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Abstract—Within a context of Cognitive Radio, we explore the
possibility to detect the presence of users on a given band with
no a priori knowledge on the environment. This paper ventures
the analysis of a joint learning-detection framework where the
detector improves its detecting abilities online relying on past
gathered information on the probed frequency band. Simulations
conducted on real data to support the suggested approach show
interesting results. These results are then discussed and further
possible improvements are proposed.

I. I NTRODUCTION

During the last century, most of the meaningful frequency
bands were licensed to emerging wireless applications, where
the static frequency allocation policy combined with a growing
number of spectrum demanding services led to a spectrum
scarcity. However, several measurements conducted in the
United-States [1], first, and then in numerous other countries
and/or contexts [2][3][4][5], showed a chronic underutilization
of the frequency band resources revealing substantial commu-
nication opportunities in these licensed bands.

To alleviate the spectrum scarcity, the (Federal Communi-
cations Commission) FCC [1] suggested opening the licensed
bands dedicated to primary users (PUs) to unlicensed users and
services (usually referred to as secondary users, SUs), allowing
them to exploit these bands if unoccupied at a particular time
in a particular geographical area. Moreover, Cognitive Radio
has been proposed as a promising technology to enable a
harmless coexistence of PUs and SUs on a same frequency
band.

In a nutshell, Cognitive Radio (CR) equipment is a com-
munication device aware of its environment as well as of its
operational abilities and capable of using them intelligently to
fulfill its tasks. SUs based CR equipment are, thus character-
ized by their ability to gather information through their sensors
and to use them to adapt their behavior to their nearby primary
network [6]. In a generic scenario, a SU should first probe
its environment to detect spectrum holes, and then access the
available bands if needed.

In order to exploit as many opportunities as possible while
ensuring minimum interference with PUs, spectrum sensing
appears as a crucial step where SUs are required to perform
quick and accurate detection of PUs while having minimum
(or no) a priori information on PUs activity or the channels

characteristics. To that purpose, extensive work has been
provided by the Cognitive Radio community to design blind
and efficient spectrum sensing tools [7][8].

In this paper, we suggest a joint learning-detection frame-
work to alleviate the lack of knowledge on the noise level.
Section II introduces the usually considered theoretical model
as well as the commonly used energy detector in case of a
perfect knowledge on the noise level. Section III and Section
IV suggest using a learning algorithms to alleviate the absence
of information on the noise level. Information on the used
real data for the experiment are briefly described in Section
V. Then, first experimental results on the performances of
the introduced ratio detector are presented and discussed in
Section VI. Finally, Section VII concludes the paper.

II. SYSTEM MODEL

A. Network assumption

We consider a receiver willing to gather information on a
pool of bands allocated to a primary network. For the sake of
simplicity, we represent time as a discrete sequence of slots.
In every slot, the CR can acquire a given number of samples
depending on the characteristics of the receiver. Every time the
CR collects samples on a specific band, only two observation
outcomes are possible: the channel can be sensed either idleor
busy. In the rest of the paper, we will associate the numerical
value1 to a busy channel and0 to an idle channel. We assume
that the SU has noa priori knowledge on the characteristics
of the bands (e.g., occupied or not).

Let r t = [rt,0, rt,1, · · · , rt,M−1] be M independent and
identically distributed (i.i.d.) samples gathered by the CR
receiver at the current slott. The outcome of the sensing
process can be modeled as a binary hypothesis test described
as follows:

r t =

{

nt, H0

xt + nt, H1

where hypothesesH0 andH1 refer respectively to the case of
an absent or a present signal on the sensed channel. On the one
hand,xt = [xt,0, xt,1, · · · , xt,M−1] refers to the source signal
where every samplext,k is perceived as an i.i.d. realization of a
Gaussian stochastic distributionN (0, σ2

x,t). On the other hand,
nt = [nt,0, nt,1, · · · , nt,M−1] refers to i.i.d. additive white



Gaussian noise (AWGN) samplesN (0, σ2
n,t). Moreover, xt

andnt are assumed to be independent. Thus, we consider the
following Gaussian received signals under either hypothesis
∀rt,i i ∈ {0, · · · ,M − 1} :

{

H0 : rt,i ∼ N (0, σ2
n,t)

H1 : rt,i ∼ N (0, σ2
x,t + σ2

n,t)

The previously introduced network considerations will be
referred to asAssumption 1. Within this context, the detection
outcome can be modeled as the output of a decision making
policy π that maps the current samplesr t into a binary value
dt = π(r t), dt ∈ {0, 1}.

In the next subsection, we summarize the usually used
criteria to evaluate the performance of a signal detection
policy.

B. Performance evaluation of a detection policy π

Under the previously considered binary hypothesis test, one
can define two probabilities that characterize the performance
of the detection policyπ at the slot numbert: The probability
of false alarm (Pfa,t) and the probability of detection (Pd,t):

{

Pfa,t = P (dt = 1|H0)
Pd,t = P (dt = 1|H1)

Usually, constraints impose to fix thePfa,t under a given level
α, such thatPfa,t ≤ α. The most powerful decision policy is
then defined as the one having the largestPd,t value for a
given Pfa,t = α.

C. Neyman-Pearson energy detector

The Neyman-Pearson energy detector (NP-ED, also known
as radiometer) is a commonly used spectrum sensor. It has
been extensively analyzed for its proprieties as a semi-blind
low complexity spectrum sensor, since it ignores the character-
istics of the received signals and only relies on the perceived
energy of the signal. It assumes known the noise levelσ2

n,t at
every slot numbert. As a first approximation, we consider in
the rest of the paper a constant noise level for allt, σ2

n,t = σ2
n.

Under these assumption, the NP-ED is proven to be the most
powerful test. Hence, NP-ED appears as an efficient approach
when no information other than the noise level is available at
the receiver side.

NP-ED relies on the computation of the received energy
statisticTt at the slot numbert defined such as:

Tt =
M−1
∑

i=0

|rt,i|2

The decision policyπNP−ED is a simple Heaviside function
that depends only on the evaluation of the statisticTt on the
current slott:

dt = πNP−ED(rt) ⇐⇒ dt = H(Tt − ξt(α))

where ξt(α) is the selected threshold to guarantyPfa ≤ α.
Such policies are usually described using the following nota-
tion:

Tt ≶H0

H1
ξ(α)

The following two equations briefly remind the expressions
of the Pfa,t and thePd,t as well as their approximations for
largeM .







Pfa,t = 1 − Fχ2
M

(

ξt(α)
σ2

n

)

≈ Q
(
√

M
2

(

ξt(α)/M
σ2

n
− 1

))

Pd,t = 1 − Fχ2
M

(

ξt(α)
σ2

n+σ2
x,t

)

≈ Q
(
√

M
2

(

ξt(α)/M
σ2

n+σ2
x,t

− 1
))

whereFχ2
M

(·) refers to the cumulative distribution function of
a χ2-distribution withM degrees of freedom, andQ(·) is the
complementary cumulative distribution function of Gaussian
random variable (also known as Marcum function), formally
defined as:

Q(x) =
1√
2π

∫ ∞

x

exp

(−t2

2

)

dt

NP-ED provides satisfactory behavior whenσn is known (or
accurately estimated). Unfortunately, when such knowledge is
unavailable, its performances degrade very quickly.

III. L EARNING BASED RATIO STATISTIC

In this section, we aim at introducing general notations to
define a statistic as a ratio of transformations of both the
currently gathered samples and the past collected information.
Mainly the ratio expression is introduced to alleviate the lack
of knowledge on the noise levelσ2

n. We argue that the key
enabling concept to guaranty given performances within an
unknown environment is learning over past information. Thus,
it is a joint learning-detection framework.

Let ht = [ht,0, ht,1, · · · , ht,N−1] denote a set ofN samples
collected in the past slots and memorized. We refer toht as the
information or history vector. It is mainly introduced to enable
the exploitation of past information on the environment to
enhance the behavior of the Cognitive Radio decision making
engine. Consequently, the detection outcome can be seen as
the output of a decision making policyπ that maps the current
and past information, represented respectively, by the vectors
r t andht into a binary valuedt = π(r t, ht), dt ∈ {0, 1}.

Let us introduce the following statisticFt and two real
functionsf(·) andg(·) such that:

Ft =
f(r t)

g(ht)

Mainly, the functionf(·) represents a transformation of the
currently received signals at the slot numbert, while, the
function g(·) aims at extracting information on the noise
of the sensed channel using past information. Sinceg(ht)
provides an estimation of the noise level, it is well known that
the estimation uncertainty implies a less effective detection.
Namely, there exist anSNR wall under which it is theoretically
impossible to detect primary users’ activity [9].

In the rest of this paper, we consider the following well
known form of the functionsf(·) :

f(r t) =
Tt

M



IV. L EARNING MODEL AND TOOLS

A. History vector modeling

Let us consider the particular case of a history vectorht

containing all collected samples. Moreover let us assume
that P (H0) 6= {0, 1}. In other words, the probed channel
does not remain in the same state (busy or idle) indefinitely.
In this case, a fair assumption would be to consider the
vector ht as a mixture of Gaussian distributions. Thus the
history vector of observations is assumed to be drawn form
a stochastic distributionθ formalized as a Gaussian Mixture
Model (GMM) with K components (to specify later on real
data). Letθk∈{0,··· ,K−1} denote the distribution of thekth

component of the distributionθ, and pθk
(·) its associated

probability density function (pdf ):

pθk
(h) =

1√
2πVk

e
−

(h−µk)2

2Vk

whereµk
∆
=E[θk] andVk

∆
=V[θk]. E andV refer, respectively, to

the expectation and the variance of the considered distribution.
Moreover, let us denote byak∈{0,··· ,K−1} the proportion

of samples drawn from thekth distribution andAk the set of
samples drawn from the distributionθk. Then we can defineak

such that:ak
∆
=#{Ak}

N . Finally, thepdf, pθ(·), of the observed
random datah can be written as:

pθ(h) =
K−1
∑

k=0

akpθk
(h)

Notice that depending on the spectrum sensing scenario,
only a subset of these parameters might be of interest. As a
matter of fact, on the one hand, in the case of extensive offline
spectrum sensing, the decision maker, aims at evaluating the
occupation pattern of the band. In this case, the parameters
ak appear crucial. On the other hand, in the case of online
learning, evaluating the parameters related to the noise level
and/or signal level would be prioritized.

The next subsection will briefly present different possible
machine learning approaches to evaluate the parameters of
Gaussian mixtures. Anticipating the empirical experiments on
real observed data, we will only discuss algorithms that tackles
two component (K = 2) Gaussian mixtures.

B. Learning algorithms

When dealing with a mixture of two Gaussian distributions,
several alternative approaches can be suggested by the machine
leaning community. Among which the most famous and usu-
ally implemented: theExpectation-Maximization algorithm,
the K-means algorithm and theMoment Method.

1) Expectation-Maximization (EM): The EM algorithm is
an iterative algorithm that generalizes the maximum likelihood
concept to GMMs[10][11]. It is known to be very efficient
compared to other algorithms for a same training set. Un-
fortunately it can become computationally burdensome when
the training set or the number of mixtures grow large. It
mainly computes thea posteriori distribution of the evaluated
parameters. This algorithm is usually presented as a soft

clustering tool where all samples are used, with specific
weights depending on the cluster, to evaluate the parameters
of all clusters.

2) K-means: The K-means algorithm is usually presented
as a particular case of EM algorithms where every element
of the training set is allocated to only one cluster (i.e., one
Gaussian component).

3) Moment-Method (MM): The MM algorithm only relies
on the empirical moments of the training set. It is a very low
complexity algorithm compared to the EM algorithm. It is,
unfortunately, also less efficient for a same number of training
samples[12].

Although, in general, learning algorithms have nice math-
ematical proprieties in theory (e.g., in terms of convergence),
many practical difficulties can occur when implementing them.
Briefly we can stress out, first, the usually high complexity
of these algorithms to reach their solution (especially true
for the EM algorithm). Moreover, if the stopping criteria are
not carefully selected, they could lead to a non convergence
of the algorithms. As a consequence, “wrong” estimations
of the parameters’ distributions could occur. Last but not
least, if the algorithms rely on specific hypothesizes on the
data distributions (e.g., Gaussian mixtures in the case of EM
and MM algorithms), not fulfilling these assumptions might
significantly affect their behavior.

In the rest of this paper, we chose to implement the EM
algorithm and to present first results of its performances on
real data collected during a spectrum measurement campaign.
The goal being to characterize the distribution of the ratio
statisticFt. As a matter of fact, this would enable the design
of a learning based detector where the probabilities of false
alarm and miss detection could be evaluated and controlled.

V. OVERVIEW OF THE MEASUREMENT CAMPAIGN SETUP

In this Section, we briefly describe the experimental setup,
equipment used during the spectrum measurement campaign
as well as the probed channels characteristics.

The measurement platform employed in this study is based
on the Universal Software Radio Peripheral (USRP) [13] and
GNU Radio [14] architecture. USRP is an openly designed
inexpensive Software Designed Radio (SDR) hardware plat-
form that provides radio front-end functionalities, Analogical
to Digital and Digital to Analogical Conversion (ADC/DAC),
decimation/interpolation with filtering and a Universal Serial
Bus 2 (USB2) interface to connect to an off-the-shell Personal
Computer (PC). The PC runs the GNU Radio software, a free
and open source toolkit that provides a library of signal pro-
cessing blocks for building SDRs. In addition, it also provides
blocks for communicating with the USRP. The general scheme
of the measurement platform is illustrated in Figure 1.

The primary signal of interest is captured with an omni-
directional discone-type antenna AOR DN753 that covers the
frequency range 75–3000 MHz. The USRP Radio Frequency
(RF) front-ends are provided in form of daughter boards that
can be plugged to the USRP main board. In this study we
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Fig. 1. Measurement platform employed in this study.

have employed two receiver-only daughter boards: TVRX (50–
860 MHz, 8 dB typical noise figure) and DBSRX (800-2400
MHz, 3-5 dB typical noise figure). The daughter boards are
employed to tune to the carrier frequency of the desired pri-
mary signal and perform down-conversion to the Intermediate
Frequency (IF) at which the USRP main board operates. The
USRP main board includes 12-bit ADCs working at64 · 106

samples per second to digitize the received signal and a
Field Programmable Gate Array (FPGA) to perform filtering
and digital down-conversion (decimation) from the IF band
to the Base Band (BB). Decimation is required in order to
adapt the incoming data rate to the USB2 and PC computing
capabilities. A USB controller sends the digital signal samples
to the PC in 16-bit I and 16-bit Q complex data format (4 bytes
per complex sample), resulting in a maximum rate of8 · 106

complex samples per second. The maximum RF bandwidth
that can be handled is therefore 8 MHz (narrower bandwidths
can be selected by adjusting the decimation rate). The host
PC runs the GNU Radio’susrp_rx_cfile.py script, which
simply collects the digital signal samples sent by the USRP
board through the USB2 interface and saves the received BB
digital signal sequence to a file in the host PC’s hard drive for
off-line post-processing.

The aforementioned measurement equipment was used to
collect digital signal samples of real channels for various
radio technologies. To this end, the measurement platform
was placed on a building rooftop in urban Barcelona, Spain
(41o 23’ 20” N, 2o 6’ 43” E, 175 meters of altitude) with
direct line-of-sight to several transmitters located a fewtens
or hundreds of meters away from the antenna and without
buildings blocking the radio propagation. This measurement
scenario enabled us to reliably capture the desired signals
under high SNR conditions. Table I summarizes the main
characteristics of the measured channels.

For each channel, the channel’s radio frequency range, the
radio bandwidth, the selected USRP decimation rate and the

resulting sampled BandWidth (BW) as well as the USRP RF
front-end gain factor are shown. The gain factor was chosen
so as to maximize the received signal level (and hence the
receiving SNR) without incurring in saturation. For most of
the channels the optimum gain value was 70 dB and in the
particular case of TV (both analogical and digital) the gain
was drastically reduced due to the proximity of the TV station
(≈ 3 km). The captured signal sequences were filtered in
software with Matlab. The normalized cut-off frequencies for
each channel are shown in Table I, resulting in passbands equal
to or greater than the signal BW, except for TV channels where
some BW was required to accommodate the filter’s transient
band (for DAB-T the RF BW is 1.712 MHz but the signal
information is confined within a BW of 1.54 MHz).

VI. SIMULATION PERFORMANCES AND DISCUSSION

To evaluate the distribution of the statisticFt, we conducted
series of simulations on the measurements obtained using
the USRP. The considered bands are the following: channels
Ch08A, Ch10A and Ch11B of the DAB-T standard. The data
collected in these cases contain either noise or signal (i.e.,
P (H0) = i, i ∈ {0, 1}). For every band and each hypothesis
(H0, H1) we collected10 million samples.

A quick evaluation of the used data shows that in both cases,
whether the samples follow hypothesisH0 or H1, and as a first
approximation, we can indeed assume the samples as Gaussian
as described in Section II. However, the Gaussian assumption
is not perfect. The Gaussianity of the samples becomes more
satisfactory if the data is further down-sampled in software.
Since we are limited in the amount of date used, in this study
we chose to down-sample the data by a factor2.

Thus, three training sets composed of a random mixtures
(K=2) of noise and signal collected from each of these bands
are created. Then sequentially, the EM algorithm estimatesthe
noise level (previously referred to asg(ht)) on 400 training
sets of25000 mixed samples of noise and signal. Thus, The
learning process uses every time a set of25000 samples (which



TABLE I
CHANNELS MEASURED IN THIS STUDY: ANALOGICAL /DIGITAL TV, TERRESTRIAL TRUNKED RADIO (TETRA), TERRESTRIALDIGITAL AUDIO

BROADCASTING (DAB-T), EXTENDED GLOBAL SYSTEM FORMOBILE COMMUNICATIONS 900 DOWNLINK (E-GSM 900 DL), DIGITAL CELLULAR

SYSTEM 1800DOWNLINK (DCS 1800 DL)AND UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM FREQUENCY-DIVISION DUPLEX DOWNLINK

(UMTS FDD DL).

System
Channel fstart fcenter fstop Signal BW Decimation Sampled BW Gain Cut-off Pass band
number (MHz) (MHz) (MHz) (MHz) rate (MHz) (dB) frequency (MHz)

Analogical TV

23 486 490 494

8 8 8 10 0.94 7.52
29 534 538 542
34 574 578 582
38 606 610 614

Digital TV

26 510 514 518

8 8 8 10 0.94 7.52
48 686 690 694
61 790 794 798
67 838 842 846

TETRA

37 420.8875 420.900 420.9125

0.025 256 0.25 70 0.1 0.03
44 421.0625 421.075 421.0875
45 421.0875 421.100 421.1125
47 421.1375 421.150 421.1625
53 421.2875 421.300 421.3125

DAB-T
08A 195.080 195.936 196.792

1.712 32 2 70 0.8 1.610A 209.080 209.936 210.792
11B 217.784 218.640 219.496

E-GSM 900 DL
60 946.8 947.0 947.2

0.2 64 1 70 0.3 0.3113 957.4 957.6 957.8
975 925.0 925.2 925.4

DCS 1800 DL
546 1811.8 1812.0 1812.2

0.2 64 1 70 0.3 0.3771 1856.8 1857.0 1857.2
786 1859.8 1860.0 1860.2

UMTS FDD DL
10588 2115.1 2117.6 2120.1

5 8 8 70 0.625 510663 2130.1 2132.6 2135.1
10738 2145.1 2147.6 2150.1

could be considered, depending on the standards, as few slots:
≤ 20 slots).

We only consider, for the next results, the ratio statistic
under hypothesisH0. Evaluating this distribution would allow
to develop a joint learning-detection framework, where the
new detector could improve its detection capabilities while
ensuring a given false alarm.

Figures 2, 3 and 4 show the learning results, respectively,
for the channels Ch08A, Ch10A and Ch11B. In all figures,
three curves appears: the empirical ratio distribution, the
theoretical ratio distribution and Fisher-Snedecor distribution.
First the empirical distribution represent, the ratio distribution
where the functionf(·) is described in Section III with
M = 100 (however, different values forM were tested
leading to equivalent results). The theoretical ratio distribution
presents the simulated distribution of a ratio of independent
scaled-Chi-square and scale-inverse Chi-square distributions
with parameters respectivelyM = 100 and N = 25000.
This is due to the fact that the EM algorithm computes
the posterior distribution of the variance, which is known
to follow a scale-inverse Chi-square distribution. Finally, a
Fisher-Snedecor distribution with parametersM = 100 and
N = 25000 is also presented as possible approximation. This
latter is usually employed in the analysis of variance. Since it
only depends on known parameters, this approximation might
be convenient to design a future detector.

Notice that in all cases, the empirical distribution can be fit,
as a first approximation, by any of the other distributions. More
specifically, in Figure 4 the empirical ratio distribution seems

particularly well fitted. The biased observed can be explained
by two factors: on the one hand, as noticed before, the samples
are not perfectly Gaussian. On the other hand the EM algo-
rithm stops sometimes before convergence which leads to a
bad evaluation of the noise level. This results seems to suggest
that is indeed possible to design a detector that relies ona
priori known parametersM and N . Unfortunately although,
these curves are interesting, they cannot be generalized yet. To
confirm these results and to design an adapted joint learning-
detector, a rigorous theoretical analysis supported by extensive
measurements are needed.

VII. C ONCLUSION

We ventured, in this paper, the analysis of an energy detector
with no a priori information on the noise level. It relies on the
computation of a statistic based on the ratio of a function ofthe
currently collected samples and of some information provided
by a learning algorithm that exploits past information on the
environment. Thus a joint learning-detection framework was
suggested. A first empirical analysis showed that it might be
possible to design a detector that depends only on two known
parameters: the number of samples in a slot and the number of
samples used for the training set. Although this research show
interesting results, it is still in its infancy and these results still
need to be confirmed. To that purpose a theoretical analysis
supported by extensive empirical measurements are currently,
under investigation.
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Fig. 2. Learning results tested on the channel 08A of the DAB-T standard.
The curves compare the empirical ratio statistic to both the theoretical ratio
distribution and Fisher-Snedecor distribution.
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Fig. 3. Learning results tested on the channel 10A of the DAB-T standard.
The curves compare the empirical ratio statistic to both the theoretical ratio
distribution and Fisher-Snedecor distribution.
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