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Abstract—Within a context of Cognitive Radio, we explore the = characteristics. To that purpose, extensive work has been
pOSSIbIIIIty.tO detect the presence.of users on a given band with provided by the Cognitive Radio community to design blind
no a priori knowledge on the environment. This paper ventures and efficient spectrum sensing tools [7][8].

the analysis of a joint learning-detection framework where the in thi oint | ina-d ion f
detector improves its detecting abilities online relying on past n this paper, we suggest a joint learning-detection frame-

gathered information on the probed frequency band. Simulations Work to alleviate the lack of knowledge on the noise level.

conducted on real data to support the suggested approach sio Section Il introduces the usually considered theoreticadiah

interesting results. These results are then discussed and furthe as well as the commonly used energy detector in case of a

possible improvements are proposed. perfect knowledge on the noise level. Section Ill and Sectio

IV suggest using a learning algorithms to alleviate the abse

of information on the noise level. Information on the used
During the last century, most of the meaningful frequenaeal data for the experiment are briefly described in Section

bands were licensed to emerging wireless applicationsyavh&/. Then, first experimental results on the performances of

the static frequency allocation policy combined with a gray the introduced ratio detector are presented and discussed i

number of spectrum demanding services led to a spectr@action VI. Finally, Section VII concludes the paper.

scarcity. However, several measurements conducted in the

United-States [1], first, and then in numerous other coestri Il. SYSTEM MODEL

and/or contexts [2][3][4][5], showed a chronic underasliion o Network assumption

of the frequency band resources revealing substantial @emm ) _ . _ _
nication opportunities in these licensed bands. We consider a receiver willing to gather information on a

To alleviate the spectrum scarcity, the (Federal CommurﬂPOI gf.bands allocated tc_) a primary.network. For the sake of
cations Commission) FCC [1] suggested opening the licensdplicity, we represent time as a d|s'crete sequence of.slot
bands dedicated to primary users (PUs) to unlicensed usérs §' €very slot, the CR can acquire a given number of samples
services (usually referred to as secondary users, SUs)iat depending on the characterlst|c§ _of the receiver. Everg the _
them to exploit these bands if unoccupied at a particulae tinR cOllects samples on a specific band, only two observation
in a particular geographical area. Moreover, CognitiveiRadOUtcomeS are possible: the channel can be s_ensed enherujle
has been proposed as a promising technology to enabl@Usy- In the rest of the paper, we WI” associate the numlerica
harmless coexistence of PUs and SUs on a same frequelfay'®! t0 @ busy channel arfiito an idle channel. We assume
band. that the SU has na priori knowledge on the characteristics

In a nutshell, Cognitive Radio (CR) equipment is a conff the bands (e.g., occupied or nop.
munication device aware of its environment as well as of its L€t Tt = [r10,7,1,- - ,7y,n—1] be M independent and
operational abilities and capable of using them intelityeto  'dentically distributed (i.i.d.) samples gathered by th& C
fulfill its tasks. SUs based CR equipment are, thus charactéfcelver at the current slat The outcome of the sensing
ized by their ability to gather information through theinsers process can be modeled as a binary hypothesis test described
and to use them to adapt their behavior to their nearby pyime’?}S follows: H
network [6]. In a generic scenario, a SU should first probe ry = { e, 0
its environment to detect spectrum holes, and then access th
available bands if needed. where hypothesel, andH; refer respectively to the case of

In order to exploit as many opportunities as possible whibn absent or a present signal on the sensed channel. On the one
ensuring minimum interference with PUs, spectrum sensih@nd,x; = [0, %1, - , 2 m—1] refers to the source signal
appears as a crucial step where SUs are required to perfavitere every sample; ;. is perceived as an i.i.d. realization of a
quick and accurate detection of PUs while having minimui@aussian stochastic distributidvi(0, o2 ,). On the other hand,

(or no) a priori information on PUs activity or the channelsn, = [no,n1,- -+ ,ne,0—1] refers to i.i.d. additive white

I. INTRODUCTION



Gaussian noise (AWGN) sample€(0, 07, ;). Moreover, x; The following two equations briefly remind the expressions
andn, are assumed to be independent. Thus, we consider tiehe P¢, . and theP,, as well as their approximations for
following Gaussian received signals under either hypashesarge M.

Vre; i€ {0, , M —1}:

(BN, P =1 (4) =0 (/¥ (252 )
H; :ry; ~N(0,07, + 07 o , o
ot oot on =1, (555) = 0 (V¥ (524 1)

The previously introduced network considerations will be
referred to asissumption 1. Within this context, the detection where ",z (-) refers to the cumulative distribution function of
outcome can be modeled as the output of a decision makig2-distribution with M degrees of freedom, ar@(-) is the
policy 7 that maps the current samplesinto a binary value complementary cumulative distribution function of Gaassi
dy =m(ry), de € {0,1}. random variable (also known as Marcum function), formally

In the next subsection, we summarize the usually useddfined as:
criteria to evaluate the performance of a signal detection

policy. Qz) = \/% /w exp <_2t2> dt

B. Performance evaluation of a detection policy NP-ED provides satisfactory behavior whenis known (or

Under the previously considered binary hypothesis test, 0fccurately estimated). Unfortunately, when such knowdeidg
can define two probabilities that characterize the perfogea ynavailable, its performances degrade very quickly.

of the detection policyr at the slot numbet: The probability

of false alarm P, ;) and the probability of detectioriP( ,): I1l. L EARNING BASED RATIO STATISTIC
Ptos =P (d; = 1|Hp) In this section, we aim at introducing general notations to
Py: =P (d; = 1|Hy) define a statistic as a ratio of transformations of both the

currently gathered samples and the past collected infaomat
Mainly the ratio expression is introduced to alleviate taekl

of knowledge on the noise level?. We argue that the key
enabling concept to guaranty given performances within an
unknown environment is learning over past information. §hu
C. Neyman-Pearson energy detector it is a joint learning-detection framework.

The Neyman-Pearson energy detector (NP-ED, also knowr-€t N = [ht.0, e, -+ he v—1] denote a set oV samples
as radiometer) is a commonly used spectrum sensor. It hgollected in the past slots and memorized. We refér; tas the
been extensively analyzed for its proprieties as a sembliinformation or history vector. Itis mainly introduced tozirie
low complexity spectrum sensor, since it ignores the chiarac the exploitation of past information on the environment to
istics of the received signals and only relies on the pemivenh_ance the behavior of the Cogqltlve Radio decision making
energy of the signal. It assumes known the noise leyelat €NJINe. Consequeptlly, the Qetecthn outcome can be seen as
every slot numbet. As a first approximation, we consider inth€ output of a decision making poligythat maps the current
the rest of the paper a constant noise level fot,af , = o2 and past information, represented respectively, by théovec

Usually, constraints impose to fix tlig, . under a given level
«a, such thatP;, ; < «. The most powerful decision policy is
then defined as the one having the largBg} value for a
givenP,; = .

Under these assumption, the NP-ED is proven to be the mbs@ndh into a binary valuel; = w(rs,h;), d; € {0,1}.
powerful test. Hence, NP-ED appears as an efficient approactt us introduce the following statisti¢; and two real
when no information other than the noise level is available finctions f(-) andg(-) such that:
the receiver side. £(re)

NP-ED relies on the computation of the received energy Fi= g(hy)
statisticZ; at the slot numbet defined such as:

M1 Mainly, the function f(-) represents a transformation of the
T, = Z I curre.ntly recelyed signals at.the.slot numl:terwhﬂe, the'

= function ¢(-) aims at extracting information on the noise
of the sensed channel using past information. Singe;)
provides an estimation of the noise level, it is well knowatth
the estimation uncertainty implies a less effective detect
Namely, there exist aBNR wall under which it is theoretically
di = nnp_pp(ry) < dy = H(T; — &()) impossible to detect primary users’ activity [9].

In the rest of this paper, we consider the following well

known form of the functionsf () :

The decision policyry p_ g p is a simple Heaviside function
that depends only on the evaluation of the statigiion the
current slott:

where () is the selected threshold to guararfty, < c.
Such policies are usually described using the followinganot

tion: T
T <3 &) 1o =31



IV. LEARNING MODEL AND TOOLS clustering tool where all samples are used, with specific
A. History vector modeling weights depending on the cluster, to evaluate the parameter

: . . of all clusters.
Let us consider the particular case of a history vettpr 2 K - The K laorithm | I ted
containing all collected samples. Moreover let us assume ) K-means. € xX-means aigoriihm 1S usually presente

that P (H,) # {0,1}. In other words, the probed channefS @ particular case of EM algorithms where every element

does not remain in the same state (busy or idle) indefiniteig. the training set is allocated to only one cluster (i.e.¢ on

In this case, a fair assumption would be to consider t aussian component). _ _ .
vector h, as a mixture of Gaussian distributions. Thus the 3 Moment-Method (MM): The MM algorithm only relies

history vector of observations is assumed to be drawn for the empirical .moments of the training set. It is_a very l,OW
a stochastic distributiod formalized as a Gaussian MixtureCOMPIexity algorithm compared to the EM algorithm. It is,
Model (GMM) with K components (to specify later on reapnfortunately, also less efficient for a same number of itngin

data). Letfycqo,...,k—1) denote the distribution of theth samples[lZ]._ . . .
component of the distributiord, and py, (-) its associated Although, in general, learning algorithms have nice math-

probability density functionpdf): ematical pr_oprieFieTs in. theory (e.g., in terr_ns of conyengﬁn
) many practical difficulties can occur when implementingihe

o, (h) = L s Briefly we can stress out, first, the usually high complexity

V2V of these algorithms to reach their solution (especiallyetru

for the EM algorithm). Moreover, if the stopping criteriaear
not carefully selected, they could lead to a non convergence
of the algorithms. As a consequence, “wrong” estimations

th o of the parameters’ distributions could occur. Last but not
of samples drawn from the™ distribution andAy, the set of |55t if the algorithms rely on specific hypothesizes on the

samples dra\évr;m)r? th? distributien. Then we can define.  ya(a distributions (e.g., Gaussian mixtures in the casehdf E
such thata, =" Finally, thepdf, py(-), of the observed and MM algorithms), not fulfilling these assumptions might

whereukéJE[ek] andV, éV[Qk}. E andV refer, respectively, to
the expectation and the variance of the considered disivithu
Moreover, let us denote byc(o,...,x—1} the proportion

random date: can be written as: significantly affect their behavior.
K-l In the rest of this paper, we chose to implement the EM
po(h) = Z arpo, (h) algorithm and to present first results of its performances on
k=0

real data collected during a spectrum measurement campaign
Notice that depending on the spectrum sensing scenarfithe goal being to characterize the distribution of the ratio
only a subset of these parameters might be of interest. AstatisticF;. As a matter of fact, this would enable the design
matter of fact, on the one hand, in the case of extensive effliof a learning based detector where the probabilities offals
spectrum sensing, the decision maker, aims at evaluateg tharm and miss detection could be evaluated and controlled.
occupation pattern of the band. In this case, the parameters
aj, appear crucial. On the other hand, in the case of onlin&. OVERVIEW OF THE MEASUREMENT CAMPAIGN SETUP

learning, evaluating the parameters related to the noiss le . ) . . )
and/or signal level would be prioritized. In this Section, we briefly describe the experimental setup,

The next subsection will briefly present different possibl§duiPment used during the spectrum measurement campaign

machine learning approaches to evaluate the parameter9fVell as the probed channels characteristics. .
Gaussian mixtures. Anticipating the empirical experirseot 1€ measurement platform employed in this study is based
real observed data, we will only discuss algorithms thdtesc ©On the Universal Software Radio Peripheral (USRP) [13] and

two component K = 2) Gaussian mixtures. GNU RaQio [14] architectL_Jre. USRP is an openly designed
_ _ inexpensive Software Designed Radio (SDR) hardware plat-
B. Learning algorithms form that provides radio front-end functionalities, Angileal

When dealing with a mixture of two Gaussian distributiongp Digital and Digital to Analogical Conversion (ADC/DAC),
several alternative approaches can be suggested by thénmactiecimation/interpolation with filtering and a Universalrige
leaning community. Among which the most famous and usBus 2 (USB2) interface to connect to an off-the-shell Pesbon
ally implemented: theExpectation-Maximization algorithm, Computer (PC). The PC runs the GNU Radio software, a free
the K-means algorithm and theMoment Method. and open source toolkit that provides a library of signalpro

1) Expectation-Maximization (EM): The EM algorithm is cessing blocks for building SDRs. In addition, it also po®s
an iterative algorithm that generalizes the maximum Ih@tid blocks for communicating with the USRP. The general scheme
concept to GMMs[10][11]. It is known to be very efficientof the measurement platform is illustrated in Figure 1.
compared to other algorithms for a same training set. Un-The primary signal of interest is captured with an omni-
fortunately it can become computationally burdensome whelirectional discone-type antenna AOR DN753 that covers the
the training set or the number of mixtures grow large. ftequency range 75-3000 MHz. The USRP Radio Frequency
mainly computes tha posteriori distribution of the evaluated (RF) front-ends are provided in form of daughter boards that
parameters. This algorithm is usually presented as a soéin be plugged to the USRP main board. In this study we
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Fig. 1. Measurement platform employed in this study.

have employed two receiver-only daughter boards: TVRX (5@esulting sampled BandWidth (BW) as well as the USRP RF
860 MHz, 8 dB typical noise figure) and DBSRX (800-2400ront-end gain factor are shown. The gain factor was chosen
MHz, 3-5 dB typical noise figure). The daughter boards as® as to maximize the received signal level (and hence the
employed to tune to the carrier frequency of the desired prieceiving SNR) without incurring in saturation. For most of
mary signal and perform down-conversion to the Intermediathe channels the optimum gain value was 70 dB and in the
Frequency (IF) at which the USRP main board operates. Tparticular case of TV (both analogical and digital) the gain
USRP main board includes 12-bit ADCs working@t- 10¢ was drastically reduced due to the proximity of the TV statio
samples per second to digitize the received signal and(sa 3 km). The captured signal sequences were filtered in
Field Programmable Gate Array (FPGA) to perform filteringoftware with Matlab. The normalized cut-off frequencies f
and digital down-conversion (decimation) from the IF bandach channel are shown in Table |, resulting in passbandd equ
to the Base Band (BB). Decimation is required in order tm or greater than the signal BW, except for TV channels where
adapt the incoming data rate to the USB2 and PC computisgme BW was required to accommodate the filter’s transient
capabilities. A USB controller sends the digital signal ptgs band (for DAB-T the RF BW is 1.712 MHz but the signal
to the PC in 16-bit | and 16-bit Q complex data format (4 bytaaformation is confined within a BW of 1.54 MHz).

per complex sample), resulting in a maximum rate3oflL0®
complex samples per second. The maximum RF bandwidth
that can be handled is therefore 8 MHz (narrower bandwidthsT0 evaluate the distribution of the statist¢, we conducted

can be selected by adjusting the decimation rate). The h&sfies of simulations on the measurements obtained using
PC runs the GNU Radio'ssrp_rx_cfil e. py script, which the USRP. The considered bands are the following: channels
simply collects the digital signal samples sent by the USRFN08A, Ch10A and Ch11B of the DAB-T standard. The data
board through the USB2 interface and saves the received Bgllected in these cases contain either noise or signal (i.e

digital signal sequence to a file in the host PC’s hard drive f& (Ho) = i,7 € {0,1}). For every band and each hypothesis
off-line post_processing. (HO, Hl) we collected10 million Samples.

The af ioned ) A quick evaluation of the used data shows that in both cases,
e aforementioned measurement equipment was useq/v‘?ether the samples follow hypothe8ig or H;, and as a first

collect digital signal samples of real channels for Var'o"ggproximation, we can indeed assume the samples as Gaussian

radio technologies. To this end, the measurement platfog described in Section Il. However, the Gaussian assumptio
was placed on a building rooftop in urban Barcelona, Spal-l

41° 23 20" N. 2° 6 43" E. 175 f altitud ith D not perfect. The Gaussianity of the samples becomes more
((j. i ¢ N h ’I mgters IO at'tg €) wit satisfactory if the data is further down-sampled in sofewvar
Irect line-of-sight to several transmitters located a lens. Since we are limited in the amount of date used, in this study
or hundreds of meters away from the antenna and withqyl, ., qe to down-sample the data by a factor

buildings blocking the radio propagation. This measurgmen Thus, three training sets composed of a random mixtures

scenario_ enabled us t(.). reliably capture the (_:Iesired signgﬁgz) of noise and signal collected from each of these bands
urr:der h'gh.SNRf cr:]ondmons. '(Ij’abrlle : s:Jmmanzes the mall}e created. Then sequentially, the EM algorithm estimtates
characteristics of the measured channels. noise level (previously referred to agh;)) on 400 training

For each channel, the channel’s radio frequency range, gets 0f25000 mixed samples of noise and signal. Thus, The
radio bandwidth, the selected USRP decimation rate and tkarning process uses every time a se&t®00 samples (which

VI. SIMULATION PERFORMANCES AND DISCUSSION



TABLE |
CHANNELS MEASURED IN THIS STUDY. ANALOGICAL/DIGITAL TV, TERRESTRIAL TRUNKED RADIO (TETRA), TERRESTRIALDIGITAL AUDIO
BROADCASTING (DAB-T), EXTENDED GLOBAL SYSTEM FORMOBILE COMMUNICATIONS 900DOWNLINK (E-GSM 900 DL), DGITAL CELLULAR
SYSTEM 1800DOWNLINK (DCS 1800 DL)AND UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM FREQUENCY-DIVISION DUPLEX DOWNLINK
(UMTS FDD DL).

System Channel|  fetart | Jfeenter | J[stop | Signal BW | Decimation | Sampled BW| Gain | Cutoff | Pass band

number (MHz) (MHz) (MHz) (MHz) rate (MHz) (dB) | frequency (MHz)

23 486 490 494

. 29 534 538 542
Analogical TV 34 574 578 582 8 8 8 10 0.94 7.52

38 606 610 614

26 510 514 518

. 48 686 690 694
Digital TV 61 700 704 708 8 8 8 10 0.94 7.52

67 838 842 846

37 420.8875| 420.900 | 420.9125
44 421.0625| 421.075| 421.0875
TETRA 45 421.0875| 421.100 | 421.1125 0.025 256 0.25 70 0.1 0.03
47 421.1375| 421.150 | 421.1625
53 421.2875| 421.300 | 421.3125
08A 195.080 | 195.936 | 196.792

DAB-T 10A 209.080 | 209.936 | 210.792 1.712 32 2 70 0.8 1.6
11B 217.784 | 218.640 | 219.496
60 946.8 947.0 947.2
E-GSM 900 DL 113 957.4 957.6 957.8 0.2 64 1 70 0.3 0.3
975 925.0 925.2 925.4
546 1811.8 1812.0 1812.2
DCS 1800 DL 771 1856.8 1857.0 1857.2 0.2 64 1 70 0.3 0.3
786 1859.8 1860.0 1860.2
10588 2115.1 2117.6 2120.1
UMTS FDD DL 10663 2130.1 2132.6 2135.1 5 8 8 70 0.625 5

10738 21451 2147.6 2150.1

could be considered, depending on the standards, as fesv slparticularly well fitted. The biased observed can be expldin
< 20 slots). by two factors: on the one hand, as noticed before, the sample
We only consider, for the next results, the ratio statist@re not perfectly Gaussian. On the other hand the EM algo-
under hypothesi&l,. Evaluating this distribution would allow rithm stops sometimes before convergence which leads to a
to develop a joint learning-detection framework, where thead evaluation of the noise level. This results seems toesigg
new detector could improve its detection capabilities whilthat is indeed possible to design a detector that relies on
ensuring a given false alarm. priori known parameterd/ and N. Unfortunately although,
Figures 2, 3 and 4 show the learning results, respectivelijese curves are interesting, they cannot be generalizedio/e
for the channels ChO8A, Ch10A and Ch11B. In all figuregonfirm these results and to design an adapted joint learning
three curves appears: the empirical ratio distributiore tifletector, a rigorous theoretical analysis supported bgnesite
theoretical ratio distribution and Fisher-Snedecor itistion. measurements are needed.
First the empirical distribution represent, the ratio rilsttion
where the functionf(-) is described in Section Il with
M = 100 (however, different values foll/ were tested VII. CONCLUSION
leading to equivalent results). The theoretical ratioriigtion
presents the simulated distribution of a ratio of indepabhde We ventured, in this paper, the analysis of an energy detecto
scaled-Chi-square and scale-inverse Chi-square distisu with no a priori information on the noise level. It relies on the
with parameters respectively/ = 100 and N = 25000. computation of a statistic based on the ratio of a functiothef
This is due to the fact that the EM algorithm computesurrently collected samples and of some information predid
the posterior distribution of the variance, which is knowiby a learning algorithm that exploits past information oe th
to follow a scale-inverse Chi-square distribution. Fipath environment. Thus a joint learning-detection frameworkswa
Fisher-Snedecor distribution with parametéis = 100 and suggested. A first empirical analysis showed that it might be
N = 25000 is also presented as possible approximation. Thissible to design a detector that depends only on two known
latter is usually employed in the analysis of variance. 8iitic parameters: the number of samples in a slot and the number of
only depends on known parameters, this approximation migtdmples used for the training set. Although this researotv sh
be convenient to design a future detector. interesting results, it is still in its infancy and theseulés still
Notice that in all cases, the empirical distribution can be fineed to be confirmed. To that purpose a theoretical analysis
as a first approximation, by any of the other distributionsr& supported by extensive empirical measurements are clyrrent
specifically, in Figure 4 the empirical ratio distributioaesns under investigation.
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Fig. 2. Learning results tested on the channel 08A of the DA&andard.

The curves compare the empirical ratio statistic to both tleerttical ratio
distribution and Fisher-Snedecor distribution.
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Fig. 3. Learning results tested on the channel 10A of the DA&andard.
The curves compare the empirical ratio statistic to both tleerttical ratio
distribution and Fisher-Snedecor distribution.
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