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ABSTRACT
The development of the Dynamic Spectrum Access/Cogni-
tive Radio (DSA/CR) technology can significantly benefit
from the availability of realistic models able to accurately
capture and reproduce the statistical properties of spectrum
usage in real wireless communication systems. Relying on
field measurements of real systems, this paper analyzes the
joint time-frequency statistical properties of spectrum usage
and develops adequate models describing the observed char-
acteristics. Based on such models, a sophisticated method
is also proposed to generate artificial spectrum data for sim-
ulation or other purposes. The proposed method is able to
accurately reproduce the statistical time-frequency charac-
teristics of spectrum usage in real systems.

Categories and Subject Descriptors
I.6 [Simulation and modeling]: Model development—
modeling methodologies; I.6 [Simulation and modeling]:
Model validation and analysis

General Terms
Algorithms

Keywords
cognitive radio, dynamic spectrum access, spectrum charac-
terization, spectrum occupancy modeling

1. INTRODUCTION
Most of spectrum with commercially attractive radio prop-

agation characteristics has already been allocated in many
countries, a situation commonly referred to as spectrum scar-
city problem. Various spectrum measurement campaigns [8]
have demonstrated, however, that spectrum is vastly under-
utilized and the virtual scarcity actually results from ineffi-
cient spectrum access policies. This situation has motivated
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the emergence of Dynamic Spectrum Access (DSA) policies
based on the Cognitive Radio (CR) paradigm [1]. The ba-
sic underlying principle of DSA/CR is to allow unlicensed
users to access in an opportunistic and non-interfering man-
ner some licensed bands temporarily unoccupied by the li-
censed users. Unlicensed (secondary) DSA/CR terminals
sense the spectrum in order to detect spectrum gaps left by
licensed (primary) users and transmit on them. Secondary
unlicensed transmissions are allowed following this operating
principle as long as they do not induce harmful interference
levels on the primary network.

As a result of the opportunistic nature of the DSA/CR
paradigm, the behavior and subsequent performance of a
DSA/CR network is tightly related to the spectrum occu-
pancy patterns of the primary networks. The development
of realistic and accurate models capable to describe such
patterns would therefore be significantly useful in the do-
main of DSA/CR research. Spectrum usage models can find
many fields of application ranging from analytical studies to
the design and dimensioning of DSA/CR networks, includ-
ing the development of innovative simulation tools as well
as novel DSA/CR techniques. The usefulness of spectrum
models is however conditioned on their realism and accuracy.
Models for spectrum usage commonly employed to date in
DSA/CR research are limited in scope and based on over-
simplifications or assumptions that have not been validated
with empirical measurement data. Spectrum modeling in
DSA/CR still constitutes a rather unexplored research area.

In this context, this paper addresses the problem of jointly
modeling spectrum occupancy in the time and frequency
domains. Previous work [5, 6] has dealt with the question
of modeling and reproducing spectrum occupancy patterns
of individual channels and their properties in the time do-
main. This work extends previous studies by including the
frequency dimension. The objective is to develop adequate
models capable to capture and reproduce the time evolution
of the occupancy patterns observed in a group of channels
belonging to the same allocated spectrum band. This is an
important aspect since it has a direct impact on the amount
of consecutive vacant spectrum that a DSA/CR user may
find as well as the time period for which spectrum gaps can
be exploited for opportunistic use. This paper analyzes the
statistical time-frequency characteristics of spectrum usage
based on empirical data from an extensive spectrum mea-
surement campaign. Based on the obtained results, ade-
quate models are proposed. Moreover, a sophisticated pro-
cedure is developed in order to generate artificial spectrum
occupancy data, for simulation or other purposes, capable
to reproduce the statistical time-frequency characteristics of
spectrum usage in real systems.
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Figure 1: Employed measurement setup.

2. MEASUREMENT SETUP
The measurement configuration employed in this work

(see Figure 1) relies on a spectrum analyzer setup where
different external devices have been added in order to im-
prove the detection capabilities. The design is composed
of two broadband discone-type antennas covering the fre-
quency range from 75 to 7075 MHz, a Single-Pole Double-
Throw (SPDT) switch to select the desired antenna, several
filters to remove undesired overloading (FM) and out-of-
band signals, a low-noise pre-amplifier to enhance the overall
sensitivity and thus the ability to detect weak signals, and a
high performance spectrum analyzer to record the spectral
activity. The external amplifier shown in Figure 1 along with
the spectrum analyzer’s internal amplifier (≈25 dB gain) re-
sult in an overall sensitivity around –130 dBm per 10-kHz
resolution-bandwidth (4-dB noise figure), which guarantees
a reliable estimation of spectrum usage. An exhaustive de-
scription of the measurement platform and methodological
procedures can be found in [7, 4].

The measurement equipment of Figure 1 was employed
to monitor the activity of several spectrum bands includ-
ing amateur bands (144–146 MHz), paging bands (157–174
MHz), TETRA uplink (410–420 MHz) and downlink (420–
430 MHz), E-GSM 900 uplink (880–915 MHz) and down-
link (925–960 MHz), DCS 1800 uplink (1710–1785 MHz)
and downlink (1805–1880 MHz), DECT (1880–1900 MHz)
and ISM (2400–2500 MHz). Although this paper does not
present results for all the analyzed spectrum bands, the pro-
posed models were developed and validated based on chan-
nels from all the considered radio technologies. Each band
was measured for a total time period of 7 days, from Monday
midnight to Sunday midnight. The captured data were used
to extract the binary occupancy patterns of each individual
channel by classifying power samples as either busy or idle
states based on an energy detection method [10]. The de-
cision threshold was selected as the maximum noise power
observed in each channel (based on measurements of the
receiver’s noise) plus a 3-dB margin. This criterion was ex-
plicitly selected in order to avoid any potential false alarms.
The detection performance loss resulting from this relatively
high decision threshold was verified to be negligible since
the measurement location for each analyzed band was care-
fully selected in order to maximize the receiving SNR, which
guarantees that the probability of missed detections is mini-
mized, thus resulting in a nearly ideal detection performance
under such conditions. The resulting occupancy sequences
for channels belonging to the same band were compared to
analyze the joint time-frequency properties of spectrum.

3. SYSTEM MODEL
The considered system model assumes that the DSA/CR

network operates over a set of C radio channels, denoted as
Υ = {υ1, υ2, . . . , υc, . . . , υC}. Let’s denote as S = {s0, s1}
the state space for a primary radio channel, where s0 in-
dicates that the channel is idle and s1 that the channel is
busy. The state of the C channels is simultaneously ob-
served at discrete time instants t = tk = kTs, where k is
a non-negative integer and Ts is the time period elapsed
between two consecutive observations. Assuming that the

set of channels Υ is observed for K time periods Ts, each
channel is characterized by a binary occupancy sequence
{Sc(t1), Sc(t2), . . . , Sc(tk), . . . , Sc(tK)}, where Sc(tk) denotes
the state (s0 or s1) of channel υc at time instant tk.

4. TIME-FREQUENCY PROPERTIES
The captured data were extensively analyzed in order to

determine whether the binary time-occupancy pattern of a
radio channel is related with those of other channels within
the same band. The obtained results indicated that the
occupancy patterns of individual channels can be consid-
ered to be mutually independent. Such independence can
be demonstrated based on the fact that two events A and B
are independent if and only if their joint probability P (A,B)
equals the product of their individual probabilities P (A) and
P (B), i.e., P (A,B) = P (A) · P (B). Based on this simple
result from the basic theory of probability, the independence
between the occupancy patterns of a pair of channels can be
determined as follows. First, compute the elements of matrix
P = [pij ]C×C , where pij = P (Si(tk) = s1, Sj(tk) = s1) rep-
resents the joint probability that channels υi and υj are si-
multaneously observed as busy at any time instant tk. Then,
compute the elements of matrix Q = [qij ]C×C , where:

qij =

{
Ψi ·Ψj , i 6= j

Ψi = Ψj , i = j
(1)

where Ψi and Ψj are the Duty Cycle (DC) of channels υi
and υj , respectively (i.e., the fraction of time they are busy).
Finally, compute the difference between both matrices. If
P−Q = 0C×C , where 0C×C denotes a C×C square matrix
whose elements are all zero, then the channel occupancy pat-
terns are mutually independent. However, if an appreciable
number of elements is non-zero, then this would imply that
independence is not a completely realistic assumption.

The proposed procedure is justified as follows. The ele-
ments of P can be expressed as pij = P (Si(tk) = s1 |Sj(tk) =
s1) · P (Sj(tk) = s1). If the occupancy patterns of chan-
nels υi and υj are independent, then it must be true that
P (Si(tk) = s1 |Sj(tk) = s1) = P (Si(tk) = s1) and in such
a case pij = P (Si(tk) = s1) · P (Sj(tk) = s1). Notice that
the terms of the last equality represent the probability that
the channels are observed as busy or in other words their
DCs, i.e., P (Si(tk) = s1) = Ψi and P (Sj(tk) = s1) = Ψj .
Therefore, if the occupancy patterns of channels υi and
υj are independent, it holds that pij = qij and therefore
pij − qij = 0. Notice, however, that this is only true for
i 6= j since the elements of the main diagonal of P are given
by pii = P (Si(tk) = s1, Si(tk) = s1) = P (Si(tk) = s1) = Ψi,
which requires a particular definition of qij in Equation 1 for
i = j in order to guarantee that the equality P−Q = 0C×C
holds for all elements in case of independence.

Matrices P and Q were estimated based on field measure-
ments. The elements of P were computed as the number
of observations with busy states in each pair of channels
divided by the total number K of observations. The el-
ements of Q were derived based on the empirical DCs of
each individual channel, obtained as the quotient between
the number of observations with busy state and the total
number K of observations. The difference between both
matrices was computed for various spectrum bands. Figure
2 shows, as an example, the results obtained for the TETRA
DL band, where the absolute values of the elements of the
resulting difference matrix are plotted as a function of the
channel indexes i and j. This figure is also representative of
the results obtained for the rest of bands. As it can be ap-
preciated, the difference matrix is composed of zeros for all
channel pairs except for some particular cases whose values
are very close to zero. As a result, and based on Figure 2, it
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Figure 2: Elements of abs (P−Q) for TETRA DL.

can be concluded that the occupancy patterns for channels
within a spectrum band can be considered to be mutually
independent. This is a result with important implications
for joint time-frequency modeling, since it implies that the
instantaneous occupancy state of a channel is unrelated to
the instantaneous state of the rest of channels within the
considered band and, consequently, the occupancy patterns
of a group of channels can be modeled independently of each
other. On the one hand, this enables the direct application
of time-domain models such as those developed in [5, 6] with-
out any modifications or additional considerations. On the
other hand, this enables the statistical properties of spec-
trum usage over frequency to be analyzed independently of
the time-dimension statistics.

5. FREQUENCY CHARACTERISTICS
Extensive analyses of measurement data revealed the exis-

tence of two aspects deserving explicit consideration, namely
the probability distribution of DC values for channels within
the same band and the DC clustering over frequency, i.e., the
existence of groups of contiguous channels with similar DCs.

5.1 Duty cycle distribution
Given the set Ψ = {Ψ1,Ψ2, . . . ,Ψc, . . . ,ΨC}, where Ψc

represents the DC of channel υc, the distribution function of
the elements of Ψ was computed for all the analyzed bands
and compared to various models. It was found that the em-
pirical DC distributions can accurately be fitted with beta
[9] and Kumaraswamy [3] distributions. The beta distribu-
tion can be found in many popular software simulation pack-
ages. However, it may present some difficulties in analytical
studies due to the complex expression of its density (PDF)
and distribution (CDF) functions. The Kumaraswamy dis-
tribution is similar to the beta distribution but easier to use
in analytical studies due to its simpler form [2]. While the
former may be more appropriate for simulations, the latter
may be more convenient for analytical studies.

Figure 3 shows some examples of empirical DC distribu-
tions and their corresponding beta and Kumaraswamy fits.
The selected bands represent examples for very low (E-GSM
900 UL), low (DECT), medium (ISM) and very high (E-
GSM 900 DL) average band DCs. As it can be appreciated,
the beta and Kumaraswamy distributions are able to provide
reasonably accurate fits in all cases. To facilitate the applica-
tion of these models, Table 1 provides reference values for the
distribution parameters, extracted from empirical data by
means of maximum likelihood estimation techniques, along
with the average band DCs Ψ = (1/C)

∑C
c=1 Ψc.

5.2 Duty cycle clustering
The analysis of empirical measurement data indicated that

channels with similar load levels rarely occur alone, but in

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Duty cycle

C
D

F

 

 

E
−G

S
M

 9
00

 U
L

D
E

C
T

ISM

E−GSM 900 DL

Empirical Beta fit Kumaraswamy fit

Figure 3: Empirical DC distributions.

Table 1: Fitted values for DC distributions.
Measured Average Beta Kumaraswamy

band DC Ψ α β a b

Amateur 0.17 0.5796 2.8963 0.6311 2.5599

Paging 0.28 1.4867 3.9601 1.3449 4.2382

TETRA UL 0.03 0.7105 44.0554 0.7849 26.9302

TETRA DL 0.36 0.1840 0.2837 0.1389 0.4223

GSM 900 UL 0.02 1.6044 116.6408 1.2690 208.5805

GSM 900 DL 0.96 0.9119 0.0778 0.8970 0.0786

DCS 1800 UL 0.02 0.2023 6.0738 0.2545 2.6118

DCS 1800 DL 0.44 0.4525 0.6118 0.4463 0.6846

DECT 0.12 2.3217 17.5170 1.7434 34.2432

ISM 0.42 0.2022 0.3418 0.1426 0.4155

groups (clusters) of certain size. To analyze and charac-
terize the DC clustering over frequency, a set of five DC
archetypes was defined, namely very low Ψ ∈ [0, 0.05], low
Ψ ∈ (0.05, 0.40], medium Ψ ∈ (0.40, 0.60], high Ψ ∈ (0.60,
0.95] and very high Ψ ∈ (0.95, 1] levels. The DCs observed
in the analyzed spectrum bands were computed and classi-
fied into the aforementioned archetypes. Figure 4 shows an
example for the TETRA DL band. The upper graph shows
the instantaneous spectrum occupancy for each channel for
a time period of 60 minutes (white/black points indicate
idle/busy observations, respectively), while the lower graph
shows the channel DCs (each archetype is represented by a
different color). As it can clearly be appreciated, channels
with similar occupancy levels appear together in blocks of
certain size, i.e., the DC is clustered in the frequency do-
main. This behavior was also observed in the rest of bands.
To statistically characterize this aspect, the number of con-
tiguous channels in each cluster (i.e., belonging to the same
DC archetype) was evaluated for each measured spectrum
band. The probability distributions of the resulting clus-
ter sizes were evaluated and compared to several discrete
models, from which it was observed that the geometric dis-
tribution [9] is able to provide reasonably accurate fits. Fig-
ure 5 shows some examples of empirical distributions of the
number of channels per cluster and their corresponding ge-
ometric fits. Since the number of clusters within each band
is significantly low, the distribution fitting does not provide
highly reliable results but clearly indicates that the geomet-
ric distribution provides reasonably accurate fits. In order
to facilitate the application of this model, Table 2 provides
some reference values for the parameter p of the geometric
distribution, extracted from empirical measurement data as
the inverse of the average number of channels per cluster.
The value of the parameter p can also be set following alter-
native methods. For example, if a particular average number
of channels per cluster, M , needs to be reproduced, then it
can be configured as p = 1/M . Moreover, it was empiri-
cally observed that the relation p ≈ C · 10−3 holds for many
of the analyzed spectrum bands, which can also be used to
select the value of the geometric distribution parameter as
long as the resulting value satisfies p ≤ 1. Another option
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Figure 4: Empirical spectrum data for TETRA DL.

would be to randomly generate the value of p from a uniform
distribution within the interval [0.1, 0.6] (see Table 2).

6. PROPOSED SIMULATION METHOD
The statistical models developed in previous sections can

readily be employed and applied in analytical studies in-
volving the time-frequency dimensions of spectrum usage.
However, the proposed models can also be used and imple-
mented in simulation tools for the design and dimensioning
of secondary DSA/CR networks as well as the performance
evaluation of DSA/CR techniques. To illustrate the appli-
cability of such models in the context of simulation tools, a
procedure to generate artificial spectrum data is described
below. The proposed method is composed of three phases.

Phase 1: Generation of DC values.

• Step 1.1: Specify the number C of channels within the
considered spectrum band.

• Step 1.2: Select a DC distribution function (beta or
Kumaraswamy) and select appropriate values for the
distribution parameters. The values provided in Table
1 can be used as a reference.

• Step 1.3: Based on the probability distribution re-
sulting from Step 1.2, generate a set of C indepen-
dent random numbers, which will constitute the set

Ψ̂ = {Ψ̂1, Ψ̂2, . . . , Ψ̂c, . . . , Ψ̂C} of DC values to be as-
signed to the C channels of the considered band.

Phase 2: Assignment of DC values to channels.

• Step 2.1: Define a set A = {A1, A2, . . . , An, . . . , AN}
of N DC archetypes along with the corresponding set
Λ = {Λ0,Λ1, . . . ,Λn, . . . ,ΛN} of N+1 DC thresholds,

where Λ0 = 0 and ΛN = 1. A DC Ψ̂c belongs to

archetype An if Λn−1 < Ψ̂c ≤ Λn.

• Step 2.2: Based on the probability distribution result-
ing from Step 1.2, compute the elements of the set
Π = {Π1,Π2, . . . ,Πn, . . . ,ΠN}, where Πn = P (An) =

P (Λn−1 < Ψ̂c ≤ Λn) represents the probability that a
channel belongs to archetype An.

• Step 2.3: Classify the values of set Ψ̂ into the archetypes
of set A based on the threshold set Λ. This will pro-

duce N subsets {Ψ̂n}n=1,...,N , one per DC archetype,

satisfying
⋃N
n=1 Ψ̂n = Ψ̂ and

⋂N
n=1 Ψ̂n = ∅.

0 10 20 30
0

0.25
0.5

0.75
1

C
D

F

DCS 1800 DL

 

 

Empirical
Geometric fit

0 10 20 30 40
0

0.25
0.5

0.75
1

E−GSM 900 DL

 

 

Empirical
Geometric fit

0 10 20 30 40
0

0.25
0.5

0.75
1

Number of channels per cluster

C
D

F

E−GSM 900 UL

 

 

Empirical
Geometric fit

0 10 20 30
0

0.25
0.5

0.75
1

Number of channels per cluster

TETRA DL

 

 

Empirical
Geometric fit

Figure 5: Empirical cluster size distributions.

Table 2: Fitted values for cluster size distributions.
Measured band Parameter p Measured band Parameter p

Amateur 0.5625 Paging 0.3491

TETRA UL 0.0752 DCS 1800 UL 0.3824

TETRA DL 0.2857 DCS 1800 DL 0.6096

GSM 900 UL 0.2011 DECT 0.2000

GSM 900 DL 0.1322 ISM 0.3846

• Step 2.4: Select an appropriate value for the param-
eter p of the geometric distribution of the number of
channels per cluster. The values provided in Table 2
or the alternative methods of Section 5.2 can be used.

• Step 2.5: Set to zero the elements of Ψ = {Ψ1,Ψ2, . . . ,
Ψc, . . . ,ΨC}, where Ψc represents the DC value finally
assigned to channel υc. Set to zero the elements of the
set α = {α1, α2, . . . , αn, . . . , αN}, where αn represents
a counter of the number of channels belonging to DC
archetype An with an assigned final DC value. Define
the counter αC =

∑N
n=1 αn for the overall number of

channels with an already assigned DC value. Repeat
the following points until αn = ηn for all n (i.e., αC =∑N
n=1 ηn = C):

1. Decide the DC archetype A′ = An for the next
cluster (i.e., the next group of channels) by gen-
erating a uniformly distributed U(0, 1) random
variate and comparing against the probabilities
of set Π.

2. If this is not the first iteration of the process and
the archetype A′ resulting from point 1 is of the
same type as the archetype A′′ of the previously
generated cluster, or if the number of channels
for archetype A′ = An has already been reached
(αn = ηn), go back to point 1 and recompute A′

until the conditions A′ 6= A′′ and αn < ηn are
met. The condition A′ 6= A′′ is not necessary
when there is a single DC archetype for which
αn < ηn.

3. Decide the number χ of channels that belong to
the new cluster of type A′ = An as a random
number drawn from the geometric distribution
obtained in Step 2.4. If αn + χ > ηn, then per-
form the correction χ = ηn−αn in order to meet
the total number of channels per archetype.

4. Select randomly χ DC values from subset Ψ̂n

(archetype An) that have not been assigned yet

and form the subset Ψ̃ = {Ψ̃1, Ψ̃2, . . . , Ψ̃χ} ⊆
Ψ̂n. Append subset Ψ̃ to the set of DC values al-
ready assigned, i.e., {ΨαC+1,ΨαC+2, . . . ,ΨαC+χ}
= {Ψ̃1, Ψ̃2, . . . , Ψ̃χ} = Ψ̃.



5. Update counters αn = αn + χ and αC = αC + χ.
Go to point 1.

Phase 3: Generation of time-domain occupancy sequences.

• Step 3.1: Select appropriate distributions F0(T0) and
F1(T1) for the lengths T0 and T1 of idle and busy pe-
riods, respectively (e.g., generalized Pareto [6]).

• Step 3.2: Configure the parameters of the distributions
selected in Step 3.1 in such a way that the channels’
average DCs meet the DC values obtained in Step 2.5,
i.e., E{T c1 }/(E{T c0 }+ E{T c1 }) = Ψc, where E{T c0 } and
E{T c1 } are the mean length of idle and busy periods,
respectively, for the c-th channel, υc.

• Step 3.3: Generate for every channel a sequence of
consecutive idle/busy periods whose lengths are drawn
from the properly configured distributions F0(T0) and
F1(T1). The sequences generated for every channel
must be independent from each other. It is worth
noting that the more sophisticated simulation method
proposed in [6] can be used here in order to reproduce
not only the distributions F0(T0) and F1(T1) but also
the correlation properties of spectrum usage observed
in real radio communications systems.

As it can be inferred from the proposed method, the steps
conducted in the first phase guarantee that the DC values
of the band follow an appropriate beta or Kumaraswamy
distribution and consequently reproduce the corresponding
average band DC. The second phase ensures that the DCs
of contiguous channels respect the clustering properties ob-
served in empirical measurements. Finally, the third phase
provides the lengths of busy and idle periods for each channel
so that not only the desired period length distributions are
reproduced but also the appropriate DC distribution over
frequency channels (and additionally the time-correlation
properties of spectrum usage if the method proposed in [6]
is employed).

In order to illustrate the proposed method, artificial spec-
trum data were generated for the TETRA DL band. The
number of channels C was set accordingly and the parame-
ters for the beta and geometric distributions were configured
as shown in Tables 1 and 2. It is worth noting that these
values correspond to the empirical measurements depicted
in Figure 4. The DC archetypes considered in Section 5.2
were also employed in this case. The sequences of busy and
idle periods were generated for a time period of 60 min-
utes using the method described in [6] in order to reproduce
time-correlation properties. The obtained spectrum data
are shown in Figure 6. The visual inspection and compar-
ison with Figure 4 suggests that the proposed method is
able to reproduce the statistical properties of spectrum in
the time and frequency domains. To rigorously verify this
statement, the artificial spectrum data were analyzed in the
same manner as the field measurement data. The obtained
results, not shown here due to the lack of space, indicated
that the generated spectrum data had the same statistical
properties as the empirical data in terms of the average band
DC, the probability distribution for the channel DCs, the
DC clustering distributions, the probability distribution for
busy and idle period lengths and the time-correlation prop-
erties. This highlights the capability of the proposed models
and simulation method to accurately capture and reproduce
the statistical properties of spectrum usage observed for real
systems in the time and frequency domains.
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Figure 6: Artificial spectrum data for TETRA DL.

7. CONCLUSIONS
This paper has addressed the problem of jointly model-

ing spectrum occupancy in the time and frequency domains.
The analysis of extensive empirical measurement results has
revealed three important aspects to be taken into account for
a realistic and accurate modeling of spectrum usage. First,
the binary time-occupancy patterns of the channels within
the same spectrum band are mutually independent. Second,
the DC of the channels within the band follow beta or Ku-
maraswamy distributions. Third, the DC is clustered over
frequency and the number of channels per cluster follows a
geometric distribution. Based on these findings, a sophis-
ticated procedure to generate artificial spectrum occupancy
data for simulation and other purposes has been developed.
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[4] M. López-Beńıtez and F. Casadevall. Methodological aspects of
spectrum occupancy evaluation in the context of cognitive
radio. European Trans. on Telecomms., 21(8):680–693, 2010.
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