

On the Implementation of a Reinforcement

Learning-based Capacity Sharing Algorithm in

O-RAN

I. Vilà, O. Sallent, J. Pérez-Romero

Dept. of Signal Theory and Communications, Universitat Politècnica de Catalunya (UPC)

Barcelona, Spain

irene.vila.munoz@upc.edu, sallent@tsc.upc.edu, jordi.perez-romero@upc.edu

Abstract— The capacity sharing problem in Radio Access

Network (RAN) slicing deals with the distribution of the

capacity available in each RAN node among various RAN slices

to satisfy their traffic demands and efficiently use the radio

resources. While several capacity sharing algorithmic solutions

have been proposed in the literature, their practical

implementation still remains as a gap. In this paper, the

implementation of a Reinforcement Learning-based capacity

sharing algorithm over the O-RAN architecture is discussed,

providing insights into the operation of the involved interfaces

and the containerization of the solution. Moreover, the

description of the testbed implemented to validate the solution

is included and some performance and validation results are

presented.

Keywords— RAN slicing, capacity sharing, O-RAN

architecture, Reinforcement Learning, rApp, O1 interface.

I. INTRODUCTION

The vision of 5G as a system that simultaneously supports
multiple new services (e.g., virtual reality, smart cities, etc.)
with heterogeneous requirements (e.g., high bit rate, low
latency, reliability) motivated the specification of network
slicing as a key feature of the 5G architecture. This feature
allows sharing a common network infrastructure among
multiple communication providers, referred to as tenants, by
providing each one of them with an end-to-end logical
network, i.e., network slice, optimized to its specific
requirements.

The deployment of network slices in the Radio Access
Network (RAN), i.e., RAN slices, involves the provisioning
of multiple and diverse RAN behaviours over the common
and scarce pool of radio resources at each RAN node. To
achieve this, mechanisms that allow dynamically distributing
the capacity available at each RAN node are fundamental. The
challenge is to perform the capacity sharing according to the
traffic demands of the different RAN slices while satisfying
the requirements established in the Service Level Agreement
(SLA) for each RAN slice and, at the same time, achieving an
efficient use of the available capacity.

Several works can be found in the literature that have
proposed capacity sharing solutions, ranging from heuristic
and optimization-based solutions, such as [1] and [2], to
Reinforcement Learning (RL)-based solutions, such as [3] and
[4]. Whereas the existing works have focused on the
formulation and assessment of algorithmic solutions, to the
best of authors’ knowledge none of them has focused on their
practical implementation. In this paper, an implementation
framework for capacity sharing solutions within the O-RAN
architecture is firstly introduced. Based on this, the paper

presents an O-RAN compliant implementation of a specific
RL-based capacity sharing algorithm, namely, the Deep Q-
Network - Multi-Agent Reinforcement Learning (DQN-
MARL) capacity sharing solution from our previous work [4]
by describing the required interfaces and involved protocols
for the interaction between the DQN-MARL capacity sharing
solution and the RAN nodes as well as the containerization of
the solution.

The implementation framework of this paper is embraced
within the scope of the PORTRAIT project [5], whose main
objective is to conduct the proof of concept (PoC) of the DQN-
MARL solution in a real environment in the context of the
5GCAT pilot [6], which is part of the 5G Spanish National
Plan. The 5GCAT pilot includes an O-RAN compliant field
trial 5G small cell network deployment in a beach close to
Barcelona city. As a preliminary stage for the PoC, the testbed
presented in this paper has been developed in the laboratory to
validate the implemented algorithm as well as the necessary
interfaces that should allow a nearly plug-and-play integration
into the 5GCAT pilot platform.

The rest of the paper is organized as follows. Section II
introduces the key elements of the O-RAN architecture that
are relevant for the implementation of capacity sharing
solutions. Section III describes the implementation of the
DQN-MARL capacity sharing solution. Then, Section IV
includes the description of the testbed developed to validate
the proposed implementation and Section V provides the
validation and performance results obtained with the testbed.
Finally, Section VI summarizes the conclusions.

II. CAPACITY SHARING WITHIN O-RAN ARCHITECTURE

O-RAN Alliance was launched in 2018 with the aim to
standardize a RAN architecture that complements the 3GPP
architecture with a set of open interfaces for the realization of
a virtualized RAN with disaggregated functionalities and
embedded Artificial Intelligence (AI) [7]. Given that O-RAN
architecture is expected to be adopted in numerous 5G
deployments supporting multiple slices, the implementation
of capacity sharing solutions on top of this architecture
deserves a proper analysis for assessing their practical
feasibility.

The O-RAN logical architecture is depicted in Fig. 1,
where the key components for the implementation of capacity
sharing solutions are highlighted in blue. The architecture is
composed of disaggregated O-RAN functions and open
interfaces as well as 3GPP interfaces [8]. The Service
Management and Orchestration (SMO) function is
responsible for the management of the rest of O-RAN

2022 IEEE Globecom Workshops (GC Wkshps): Workshop on Next-Generation Radio Access Networks: Architectures, Interfaces,
and Implementations

978-1-6654-5975-4/22/$31.00 ©2022 IEEE 208

functions and the O-Cloud. These are the O-RAN Central
Unit– Control Plane (O-CU-CP), the O-RAN Central Unit –
User Plane (O-CU-UP), the O-RAN Distributed Unit (O-DU),
the O-RAN Radio Unit (O-RU) and the O-RAN eNB (O-
eNB). Four key interfaces are introduced to enable
interoperation between the SMO and the rest of O-RAN
functions and the O-Cloud. These are the A1, O1, Open
Fronthaul (FH) M-plane and O2 interfaces. To perform
closed-loop optimization control and orchestrate the RAN
with enhanced AI-powered functionalities, two RAN
Intelligent Controllers (RIC) have been included in the
architecture. First, the near-real-time RIC (near-RT RIC) is
deployed in the edge of the network operating in control loops
with a periodicity between 10 ms and 1 s by interacting with
the O-CU-CP/UP and O-DU via the E2 interface. Second, the
non-real-time RIC (non-RT RIC) is deployed at the SMO. It
enables a closed-loop control of the RAN and SMO operations
with time scales larger than 1 s. The non-RT RIC supports the
execution of third-party applications, referred to as rApps, to
provide value-added services that support and facilitate policy
management, RAN analytics and machine learning model
management and to deliver enriched information through the
A1, O1 and O2 interfaces. rApps can support functionalities
such as frequency and interference management, capacity
sharing or SLA assurance [7]. The support to these
functionalities is provided through the O1 interface that allows
configuring the parameters in the O-RAN functions according
to gathered performance measurements of the status of the
network.

The capacity sharing functionality can be implemented in
the O-RAN architecture as an rApp that decides on the
allocated capacity to each slice in each cell, where a cell
provides coverage in a certain area on a given frequency
carrier and is associated with a O-CU, O-DU and O-RU. This
can be performed by configuring the parameter
rRMPolicyDedicatedRatio of the O-DU function for each cell.
This parameter belongs to the 3GPP Network Resource Model
(NRM) for characterizing RRM Policies [9] and specifies the
percentage of radio resources that can be dedicatedly used by

Fig. 1. O-RAN architecture with capacity sharing implementation.

a slice, which is identified by the Single Network Slice
Assistance Information (S-NSSAI). The rApp for capacity
sharing makes decisions on the value of
rRMPolicyDedicatedRatio based on gathered performance
measurements from the O-DU function. Note that this use case
has been identified by the O-RAN use case specification for
the non-RT RIC in [10].

III. IMPLEMENTATION OF THE CAPACITY SHARING RAPP

This section describes the implementation of a specific
RL-based capacity sharing solution, namely, the DQN-MARL
algorithm for multi-tenant and multi-cell scenarios presented
in [4]. The implemented rApp corresponds to the inference
stage of the DQN-MARL capacity sharing solution, i.e., the
application of the actions in the real network according to
previously learnt policies. The rApp is implemented as a
container that includes all the elements for the interaction with
the O-DUs via the O1 interface. This is detailed in the
following.

A. O1 interface implementation

The O1 interface enables the interworking between the
rApp and each one of the O-DUs that handle the cells
controlled by the capacity sharing rApp, as depicted in Fig. 2.
The rApp acts as Management Service (MnS) Consumer of
the O1 interface while the O-DU acts as MnS producer. Two
MnSs need to be deployed: the Provisioning MnS to configure
the rRMPolicyDedicatedRatio attribute per S-NSSAI at the O-
DU, and the Performance Assurance MnS to gather the
performance measurements from the O-DU [11].

The Provisioning MnS relies on the NETCONF protocol.
NETCONF defines a simple mechanism through which a
network device (e.g., an O-DU) can be managed,
configuration data can be retrieved, and new configuration
data can be uploaded and manipulated [12]. It has a layered
architecture, where the core is a Remote Procedure Call (RPC)
layer transported over secure transports such as Secure Shell
(SSH), Transport Layer Security (TLS), Simple Object
Access Protocol (SOAP) or Blocks Extensible Exchange
Protocol (BEEP), being SSH mandatory. The protocol
operates according to a service-client scheme, where the MnS
Producer has the role of the server and the MnS Consumer the
role of the client. Then, the implemented capacity sharing
rApp includes a NETCONF client for each O-DU handling a
cell in order to establish the NETCONF connection with the
NETCONF server at the O-DU.

Fig. 2. DQN-MARL Capacity sharing implementation.

Service Management and Orchestration (SMO)

Non-Real Time RIC

rApp for

Capacity sharing
rApp…

Near-Real Time RIC

O-CU-CP

O-CU-UP

O-DU

O-RU O-Cloud

O-eNB

A1

O1

E2

O2

Open FH

M-Plane

F1-uF1-c

E1

NG-u/X2-u/Xn-u

NG-c/X2-c/Xn-c

Open FH

rRMPolicyDedicatedRatio per S-NSSAI

Non-RT RIC

NETCONF connection

(rRMPolicyDedicatedRatio

configuration per S-NSSAI)

HTTP/TLS + SFTP connection

(PM File reporting)

NETCONF

client cell n=1

PM client

cell n=1

Policies

database

O1 interface

NETCONF connection

(rRMPolicyDedicatedRatio

configuration per NSSI)

HTTP/TLS + SFTP connection

(PM File reporting)

NETCONF

client cell n=N

PM client

cell n=N

O1 interface

. . .

MnS Consumer

SMO

Capacity sharing

rApp container

Cell n=1

NETCONF server

PM server

YANG Model

PM files

O-DU NF

MnS Producer

Cell n=N

NETCONF server

PM server

YANG Model

PM files

O-DU NF

MnS Producer

2022 IEEE Globecom Workshops (GC Wkshps): Workshop on Next-Generation Radio Access Networks: Architectures, Interfaces,
and Implementations

209

Moreover, NETCONF defines a set of base protocol
operations. One of them is the edit-config operation that
allows the MnS Consumer to modify the configuration of
parameters at the MnS Producer through a XML-encoded file,
following the procedure in Fig. 3. Once the NETCONF
session is established, the MnS Consumer sends an RPC
request to edit the configuration of the Managed Object
Instance (MOI) attributes at the MnS Producer. Attributes are
defined by using the YANG data modelling language that
allows expressing the structure and semantics of configuration
information in a vendor-neutral format and in a readable and
compact way. After sending the RPC request, the MnS
Producer replies whether confirming the MOI configuration
or notifying an error, and finally, the NETCONF connection
terminates. Using this procedure, the rApp for capacity
sharing (MnS Consumer) can send modification requests
including the desired value of the rRMPolicyDedicatedRatio
attribute per S-NSSAI to the O-DU function (MnS Producer)
through XML files. To support this configuration, the
NETCONF server includes the standardised 3GPP YANG
modules that define the rRMPolicyDedicatedRatio per
S-NSSAI as an attribute of an object named RRMPolicyRatio.
These modules are available in [9].

The Performance Assurance MnS allows the O-DU (MnS
Producer) to report Performance Measurements (PM) data to
the capacity sharing rApp (MnS consumer). This can be done
through either the PM data file mode (PMs are obtained with
periodicities in the order of minutes) or the PM Data streaming
mode (PMs are obtained in real time). The implemented
solution considers the PM data file mode since capacity
sharing operates in the order of minutes. Accordingly, PM
files are obtained by following the procedure in Fig. 4.
Whenever a new PM data file is available, the MnS Producer
sends an asynchronous notifyFileReadyNotification to the
MnS Consumer over HTTP/TL with the name and location of
the file. Then, the MnS Consumer can retrieve the file from
the specified location through SFTP or STPeS. The PM data
file is an XML-based file defined according to the 3GPP
formats of [13] and the PM definitions of [14].

To support the Performance Assurance MnS and establish
the HTTP/TL and SFTP connections, the implemented
capacity sharing solution contains a PM client for each O-DU,
which retrieves PM files from the PM server at the O-DU. The

Fig. 3. Simplified Modify MOI Attributes procedure.

Fig. 4. PM Data File Reporting.

PM server collects measurements and generates PM files with
the PM metrics required by the DQN-MARL capacity sharing
solution. Specifically, following the 3GPP specifications in
[15], the collected PM data per cell that are needed by the
DQN-MARL solution are the “Mean DL PRB used for data
traffic”, which measures the average number of Physical
Resource Blocks (PRB) used for data traffic per S-NSSAI, the
“DL total available PRB”, which provides the average number
of available PRBs in the downlink, and the “DL PDCP PDU
Data Volume”, which provides the downlink data volume
delivered from the O-CU to the O-DU per S-NSSAI and is
used for the throughput computation in the solution.

B. Containerization

The implementation of the rApp for capacity sharing uses
containerization, so that it can run as an isolated software unit
called container that packages up all the required code,
libraries, binaries, configuration files and dependencies
required by the rApp to run [16]. In this way, the rApp
container can be encapsulated and easily deployed on the
SMO/non-RT RIC platform, where the rApp runs isolated
from the rest of containers while all of them share the
operating system (OS) and are managed by a container engine
such as Docker.

Algorithm 1 summarizes the operation of the code that has
been developed for the operation of the capacity sharing rApp
container that implements the inference stage of the DQN-
MARL solution. After establishing the NETCONF and
HTTP/TLS sessions between the O-DU of each cell, the
policies of each tenant (i.e., S-NSSAI) are loaded from the
policy database (lines 1-3 of Algorithm 1). Then, the
notifyFileReady notification is received periodically from the
PM servers at the O-DUs and the PM files are transferred to
the rApp container via SFTP. The data in the PM file is used
to compute the state of each tenant (lines 5-7 of Algorithm 1).
Then, the rRMPolicyDedicatedRatio per S-NSSAI is
computed for each cell by applying the corresponding policy
to the computed state. The resulting
rRMPolicyDedicatedRatio is sent as a NETCONF modify
attribute request (lines 8-9 of Algorithm 1). The operations in
lines 5-9 of Algorithm 1 are repeated every Δt minutes. The
code of Algorithm 1 has been developed in Python using the
library TF-agents. This code is included in the capacity
sharing rApp container jointly with the required dependencies
for the operation of this code, the access to the policy database,
the required version of Python and the libraries to run the
code.

Algorithm 1 – Capacity sharing rApp container operation

1 Establish NETCONF session for each O-DU

2 Establish HTTP/TLS session for each O-DU

3 Load saved policy from policies database.

4 Periodically (Loop):

5 Receive notifyFileReady via HTTP/TLS from each cell.

6 Obtain PM measurements through SFTP for each cell.

7 Compute state from PM files for each S-NSSAI.

8 Obtain the rRMPolicyDedicatedRatio for each S-NSSAI and

 each cell by applying the policies.

9 Send rRMPolicyDedicatedRatio per S-NSSAI via NETCONF

 modify attribute request for each cell.

MnS Consumer MnS Producer

Establish NETCONF Session

NETCONF <rpc><edit-config><source><targetDS><error-option>

<config><operation=merge, replace, create, delete or remove>

NETCONF <rpc-reply><OK> or NETCONF <rpc-reply><rpc-error><error-xxx>

Terminate NETCONF Session

Modify MOI

MnS Consumer MnS Producer

<<HTTP/TLS>> notifyFileReadyNotification

<<FTPeS or SFTP>> Transfer File

New PM data

file available

2022 IEEE Globecom Workshops (GC Wkshps): Workshop on Next-Generation Radio Access Networks: Architectures, Interfaces,
and Implementations

210

IV. DEVELOPED TESTBED

The testbed depicted in Fig. 5 has been developed and set
up at the laboratory to validate the operation of the rApp and
the O1 interface. The testbed, which considers a scenario of a
single cell, is composed of two hosts denoted as Host 1 and
Host 2 in a private Local Area Network (LAN) with IP
addresses 192.768.0.1 and 192.768.0.2, respectively. Host 1
represents the SMO/Non-RT RIC side in Fig. 2 and contains
an rApp for capacity sharing running as a Docker container.
The rApp has been developed in Python according to
Algorithm 1 and uses previously trained policies as inputs.
Moreover, an SLA monitoring container is also included in
Host 1. It stores performance data and provides data
visualization of the SLA assurance to tenants through a
Graphical User Interface (GUI).

Host 2 represents the O-DU in Fig. 2 and contains the
required elements of the O1 interface at the O-DU side. In this
regard, a NETCONF server and a PM SFTP Server are
included, both running as Docker containers. They allow
testing the O1 interface through the interaction with the
NETCONF and PM SFTP clients in the rApp in Host 1. The
NETCONF server container has been built using the available
NETCONF server container image at [17] that is part of the
ONAP NF simulator. This image allows loading YANG
modules and performing operations for reading configurations
(get-config operation) and editing them via XML files (edit-
config operation). In order to configure the
rRMPolicyDedicatedRatio per S-NSSAI, the NETCONF
server has been provided with the standardised YANG
module for the RRMPolicyRatio object called “_3gpp-nr-
nrm-rrmpolicy.yang”, which is available in [9] and includes
the rRMPolicyDedicatedRatio as an attribute. Moreover, the
O-DU contains a SFTP server to store PM measurement files
and make them available.

Host 2 also includes a Docker container with a simulator
for generating the traffic of different tenants and for
performing the resource allocation to each tenant during the

Fig. 5. Testbed design

simulation time according to the values of
rRMPolicyDedicatedRatio per S-NSSAI stored in the
NETCONF server container. Based on this, the simulator
generates PM files every Δt minutes and stores them at the PM
SFTP Server. These PM files are defined according to the
standardized formats in the XML schema file “measData.xsd”
available in the 3GPP specification in [13] and include all the
required measurements by the rApp at Host 1 to compute the
state and perform the inference of the trained policies. For the
reader’s information, an open software repository has been
created that includes the software solution of the DQN-MARL
algorithm, as well as the elements required for implementation
of the O1 interface included in the testbed. The software
repository is available in the GitHub platform at [18]. In
addition to the source code of the different elements of the
testbed, the repository provides a series of tutorial-like
documentation that guides the user through the set up and
execution of the different elements of the implemented
solution.

V. VALIDATION AND PERFORMANCE RESULTS

 This section presents first the considered scenario for
obtaining results using the developed testbed. Then, validation
results of the O1 interface interaction of the rApp in the testbed
and the evaluation of the rApp performance are provided.

A. Considered scenario

The rApp for capacity sharing has been validated on the
testbed in Fig. 5 by considering a relevant 5G scenario with
two tenants, denoted as Tenant 1 and Tenant 2. Tenant 1
provides enhanced Mobile BroadBand (eMBB) services and
Tenant 2 provides a Fixed Wireless Access (FWA) service to
home users. FWA provides a wireless alternative to wired
broadband connection and is one of the first 5G use cases that
has generated increased momentum [19].

Both tenants are served by a single cell with capacity cn=
117 Mb/s, as it is deployed in the testbed in Fig. 5. The SLA
established for the k-th tenant is defined in terms of the
Scenario Aggregated Guaranteed Bit Rate, SAGBRk, to be
provided across all cells to the tenant if requested and the
Maximum Cell Bit Rate, MCBRk, that can be provided to the
tenant in each cell. Specifically, the established SLAs for
Tenant 1 and 2 are SAGBR1=70.2 Mb/s and SAGBR2=46.8
Mb/s, corresponding to the 60% and the 40% of the cell
capacity cn, respectively, and MCBR1= MCBR2=93.6 Mb/s,
corresponding to the 80% of cn. These scenario parameters are
set in the simulator container and configured in the capacity
sharing rApp container.

To obtain the policies to be applied in the testbed the
DQN-MARL capacity sharing solution in [4] has been trained.
To this end, the solution considers a different DQN agent per
tenant that learns the policy that tunes the
rRMPolicyDedicatedRatio so that the SLA of the tenant is
satisfied and an efficient use of the capacity in the cell is
achieved. The tuning of the rRMPolicyDedicatedRatio is
performed in time steps of duration Δt=3 min. At each time
step, the DQN agent of the k-th tenant obtains the state from
the network environment and, accordingly selects an action,
which can be to increase/decrease the value
rRMPolicyDedicatedRatio of the cell in an action step of

Host 1

192.168.0.1

Host 2

192.168.0.2
NETCONF Server

container

Port: 830

PM SFTP Server

container

Port: 2222

rApp capacity sharing container

NETCONF

client Policies

database

Docker

Docker

PM SFTP

client

SMO/Non-RT RIC

MARL-DQN

Agents

O-DU

SLA monitoring containerGUITenant(s)

rRMPolicyDedicatedRatio

per S-NSSAI
PM filesO1 interface

Simulator container

Traffic

generation

Resource

allocation

KPIs

reporting

O1 elements

2022 IEEE Globecom Workshops (GC Wkshps): Workshop on Next-Generation Radio Access Networks: Architectures, Interfaces,
and Implementations

211

Δ=3% or to keep it equal. As a result, a reward is obtained
assessing the quality of the selected action. By performing this
interaction iteratively, the policy of each tenant is updated
until a converged policy is obtained. For further details on the
state, action and reward definitions and the training process,
the reader is referred to [4].

The training has been performed using a training dataset
composed of several offered load patterns of the two tenants
until reaching convergence with the hyperparameters of the
DQN-MARL model shown in Table I. Once the training has
finished, the learnt policies have been stored in the policies
database in Fig. 5 to be used by the rApp capacity sharing
container during the inference stage in the testbed.

B. O1 interface validation

This section presents the validation of the interactions
between the capacity sharing rApp container and the O-DU
through the O1 interface developed in the testbed. Fig. 6
depicts the sequence of the most relevant messages during the
execution of a single time step (i.e., a single loop in Algorithm
1) obtained from the logging of the rApp at Host 1. The figure
shows the time stamps of the different messages in the format
(seconds, milliseconds).

The interaction between the PM SFTP client in the rApp
at Host 1 and the PM SFTP server at Host 2 to obtain PM files
occurs from time 32,487 to time 32,961. The first messages
until time 32,636 show the procedure to establish the SFTP
connection, which consists in firstly establishing an SSH
connection, executing the exchange of keys, the user
authorisation, and the establishment of a sesch channel for the
SFTP client (rApp Host 1) to execute commands in the SFTP
server (PM SFTP server in Host 2). After this process, the
SFTP connection is established, and the rApp can search the
PM files in the SFTP server (from time 32.926 to 32.932) and
download them (at time 32.946). After this, the SFTP session
is closed. Note that these messages included correspond to the
“SFTP Transfer File” in Fig. 4. The PM file contains the PM
measurements of both tenants in the considered scenario. The
rApp processes the downloaded PM file to compute the state,
which is provided to the DQN-MARL algorithm to obtain the
rRMPolicyDedicatedRatio per S-NSSAI, as shown in Fig. 6
from times 32,961 until 33,040.

After this, the NETCONF client in the capacity sharing
rApp container at Host 1 and the NETCONF server at Host 2
interact in order to update the rRMPolicyDedicatedRatio per
S-NSSAI at the NETCONF server with the new obtained

TABLE I. DQN-MARL MODEL HYPERPARAMETERS FOR TRAINING

Parameter Value

Initial collect steps 50

Maximum number of time

steps for training
2·105

Experience Replay buffer

maximum length (l)
107

Mini-batch size (J) 512

Learning rate (�) 0.0001

Discount factor(γ) 0.9

ɛ value (ɛ-Greedy) 0.1

DNN configuration

Input layer: 7 nodes

1 full connected layer: 100 nodes

Output layer: 9 nodes

values. The messages corresponding to this interaction are
those from time 33,045 until the end in Fig. 6 and they
implement the procedure specified in Fig. 3. Firstly, as the
NETCONF connection considered here builds upon a secure
SSH connection, this connection is established from time
33,045 to 33,116. Then, the rApp and the NETCONF server
at Host 2 perform a “hello” messages handshake (at times
33.117 and 33.123), providing their NETCONF capabilities
(i.e., configurations and operation modes) that determine the
configuration of the established NETCONF session at time
33,127. After this, the rApp sends the new
rRMPolicyDedicatedRatio configurations through the RPC
“edit-config” message at time 33,129. The detail of this
message formatted in XML is included in Fig. 7, which sets
the rRMPolicyDedicatedRatio of Tenant 1 (i.e., id=1) to 57%
and the rRMPolicyDedicatedRatio of Tenant 2 (i.e., id=2) to
42%. As a result of this “edit-config” message, the NETCONF
server sends an rpc-reply “OK” message at time 33.248
confirming that the rRMPolicyDedicatedRatio values have
been successfully updated and finally, the NETCONF session
closes with the RPC “close-session” handshake from time
33,438 until 33,443.

The provided sequence of messages proves that the rApp
is able to successfully interact through the O1 interface to
obtain PM files and send NETCONF configurations. The
reader is referred to the Github platform in [18] for further
details on the O1 interaction, where the source code is
available together with a sample PM file obtained from the
SFTP server.

Fig. 6. O1 interface interaction.

2022 IEEE Globecom Workshops (GC Wkshps): Workshop on Next-Generation Radio Access Networks: Architectures, Interfaces,
and Implementations

212

Fig. 7. RPC “edit-config” message in XML format.

C. Performance evaluation

In this section, the performance of the rApp for capacity
sharing is assessed on the testbed in Fig. 5 when the traffic
generated in the simulator container by the two tenants
corresponds to the one depicted in Fig. 8. The figure shows
the evolution of the offered load (i.e., the fraction of the cell
capacity required by the tenant) of Tenant 1, o1(t), and Tenant
2, o2(t), during a week as well as the total offered load in the
cell, o(t). The offered load of Tenant 1, providing an eMBB
service, experiences large values during the morning from
Monday until Friday, while lower offered load values are
obtained during the weekend. In turn, the offered load of
Tenant 2 exhibits a typical behaviour of a FWA service,
increasing during the last hours of the day when people arrive
at home. Note that the resulting total offered load o(t) during
working days, exceeds the cell capacity sometimes during the
afternoon.

The rApp for capacity sharing has been tested for the
offered loads in Fig. 8 according to the procedure in Algorithm
1. As a result, the SLA monitoring container provides the
result of Fig. 9, which compares the evolution of the offered
load of both tenants with the evolution of the configured
rRMPolicyDedicatedRatio for Tenant 1 and Tenant 2, denoted
as rRMPolicyDedicatedRatiok(t) for k=1,2. Results show how
rRMPolicyDedicatedRatiok(t) ratios for both tenants generally
adapt to the offered loads during all the week, providing more
than the SAGBRk if required as long as the total offered load
does not exceed the cell capacity. For example, this is
observed in the peaks of Monday to Friday for Tenant 1, in
which the value of rRMPolicyDedicatedRatio1(t) can be
higher than SAGBR1 =60% because the offered load of Tenant
2 is much lower than SAGBR2 =40%. However, when the total
offered load exceeds the system capacity,
rRMPolicyDedicatedRatiok(t) ratios lower than the offered
loads are experienced. For instance, this occurs for the offered
load of Tenant 1 at middays during the working days or for
Tenant 2 at night when FWA demands are high. However,
when this situation occurs, at least the SAGBRk of the tenant is
provided, guaranteeing the SLA.

The SLA monitoring container also provides the average
satisfaction ratio per tenant, computed as the average number
of time steps that the SLA is satisfied with respect to the total

Fig. 8. Offered load evolution of both tenants during a week.

Fig. 9. Offered load vs rRMPolicyDedicatedRatiok(t) evolution.

number of time steps. The obtained values during the period
of Fig. 9 for Tenant 1 and Tenant 2 are 0.94 and 0.96,
respectively, reflecting a high degree of SLA fulfilment. The
average assigned capacity utilization is also computed by the
SLA monitoring container. This metric measures the amount
of capacity overprovisioning and is computed as the average
of the ratio between the used capacity by both tenants and the
assigned capacity to both tenants. The resulting capacity
utilization is 0.84, which shows that the assigned capacity is
generally not overprovisioned. These results highlight the
capability of the solution to efficiently distribute the capacity
in the cell among the two tenants providing eMBB and FWA
services according to their offered loads while satisfying the
SLAs and without capacity overprovisioning.

VI. CONCLUSIONS AND FUTURE WORK

 This paper has described the implementation of a RL-
based capacity sharing algorithm for RAN slicing. To ensure
the O-RAN compliance of the solution, the algorithm has been
developed as an rApp and the O1 interface required for the
interaction of the solution with the RAN nodes of the 5G
network has been implemented.

The solution has been containerized and a testbed has been
built in the laboratory. This testbed has allowed validating the
interaction of the rApp through the O-RAN interfaces and
assessing the behaviour of the solution in a relevant 5G use
case. Performance results have shown that the rApp is able to
adapt to the traffic demands and achieve high service level
agreement satisfaction ratios above 0.94 with a minimum
overprovisioning. Moreover, an open-source software
repository that includes the different elements of the solution
and their corresponding documentation has been provided in

0%

20%

40%

60%

80%

100%

120%

0 750 1500 2250 3000 3750 4500 5250 6000 6750 7500 8250 9000 9750

%

Time(min)

o₁(t) o₂(t) o(t)

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 750 1500 2250 3000 3750 4500 5250 6000 6750 7500 8250 9000 9750
%

Time(min)

o₁(t) o₂(t)

rRMPolicyDedicatedRatio₁(t) rRMPolicyDedicatedRatio₂(t)

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

2022 IEEE Globecom Workshops (GC Wkshps): Workshop on Next-Generation Radio Access Networks: Architectures, Interfaces,
and Implementations

213

Github as an illustrative practical example for the scientific
community in this field.

As future work, it is planned to integrate the developed
rApp in a real environment in the context of the 5GCAT pilot
that includes a field trial 5G small cell network deployment.

ACKNOWLEDGMENT

This paper is part of PORTRAIT project (ref. PDC2021-
120797-I00) funded by MCIN/AEI/10.13039/501100011033
and by European Union Next GenerationEU/PRTR.

REFERENCES

[1] A. S. D. Alfoudi, et. al "An Efficient Resource Management
Mechanism for Network Slicing in a LTE Network," in IEEE Access,
vol. 7, pp. 89441-89457, 2019.

[2] J. Pérez-Romero, et.al , "Profit-Based Radio Access Network Slicing
for Multi-tenant 5G Networks," 2019 Europ. Conf. on Networks and
Comms. (EuCNC), Valencia, Spain, 2019, pp. 603-608.

[3] R. Li et al., "Deep Reinforcement Learning for Resource Management
in Network Slicing," in IEEE Access, vol. 6, pp. 74429-74441, 2018.

[4] I. Vilà, J. Pérez-Romero, O. Sallent, A. Umbert, “A Multi-Agent
Reinforcement Learning Approach for Capacity Sharing in Multi-
tenant Scenarios,” in IEEE Trans. Veh. Tech., vol. 70 no. 9, July 2021.

[5] “PORTRAIT (Proof Of concept of a Radio access neTwoRk slicing
solution based on Artificial InTelligence) project”. Accessed 12 July
2022 from https://portrait.upc.edu/.

[6] 5GCAT. “The decisive drive for a digital society”. Accessed 11 July
2022 from https://pilot5gcat.com/en/.

[7] M. Polese, et. al. “Understanding O-RAN: Architecture, Interfaces,
Algorithms, Security, and Research Challenges,” arXiv:2202.01032
[cs.NI], 2022. [Online].

[8] O-RAN.WG1.O-RAN-Architecture-Description-v06.00, “O-RAN
Architecture Description version 6.00,” O-RAN Alliance, Working
Group 1, Technical specification, Nov. 2021.

[9] 3GPP TS 28.541 v16.0.0, “Management and orchestration; 5G
Network Resource Model (NRM) (Release 16),” March 2019.

[10] O-RAN.WG2.Use-Case-Requirements-v05.00, “O-RAN Non-RT RIC
& A1 Interface: Use Cases and Requirements version 5.00”, Working
Group 2, Technical Specification, Nov. 2021.

[11] O-RAN.WG10.O1-Interface.0-v05.00, “O-RAN Operations and
Maintenance Interface Specification,” O-RAN Alliance, Working
Group 10, Technical Specification, August 2020.

[12] J. Schönwälder, et. al. "Network configuration management using
NETCONF and YANG," in IEEE Communications Magazine, vol. 48,
no. 9, pp. 166-173, Sept. 2010.

[13] 3GPP TS 28.550 v16.7.0, “Management and orchestration;
Performance assurance (Release 16),” Dec. 2020.

[14] 3GPP TS 28.554 v16.5.0, “Management and Orchestration; 5G end to
end Key Performance Indicators (KPI) (Release 16)”, July, 2020.

[15] 3GPP TS 28.552 v16.2.0, “Management and orchestration; 5G
Performance measurements (Release 16),” June 2019.

[16] A. Gopalasingham, et. al. "Virtualization of radio access network by
Virtual Machine and Docker: Practice and performance analysis," 2017
IFIP/IEEE Symp. on Int. Net. and Serv. Manag. (IM), 2017.

[17] ONAP, “NF Simulator”. Accessed 27 January 2022 from
https://docs.onap.org/projects/onap-
integration/en/latest/simulators/nf_simulator.html.

[18] I.Vilà, J. Pérez-Romero, O. Sallent, A. Umbert, “DQN-MARL
Capacity Sharing Solution”, Github. Available at:
https://github.com/grcmupc/portrait.

[19] Ericsson, “Fixed Wireless Access handbook”, extracted version, 4rth
edition, 2021. Available at: ericsson.com/fwa.

2022 IEEE Globecom Workshops (GC Wkshps): Workshop on Next-Generation Radio Access Networks: Architectures, Interfaces,
and Implementations

214

