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Abstract. This paper presents a vision of how the different management proce-
dures of future Fifth Generation (5G) wireless networks can be built upon the 
pillar of artificial intelligence concepts. After a general description of a cellular 
network and its management functionalities, highlighting the trends towards au-
tomatization, the paper focuses on the particular case of extracting knowledge 
about the time domain traffic pattern of the cells deployed by an operator. A 
general methodology for supervised classification of this traffic pattern is pre-
sented and it is particularized in two applicability use cases. The first use case 
addresses the reduction of energy consumption in the cellular network by auto-
matically identifying cells that are candidates to be switched-off when they 
serve low traffic. The second use case focuses on the spectrum planning and 
identifies the cells whose capacity can be boosted through additional unlicensed 
spectrum. In both cases the outcomes of different classification tools are as-
sessed. This capability to automatically classify cells according to some expert 
guidance is fundamental in future networks, where an operator deploys tenths 
of thousands of cells, so manual intervention of the expert is unfeasible.  

Keywords: Classification. Cellular Networks. 5G. Radio Access Network 
Management. 

1 Introduction 

Our interconnected world is increasingly marked by fluid boundaries, tighter inter-
linkages and globally coordinated actions. Among these complexities, one of the most 
influential factors shaping our global society are networks. Networks serve as a cen-
tral metaphor for describing the complexities of modern life. But they are also an 
undeniable technological foundation for unlocking tremendous social and economic 
benefits. Understanding the dynamics of networks – and their potential for positive 
change - can help us collectively meet our greatest social, economic and environmen-
tal challenges [1]. In this context, cellular networks have become pivotal: currently, 
there are as many mobile subscriptions as people in the world, and every second, 20 
new mobile broadband subscriptions are activated. In addition to the increase in sub-
scribers, data consumption also continues to rise. 
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Then, as a next step in the evolution of cellular communication systems, research 
carried out by industry and academia is nowadays focused on the development of the 
new generation of mobile and wireless systems, known as 5th Generation (5G) that 
targets a time horizon beyond 2020. 5G intends to provide solutions to the continu-
ously increasing demand for mobile broadband services associated with the massive 
penetration of wireless equipment such as smartphones, tablets, the tremendous ex-
pected increase in the demand for wireless Machine To Machine communications [2], 
and the proliferation of bandwidth-intensive applications including high definition 
video, 3D, virtual reality, etc. 

To cope with the abovementioned demands, requirements of future 5G system 
have been already identified and discussed at different fora [3][4]. Examples of these 
requirements include1000 times higher mobile data volume per area, 10 times to 100 
times higher number of connected devices, 10 times to 100 times higher typical user 
data rate, 10 times longer battery life for low power devices and 5 times reduced End-
to-End latency.  

Furthermore, 5G networks will be fueled by the advent of big data and big data an-
alytics [5]. The volume, variety and velocity of big data are simply overwhelming. 
Nowadays, there are already tools and platforms readily available to efficiently handle 
this big amount of data and turn it into value by gaining insight and understanding 
data structures and relationships, extracting exploitable knowledge and deriving suc-
cessful decision-making. Applications of big data and big data analytics are already 
present in different sectors (e.g. entertainment, financial services industry, automotive 
industry, logistics, etc.). Therefore, with the huge amount of data generated by mobile 
networks, it can be envisaged that big data technologies will play a key role in 5G to 
extract the most of possible value of the available data exploiting it for enhancing the 
efficiency in mobile service provisioning. 

In this context, this paper supports the idea that Artificial Intelligence (AI) mecha-
nisms, which intend to develop intelligent systems able to perceive and analyze the 
environment and take the appropriate actions, will fully fertilize in the 5G ecosystem. 
While many seeds can be found in the literature both from an academic/theoretical 
perspective (e.g., connected to the so-called Cognitive Networks [6]) and from a prac-
tical perspective in current Third Generation (3G) and Fourth Generation (4G) net-
works (e.g., connected to the so-called Self-Organizing Networks [7]), more ambi-
tious objectives can be targeted and the 5G era is the proper time for AI-based net-
works to happen. 

Based on the above considerations, this paper intends to present a vision of how 
the different Radio Access Network (RAN) management procedures of future 5G 
networks can be built upon the pillar of AI concepts. For that purpose, the paper pro-
vides in Section 2 a general description of a cellular network and corresponding RAN 
management functionalities and highlights the trends towards automatization. This is 
mainly addressed to the non-specialized reader. In turn, Section 3 deepens on the 
framework to support RAN management in the context of 5G networks. Section 4 
focuses on the particular case of extracting knowledge about the time domain traffic 
pattern of the cells and provides a number of potential applications. With this, two 



applicability use cases are presented in Section 5 and Section 6. Conclusions close the 
paper in Section 7. 

2 Radio Access Network Management 

A generic view of a cellular network is depicted in Fig. 1. Its main components are 
briefly described in the following: The User Equipment (UE) is the device that ena-
bles the Mobile Network Operator (MNO)’s customer to gain access to the network 
services (e.g., voice, data). The UE connects to the Radio Access Network (RAN) 
through the so-called radio interface (i.e., a wireless interface). Typically, the UE is 
multi-technology (e.g., 3G, 4G, WiFi) and can operate at different frequency bands. 

The RAN is the network subsystem responsible to provide the connectivity be-
tween the UE and the Core Network (CN), which manages the provision of final ser-
vices to the users. The RAN is composed of multiple base stations (BS), also known 
in general as “cells”, and, for some technologies such as Second Generation (2G) and 
3G, it also includes additional network controller nodes. The RAN includes a number 
of management functionalities in order to provide the wireless connectivity in an effi-
cient way. In turn, the CN takes care of aspects such as the interconnection with other 
networks.  

 
Fig. 1. Generic view of a cellular network architecture 

Given that the RAN is composed of multiple cells and there will be multiple UEs 
moving around, as illustrated in Fig. 2, the set of RAN management functionalities 
takes care of deciding aspects such as to which cell a specific UE is attached to, the 
time at which a moving UE needs to switch the connectivity from one cell to another 
neighboring cell, how a given cell splits its capacity (i.e., data rate) among the differ-
ent UEs that are attached to it, etc. 

The vision of the future 5G RAN corresponds to a highly heterogeneous network at 
different levels, including multiple technologies, multiple cell layers, multiple spec-
trum bands, multiple types of devices and services, etc., with unprecedented require-



ments in terms of capacity, latency or data rates. The resulting network easily com-
prises 10.000-20.000 cells for a wide coverage service area (e.g., medium size Euro-
pean country). Consequently, the overall RAN management processes that constitute 
a key point for the success of the 5G concept will exhibit tremendous complexity. In 
this direction, legacy systems such as 2G/3G/4G already started the path towards a 
higher degree of automation in the planning and optimization processes through the 
introduction of Self-Organizing Network (SON) functionalities, in order to carry out 
these processes in a more efficient way.  

SON refers to a set of features and capabilities designed to reduce or remove the 
need for manual activities in the lifecycle of the network, so that operating costs can 
be reduced as well as revenue can be protected by minimizing human errors. As such, 
with the introduction of SON features, classical manual planning, deployment, opti-
mization and maintenance activities of the network can be replaced and/or supported 
by more autonomous and automated processes.  

SON can greatly benefit from AI-based tools able to smartly process input data 
from the environment and come up with exploitable knowledge (i.e., knowledge that 
can be formalized in terms of models and/or structured metrics that represent the net-
work behavior in a way that can be directly used to make smart network planning and 
optimization decisions). The obtained knowledge will drive the appropriate actions 
associated to the different SON functionalities. The target is to efficiently handle this 
big amount of data and turn it into value by gaining insight and understanding data 
structures and relationships, extracting exploitable knowledge and deriving successful 
decision-making. 

 
Fig. 2. Closer view of the RAN subsystem 

3 Knowledge Discovery to support 5G RAN Management 

3.1 Data Acquisition and Pre-processing 

MNOs have traditionally operated with complex, disparate sets of data, with useful 
information residing in multiple systems such as customer relationship management 
systems, network management systems, billing, inventories, network elements, ser-
vice management systems, deep packet inspection devices, application-specific data-
bases, etc., [8]. In addition, MNOs have to deal with the concurrent operation of net-



work elements belonging to multiple network generations (2G/3G/4G, etc.) and/or to 
multiple vendors, each one holding different types of data, in various formats. This 
huge heterogeneity of data and the associated difficulties in carrying out an efficient 
processing has led to perform the network management processes relying on a limited 
amount of data both in terms of variety of data considered (i.e., many counters and 
measurements that can be captured are not exploited at their possible extent) and time 
spam that are stored in the management systems (i.e., many counters and measure-
ments are just retained for a short period of time in support of certain functionalities 
and then are either deleted or forgotten in back-up systems, while their applicability to 
keep the memory of the system is disregarded).  

While this limited approach has been the rule in legacy 3G/4G systems, with SON 
deployment still at its infancy, a substantial evolution is necessary to deal with the 
increased complexity and stringent efficiency constraints of 5G. Therefore, the chal-
lenge for an efficient 5G RAN Management is to build this complete network vision 
by smartly analyzing and correlating all the different data sources in order to extract 
the most relevant information contained in them.  

In general, gathered input data can belong to different categories (e.g., network da-
ta, user data, content data, external data). Network data characterizes the behavior of 
the network in terms of different measurements collected and recorded by the network 
nodes. Measurements include network traffic levels (e.g. traffic load at the radio inter-
face, signaling traffic, active UEs per cell, etc.), resource access measurements, Quali-
ty of Service (QoS) measurements (e.g. throughput, latency, etc.) or cell availability 
measurements. Measurements can be performed by the network nodes (e.g. the cells) 
and also by the UEs that report them to the network.  

The time span of the data collection will tightly depend on the targeted applicabil-
ity of each type of data (e.g., planning actions will consider input data recorded over 
longer periods of time that can spam over several days or weeks while optimization 
actions will usually consider input data collected over much shorter time frames).  

The proposed framework relies on the application of data mining techniques over 
the collected input data in order to distil all the available information and identify 
meaningful models and patterns that will drive the subsequent decisions. In this re-
spect, the collected data coming from multiple heterogeneous sources needs to be pre-
processed in order to prepare it for mining. This includes different tasks such as [9]: 
data cleaning to remove noise and inconsistent data (e.g. discard network counters 
that exhibit errors); data integration to combine network data collected at different 
nodes and exhibiting different time stamps or different periodicities; data selection to 
choose the relevant data for each specific analysis; and data transformation where 
data are consolidated through e.g. summary or aggregation operations (e.g. aggregat-
ing measurements collected with a periodicity of 15min to derive the equivalent 
measurement with 1h periodicity). 

3.2 Knowledge Discovery 

The Knowledge Discovery stage performs inference on the pre-processed data in 
order to build models that reflect the relevant knowledge that will drive the optimiza-



tion and planning decisions. The core functionality of the knowledge discovery con-
sists in learning from the users and the network in order to extract models that reveal 
their behavior. It is worth emphasizing here that, given the ultra-high level of effi-
ciency that is associated to the design of future 5G systems, the target is to gain in-
depth and detailed knowledge about the whole ecosystem, which in turn will enable 
ultra-efficient management and optimization. In this respect, the higher level of 
knowledge about the network and its users constitutes a key differential factor be-
tween 5G and legacy systems. 

This stage will be based on machine learning tools used to carry out the mining of 
the pre-processed data to extract relevant knowledge at different levels: cell level 
(contains the characterization of the conditions on a per cell basis), cell cluster level 
(characterization of groups of cells built according to their similarities) and user level 
(contains the characterization of the existing conditions at the user equipment level). 

The general goal of machine learning is to build computer systems that can adapt 
and learn from their experience [10]. Machine learning techniques are usually subdi-
vided into three big categories, namely supervised learning, unsupervised learning 
and reinforcement learning. From the perspective of the knowledge discovery stage 
considered here, both supervised and unsupervised learning techniques are the ones 
that exhibit more applicability, while reinforcement learning tools will normally be 
more relevant for the decision making processes associated to the management func-
tionalities.  

Specific machine learning functions that are relevant in the framework considered 
here for RAN management are classification, prediction and clustering [9]. Among 
them, the focus of this paper is on the classification applied for knowledge discovery 
related to the time domain traffic variations of the cells deployed in a network. Classi-
fication is the process of finding a model or function that describes and distinguishes 
data classes or concepts. The obtained model (i.e. the classifier) is then used to deter-
mine the class to which an object belongs. The object to be classified is represented 
by a tuple that includes a set of attribute values. Classification process assumes that 
the possible classes are predefined in advance. Then, the classification model is usual-
ly obtained from a supervised learning algorithm that analyses a set of training tuples 
associated with known classes.  

4 Classification of the cell-level time domain traffic 

The cell-level time domain traffic defines how the traffic of a cell varies as a function 
of time. Traffic can be measured in different ways, such as the load factor, the total 
number of users connected to the cell, the total data rate, etc., and it can be aggregated 
or split among QoS classes. The traffic in a cell will be tightly related with the envi-
ronment where the cell is deployed and with the characteristics and profiles of the 
users served by the cell. This will lead to time correlations in the traffic evolution of a 
given cell at different levels (e.g. intra-day variations in which the traffic can substan-
tially differ between mornings or nights, variations during the week between working 
days and weekend, etc.). The detailed analysis of these correlations will allow extract-



ing valuable knowledge that can be used for making management decisions regarding 
the configuration of a cell. In this respect, this paper focuses on the application of 
classification techniques to extract this knowledge. In particular, the cells will be 
classified based on their historical traffic samples. The possible classes will indicate 
certain behaviors of the cells that are relevant for different RAN management pro-
cesses. In the following we start by providing the general classification methodology 
and then we particularize it according to its applicability in some selected use cases, 
providing some results obtained using data extracted from a real mobile network. 

4.1 General classification methodology  

The input data for each cell i is a time series Xi=(xi(t),, xi(t-1), ...., xi(t-(N-1))) com-
posed of N samples of the measured traffic in the cell i at different times t. The objec-
tive of the classifier is to make an association between the input time series Xi and a 
class C(Xi) that characterizes the behavior of the cell’s traffic in the time domain. The 
number and the type of classes will depend on the specific applicability of the classi-
fication outcomes, as it will be detailed in the use cases that will be presented later on.  

Since the number of time samples N will typically be a very large value (e.g. re-
flecting the traffic measured in a cell in periods of some minutes and collected during 
several weeks, months, etc.), it will not be feasible to use the time series Xi directly as 
input of a classifier tool. Therefore, an initial processing is carried out to come up 
with a vector F(Xi) of shorter dimension M that preserves the relevant characteristics 
of the traffic pattern. This vector will be the input of the classifier. Following the usu-
al terminology in classification [9], vector F(Xi) represents the tuple to be classified 
and each of its components represents a feature or attribute.  Again, the definition of 
the mapping between Xi and F(Xi) will be dependent on the specific applicability of 
the classification, so it will be detailed later on when analyzing the different use cases.  

The classifier will perform the association between the input F(Xi) and the class 
C(Xi), as illustrated in Fig. 3. The internal structure of the classifier will be given by 
the specific classification tool being used and its settings will be automatically con-
figured through a supervised learning process executed during an initial training 
stage. This training will use as input S time series Xj j=1,...,S of some cells whose 
associated classes C(Xj) are pre-defined by an expert. In this way, the training set will 
be composed by the S tuples F(Xj), j=1,...,S and their associated classes C(Xj). The 
supervised learning process will analyze this training set to determine the appropriate 
configuration of the classification tool. The overall process is illustrated in Fig. 3.  

4.2 Classification tools  

Regarding the classification tool, the following alternatives are considered [9]: 



 
Fig. 3. General classification methodology 

• Decision tree induction: The classification is done by means of a decision tree, 
which is a flow-chart structure where each node denotes a test on a feature value, 
i.e. a component of vector F(Xi), each branch represents an outcome of the test, 
and tree leaves represent the classes. The tree structure is built during the super-
vised learning stage through a top-down recursive divide-and-conquer manner, 
starting from the training set which is recursively partitioned into smaller subsets. 

• Naive Bayes classifier: In this case the classifier evaluates the probability 
Prob(C(Xi)|F(Xi)) that a given cell Xi belongs to a class C(Xi) based on the values 
of the features F(Xi). The resulting class is the one with the highest probability. 
The computation of this probability is done using Bayes' theorem under the “naive” 
assumption of class conditional independence, which presumes that the effect of a 
feature value on a given class is independent of the values of the other features. In 
turn, the different terms in the computation of the Bayes’ theorem are obtained 
from the analysis of the training set.      

• Support Vector Machine (SVM): A SVM is a classification algorithm based on 
obtaining, during the training stage, the optimal boundary that separates the vectors 
F(Xj) of the training set in their corresponding classes C(Xj). The obtained bounda-
ry is then used to perform the classification of any other input vector F(Xi). To find 
this optimal boundary, it uses a nonlinear mapping to transform the original train-
ing data into a higher dimension so that the optimal boundary becomes an hyper-
plane. Although SVM classifier is originally intended to do a binary classification, 
a multi-class SVM classifier can easily built by hierarchically combining multiple 
binary SVM classifiers. Each of these binary classifiers specifies whether the cell 
belongs or not to a given class. 

• Neural Network: The classification is done by means of a feed-forward neural 
network that consists of an input layer, one or more hidden layers and an output 
layer. Each layer is made up of processing units called neurons. The inputs to the 
classifier, i.e. each of the components of vector F(Xi), are fed simultaneously into 
the neurons making up the input layer. These inputs pass through the input layer 
and are then weighted and fed simultaneously to a second layer. The process is re-
peated until reaching the output layer, whose neurons provide the selected class 
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C(Xi). The weights of the connections between neurons are learnt during the train-
ing phase using a back propagation algorithm. 

The abovementioned general classification methodology presents applicability in 
different management process, such as network planning, optimization of radio re-
source management algorithms, energy saving, spectrum planning or load balancing. 
In the following sections, the methodology is particularized for two of these use cases. 

5 Use case 1: energy saving 

This use case aims at reducing the energy consumption in the deployed cellular net-
work.  According to the Mobile’s Green Manifesto report [11], approximately 80% of 
the energy consumption and Green House Gas emissions of mobile operators is 
caused from their networks. From an economical perspective, if all networks with 
above-average energy consumption were improved to the industry average, there is a 
potential energy cost saving for mobile operators of $1 billion annually at 2010 pric-
es. In case of improving to levels of the top quartile the cost saving could be more 
than $2 billion a year [11]. Therefore, techniques intended to reduce the energy con-
sumption are relevant for operators of current and future networks.  

In this use case, the energy reduction is done by switching off the cells that carry 
very little traffic at certain periods of the day (e.g. at night) and making the necessary 
adjustments in the neighbor cells so that the existing traffic can be served through 
some other cell. In this context, the classification methodology of section 4 can be 
used to identify candidate cells to be switched-off based on their traffic patterns. The 
automation of this procedure based on expert criteria captured in the training set be-
comes particularly useful considering that networks in the envisaged ultra-dense sce-
narios for future 5G systems can comprise several tens of thousands of cells. There-
fore, it is not practical that a human expert can make this classification manually. It is 
worth mentioning, however, that the final decision on whether or not to switch off a 
cell would make use of this classification as well as other possible inputs which are 
out of the scope of this paper (e.g. the neighbor cell lists to ensure that a call that is 
generated in a cell that has been switched-off can be served through another cell).  

In this use case a cell can be classified in two different classes: 

• Class A: Candidate cell to be switched off 
• Class B: Cell that cannot be switched off. 

5.1 Data Acquisition and Pre-processing 

In this case, the components of vector F(Xi) correspond to the average normalized 
traffic of the cell during the nights (i.e. from 0h to 8h), the mornings (i.e. from 8h to 
16h) and the afternoons (i.e. from 16h to 24h) for each day of the week (Monday to 
Sunday). This leads to a total of M=21 components that can be easily obtained by 
normalizing the time series Xi so that the traffic ranges from 0 to 1 and by averaging 
the time series in each of the abovementioned periods. 



To assess the behavior of the classification methodology in this use case, a set of 
real traffic measurements for a total of 419 cells deployed by an operator in a certain 
geographical region has been used. For each cell i, the time series Xi is composed by 
the data traffic measurements done every 15 min, and collected during a whole week. 
Therefore, each time series is composed by N=672 traffic samples. The traffic in a 
period of 15 min is given by the average number of users in the cell with an active 
data session. 

5.2 Knowledge Discovery 

The different classification tools discussed in section 4.1 have been implemented by 
means of RapidMiner Studio Basic [12]. The different parameters have been 
manually adjusted to obtain good accuracy levels of the different classification tools. 
In particular, the SVM is configured with radial kernel type, complexity constant 
which sets the tolerance for misclassification C=30, kernel cache 200 MB, 
convergence precision 0.001, a maximum of 105 iterations and the loss function is 
defined with complexity constants equal to 1 for both positive and negative examples 
and insensitivity constant equal to 0. The neural network classifier is configured with 
one hidden layer, 500 training cycles, learning rate 0.3, momentum 0.6 and the 
optimization is stopped if the training error gets below 10-5. The decision tree is 
configured with maximal depth 20, minimal leaf size 2, confidence level 0.25, 
minimal size for split 4, minimal gain 0.1 and applying pruning and prepruning with 3 
alternatives. Finally the Naive Bayes classifier is configured with Laplace correction, 
greedy estimation mode and 10 kernels. 

5.3 Results 

To illustrate the expert criteria to be learnt by the classification tool, Fig. 4 plots the 
time series Xi of 4 example cells included in the training set. Two of them are classi-
fied by the expert as A and two of them are classified as B. Then, different training 
sets have been built including these cells together with other examples in order to 
train the classification tools.  

First, several tests have been done to derive the accuracy of the considered classifi-
cation tools as a function of the training set size S. For a given S, the accuracy is 
measured by executing the classification over the cells of the training set and calculat-
ing the percentage of cells that are classified in the same category that was declared 
by the expert in the training. The test has been applied for all 4 classification tools and 
training set sizes ranging from S=10 to S=200. The best accuracy is obtained by the 
SVM, which provides 100% accuracy in all the cases, followed by the Neural Net-
work and Decision Tree, which exhibit accuracy above 98.5%. The worst behavior is 
obtained with the Naive Bayes classifier with a minimum accuracy of 96.4%.  

After completing the training process, the classification of the 419 available cells is 
performed. Then, as a first result that illustrates the operation of the classification 
process, Fig. 5 depicts the time series Xi of two example cells that didn’t belong to the 



training set: Cell 260, which is classified as Class A by all 4 classification tools con-
sidered, and Cell 240, which all 4 classification tools categorize as Class B. From 
visual inspection, and by comparing these cells with the examples given by the expert 
in Fig. 4, it appears an adequate decision given that Cell 260 exhibits relatively long 
periods at night serving no traffic at all and Cell 240 has traffic during all the time 
periods in the week. 

Fig. 6 presents the total number of cells that are classified as A by each classifica-
tion tool as a function of the training set size S. It is observed that, for low values of S 
(e.g. S=10) roughly half of the cells are classified as A and half are classified as B by 
all the tools. This indicates that, due to the low number of examples in the training set, 
the classification tools are not able to clearly distinguish the traffic patterns and the 
classification exhibits high randomness. Instead, when increasing the training set size 
S, the number of cells belonging to class A is substantially reduced for all the classifi-
ers (e.g. for the case of the largest training set size S=200 the number of cells classi-
fied as A ranges from 46 with SVM up to 90 for the Naive Bayes case). It is worth 
emphasizing that the SVM exhibits a more efficient operation compared to the rest of 
classification tools since it is less sensitive to the value of S: as soon as the training set 
is S≥20, the result of the classification is very similar (i.e., there are around 50 cells 
classified as A). 

 
Fig. 4. Examples of cells of the training set belonging to classes A and B. 

 
Fig. 5. Examples of two cells classified as A (Cell 260) and B (Cell 240). 
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Table 1 compares the outcomes of the different classification tools by presenting 
the percentage of coincidences between every pair of tools for the case S=200. For 
example, the table shows that 91% of the cells (i.e. 381 out of 419 cells) have been 
classified equally by the SVM and the Neural Network. The table also presents the 
“Expert validation”, which measures the percentage of coincidences with respect to 
the classification made by the expert. It can be observed that the largest percentages 
of coincidences are obtained with SVM.   

 
Fig. 6. Number of cells classified as A as a function of the training set size. 

Table 1. Percentage of total coincidences by every pair of classification tools with S=200 

 SVM Neural Network Naive Bayes Decision Tree Expert validation 
SVM -- 91% 88% 93% 98% 

Neural Network 91% -- 87% 91% 91% 
Naive Bayes 88% 87% -- 88% 87% 

Decision Tree 93% 91% 88% -- 94% 

6 Use case 2: spectrum planning 

In light of the more advanced spectrum management models envisioned for future 5G 
systems, the provisioning of the spectrum resources to be exploited at a given time 
and cell should be considered from a wider perspective. Specifically, although li-
censed spectrum remains operators’ top priority to deliver advanced services and 
better user experience, other elements need to be explored as complements to meet 
the ultra-high capacity foreseen  to be needed by future systems. These elements in-
clude the use of unlicensed spectrum considered in initiatives such as LTE-U (Unli-
censed LTE) [13][14], as well as the use of shared spectrum on a primary/secondary 
basis in which the operator is allowed to access a certain spectrum band owned by a 
different primary user, as long as certain conditions are met in order not to interfere 
the primary users. With all these considerations, the use case considered here intends 
to decide whether it is possible or not to boost the capacity of a cell by exploiting 
unlicensed spectrum bands. This decision will exploit the knowledge about the time 
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evolution of the cell’s traffic, in the sense that typically unlicensed spectrum could be 
adequate to cope with sporadic traffic increases. Then, this use case intends to classify 
the cells according to the following classes: 

• Class A: Candidate cell to boost capacity through additional unlicensed spectrum. 
• Class B: Cell that does not need capacity boost through unlicensed spectrum. 

6.1  Data Acquisition and Pre-processing 

This use case has been assessed considering a total of 300 cells from a real cellular 
network deployed in an urban area, under the rationality that this type of scenario is 
where capacity boosting will be more likely needed. Besides, assuming that spectrum 
demands will be mainly associated to the periods of the day when there is more traf-
fic, in this use case the components of vector F(Xi) correspond to the average traffic 
of a cell on a per hour basis, between 6h and 22h. This leads to a total of M=16 com-
ponents. As a difference from the previous use case, here the traffic is not normalized, 
since the absolute value of the traffic is also relevant to decide whether additional 
unlicensed spectrum may be needed.  

6.2 Knowledge Discovery 

The same classification tools as in section 5.2 are considered here. 

6.3  Results 

Fig. 7 plots the components of vector of F(Xi)  for 2 cells of the training set catego-
rized as A and B by the expert. Class A cells use to exhibit peaks of high traffic levels 
while class B cells exhibit lower traffic values and more homogeneity. Like in the 
previous use case, different training set sizes have been used to train the considered 
classification tools. After the training process, the 300 cells have been classified. Fig. 
8 depicts two example cells that were not included in the training set and that are 
classified as A and B by all the considered classifiers. It is observed that both cells 
present similar characteristics like the cells of the training set shown in Fig. 7, mean-
ing that the classification tools have been able to identify also the relevant characteris-
tics of the time evolution in this use case. 

 
Fig. 7. Examples of cells of the training set belonging to classes A and B. 
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Fig. 9 presents the number of cells classified as A by each classifier as a function 
of the training set size with the different classifiers. Like in the previous use case it is 
observed that the SVM is able to converge more quickly than the other classifiers 
when the training set size is small. It is also noticed that for the case of S=140 very 
small differences are observed between the classifiers. This can also be corroborated 
in Table 2 that presents the percentage of coincidences between every pair of classifi-
ers and with the expert validation. It can be observed that the percentages of coinci-
dence with the expert in this use case are higher than in the previous one. This reflects 
that the characteristics that make a cell to be classified as A (e.g. sporadic traffic 
peaks) are more easily distinguishable than in the previous use case. Table 2 also 
shows that the best performance in terms of coincidences with the expert validation is 
achieved by both SVM and Neural Network classifiers.   

 

 

Fig. 8. Examples of two cells classified as A and B. 

 
Fig. 9. Number of cells classified as A as a function of the training set size. 

Table 2. Percentage of total coincidences by every pair of classification tools with S=140 

 SVM Neural Network Naive Bayes Decision Tree Expert validation 
SVM -- 97% 98.7% 97.7% 99.7% 
Neural Network 97% -- 98.4% 99.4% 99.7% 
Naive Bayes  98.7% 98.4% -- 99% 98.4% 
Decision Tree  97.7% 99.4% 99% -- 97.4% 
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7 Conclusions 

This paper has focused on the application of artificial intelligence and data mining 
concepts to support the radio access management in future cellular networks, where 
automatization is fundamental to cope with the huge number of cells that an operator 
can deploy, so manual intervention from a human expert becomes impractical. In 
particular, the paper has focused on extracting knowledge about the time domain traf-
fic pattern of the cells. A general methodology for supervised classification of this 
traffic pattern has been presented and particularized in two applicability use cases, 
addressing energy saving and spectrum planning processes. In both cases the out-
comes of different classification tools are assessed, concluding that the SVM tech-
nique is in general the one that best captures in the classification process the expert 
knowledge provided in the examples of the training set. 
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