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Abstract— The capacity sharing problem in Radio Access 

Network (RAN) slicing deals with the distribution of the 

capacity available in each RAN node among various RAN slices 

to satisfy their traffic demands and efficiently use the radio 

resources. While several capacity sharing algorithmic solutions 

have been proposed in the literature, their practical 

implementation still remains as a gap. In this paper, the 

implementation of a Reinforcement Learning-based capacity 

sharing algorithm over the O-RAN architecture is discussed, 

providing insights into the operation of the involved interfaces 

and the containerization of the solution. Moreover, the 

description of the testbed implemented to validate the solution 

is included and some performance and validation results are 

presented.  

Keywords— RAN slicing, capacity sharing, O-RAN 

architecture, Reinforcement Learning, rApp, O1 interface.  

I. INTRODUCTION 

The vision of 5G as a system that simultaneously supports 
multiple new services (e.g., virtual reality, smart cities, etc.) 
with heterogeneous requirements (e.g., high bit rate, low 
latency, reliability) motivated the specification of network 
slicing as a key feature of the 5G architecture. This feature 
allows sharing a common network infrastructure among 
multiple communication providers, referred to as tenants, by 
providing each one of them with an end-to-end logical 
network, i.e., network slice, optimized to its specific 
requirements.  

The deployment of network slices in the Radio Access 
Network (RAN), i.e., RAN slices, involves the provisioning 
of multiple and diverse RAN behaviours over the common 
and scarce pool of radio resources at each RAN node. To 
achieve this, mechanisms that allow dynamically distributing 
the capacity available at each RAN node are fundamental. The 
challenge is to perform the capacity sharing according to the 
traffic demands of the different RAN slices while satisfying 
the requirements established in the Service Level Agreement 
(SLA) for each RAN slice and, at the same time, achieving an 
efficient use of the available capacity.  

Several works can be found in the literature that have 
proposed capacity sharing solutions, ranging from heuristic 
and optimization-based solutions, such as [1] and [2], to 
Reinforcement Learning (RL)-based solutions, such as [3] and 
[4]. Whereas the existing works have focused on the 
formulation and assessment of algorithmic solutions, to the 
best of authors’ knowledge none of them has focused on their 
practical implementation. In this paper, an implementation 
framework for capacity sharing solutions within the O-RAN 
architecture is firstly introduced. Based on this, the paper 

presents an O-RAN compliant implementation of a specific 
RL-based capacity sharing algorithm, namely, the Deep Q-
Network - Multi-Agent Reinforcement Learning (DQN-
MARL) capacity sharing solution from our previous work [4] 
by describing the required interfaces and involved protocols 
for the interaction between the DQN-MARL capacity sharing 
solution and the RAN nodes as well as the containerization of 
the solution.  

The implementation framework of this paper is embraced 
within the scope of the PORTRAIT project [5], whose main 
objective is to conduct the proof of concept (PoC) of the DQN-
MARL solution in a real environment in the context of the 
5GCAT pilot [6], which is part of the 5G Spanish National 
Plan. The 5GCAT pilot includes an O-RAN compliant field 
trial 5G small cell network deployment in a beach close to 
Barcelona city. As a preliminary stage for the PoC, the testbed 
presented in this paper has been developed in the laboratory to 
validate the implemented algorithm as well as the necessary 
interfaces that should allow a nearly plug-and-play integration 
into the 5GCAT pilot platform.   

The rest of the paper is organized as follows. Section II 
introduces the key elements of the O-RAN architecture that 
are relevant for the implementation of capacity sharing 
solutions. Section III describes the implementation of the 
DQN-MARL capacity sharing solution. Then, Section IV 
includes the description of the testbed developed to validate 
the proposed implementation and Section V provides the 
validation and performance results obtained with the testbed. 
Finally, Section VI summarizes the conclusions.   

II. CAPACITY SHARING WITHIN O-RAN ARCHITECTURE 

O-RAN Alliance was launched in 2018 with the aim to 
standardize a RAN architecture that complements the 3GPP 
architecture with a set of open interfaces for the realization of 
a virtualized RAN with disaggregated functionalities and 
embedded Artificial Intelligence (AI) [7].  Given that O-RAN 
architecture is expected to be adopted in numerous 5G 
deployments supporting multiple slices, the implementation 
of capacity sharing solutions on top of this architecture 
deserves a proper analysis for assessing their practical 
feasibility.  

The O-RAN logical architecture is depicted in Fig. 1, 
where the key components for the implementation of capacity 
sharing solutions are highlighted in blue. The architecture is 
composed of disaggregated O-RAN functions and open 
interfaces as well as 3GPP interfaces [8]. The Service 
Management and Orchestration (SMO) function is 
responsible for the management of the rest of O-RAN 
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functions and the O-Cloud. These are the O-RAN Central 
Unit– Control Plane (O-CU-CP), the O-RAN Central Unit – 
User Plane (O-CU-UP), the O-RAN Distributed Unit (O-DU), 
the O-RAN Radio Unit (O-RU) and the O-RAN eNB (O-
eNB). Four key interfaces are introduced to enable 
interoperation between the SMO and the rest of O-RAN 
functions and the O-Cloud. These are the A1, O1, Open 
Fronthaul (FH) M-plane and O2 interfaces. To perform 
closed-loop optimization control and orchestrate the RAN 
with enhanced AI-powered functionalities, two RAN 
Intelligent Controllers (RIC) have been included in the 
architecture. First, the near-real-time RIC (near-RT RIC) is 
deployed in the edge of the network operating in control loops 
with a periodicity between 10 ms and 1 s by interacting with 
the O-CU-CP/UP and O-DU via the E2 interface. Second, the 
non-real-time RIC (non-RT RIC) is deployed at the SMO. It 
enables a closed-loop control of the RAN and SMO operations 
with time scales larger than 1 s. The non-RT RIC supports the 
execution of third-party applications, referred to as rApps, to 
provide value-added services that support and facilitate policy 
management, RAN analytics and machine learning model 
management and to deliver enriched information through the 
A1, O1 and O2 interfaces. rApps can support functionalities 
such as frequency and interference management, capacity 
sharing or SLA assurance [7]. The support to these 
functionalities is provided through the O1 interface that allows 
configuring the parameters in the O-RAN functions according 
to gathered performance measurements of the status of the 
network.  

The capacity sharing functionality can be implemented in 
the O-RAN architecture as an rApp that decides on the 
allocated capacity to each slice in each cell, where a cell 
provides coverage in a certain area on a given frequency 
carrier and is associated with a O-CU, O-DU and O-RU. This 
can be performed by configuring the parameter  
rRMPolicyDedicatedRatio of the O-DU function for each cell. 
This parameter belongs to the 3GPP Network Resource Model 
(NRM) for characterizing RRM Policies [9] and specifies the 
percentage of radio resources that can be dedicatedly used by 
 

 

Fig. 1. O-RAN architecture with capacity sharing implementation. 

a slice, which is identified by the Single Network Slice 
Assistance Information (S-NSSAI). The rApp for capacity 
sharing makes decisions on the value of 
rRMPolicyDedicatedRatio based on gathered performance 
measurements from the O-DU function. Note that this use case 
has been identified by the O-RAN use case specification for 
the non-RT RIC in [10]. 

III. IMPLEMENTATION OF THE CAPACITY SHARING RAPP  

This section describes the implementation of a specific 
RL-based capacity sharing solution, namely, the DQN-MARL 
algorithm for multi-tenant and multi-cell scenarios presented 
in [4]. The implemented rApp corresponds to the inference 
stage of the DQN-MARL capacity sharing solution, i.e., the 
application of the actions in the real network according to 
previously learnt policies. The rApp is implemented as a 
container that includes all the elements for the interaction with 
the O-DUs via the O1 interface. This is detailed in the 
following. 

A. O1 interface implementation 

The O1 interface enables the interworking between the 
rApp and each one of the O-DUs that handle the cells 
controlled by the capacity sharing rApp, as depicted in Fig. 2. 
The rApp acts as Management Service (MnS) Consumer of 
the O1 interface while the O-DU acts as MnS producer. Two 
MnSs need to be deployed: the Provisioning MnS to configure 
the rRMPolicyDedicatedRatio attribute per S-NSSAI at the O-
DU, and the Performance Assurance MnS to gather the 
performance measurements from the O-DU [11].  

The Provisioning MnS relies on the NETCONF protocol. 
NETCONF defines a simple mechanism through which a 
network device (e.g., an O-DU) can be managed, 
configuration data can be retrieved, and new configuration 
data can be uploaded and manipulated [12]. It has a layered 
architecture, where the core is a Remote Procedure Call (RPC) 
layer transported over secure transports such as Secure Shell 
(SSH), Transport Layer Security (TLS), Simple Object 
Access Protocol (SOAP) or Blocks Extensible Exchange 
Protocol (BEEP), being SSH mandatory. The protocol 
operates according to a service-client scheme, where the MnS 
Producer has the role of the server and the MnS Consumer the 
role of the client. Then, the implemented capacity sharing 
rApp includes a NETCONF client for each O-DU handling a 
cell in order to establish the NETCONF connection with the 
NETCONF server at the O-DU. 

  

Fig. 2. DQN-MARL Capacity sharing implementation. 
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Moreover, NETCONF defines a set of base protocol 
operations. One of them is the edit-config operation that 
allows the MnS Consumer to modify the configuration of 
parameters at the MnS Producer through a XML-encoded file, 
following the procedure in Fig. 3. Once the NETCONF 
session is established, the MnS Consumer sends an RPC 
request to edit the configuration of the Managed Object 
Instance (MOI) attributes at the MnS Producer. Attributes are 
defined by using the YANG data modelling language that 
allows expressing the structure and semantics of configuration 
information in a vendor-neutral format and in a readable and 
compact way. After sending the RPC request, the MnS 
Producer replies whether confirming the MOI configuration 
or notifying an error, and finally, the NETCONF connection 
terminates. Using this procedure, the rApp for capacity 
sharing (MnS Consumer) can send modification requests 
including the desired value of the rRMPolicyDedicatedRatio 
attribute per S-NSSAI to the O-DU function (MnS Producer) 
through XML files. To support this configuration, the 
NETCONF server includes the standardised 3GPP YANG 
modules that define the rRMPolicyDedicatedRatio per  
S-NSSAI as an attribute of an object named RRMPolicyRatio. 
These modules are available in [9].  

The Performance Assurance MnS allows the O-DU (MnS 
Producer) to report Performance Measurements (PM) data to 
the capacity sharing rApp (MnS consumer). This can be done 
through either the PM data file mode (PMs are obtained with 
periodicities in the order of minutes) or the PM Data streaming 
mode (PMs are obtained in real time). The implemented 
solution considers the PM data file mode since capacity 
sharing operates in the order of minutes. Accordingly, PM 
files are obtained by following the procedure in Fig. 4. 
Whenever a new PM data file is available, the MnS Producer 
sends an asynchronous notifyFileReadyNotification to the 
MnS Consumer over HTTP/TL with the name and location of 
the file. Then, the MnS Consumer can retrieve the file from 
the specified location through SFTP or STPeS. The PM data 
file is an XML-based file defined according to the 3GPP 
formats of [13] and the PM definitions of [14].  

To support the Performance Assurance MnS and establish 
the HTTP/TL and SFTP connections, the implemented 
capacity sharing solution contains a PM client for each O-DU, 
which retrieves PM files from the PM server at the O-DU. The 

 

Fig. 3. Simplified Modify MOI Attributes procedure.  

 

  
Fig. 4. PM Data File Reporting. 

PM server collects measurements and generates PM files with 
the PM metrics required by the DQN-MARL capacity sharing 
solution. Specifically, following the 3GPP specifications in 
[15], the collected PM data per cell that are needed by the 
DQN-MARL solution are the “Mean DL PRB used for data 
traffic”, which measures the average number of Physical 
Resource Blocks (PRB) used for data traffic per S-NSSAI, the 
“DL total available PRB”, which provides the average number 
of available PRBs in the downlink, and the “DL PDCP PDU 
Data Volume”, which provides the downlink data volume 
delivered from the O-CU to the O-DU per S-NSSAI and is 
used for the throughput computation in the solution. 

B. Containerization 

The implementation of the rApp for capacity sharing uses 
containerization, so that it can run as an isolated software unit 
called container that packages up all the required code, 
libraries, binaries, configuration files and dependencies 
required by the rApp to run [16]. In this way, the rApp 
container can be encapsulated and easily deployed on the 
SMO/non-RT RIC platform, where the rApp runs isolated 
from the rest of containers while all of them share the 
operating system (OS) and are managed by a container engine 
such as Docker. 

Algorithm 1 summarizes the operation of the code that has 
been developed for the operation of the capacity sharing rApp 
container that implements the inference stage of the DQN-
MARL solution. After establishing the NETCONF and 
HTTP/TLS sessions between the O-DU of each cell, the 
policies of each tenant (i.e., S-NSSAI) are loaded from the 
policy database (lines 1-3 of Algorithm 1). Then, the 
notifyFileReady notification is received periodically from the 
PM servers at the O-DUs and the PM files are transferred to 
the rApp container via SFTP. The data in the PM file is used 
to compute the state of each tenant (lines 5-7 of Algorithm 1). 
Then, the rRMPolicyDedicatedRatio per S-NSSAI is 
computed for each cell by applying the corresponding policy 
to the computed state. The resulting 
rRMPolicyDedicatedRatio is sent as a NETCONF modify 
attribute request (lines 8-9 of Algorithm 1). The operations in 
lines 5-9 of Algorithm 1 are repeated every Δt minutes. The 
code of Algorithm 1 has been developed in Python using the 
library TF-agents. This code is included in the capacity 
sharing rApp container jointly with the required dependencies 
for the operation of this code, the access to the policy database, 
the required version of Python and the libraries to run the 
code.  

 

Algorithm 1 – Capacity sharing rApp container operation  

1 Establish NETCONF session for each O-DU 

2 Establish HTTP/TLS session for each O-DU  

3 Load saved policy from policies database.  

4 Periodically (Loop):  

5   Receive notifyFileReady via HTTP/TLS from each cell. 

6   Obtain PM measurements through SFTP for each cell.  

7   Compute state from PM files for each S-NSSAI. 

8   Obtain the rRMPolicyDedicatedRatio for each S-NSSAI and  

  each cell by applying the policies.  

9   Send rRMPolicyDedicatedRatio per S-NSSAI via NETCONF  
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IV. DEVELOPED TESTBED  

The testbed depicted in Fig. 5 has been developed and set 
up at the laboratory to validate the operation of the rApp and 
the O1 interface. The testbed, which considers a scenario of a 
single cell, is composed of two hosts denoted as Host 1 and 
Host 2 in a private Local Area Network (LAN) with IP 
addresses 192.768.0.1 and 192.768.0.2, respectively.  Host 1 
represents the SMO/Non-RT RIC side in Fig. 2 and contains 
an rApp for capacity sharing running as a Docker container. 
The rApp has been developed in Python according to 
Algorithm 1 and uses previously trained policies as inputs. 
Moreover, an SLA monitoring container is also included in 
Host 1. It stores performance data and provides data 
visualization of the SLA assurance to tenants through a 
Graphical User Interface (GUI).  

Host 2 represents the O-DU in Fig. 2 and contains the 
required elements of the O1 interface at the O-DU side. In this 
regard, a NETCONF server and a PM SFTP Server are 
included, both running as Docker containers. They allow 
testing the O1 interface through the interaction with the 
NETCONF and PM SFTP clients in the rApp in Host 1. The 
NETCONF server container has been built using the available 
NETCONF server container image at [17] that is part of the 
ONAP NF simulator. This image allows loading YANG 
modules and performing operations for reading configurations 
(get-config operation) and editing them via XML files (edit-
config operation). In order to configure the 
rRMPolicyDedicatedRatio per S-NSSAI, the NETCONF 
server has been provided with the standardised YANG 
module for the RRMPolicyRatio object called “_3gpp-nr-
nrm-rrmpolicy.yang”, which is available in [9] and includes 
the rRMPolicyDedicatedRatio as an attribute. Moreover, the 
O-DU contains a SFTP server to store PM measurement files 
and make them available. 

Host 2 also includes a Docker container with a simulator 
for generating the traffic of different tenants and for 
performing the resource allocation to each tenant during the 
 

 

Fig. 5. Testbed design 

simulation time according to the values of 
rRMPolicyDedicatedRatio per S-NSSAI stored in the 
NETCONF server container. Based on this, the simulator 
generates PM files every Δt minutes and stores them at the PM 
SFTP Server. These PM files are defined according to the 
standardized formats in the XML schema file “measData.xsd” 
available in the 3GPP specification in [13] and include all the 
required measurements by the rApp at Host 1 to compute the 
state and perform the inference of the trained policies. For the 
reader’s information, an open software repository has been 
created that includes the software solution of the DQN-MARL 
algorithm, as well as the elements required for implementation 
of the O1 interface included in the testbed. The software 
repository is available in the GitHub platform at [18]. In 
addition to the source code of the different elements of the 
testbed, the repository provides a series of tutorial-like 
documentation that guides the user through the set up and 
execution of the different elements of the implemented 
solution. 

V. VALIDATION AND PERFORMANCE RESULTS 

 This section presents first the considered scenario for 
obtaining results using the developed testbed. Then, validation 
results of the O1 interface interaction of the rApp in the testbed 
and the evaluation of the rApp performance are provided.  

A. Considered scenario 

The rApp for capacity sharing has been validated on the 
testbed in Fig. 5 by considering a relevant 5G scenario with 
two tenants, denoted as Tenant 1 and Tenant 2. Tenant 1 
provides enhanced Mobile BroadBand (eMBB) services and 
Tenant 2 provides a Fixed Wireless Access (FWA) service to 
home users. FWA provides a wireless alternative to wired 
broadband connection and is one of the first 5G use cases that 
has generated increased momentum [19].  

Both tenants are served by a single cell with capacity cn= 
117 Mb/s, as it is deployed in the testbed in Fig. 5. The SLA 
established for the k-th tenant is defined in terms of the 
Scenario Aggregated Guaranteed Bit Rate, SAGBRk, to be 
provided across all cells to the tenant if requested and the 
Maximum Cell Bit Rate, MCBRk, that can be provided to the 
tenant in each cell. Specifically, the established SLAs for 
Tenant 1 and 2 are SAGBR1=70.2 Mb/s and SAGBR2=46.8 
Mb/s, corresponding to the 60% and the 40% of the cell 
capacity cn, respectively, and MCBR1= MCBR2=93.6 Mb/s, 
corresponding to the 80% of cn. These scenario parameters are 
set in the simulator container and configured in the capacity 
sharing rApp container.  

To obtain the policies to be applied in the testbed the 
DQN-MARL capacity sharing solution in [4] has been trained. 
To this end, the solution considers a different DQN agent per 
tenant that learns the policy that tunes the 
rRMPolicyDedicatedRatio so that the SLA of the tenant is 
satisfied and an efficient use of the capacity in the cell is 
achieved. The tuning of the rRMPolicyDedicatedRatio is 
performed in time steps of duration Δt=3 min. At each time 
step, the DQN agent of the k-th tenant obtains the state from 
the network environment and, accordingly selects an action, 
which can be to increase/decrease the value 
rRMPolicyDedicatedRatio of the cell in an action step of 
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Δ=3% or to keep it equal. As a result, a reward is obtained 
assessing the quality of the selected action. By performing this 
interaction iteratively, the policy of each tenant is updated 
until a converged policy is obtained. For further details on the 
state, action and reward definitions and the training process, 
the reader is referred to [4].  

The training has been performed using a training dataset 
composed of several offered load patterns of the two tenants 
until reaching convergence with the hyperparameters of the 
DQN-MARL model shown in Table I. Once the training has 
finished, the learnt policies have been stored in the policies 
database in Fig. 5 to be used by the rApp capacity sharing 
container during the inference stage in the testbed.  

B. O1 interface validation 

This section presents the validation of the interactions 
between the capacity sharing rApp container and the O-DU 
through the O1 interface developed in the testbed. Fig. 6 
depicts the sequence of the most relevant messages during the 
execution of a single time step (i.e., a single loop in Algorithm 
1) obtained from the logging of the rApp at Host 1. The figure 
shows the time stamps of the different messages in the format 
(seconds, milliseconds).   

The interaction between the PM SFTP client in the rApp 
at Host 1 and the PM SFTP server at Host 2 to obtain PM files 
occurs from time 32,487 to time 32,961. The first messages 
until time 32,636 show the procedure to establish the SFTP 
connection, which consists in firstly establishing an SSH 
connection, executing the exchange of keys, the user 
authorisation, and the establishment of a sesch channel for the 
SFTP client (rApp Host 1) to execute commands in the SFTP 
server (PM SFTP server in Host 2). After this process, the 
SFTP connection is established, and the rApp can search the 
PM files in the SFTP server (from time 32.926 to 32.932) and 
download them (at time 32.946). After this, the SFTP session 
is closed. Note that these messages included correspond to the 
“SFTP Transfer File” in  Fig. 4. The PM file contains the PM 
measurements of both tenants in the considered scenario. The 
rApp processes the downloaded PM file to compute the state, 
which is provided to the DQN-MARL algorithm to obtain the 
rRMPolicyDedicatedRatio per S-NSSAI, as shown in Fig. 6 
from times 32,961 until 33,040.  

After this, the NETCONF client in the capacity sharing 
rApp container at Host 1 and the NETCONF server at Host 2 
interact in order to update the rRMPolicyDedicatedRatio per 
S-NSSAI at the NETCONF server with the new obtained 

TABLE I. DQN-MARL MODEL HYPERPARAMETERS FOR TRAINING 

Parameter Value 

Initial collect steps 50 

Maximum number of time 

steps for training 
2·105 

Experience Replay buffer 

maximum length (l) 
107 

Mini-batch size (J) 512 

Learning rate (�) 0.0001 

Discount factor(γ) 0.9 

ɛ value (ɛ-Greedy) 0.1 

DNN configuration 

Input layer: 7 nodes 

1 full connected layer: 100 nodes 

Output layer: 9 nodes 

values. The messages corresponding to this interaction are 
those from time 33,045 until the end in Fig. 6 and they 
implement the procedure specified in Fig. 3. Firstly, as the 
NETCONF connection considered here builds upon a secure 
SSH connection, this connection is established from time 
33,045 to 33,116. Then, the rApp and the NETCONF server 
at Host 2 perform a “hello” messages handshake (at times 
33.117 and 33.123), providing their NETCONF capabilities 
(i.e., configurations and operation modes) that determine the 
configuration of the established NETCONF session at time 
33,127. After this, the rApp sends the new 
rRMPolicyDedicatedRatio configurations through the RPC 
“edit-config” message at time 33,129. The detail of this 
message formatted in XML is included in Fig. 7, which sets 
the rRMPolicyDedicatedRatio of Tenant 1 (i.e., id=1) to 57% 
and the rRMPolicyDedicatedRatio of Tenant 2 (i.e., id=2) to 
42%. As a result of this “edit-config” message, the NETCONF 
server sends an rpc-reply “OK” message at time 33.248 
confirming that the rRMPolicyDedicatedRatio values have 
been successfully updated and finally, the NETCONF session 
closes with the RPC “close-session” handshake from time 
33,438 until 33,443. 

The provided sequence of messages proves that the rApp 
is able to successfully interact through the O1 interface to 
obtain PM files and send NETCONF configurations. The 
reader is referred to the Github platform in [18] for further 
details on the O1 interaction, where the source code is 
available together with a sample PM file obtained from the 
SFTP server.  

Fig. 6. O1 interface interaction. 
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Fig. 7. RPC “edit-config” message in XML format.  

C. Performance evaluation 

In this section, the performance of the rApp for capacity 
sharing is assessed on the testbed in Fig. 5 when the traffic 
generated in the simulator container by the two tenants 
corresponds to the one depicted in Fig. 8. The figure shows 
the evolution of the offered load (i.e., the fraction of the cell 
capacity required by the tenant) of Tenant 1, o1(t), and Tenant 
2, o2(t), during a week as well as the total offered load in the 
cell, o(t). The offered load of Tenant 1, providing an eMBB 
service, experiences large values during the morning from 
Monday until Friday, while lower offered load values are 
obtained during the weekend. In turn, the offered load of 
Tenant 2 exhibits a typical behaviour of a FWA service, 
increasing during the last hours of the day when people arrive 
at home. Note that the resulting total offered load o(t) during 
working days, exceeds the cell capacity sometimes during the 
afternoon.  

The rApp for capacity sharing has been tested for the 
offered loads in Fig. 8 according to the procedure in Algorithm 
1. As a result, the SLA monitoring container provides the 
result of Fig. 9, which compares the  evolution of the offered 
load of both tenants with the evolution of the configured 
rRMPolicyDedicatedRatio for Tenant 1 and Tenant 2, denoted 
as rRMPolicyDedicatedRatiok(t) for k=1,2. Results show how 
rRMPolicyDedicatedRatiok(t) ratios for both tenants generally 
adapt to the offered loads during all the week, providing more 
than the SAGBRk if required as long as the total offered load 
does not exceed the cell capacity. For example, this is 
observed in the peaks of Monday to Friday for Tenant 1, in 
which the value of rRMPolicyDedicatedRatio1(t) can be 
higher than SAGBR1 =60% because the offered load of Tenant 
2 is much lower than SAGBR2 =40%.  However, when the total 
offered load exceeds the system capacity, 
rRMPolicyDedicatedRatiok(t) ratios lower than the offered 
loads are experienced. For instance, this occurs for the offered 
load of Tenant 1 at middays during the working days or for 
Tenant 2 at night when FWA demands are high. However, 
when this situation occurs, at least the SAGBRk of the tenant is 
provided, guaranteeing the SLA. 

The SLA monitoring container also provides the average 
satisfaction ratio per tenant, computed as the average number 
of time steps that the SLA is satisfied with respect to the total 

 

Fig. 8. Offered load evolution of both tenants during a week.  

 

Fig. 9. Offered load vs rRMPolicyDedicatedRatiok(t) evolution. 

number of time steps. The obtained values during the period 
of Fig. 9 for Tenant 1 and Tenant 2 are 0.94 and 0.96, 
respectively, reflecting a high degree of SLA fulfilment. The 
average assigned capacity utilization is also computed by the 
SLA monitoring container. This metric measures the amount 
of capacity overprovisioning and is computed as the average 
of the ratio between the used capacity by both tenants and the 
assigned capacity to both tenants. The resulting capacity 
utilization is 0.84, which shows that the assigned capacity is 
generally not overprovisioned. These results highlight the 
capability of the solution to efficiently distribute the capacity 
in the cell among the two tenants providing eMBB and FWA 
services according to their offered loads while satisfying the 
SLAs and without capacity overprovisioning.  

VI. CONCLUSIONS AND FUTURE WORK 

 This paper has described the implementation of a RL-
based capacity sharing algorithm for RAN slicing. To ensure 
the O-RAN compliance of the solution, the algorithm has been 
developed as an rApp and the O1 interface required for the 
interaction of the solution with the RAN nodes of the 5G 
network has been implemented.  

The solution has been containerized and a testbed has been 
built in the laboratory. This testbed has allowed validating the 
interaction of the rApp through the O-RAN interfaces and 
assessing the behaviour of the solution in a relevant 5G use 
case. Performance results have shown that the rApp is able to 
adapt to the traffic demands and achieve high service level 
agreement satisfaction ratios above 0.94 with a minimum 
overprovisioning. Moreover, an open-source software 
repository that includes the different elements of the solution 
and their corresponding documentation has been provided in 
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Github as an illustrative practical example for the scientific 
community in this field.  

As future work, it is planned to integrate the developed 
rApp in a real environment in the context of the 5GCAT pilot 
that includes a field trial 5G small cell network deployment. 
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