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Abstract—Spectrum models play a key role in the research of
Dynamic Spectrum Access/Cognitive Radio (DSA/CR) systems.
Models existing to date are able to characterise the statistical
properties of spectrum occupancy in only one of its dimensions
(time, frequency or space). However, to the best of the authors’
knowledge, there is no model capable to account for the properties
of spectrum occupancy in all its dimensions simultaneously. Since
the development of a single model to characterise spectrum
occupancy in such a holistic manner constitutes an extremely
challenging task, this work explores an alternative based on the
combination of existing dimension-specific models into a unified
modelling approach. In particular, a framework is proposed for
the integration of spectrum models that have been designed
independently for a specific dimension of spectrum occupancy
(time, frequency or space), thus enabling the multidimensional
modelling of spectrum occupancy. A sophisticated simulation tool
implementing state-of-the-art time, frequency and space dimen-
sion models is developed according to the proposed framework
and used to generate synthetic spectrum data that simultaneously
accounts for the properties of spectrum occupancy in all its
dimensions. The use of such modelling framework in the context
of the simulation of DSA/CR systems is illustrated as well.

Keywords—Cognitive radio; dynamic spectrum access; spectrum
models; multidimensional modelling; simulation.

I. INTRODUCTION

The Dynamic Spectrum Access (DSA) principle [1-4],
based on the Cognitive Radio (CR) paradigm [5-9], is aimed
at increasing the efficiency of spectrum utilisation by allowing
unlicensed (secondary) users to access opportunistically what
is known as white spaces or spectrum holes [10], i.e., spectrum
gaps in licensed bands temporarily and/or spatially unused
by the licensed (primary) users. Owing to the opportunistic
nature of this spectrum access paradigm, the behaviour and
performance of DSA/CR systems is highly dependent on the
spectrum occupancy pattern of primary users. Thus, spectrum
occupancy models are of paramount importance in DSA/CR
research. Spectrum models can find many relevant applications
ranging from analytical studies to the design and dimensioning
of secondary networks, as well as the development of innova-
tive simulation tools and more efficient DSA techniques.

A wide range of spectrum occupancy models has been
developed to characterise and reproduce the statistical prop-
erties of spectrum occupancy in the time, frequency and space
dimensions. Given the complexity of spectrum modelling,
existing models have normally focused on the characterisation
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of statistical properties in one specific dimension (i.e., time,
frequency or space). While existing models are certainly useful
in DSA/CR research, they only enable the study and analysis
of spectrum occupancy patterns and their statistical properties
in only one of the aforementioned dimensions. In order to
characterise spectrum occupancy in a holistic manner, the
simultaneous modelling of the statistical properties in the time,
frequency and space dimensions would be desirable. However,
to the best of the authors’ knowledge, the spectrum occupancy
models existing to date do not enable such a holistic char-
acterisation of spectrum occupancy. Modelling not only the
time evolution (time dimension) of the occupancy of a group
of channels within a frequency band (frequency dimension)
but also how it is perceived by DSA/CR users at different
locations as a function of the radio propagation environment
(space dimension) is an extremely challenging task. Given the
inherent complexity of developing a single model that simul-
taneously characterises the statistical properties of spectrum
occupancy in all its dimensions, a natural question is whether
existing dimension-specific models could be combined in
order to enable a multidimensional modelling of spectrum
occupancy that simultaneously accounts for time, frequency
and space dimension properties. This question motivates this
work, where a framework is proposed for the integration of
spectrum models that have been designed independently for
a specific dimension of spectrum occupancy (time, frequency
or space) into a unified modelling approach, thus enabling the
multidimensional modelling of spectrum occupancy.

First, an overview of existing spectrum occupancy models
for the time (Section II), frequency (Section III) and space
(Section 1V) dimensions is provided. The provided overview
focuses on relevant parameters and properties that existing
models are able to characterise and reproduce (a broader
overview can be found in [11, 12] and a more detailed de-
scription and discussion is provided in [13, 14]). A framework
for the integration of such models into a multidimensional
modelling approach is then presented in Section V. In order
to illustrate the use of the presented framework, selected
time, frequency and space dimension models are implemented
and integrated (according to the proposed framework) in a
sophisticated simulation tool. Section VI discusses the use of
the developed tool in the context of DSA/CR simulation to
generate synthetic spectrum data that simultaneously accounts
for the properties of spectrum occupancy in all its dimensions.
Finally, Section VII summarises and concludes the paper.



II. TIME-DIMENSION MODELS

The occupancy pattern of a primary channel in the time
domain can be characterised in terms of three main aspects,
namely the channel load or occupancy level (duty cycle), the
durations of the busy/idle periods and the correlation structures
of the period durations. These three aspects are discussed in
more detail in the following.

A) Channel load (duty cycle): The channel load is a
relevant parameter since it indicates the degree to which
a channel may become available to a DSA/CR system for
opportunistic use. The channel load can be characterised in
terms of the duty cycle, which represents the probability or
fraction of time that the channel is busy. While the average
value of this parameter is relevant, its temporal variation
pattern also represents an interesting aspect to characterise.
In some cases, the channel duty cycle has been observed to
follow a predominantly deterministic pattern as a result of the
social behaviour and common habits of users (for example,
this is a common case in cellular mobile communication
systems [15]). While the use of time series analysis and Auto-
Regressive Integrated Moving Average (ARIMA) has been
proposed in order to characterise the duty cycle pattern in
this case [16], a deterministic modelling approach by means
of tailored mathematical functions as proposed in [17] can be
simpler (the computation of the duty cycle value at a particular
time instant is direct and does not require the computation of
past values at previous time instants as it is the case of time
series) and can provide satisfactory results as well. However,
in some other cases the variation pattern of the channel duty
cycle may exhibit a highly random component as a result of
a number of random factors (e.g., instantaneous number of
active users, resource management policies, etc.), which may
lead to highly unpredictable variations [18]. In such a case,
a stochastic modelling approach as the one proposed in [17]
becomes a more convenient approach.

B) Period durations: A complete and realistic modelling of
a channel requires not only the duty cycle to be taken into ac-
count but also the durations of busy and idle periods and their
underlying distributions. A common assumption in existing
literature is that period durations are exponentially distributed,
which enables the simplified modelling of the on/off pattern
of a channel as a two-state Continuous-Time Markov Chain
(CTMC) model (with two states used to represent the busy
and idle states of the channel) where the sojourn times/state
holding times (i.e., the period durations) are modelled as expo-
nentially distributed random variables. However, various field
measurements have demonstrated that period durations are
not exponentially distributed in real systems [19-23]. Period
durations have been found to be more adequately described by
means of generalised Pareto [19], a mixture of uniform and
generalised Pareto [20, 21], hyper-Erlang [20, 21], generalised
Pareto and hyper-exponential [22] as well as geometric and
log-normal [23] distributions. A more detailed and in-depth
study on the best-fitting distribution for various radio tech-
nologies, taking into account both short-term and long-term
time scales, can be found in [24]. Based on the conclusions
from empirical modelling works, a more appropriate model is
therefore the Continuous-Time Semi-Markov Chain (CTSMC)
model, where the state holding times can follow any arbitrary
(not necessarily exponential) distribution.

C) Correlation properties of period durations: The dura-
tions of busy and idle periods can be correlated [23]. Two
different types of correlation can be distinguished. The first
type is the correlation between the durations of periods of
different type (i.e., correlation of busy and idle periods), which
can be modelled simply by the corresponding correlation
coefficients, which have been shown to take negative values
[25] (i.e., when the duration of a busy period increases, the
duration of the next idle period decrease and vice versa). The
second type is the correlation between the sequence of periods
of the same type (either busy or idle) of a channel and a shifted
version of itself (i.e., the autocorrelation function), which
has experimentally been observed to exhibit two different be-
haviours (periodic/oscillating and non-periodic/decreasing), for
which appropriate mathematical functions have been proven to
be a convenient modelling approach [25].

III. FREQUENCY-DIMENSION MODELS

Several aspects and parameters can be considered in the
modelling of the occupancy pattern of a primary band in the
frequency domain. Some examples of relevant parameters in
the frequency domain include the statistical distribution of the
duty cycle values for channels within the same band, and the
clustering of the duty cycle over frequency. These aspects are
discussed in more detail in the following.

A) Statistical distribution of duty cycle: The distribution
of duty cycle values for individual channels within the same
spectrum band has been shown to be accurately modelled
by means of a beta distribution [26, 27]. The Kumaraswamy
distribution, which closely resembles the beta distribution, can
also be used as an appropriate model for the distribution of
duty cycle values [27].

B) Clustering of duty cycle: Within a spectrum band,
channels with similar load levels (i.e., duty cycle values) are
not isolated but found in groups/clusters of a certain size,
meaning that the duty cycle is clustered in the frequency
domain [23, 27]. The proposed approaches for characterising
this aspect are based on the definition of a set of duty cycle
archetypes, with each archetype representing a range of duty
cycle values. Based on such definition, a cluster can then be
thought of as a group of channels that belong to the same
duty cycle archetype (i.e., whose duty cycle values are all
comprised within the same interval and therefore are similar).
Following this approach, and according to experimental results,
the cluster size (i.e., the number of channels within a cluster)
can then be modeled as a random variable that follows a log-
normal [23] or geometric [23, 27] distribution.

IV. SPACE-DIMENSION MODELS

Spectrum models in the space domain are aimed at describ-
ing the spectrum occupancy perceived by DSA/CR users as a
function of the user location, which can be characterised in
various ways. A simple modelling approach commonly used
in the existing literature is to determine the average power
received from the primary transmitter at the DSA/CR user
location (by means of path loss models) and compare to a
decision threshold in order to determine if the DSA/CR user
observes the sensed spectrum as busy or idle (this modelling
approach assumes that DSA/CR users decide on the spectrum
occupancy state based on energy detection [28, 29]). This



binary busy/idle modelling approach can be complemented
with spatial statistics by fitting an analytic semivariogram
model to the predicted power levels, which permits repro-
ducing some statistical properties (e.g., spatial correlations)
of the powers observed over a certain region [30]. While
such binary busy/idle modelling approaches may be attractive
because of their simplicity, this kind of methods in general
results in an oversimplified characterisation of the perceived
occupancy (i.e., the spectrum at a given location is observed
by DSA/CR users either as always busy or always idle). In
practice, radio propagation effects (e.g., shadowing or multi-
path fading) may lead to momentary signal fades that result in
signal misdetections (i.e., the spectrum may not be observed
in practice as always busy) or the receiver noise may lead
to false alarms (i.e., the spectrum may not be observed in
practice as always idle) [31]. Based on this appreciation, the
probability to observe the spectrum as busy constitutes a more
appropriate modelling parameter to characterise the spectrum
occupancy perceived at various locations. In the modelling
approach presented in [32], the power levels predicted by the
propagation (path loss) model are not directly compared to
a threshold but mapped (by means of the duty cycle model
proposed in [33], which implicitly accounts for shadowing
and multipath fading) to the probability that the spectrum is
perceived as busy by DSA/CR users. This probability can be
computed individually for each location of interest but can also
be correlated with the simultaneous observations of other users
at different locations by means of the model for concurrent
observations proposed in [13]. This probabilistic modelling
approach is more complex than the binary approach discussed
above, but provides a more realistic characterisation of the
spectrum occupancy pattern observed in the space domain.

V. FRAMEWORK FOR MULTIDIMENSIONAL MODELLING

As it can be appreciated in the overview provided in
Sections II, III and IV, spectrum models existing to date are
dimension-specific and therefore capable of characterising the
statistical properties of spectrum occupancy in only one of
its dimensions (time, frequency or space), but not in all its
dimensions simultaneously. To cope with this limitation, this
section proposes a framework for the integration of spectrum
models that have been designed independently for a specific
dimension of spectrum occupancy (time, frequency or space)
into a unified modelling approach, thus enabling a multidimen-
sional modelling of spectrum occupancy that simultaneously
accounts for time, frequency and space dimension properties.

An important field of application of spectrum occupancy
models is the development of simulation tools for the per-
formance evaluation of DSA/CR networks and their associ-
ated techniques. The proposed framework is envisaged in the
context of simulation of DSA/CR systems, bearing in mind
as a main application the generation of synthetic spectrum
occupancy data for simulation purposes (other applications
can be found). In particular, this section provides a detailed
description of how existing dimension-specific models can be
combined and used together in order to generate artificial
spectrum data capable to reproduce the statistical properties
of spectrum occupancy in the time, frequency and space di-
mensions. Some aspects of the modelling framework proposed
in this section are based on arbitrary decisions but can easily
be adapted in order to meet particular simulation needs.
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Fig. 1. Generic simulation scenario [14].

A generic simulation scenario is shown in Figure 1. The
simulation scenario considers a specified geographical area
where secondary DSA/CR users try to exploit the spectrum
opportunities (spectrum holes/white spaces) of a number of
primary transmitters whose coverage areas overlap (totally or
partially) with the considered geographical area under study.
Primary transmitters may be located inside or outside the
geographical area under study and may be fixed or mobile. A
mobile primary transmitter would imply that its location needs
be recomputed periodically during the simulation according to
an appropriate mobility model (e.g., see [34]). Each primary
transmitter operates over a number of licensed radio channels
leading to a particular time-frequency transmission pattern as
illustrated in Figure 1. The time-frequency pattern of each
primary transmitter is defined by the set of radio channels over
which the transmitter operates, the binary busy/idle occupancy
sequence of each radio channel as well as the employed
transmission powers. Note that the transmission power may not
be constant (e.g., in the case of a time-slotted downlink channel
where various slots are allocated to various primary receivers
at different locations requiring different transmission powers).
Considering this scenario, the objective is to generate the time-
frequency transmission patterns for the primary transmitters
involved in the scenario and determine how they would be
perceived by a DSA/CR user located anywhere within the
geographical area under study (note that a time-frequency
transmission pattern may be observed in different ways de-
pending on the actual location of the DSA/CR observer).

The framework proposed for the generation of multidi-
mensional artificial spectrum data based on dimension-specific
models is illustrated in Figure 2. The whole process is divided
into two stages: a first stage where a Global Time-Frequency
Map (GTFM) is generated (based on time and frequency
models) for each primary transmitter, and a second stage where
Local Time-Frequency Maps (LTFMs) are generated (based
on space models) for each DSA/CR user. A GTFM represents
the actual time-frequency transmission pattern of a primary
transmitter, while an LTFM represents the way a GTFM is
perceived/observed by a DSA/CR user at a specific location
within the area under study. Therefore, for a single GTFM,
many LTFMs need to be generated as shown in Figure 2.

A GTFM could be generated by simply generating an
on/off (busy/idle) sequence for each channel independently,
which can be accomplished by means of appropriate time-
dimension models. However, the occupancy patterns of a
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Fig. 2. Proposed framework for multidimensional modelling [14].

group of channels within the same spectrum band are not
completely independent and unrelated. In order to account for
this, frequency-dimension models are used in the first place.
The first step is to generate a set of duty cycle values, one for
each channel in the GTFM, which can be obtained as random
numbers drawn from a beta or Kumaraswamy distribution
as detailed in Section III-A. These duty cycle values need
to be assigned to the channels in the GTFM. A random
allocation of duty cycle values to channels would not be able to
reproduce the clustering of the duty cycle over frequency (i.e.,
the existence of groups of channels with similar duty cycle
values) as discussed in Section III-B. In order to take into
account the clustering properties observed in real systems, the
algorithm proposed in [27] can be used, which performs such
allocation so that the duty cycle clustering effect is reproduced.

Once the duty cycle values have been allocated to the radio
channels in the GTFM (taking into account the appropriate
duty cycle distribution and clustering as discussed above), the
on/off (busy/idle) sequence for each channel can be generated.
As discussed in Section II, the generated sequences need to

reproduce not only the average duty cycle value assigned to
each channel (Section II-A) but also the distribution of period
durations for both idle and busy periods (Section II-B). In the
case of discrete-time simulations, this can be accomplished
by implementing the model presented in [17], which is based
on the use of a Markov chain along with appropriate duty
cycle models. In the case of continuous-time simulations, this
can be accomplished by choosing an appropriate distribution
for the period durations (this depends on the particular radio
technology of the primary transmitter, see [24] for a detailed
list of distributions for various radio technologies) and then
configuring the distribution parameters in such a way that
the target duty cycle is met (the duty cycle of a channel is
E{T1}/(E{To} + E{T1}), where E{T(} and E{T}} are the
mean value of idle and busy periods, respectively, and the
relation between the distribution parameters and the mean
value depends on the distribution — see Table I in [24]).
Once that appropriate distributions are chosen for the busy/idle
durations of a channel, and configured in order to reproduce
the assigned duty cycle value, the period durations can simply
be obtained as random numbers drawn from such distribu-
tions. Alternatively, the period durations can also be generated
following the slightly more complex algorithm proposed in
[25], which allows reproducing not only specified average
duty cycles and distributions of period durations, but also
correlation properties among period durations, which is another
important aspect as discussed in Section II-C. Moreover, the
two-level modelling approaches proposed in [24] can also be
incorporated in order to induce specific temporal characteris-
tics in the short- and long-term channel occupancy patterns
(depending on the considered radio technology, see [24] for
details). After applying the aforementioned steps, the final
result is a GTFM consisting of a time-domain binary on/off
occupancy sequence for each of the radio channels in the
GTFM, which implicitly reproduces the relevant properties of
spectrum occupancy in the time and frequency domains as
modelled by the individual dimension-specific models.

The purpose of the second stage of the proposed framework
is to translate the GTFM obtained in the first stage (actual/real
time-frequency transmission pattern) into a set of LTFMs
(perceived/observed time-frequency occupancy patterns) for
specific DSA/CR user locations within the area under study. To
this end, several considerations along with appropriate space
models are applied as detailed in the following.

The first step of the second stage is to decide the primary
transmitter(s) associated to each radio channel of the GTFM
along with the corresponding location(s) and transmission
power(s). In the discussion provided above, a single primary
transmitter has been assumed for the GTFM (i.e., the activity
in the GTFM is assumed to be the result of a single primary
transmitter). However, it is also possible to assume multi-
ple primary transmitters within a single GTFM (where each
primary transmitter operates over a subset of radio channels
in the GTFM). The reason for including the possibility of
multiple primary transmitters in a single GTFM is to enable the
proposed framework to realistically reflect the situation where
several primary transmitters operate within the spectrum of
interest for the DSA/CR system (for example, if the primary
system is based on a cellular structure). The spectral activity
reflected in the GTFM and the way it is generated in the
first stage of the framework is not affected by the fact of



considering that the GTFM is the result of a single or multiple
primary transmitters. However, this is important when com-
puting the LTFMs because certain properties of the primary
transmitters (locations, transmission powers, etc.) determine
how much power will be received by a DSA/CR user at a
particular location and therefore the way spectrum occupancy
will be perceived by the DSA/CR user. This means, when
computing the LTFMs based on a GTMF, that each subset
of radio channels in the GTFM will need to be processed with
different parameters depending on the primary transmitter that
is considered to operate over the subset (taking into account the
location, transmission power and other relevant aspects of each
primary transmitter). The locations, transmission powers and
other relevant parameters of the primary transmitters can be
selected individually so as to reproduce specific well-defined
network deployments or making use of statistical models for
spatial locations, which are out of the scope of this work.

After deciding the transmitter-to-channel assignments, the
next step is to determine how the GTFM is perceived by
DSA/CR users at arbitrary locations within the area under
study (i.e., the LTFMs). This can be accomplished by means
of the spatial simulation method described in [13]. In order to
employ this simulation approach, it is necessary to compute
first the average duty cycle perceived at each DSA/CR user
location for each channel in the GTFM (i.e., each channel has
an average duty cycle, but the average duty cycle perceived at
each location may be different as a result of radio propaga-
tion). The average duty cycle observed at each DSA/CR user
location can be computed by means of the spatial duty cycle
model proposed in [33] along with the statistical prediction
method proposed in [32]. The model for concurrent snapshot
observations proposed in [13] can then be applied. This model
takes into account the set of conditional probabilities P(s; | s)
to observe a channel in state s; at any arbitrary location
given that it is observed in state s at a reference location
where the SNR is maximum (i.e., greater than the SNR at
any other location within the area under study), with ¢ = 0
and ¢ = 1 denoting idle and busy states, respectively (these
conditional probabilities are computed based on the observed
duty cycles computed in the previous step). For the application
of such model, the reference location for each channel in the
GTFM needs to be selected as the location of the primary
transmitter (i.e., where the SNR is maximum). The LTFM for
each DSA/CR user location can then be determined based on
the conditional probabilities as follows: whenever the state
of a channel in the GTFM is busy (s7), the channel in the
LTFM is observed as busy (s1) with probability P(sq | s7) (i.e.,
probability of detection), and whenever the state of a channel in
the GTFM is idle (s{), the channel in the LTFM is observed
as busy (s1) with probability P(s;|s() (i.e., probability of
false alarm). This procedure reproduces not only the effect
of radio propagation (i.e., signal missed detections) but also
the effect of imperfect receivers (i.e., false alarms). Following
this procedure, the GTFM can be extrapolated to the LTFM
observed at any arbitrary location within the area under study.

The proposed framework combines individual dimension-
specific spectrum models to generate LTFMs that simultane-
ously reproduce statistical properties of spectrum occupancy
in the time, frequency and space dimensions, thus enabling a
multidimensional modelling of spectrum occupancy that simul-
taneously accounts for relevant properties in all its dimensions.
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Fig. 3. Examples of synthetic spectrum occupancy data [14]: (a) GTFM, (b)
LTFM at 10 dB, (c) LTFM at 3 dB, (d) LTFM at 0 dB.

VI. ILLUSTRATIVE EXAMPLES

In order to illustrate the presented framework, a sophisti-
cated simulation tool was developed by integrating (according
to the proposed framework) selected models of spectrum
occupancy, enabling the reproduction of statistical properties
in the time dimension (channel duty cycle and distribution
of period durations [24] along with time correlations [25]),
frequency dimension (distribution and clustering of channel
duty cycles [27]) and space dimension (spatial dependence
of the observed channel duty cycle [32, 33] and concurrent
observations of the instantaneous channel state [13]).

The implemented simulation tool was used to generate
synthetic spectrum data. Figure 3 shows as an example the
GTFM and the corresponding LTFMs observed at a SNR of
10 dB, 3 dB and O dB (upper part of each figure) along
with the corresponding duty cycle distribution over frequency
(lower part of each figure) for a TETRA downlink system. A
black (white) dot indicates a channel that is busy (idle) at that
moment in the GTFM, or observed as such in the LTFMs.

As appreciated in Figure 3(a), the first stage of the proposed
framework generates a GTFM that reproduces not only the
on/off sequence of each individual channel in the time domain
but also the statistical properties in the frequency domain (the
duty cycle clustering can be clearly appreciated). In the second
stage, the GTFM is extrapolated to the local perceptions of
DSA/CR users at different locations (i.e., the LTFMs), expe-
riencing different radio propagation conditions (i.e., different
SNR values). As shown in Figure 3(b), under high SNR
conditions the channels are observed as busy whenever they
are actually busy. However, there is an appreciable number of
points indicating that, in some cases, the channel is detected
as busy when it is actually idle. These points correspond to
false alarms where the noise power of the receiver surpasses
the decision threshold. In fact, while the duty cycle shown in
Figure 3(a) takes values within the interval [0, 1], in Figure 3(b)
it is above 10% for all channels (this is due to the target false
alarm rate of 10% selected to set the sensing decision threshold



of DSA/CR users). The dependency of the observed spectrum
occupancy with the DSA/CR user location can be observed
by comparing the LTFMs obtained at different SNR values.
For locations where the experienced SNR is low, the signal of
several channels may be received below the sensing decision
threshold (i.e., it is not detected). This is clearly shown in
Figure 3(c), where the perceived duty cycle values are notably
lower than in Figure 3(b). At locations with very low SNR, as
in the example of Figure 3(d), signals can hardly be detected
and the observed busy states are due mostly to false alarms
(observed duty cycles are similar to the target false alarm rate).

It is worth noting in the examples of Figures 3(b), 3(c)
and 3(d) that all channels experience a similar reduction of the
duty cycle. This is due to the consideration of a single primary
transmitter in the generated GTFM, which results in the same
SNR increase/reduction for all radio channels (and thus in a
similar duty cycle variation) when the considered DSA/CR
user location changes. In a configuration where the radio
channels in the GTFM belong to different primary transmitters
at different locations, a displacement of the DSA/CR user
would result in approaching or moving away from various
transmitters and hence different SNR increases/reductions for
each individual radio channel. However, a simple configuration
has been selected here for simplicity and clarity reasons.

VII. CONCLUSIONS

Spectrum occupancy models play a key role in the research
of DSA/CR systems. Existing models are dimension-specific
(i.e., they reproduce the statistical properties of spectrum
occupancy in only one dimension: time, frequency or space).
This work has proposed a framework that combines individual
dimension-specific spectrum models in order to simultaneously
reproduce statistical properties of spectrum occupancy in the
time, frequency and space dimensions, thus enabling a multi-
dimensional modelling of spectrum occupancy.
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