sub-systems. Specifically, there
has been an interest in recording, storing and accessing new
relevant information about the external environment. For in-
stance, Radio Environment Maps (REMs) have been proposed
as new information sources that can assist cognitive operation
by considering multi-domain environmental information [3–
5]. REM is envisioned as an integrated space-time-frequency
database consisting of multi-domain information, such as
geographical features, available services, spectral regulations,
locations of radios, relevant policies, and experiences.

In a recent measurement campaign [6], it has been observed
that primary channel vacancy durations are not independently
distributed over time, and that significant temporal, spectral
and spatial correlations exist between channels of the same
service. Focusing on the time perspective, other empirical
measurements [7] have shown that, in addition to the expected
daily/weekly periodicity of activity (ON) and inactivity (OFF)
processes of the Primary Users (PUs), some correlation is
observed between consecutive ON/OFF periods depending on
the band of interest and the considered traffic conditions.
In this respect, we have developed in [8] a framework that
introduces a set of statistics that capture temporal dependency
structures of ON/OFF periods, which can be stored in a REM.

The reader is referred to [8] for considerations about how
spectrum sensing measurements can be processed to obtain
these statistics, the necessary time to ensure the statistical
convergence of these metrics, etc.

The increase in the cognitive awareness level retained in
the REM, particularly with respect to the temporal behavior
of PUs, can make the cognitive operation much more efficient.
In this respect, spectrum management tasks such as spectrum
decision and spectrum mobility [9] can substantially benefit
from the knowledge stored in the REM. Even though many
recent proposals have dealt with diverse specific spectrum
selection-related issues [10–16], to the best of our knowledge,
none of them has attempted to exploit statistical dependence
structures between primary ON/OFF periods.

In this context, the main objective of this paper is to
attain a focused exploitation of primary-user statistical pat-
terns capturing intra-channel dependence structures potentially
exhibited by primary systems for optimising the specific task
of spectrum selection. The identified primary behavior would
make it possible to perform a pro-active spectrum selection
strategy matching, when suitable, the available primary OFF
periods to secondary traffic features. In this way, the usage
of spectral resources could be improved while trying to avoid
as much as possible the need for executing SpHOs (Spectrum
Handovers) to vacate a channel when a PU appears. Therefore,
the main contributions and advances with respect to the state-
of-the art associated to this paper are two-fold: (1) To propose
the usage of advanced statistics associated to heterogeneous
primary-users and retaining such characterisations in a REM
and (2) To exploit this knowledge by proposing a novel and
comprehensive spectrum selection strategy able to suitably
match multi-service secondary traffic to the observed spectrum
opportunities and, therefore, benchmarking the utility of the
knowledge retained in the REM.

The remainder of this paper is organized as follows: in
Sec. II the system model is presented. In particular, it is
proposed to characterise PUs through a set of statistical metrics
stored in the REM. Sec. III proposes a set of principles for ex-
ploiting these statistical characterisations for the sake of opti-
mizing spectrum selection. These principles are examined and
assessed in Sec. IV through a set of case studies. Enlightened
by this assessment, Sec. V proposes a more general spectrum
selection strategy for matching multi-service secondary traffic
to heterogeneous primary spectrum opportunities. Conclusions
and possible extensions are addressed in Sec. VI.

II. SYSTEM MODEL

Let consider a secondary access of M heterogeneous service
types to a radio environment where PUs are operating on a set



of channels of equal bandwidth BP denoted as C. For each
channel i∈C, the two discrete random sequences ONi and
OFFi are introduced to respectively denote the sequences of
PU activity and inactivity period lengths. At a given discrete
time index j, ONi(j) and OFFi(j) correspond to the length of
the j−th activity and inactivity period, respectively. The time
series representing primary activity in the different channels
are assumed to be independent.

The generic functional architecture of the proposed frame-
work is depicted in Fig. 1. Based on the observation of
the environment, a statistical characterisation of the ON/OFF
periods of the different channels is obtained and stored in
the REM. This stored information will be used as input
for the spectrum management decision-making process. In
particular, whenever a new secondary service request arrives,
the spectrum selection functionality at the Secondary User
(SU) will pick up a suitable channel for such communication.
Similarly, whenever the SU detects the appearance of a PU,
it must vacate the channel and perform a SpHO to another
channel, if available. This is carried out by the spectrum
mobility functionality.

Generally speaking, PU statistics stored in the REM can be
classified into first-order metrics such as means or conditional
probabilities or higher-order metrics such as variances or cor-
relation functions. As discussed in [8], it is proposed to make
most of statistics characterising primary activity/inactivity
period lengths structured in buckets. A bucket includes the ON
(alternatively OFF) period durations falling in a given interval.
Buckets for the ON periods are numbered as a∈{1..|BONi |}
so that Bai ∈BONi denotes the a−th bucket, BONi the set of
buckets and |.| denotes the cardinality. The same applies to
OFF periods numbered as b∈{1..|BOFFi |}, Bbi∈BOFFi denot-
ing the b−th bucket and BOFFi the set of buckets. Bucket
length is assumed to be a fraction α of the average value of
the corresponding distribution. This means that, considering
for instance OFFi distributions, ∀b∈{1..|BOFFi |−1}, bucket
Bbi is defined as Bbi=[(b−1)αE(OFFi), bαE(OFFi)[, where
E(OFFi) denotes the average value of OFF period. The last
bucket is assumed to be infinite of the form [(|BOFFi | −
1)αE(OFFi),∞[.

A wide range of possible statistics of interest could be
envisaged in the REM. For example, ∀i∈C the following
metrics can be considered:
• Average value of ON and OFF periods, E(ONi),
E(OFFi).

• Variances of ON and OFF periods, V AR(ONi),
V AR(OFFi).

• The empirical pdf (probability density function) of ONi:

pdf iON (Bai ) = Pr [ONi(j)∈Bai ] ,∀a∈{1..|BONi |} (1)

• The empirical pdf of OFFi:

pdf iOFF (Bbi ) = Pr
[
OFFi(j)∈Bbi

]
,∀b∈{1..|BOFFi |}

(2)
• The conditional probability of observing a certain du-

ration of the OFF period given that a certain dura-
tion of the last ON period was observed. Specifically,
CP iOFF,ON (Bbi , B

a
i ) is defined as the conditional prob-

ability of observing OFFi in Bbi∈BOFFi given that the
last outcome of ONi was observed in Bai ∈BONi :

CP iOFF,ON (Bbi , B
a
i )=Pr

[
OFFi(j)∈Bbi /ONi(j)∈Bai

]
(3)

Fig. 1: Architecture of the proposed Primary-User Statistical Pattern Frame-
work for Enhancing Cognitive Operation

• A proposed measure of dependence level between suc-
cessive ON/OFF periods defined as:

DEPi=
1

|BONi |
×∑

Ba
i
∈BON

i

max
Bb

i
∈BOFF

i

(
δa,b×CP iOFF,ON (Bbi , B

a
i )
)
(4)

where ∀a∈{1..|BONi |} and ∀b∈{1..|BOFFi |}, δa,b is a
dependence indicator between Bai and Bbi defined as:

δa,b =

{
1 if CP iOFF,ON (Bbi , B

a
i ) > pdf iOFF (Bbi ),

0 otherwise.
(5)

Notice that only those buckets Bai such that
pdf iON (Bai ) 6=0 are considered in BONi when calculating
DEPi in (4). The value of DEPi will range from 0,
corresponding to the case where ON and OFF periods
are independent, to 1, corresponding to the case in which
the OFF period is totally known from the preceding ON
period.

• The conditional mean of OFFi given the last outcome
of ONi was observed in bucket Bai ∈BONi defined as:

E(OFFi/ONi∈Bai )=∑
Bb

i
∈BOFF

i

B̂bi×CP iOFF,ON (Bbi , B
a
i ) (6)

where B̂bi is the center value of bucket Bbi which is given
by B̂bi=(b−0.5)αE(OFFi).

Depending on primary activity, useful knowledge about PUs
can be inferred thanks to some of the above metrics. For
instance, in case V AR(OFFi)=0 is observed, a deterministic
primary inactivity pattern can be inferred and e.g. E(OFFi)
would provide full estimation of primary OFF periods. Never-
theless, in a more general case of random primary inactivity,
E(OFFi) may not be the best choice for characterising OFF
periods if there are some patterns involving ON/OFF periods
(e.g. dependencies between consecutive ON/OFF periods, be-
tween two successively observed OFF periods, etc). In this
respect, DEPi can be for instance used to evaluate how de-
pendent consecutive ON/OFF periods are. The observation of
a high DEPi value would indicate that E(OFFi/ONi∈Bai )
would provide a much better estimator of actual OFF periods.

III. PRINCIPLES FOR SPECTRUM SELECTION

The basic idea of optimizing spectrum selection is to pick up
the best channel for secondary operation (according to a given



criterion). While this problem accepts some mathematical for-
mulation, the dynamism in the radio environment, the hetero-
geneity in PU types as well as secondary traffic types and the
fact that previous spectrum selection decisions condition future
selections suggest that a heuristic approximation can initially
be suitable in order to gain insight into the problem and devise
the main principles to follow in this decision-making process.
On the other side, one can anticipate that the formulation
of a comprehensive and general spectrum selection strategy
is complex, since there will not be a single criterion that
will result suitable in the wide range of different scenarios
and configurations that may arise in practice. Therefore, the
methodology followed in this paper is a two-step approach:
firstly, several main principles to drive the spectrum selection
will be proposed and assessed in Sec. IV in order to derive
their main dependencies with other system parameters, then,
based on this assessment, a more generic spectrum selection
strategy will be formulated in Sec. V.

As a basic principle, the knowledge retained in the REM
about the PU traffic can be used to estimate the remaining free-
time for each of the sensed-as-free channels. In particular, for
each idle channel i∈C, it is assumed to track the duration
of the last ONi period assumed to fall in bucket Bai as well
as the so-far observed duration of the current OFFi period
(denoted in the following as Idle Ci). The remaining OFF
period (Rem T i) at a given time instant can be estimated
by subtracting the so-far observed availability time (Idle Ci)
from an estimation of the actual OFF period given the last
observed ON period as follows:

Rem T i=E(OFFi/ONi∈Bai )− Idle Ci (7)

It is important to point out that E(OFFi/ONi∈Bai ) is con-
sidered here in order to formulate a more generic case for an
estimator of actual OFF periods. In case no dependency is ob-
served between consecutive ON/OFF periods (i.e. DEPi=0),
the statistic reduces to E(OFFi/ONi∈Bai )=E(OFFi). In
turn, as DEPi increases and ON/OFF become more depen-
dent, E(OFFi/ONi∈Bai ) becomes much more accurate than
E(OFFi).

The introduced estimation of the remaining free-time for
each of the sensed-as-free channels can be next considered
in the spectrum selection decision-making process. One can
expect that this knowledge can be beneficial with respect
to a first reference spectrum selection criterion (RandSS)
where a random selection among the idle channels would be
performed. The RandSS would be a reasonable criterion in case
there would not be a REM supporting the cognitive system and
providing knowledge about PUs.

Apart from the reference random selection (RandSS), two
spectrum selection criteria exploiting differently the estimated
remaining free-time are proposed as follows:

i∗Crit1= arg max
i

(
Rem T i

)
(8)

i∗Crit2= arg min
i

∣∣Rem T i −MHTm
∣∣ (9)

where i∗ and MHTm respectively denote the selected channel
and the Mean Holding Time (MHT) for the m−th service type
∀m∈{1..M}.

Notice that while Crit1 picks up the most available channel,
Crit2 takes into account the characteristics of the secondary
service (in terms of MHTm) trying to choose a channel whose
remaining time fits with MHTm. In this way, it intends to

prevent that some secondary services use those channels that
might be more suitable for other services.

IV. ASSESSMENT OF PRINCIPLES FOR SPECTRUM
SELECTION

In order to gain insight into the proposed secondary spec-
trum selection principles, some simulations have been con-
ducted using a controllable primary user activity pattern.
Principles of estimating primary OFF periods will be first
assessed. Based on that assessment, the proposed set of multi-
service spectrum selection criteria will be evaluated for several
primary traffic patterns and different secondary configurations.

A. Assumptions
In order to account for heterogeneous spectrum opportu-

nities, K primary-users using different sub-sets of channels
are considered. Specifically, Ck denotes the set of channels
operated by the k−th PU so that ∪Kk=1Ck=C. λp,k and
µp,k respectively denote the primary arrival and departure
rates of the k−th PU operating on all channels i∈Ck. The
corresponding DC (Duty Cycle) is defined as:

DCk=
λp,k

λp,k+µp,k
(10)

As for secondary operation, the m−th service type will be
denoted by servm ∀m∈{1..M}. In order to vary secondary
traffic loads, the mean holding time of each servm (MHTm)
will be kept constant while varying the corresponding arrival
rate (denoted as λs,m). Considering a periodic sensing every
∆T seconds, a perfect sensing (free of miss-detections and
false alarms) is assumed for the sake of simplicity. If a PU
shows up in any of the opportunistically-accessed channels, the
involved SU will be handed-over to another channel if there
is any, or will be dropped if there is no channel available.
B. Primary Traffic Patterns

For simulation purposes, a controllable primary traffic time
series is introduced for each channel i∈C. At a given time
index j, the OFF period duration is generated based on the
preceding ON period duration ONi(j) as follows:

OFFi(j)=p×f(ONi(j))+(1−p)×unif([OFFmin
i ,OFFmax

i ])
(11)

where 0≤p≤1 is a probability that controls how dependent
successive ON/OFF periods are, unif[a,b] denotes a uniformly
distributed random variable in the range [a,b] and the function
f is defined as:

f(x)=OFFmini +
(x−ONmin

i )×(OFFmaxi −OFFmini )

ONmax
i −ONmin

i
(12)

With these definitions, it can be shown that DEPi=p.
In the following assessment of principles, it is assumed that

the statistics stored in the REM have achieved a good level of
convergence. The reader is referred to [8] for aspects related
to statistics’ convergence (e.g. convergence time, operating
bucket configuration, etc).

C. Assessment of Principles for Estimating Primary OFF
Periods

This sections aims at analysing the key factors influencing
estimation reliability of primary OFF periods. At a given mo-
ment of secondary operation, ∀k∈{1..K} and ∀i∈Ck, Act T i
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Fig. 2: Estimation reliability of OFF periods, 1
λp,k

=30s

is introduced to denote the actual remaining OFF period of
channel i.

The relative estimation error is defined as the difference
between Rem T i and the actual remaining time Act T i

relative to the average OFF period duration ( 1
λp,k

):

erroriestim=λp,k×
(
Rem T i −Act T i

)
(13)

Focusing on a given primary-user k operating with
1

λp,k
=30s, Fig. 2 plots the histogram of erroriestim for

different primary-user traffic patterns, characterised by the
parameter p in the primary source generation process. It is
worth pointing that, for p=0, E(OFFi/ONi∈Bai )=E(OFFi)
while for p=1, E(OFFi/ONi∈Bai ) gives the actual OFFi.
This is clearly reflected in Fig. 2, where for p=0, the rough
estimation of the actual remaining OFF period results in an
absolute value of the relative estimation error above 0.3 about
50% of the time. On the contrary, for primary traffic sources
exhibiting stronger dependence levels (p=1), the observed
estimation error histogram concentrates to the origin because
E(OFFi/ONi∈Bai ) exploits the dependence between suc-
cessive ON and OFF periods making OFF period estimation
much more accurate. Notice that the fact that erroriestim 6=0
for p=1 is due to the resolution of buckets. As a matter of
fact, erroriestim tends to zero as buckets get squeezed.

Given that the accuracy in the estimation of OFF periods
depends on dependence level between ON/OFF periods and it
can be different for each channel, it is proposed to introduce
a compensation factor βi in (8) and (9) so that the spectrum
selection decision is not biased by the estimation error:

i∗Crit1= arg max
i

(
βi×Rem T i

)
(14)

i∗Crit2= arg min
i

∣∣βi×Rem T i −MHTm
∣∣ (15)

D. Performance Evaluation of Spectrum Selection Criteria
This section aims at getting an insight into the relevance

of the proposed spectrum selection criteria as far as multi-
service secondary spectrum selection is concerned. Consid-
ering the case study described in Table I, performances of
the proposed criteria will be evaluated for different primary
traffic patterns. Since both Crit1 and Crit2 are pro-active in
terms of subsequent SpHO events, it is proposed to evaluate
spectrum selection performances in terms of the overall SpHO
rate (i.e. total number of SpHO/s). Notice that even though the
compensation factor βi used by Crit1 and Crit2 is in general
a function of DEPi, it is assumed for the sake of simplicity
that βi=0.95.

TABLE I: Considered case study

Parameter Definition Value

PU
s

C Set of primary channels {1−16}
K Number of PUs 2
C1 Set of channels of the 1st PU {1−4}
C2 Set of channels of the 2nd PU {5−16}

1
λp,1

Average OFF period of the 1st PU 15s
1

λp,2
Average OFF period of the 2nd PU 60s

DCk Duty Cycle 0.2

SU
s

M Number of secondary service types 2
MHT1 Mean holding time of serv1 15s
MHT2 Mean holding time of serv2 60s
4T Sensing period 0.1s

TABLE II: Spectrum selection performances of RandSS

λs,1×MHT1 λs,2×MHT2 Nb. SpHO/s

Extreme loads 1 1 0.66
4 4 0.63

Intermediate loads 1 4 1.05
4 1 0.51

Fig. 3 plots spectrum selection performances of Crit1 and
Crit2 for the whole range of possible values of p for a given
set of secondary traffic mixes. For a better visualisation, the
figure is split into Fig. 3(a) for the extreme traffic loads (i.e.
either low load or high load of both service types) and Fig. 3(b)
for the intermediate traffic loads. Performances of RandSS for
the considered traffic loads are separately given by Table II
since they are independent from p.

The first observation is that for all considered traffic loads,
the gains Crit1 and Crit2 are introducing with respect
to RandSS are significant. Gains ranging around 70% are
observed for independent ON/OFF periods (p=0). As p in-
creases, the accuracy of E(OFFi/ONi∈Bai ) in estimating
OFF periods gets improved and gains rise up to around 100%.
Next, a comparison between Crit1 and Crit2 performances
is performed in the following.
• Low traffic loads: Results show that for

low traffic loads of both service types
(λs,1×MHT1=λs,2×MHT2=1Er) (Fig. 3(a)), Crit1
is outperforming Crit2 regardless of the dependence
level at hand (p). This is due to that fact that, at such low
load conditions, there are often some available channels
whose remaining OFF period lengths (Rem T i) are
longer that the MHT of the secondary request at hand.
The assignment of the largest estimated Rem T i (i.e.
Crit1) basically picks the most available among these
channels meaning that no subsequent SpHO will be
experienced. On the contrary, assigning a channel whose
Rem T i tightly fits MHT (i.e. Crit2) can result in
more SpHOs if the reliability of OFF period estimation
in not perfect. Specifically, as it has been observed
in Sec. IV-C, for low dependence levels (small p),
E(OFFi/ONi∈Bai ) is just providing a rough estimation
of actual OFF periods. This means that Crit2 can
assign to serv1 requests channels whose remaining
OFF period (Rem T i) were over-estimated and were
wrongly supposed to fit MHT1. This increases the
number of unnecessary SpHOs compared to Crit1.
As the dependence level (p) increases, the estimation
reliability is improved, the number of unnecessary
SpHOs performed by Crit2 is reduced, and Crit1 and
Crit2 performances get closer.
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Fig. 3: Performance evaluation of spectrum selection criteria

• High traffic loads: As far as high traffic loads are con-
sidered (λs,1×MHT1=λs,2×MHT2=4Er) (Fig. 3(a)),
it is observed that Crit2 outperforms Crit1 for all
dependency levels (p). At such high traffic loads, it
is less likely to find a channel whose remaining OFF
period can fit MHT, which makes inevitable assigning
secondary requests to channels to be switched-off. This
means that wrong ”fit” that may be performed by Crit2
due to estimation inaccuracy is not likely to result in
unnecessary SpHOs. Nevertheless, the ”fit” performed
by Crit2 tends to assign C1 channels to serv1 and C2

channels to serv2, which results in a better assignment.
• Intermediate traffic loads: For intermediate traffic loads

and mixes (Fig. 3(b)), it is observed that relative per-
formances of Crit1 and Crit2 strongly depend on the
dependency level p at hand. Specifically, for low depen-
dency levels, Crit1 is performing better while Crit2 is
preferable for high dependency levels. This means that
there is a threshold at which relative performances are
reversed, and this threshold is dependent on the traffic
loads. Considering for instance λs,1×MHT1=4Er and
λs,2×MHT2=1Er, Crit1 is better up to p=0.8.

V. COMBINED SPECTRUM SELECTION STRATEGY

Enlightened by the assessment of principles conducted in
Sec. IV, which has shown that the suitable spectrum selection
criterion depends on a number of aspects such as characteris-
tics of primary users, level of dependence exhibited by primary
traffic, secondary service mix, etc., this section develops a
combined spectrum selection strategy for better exploiting
statistical metrics provided by the REM, thus matching multi-
service secondary traffic to heterogeneous primary spectrum
opportunities. The inputs of the considered strategy are, on
the one hand, the statistical characterisation of the different
channels in terms of E(OFFi/ONi∈Bai ) and the dependence
level DEPi obtained from the REM. It is assumed for the
sake of simplicity that all channels have the same dependence
level (DEPi=DEP, ∀i∈C). The algorithm uses, on the other
hand, as inputs the secondary traffic load levels of the different
services as well as their characterisations in terms of MHT.

As detailed by the pseudo-code of Algorithm 1, it is as-
sumed that secondary service types are served in the increasing
order of their indices (loop in line 2). For the service at hand
(the m-th one), the remaining OFF period of the set of available

channels (av list) is first estimated by subtracting the so-
far observed availability time (Idle Ci) from the expected
OFF period given the last observed ON period (line 4).
Once all Rem T i are estimated, the list of potential channels
for assignments to servm (Candidates) is built differently
depending on the dependence level provided by the REM.
Specifically, if DEP is below a given threshold DEPthr, the
list of candidate channels for assignments to servm is built
using Crit1 (i.e. picking channels that maximize Rem T i)
(line 7). Otherwise, Candidates is constructed using Crit2
(i.e. by channels that best fit MHTm) (line 9). As it has been
identified in Sec. IV-D, the threshold DEPthr for deciding
about the significance of the dependency level at hand is a
function (denoted as g) of traffic loads of both service types to
capture the fact that the convenience of one or other criterion
depends on the specific traffic loads. Finally, in the very
specific case of multiple channels in Candidates, the channel
with lowest DC is selected (line 11).

Considering the case study described in Table I, the function
g defining the dependency threshold DEPthr has been fit
based on previous simulations using a polynomial regression
model with an overall Root Mean Squared Error (RMSE) of
0.1. Based on this model, Fig. 4 makes a comparison between
performances of Crit1, Crit2 and the combined strategy for
the whole range of possible values of p for different secondary
traffic mixes. As pointed out previously, performances are
measured in terms of the overall SpHO rate. It can be seen
that the combined strategy efficiently switches between Crit1
and Crit2. As a result, it achieves in most of the cases the best
performance among Crit1 and Crit2 for a given secondary
traffic mix and every dependence level.

Algorithm 1 Combined Spectrum Selection Strategy
1: {Rem T i}i∈C ← 0, Candidates← ∅;
2: for m=1 to 2 do
3: for i=1 to |av list| do
4: Rem T i ← E(OFFi/ONi∈Bai )− Idle C

i;
5: end for
6: if DEP<DEPthr=g(λs,1×MHT1, λs,2×MHT2) then
7: Candidates← {i ∈ av list/i=i∗Crit1};
8: else
9: Candidates← {i ∈ av list/i=i∗Crit2};

10: end if
11: i∗m,strategy ← argminj∈Candidates (DCj) ;
12: end for
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Fig. 4: Performance evaluation of the combined spectrum selection strategy

VI. CONCLUSIONS AND PROPOSED EXTENSIONS

In order to improve CR’s operation, this paper has proposed
the usage of advanced statistics associated to heterogeneous
primary-users and retaining such characterisations in a REM.
Specifically, statistical patterns that capture among others
hidden dependence structures potentially exhibited by primary
ON/OFF periods have been formulated and developed. In order
to benchmark the utility of such knowledge in a REM, two
spectrum selection criteria exploiting differently the formu-
lated patterns have been proposed in a multi-secondary service
context. Results have shown that in case a REM supporting the
cognitive system and providing such knowledge about primary
users is available, both of the proposed criteria can introduce
significant gains (ranging from 70% to 100%) with respect to
a random selection among idle channels. Furthermore, it has
been identified that the suitable spectrum selection criterion
depends on a number of aspects such as composition and char-
acteristics of primary users, level of dependence exhibited by
primary traffic, secondary service mix, etc. Therefore, a novel
pro-active spectrum selection strategy combining the proposed
criteria to suitably match multi-service secondary traffic to
heterogeneous spectrum opportunities has been proposed. Ex-
plicitly exploiting primary dependence metrics provided by
the REM and a characterisation of secondary service types in
terms of MHT and traffic mix, the proposed strategy has been
proven to efficiently switch between the different criteria for a
given secondary traffic mix and a given level of dependence.
As part of future work, it is proposed to extend this work
to support the non-continuous channel aggregation feature of
LTE-advanced systems and exploit inter-channel dependence
structures.
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