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Abstract—The use of Long Term Evolution (LTE) in the 
unlicensed 5 GHz band, referred to as LTE-U or Licensed 
Assisted Access (LAA), is a promising enhancement to increase 
the capacity of LTE networks and meet the requirements of 
future systems. This paper analyses the use of fully distributed 
channel selection mechanisms for facilitating the coexistence 
among different LTE-U and/or Wi-Fi systems operating in the 
same band. Specifically, the paper focuses on a Q-learning and a 
Game Theory based approach. The implementation 
considerations of both approaches are discussed in relation to 
current 3GPP specifications and a comparison in terms of 
performance is presented to analyze the convergence time, the 
signaling requirements and the impact of errors in the 
throughput estimation. 
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I. INTRODUCTION

Long Term Evolution - Unlicensed (LTE-U), which has 
been standardized in the context of 3rd Generation Partnership 
Project (3GPP) through the Licensed Assisted Access (LAA) 
feature of Release 13, is a promising enhancement that enables 
Long Term Evolution (LTE) to operate and coexist with other 
technologies in unlicensed bands [1][2][3], with a clear focus 
on the 5 GHz band. Although licensed spectrum remains 
cellular operators’ top priority to deliver advanced services 
and better user experience because the benefits of licensed 
spectrum such as controlled Quality of Service (QoS) cannot 
be matched by unlicensed spectrum, the use of unlicensed 
spectrum will be an important complement to meet the ultra-
high capacity needs foreseen for Fourth Generation (4G) and 
beyond systems. In this respect, LTE-U is being currently 
considered for leveraging supplemental downlink capabilities 
that boost data rates and capacity to small cells, while at the 
same time using LTE in the licensed band provides reliable 
connection for mobility, signaling, voice and data in both 
uplink and downlink.  

Compared to the usage of Wi-Fi in unlicensed spectrum, 
LTE-U offers several features that are attractive to operators. 
Nevertheless, the introduction and adoption of LTE-U brings a 
number of challenges to be addressed as LTE-U must support 
fair access of multiple LTE-U and Wi-Fi networks. So as to 
allow that multiple LTE-U small cells and Wi-Fi access points 
share the same operating channel different channel access 
mechanisms can be used, such as Listen Before Talk (LBT).  

Channel selection functionality is the mechanism used to 
decide the operating channel where a LTE small cell sets up 
an unlicensed carrier. This mechanism is fundamental in order 
to facilitate the coexistence of LTE with other systems sharing 
the same unlicensed band, such as other LTE small cells or 
Wi-Fi access points.  

As discussed in [4] and [5], a fully distributed channel 
selection approach, where each small cell makes decisions on 
its own, would involve less demanding network coordination 
architectures, information exchange protocols and procedures. 
Besides, from a decision-making logic point of view, 
exploiting learning from past experience seems a pertinent 
principle in the LTE-U context. Each small cell may 
autonomously learn what channels are usually not being used 
by its neighbors and then tend to select such free channels. 
Furthermore, the adaptability of the learning-based decision-
making process will provide robustness to the solution and the 
capability to react to changes in the scenario.  

In such a fully distributed approach, the channel selection 
problem for LTE-U has been modeled in terms of the learning 
parameters performance in prior works using Q-learning [4][5] 
and Game Theory [6] principles. Taking these prior works as 
starting point, this paper focuses on the implementation 
considerations regarding these two approaches. For this 
purpose, the paper discusses the practical implementation of 
both algorithms based on current 3GPP specifications and 
presents an implementation-based performance comparison 
between the two techniques in terms of the convergence time 
and the signaling requirements associated to the required 
channel selections. In addition, in Game Theory, the impact of 
errors in the estimation of the throughput is also assessed.  

The rest of the paper is organized as follows. Section II 
discusses the operation of the channel selection process in 
LTE-U in relation to the involved associated signaling 
procedures. It also summarizes the operation of both the Q-
learning and Game Theory algorithms and discusses the 
implementation considerations. Section III presents some 
implementation-based performance results to compare both 
approaches, while section IV summarizes the main 
conclusions.  

II. LEARNING-BASED CHANNEL SELECTION IN LTE-U

A. Channel selection in LTE-U 

In the context of LTE, the use of unlicensed bands has 
been standardized in the LAA feature by combining the use of 
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licensed and unlicensed spectrum using carrier aggregation 
technology. For a User Equipment (UE) in connected mode, 
the configured set of serving cells includes a Primary Cell 
(PCell) that uses a licensed carrier and at least one Secondary 
Cell (SCell) operating in the unlicensed spectrum [7].  

The channel selection (also denoted as carrier selection) 
refers to the mechanism used to decide the operating channel 
(i.e., center frequency and associated bandwidth) of the 
unlicensed carrier(s) in a cell. Whenever the channel selection 
functionality decides a channel change or the activation of a 
new channel, UEs and SCells need to be properly configured. 
This includes an UE Radio Resource Control (RRC) 
Connection Reconfiguration procedure used to add a SCell 
with the selected channel to the set of component carriers of 
each UE. Furthermore, in both configurations a Medium 
Access Control (MAC) activation/deactivation process is 
needed for each UE in order to activate the configured SCell 
and be able to receive both the Physical Downlink Control 
Channel (PDCCH) and the Physical Downlink Shared 
Channel (PDSCH). 

The overall process involves the exchange of six signaling 
messages (Table I) between the eNodeB and each UE. 
Considering [8], the RRC time needed in order to configure a 
SCell is 31.7 ms per UE and the time needed in order to 
activate a SCell is 8 ms per UE. 

TABLE I.  SIGNALING MESSAGES [8][9] 

Signaling messages 

RRC ConnectionReconfiguration 

HARQ (Hybrid Automatic Repeat reQuest) ACK 

Scheduling Request 

DCI (Downlink Control Information) 0 

RRC ConnectionReconfiguration Complete 

MAC Control Element (CE) subheader 

B. Q-learning algorithm and implementation 

Q-learning is a type of Reinforcement Learning (RL) 
technique [10] where learning is achieved through the 
interaction with the environment, so that the learner discovers 
which actions yield the most reward by trying them. In this 
way, each Small Cell (SC) progressively learns and selects the 
channels that provide the best performance based on the 
previous experience. In the considered algorithm, described in 
details in [4][5], each small cell i stores a value function Q(i,k) 
that measures the expected reward that can be achieved by 
using each channel k according to the past experience. 
Whenever a channel k has been used by the small cell i, Q(i,k) 
is updated following a single state Q-learning approach with 
null discount rate given by:  
        , 1 , · ,L LQ i k Q i k r i k     (1) 

where L(0,1) is the learning rate and r(i,k) is the reward 
that has been obtained as a result of the current use of the 
channel k. The reward is given by the average normalized 
throughput that has been obtained by the small cell in the 
channel. Based on the Q(i,k) value functions, the channel 

selection decision-making for the small cell i follows the 
softmax policy in which channel k is chosen with probability: 
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where (i) is a positive parameter called temperature. 
Therefore, channels with high Q(i,k) values are selected with 
higher probability. 

In order to implement this learning technique, there is the 
need to gather some information to perform the throughput 
computation (i.e. the reward). The throughput is computed by 
dividing the number of successfully transmitted bits over a 
certain observed period when there is data to transmit in the 
Packet Data Convergence Protocol (PDCP) buffer when the 
SCell is activated. The number of acknowledged data bits can 
be easily counted from the HARQ buffers at the MAC layer. 
Instead, notice that counting the data bits in the IP level or 
PDCP Service Data Unit (SDU) level would imply a complex 
implementation, because at these levels the system does not 
know if a packet will be sent using a licensed or an unlicensed 
carrier. 

C.  Game Theory algorithm and implementation 

In this case the channel selection problem is modelled as a 
game in which each small cell is a player and the actions made 
by each player are the selected channels. Specifically, this 
paper considers the Iterative Trial and Error Learning - Best 
Action (ITEL-BA) algorithm described in [6] which was 
proved to converge to a Nash Equilibrium (NE) [11].   

In ITEL-BA, each SC retains a benchmark action (i.e. a 
benchmark channel to select) and the corresponding 
benchmark reward as a reference to evolve the action selection 
strategy. At a certain time, a channel is chosen depending on 
the so-called mood of the player, which basically captures the 
degree of satisfaction of the player with the current benchmark 
action and benchmark reward. The mood of player i at the 
beginning of time step t can be content, discontent, hopeful or 
watchful. The general idea is that a content player will be 
selecting the benchmark action most of the time, and will 
occasionally experiment with new actions according to a 
probability <<1 called exploration rate. Instead, a discontent 
player will try out new actions frequently, eventually 
becoming content. The hopeful and watchful moods 
correspond to transitional situations, triggered by changes in 
the behavior of other players (or in the environment), and they 
will facilitate updates in the values of the benchmark action 
and reward to cope with these changes. The reader is referred 
to [6] for a detailed specification of the ITEL-BA algorithm.  

Like in the Q-learning approach, the considered reward is 
the obtained normalized throughput when using a channel. 
However, an essential differential aspect with respect to Q-
learning approach is that the channel selection of a SC in 
ITEL-BA is based on both the actual reward obtained with the 
current channel of this SC (which can be easily measured 
through the same procedure described for Q-learning) and the 
hypothetical reward that would be obtained if using a different 
channel (which needs to be estimated in some way or another).  



 

 Assuming that the SC i is using channel k, the 
hypothetical reward (i.e. throughput) that it would get in 
another channel k’k can be estimated as follows: 
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where f(SINR(i,k’)) is a function that maps the Signal to 
Interference and Noise Ratio (SINR) experienced by the UEs 
of SC i  in the channel k’ with the throughput and M(k’) is the 
number of SCs that would be sharing the channel k’ in the 
time domain by means of the LBT strategy (e.g. if there are 2 
SCs sharing the same channel this means that each one would 
get one half of the throughput). 

 The estimation of SINR(i,k’) in (3) can be done as follows: 
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 where P(i,k’) is the useful received signal by the UEs of 
cell i if it was using channel k’ and RSSI(i,k’) is the Received 
Signal Strength Indicator that measures the total received 
power by the UEs in channel k’. The value of P(i,k’), can be 
estimated as the useful received signal by the UE from the SC 
i at the current frequency k, P(i,k), assuming that the link 
between the UE and the SC experiences similar path loss and 
shadowing conditions in both channels k and k’. The value of 
P(i,k) can be obtained from the Reference Signal Received 
Power (RSRP) measurements made in channel k. Both the 
RSRP and the RSSI are measured by the UEs and reported to 
the SC i. For this purpose, the RRC protocol is used to 
configure the measurement reports of the UEs [12].  

 In turn, the function f(·) in (3) to map the estimated SINR 
with the throughput is implementation-dependent. One 
possible example for this function could be the one provided 
in Section A.1 of [13].  

Finally, the number of SCs sharing the channel k’, M(k’), 
can be estimated by the SC i using the RRC measurement 
reports provided by the UEs, which indicate the Physical Cell 
Identity (PCI) that UEs detect of each measured cell in 
channel k’.  

An alternative option, in order to avoid measurement 
reports to gather the last parameters, is to use a Downlink 
(DL) receiver within the SC [14] running a utility that can 
configure RF card into sniff mode and PHY into Network 
Monitor Mode (NMM) state in order to listen to the downlink 
signals to measure signal level and detect presence of other 
cells in the vicinity. This option would allow a better 
estimation of M(k’) than the approach based on RRC 
measurement reports because it provides the measurements 
done at the SC where the LBT procedure is executed. 
However, the main drawback is that the SC is not able to 
schedule any users during the time period where NMM 
measurement is performed.  

 Based on all the above considerations, the estimation of the 
hypothetical reward for applying the ITEL-BA algorithm 
according to (3) is feasible in practice although it may be 
subject to estimation errors.  

III. PERFORMANCE EVALUATION 

A. Scenario 

The considered scenario to evaluate the performance of the 
proposed approach is based on the indoor scenario for LTE-U 
coexistence evaluations defined in the 3GPP Study Item [2]. It 
consists of a single floor building where two operators deploy 
4 SCs each. SCs are equally spaced and centered along the 
shorter dimension of the building, as depicted in Fig. 1. Small 
cells SC1 to SC4 are owned by operator 1 (OP1), while SC5 to 
SC8 are owned by operator 2 (OP2). Small cells are deployed 
at height 6m while the antenna height of the mobile terminals 
is 1.5m. A total of 10 UE per operator are randomly 
distributed inside the building.  

The 5 GHz unlicensed band is considered, organized in K 
channels of bandwidth B=20 MHz, numbered as k=1,..,K. The 
Q-learning algorithm is configured after the analysis 
performed in depth in [6] with L=0.1, temperature (i) 
adjusted based on a logarithmic cooling function with initial 
temperature 0=0.15 and the initial value of the Q(i,k) for 
channels that have not been used is set to Qini=0.5. The rest of 
simulation parameters are taken from [6]. 

 
Fig.  1 Layout of the floor building 

Simulation time is measured relative to generic units 
denoted as “time steps”. It is assumed that, in each time step, 
every SC executes the channel selection algorithm (either Q-
learning or ITEL-BA) to decide if the channel currently used 
by the SC has to be changed.   

B. Convergence time 

In the following we analyze the time needed by ITEL-BA 
and Q-learning to reach convergence. For the Q-learning, it is 
assumed that convergence occurs when every SC i in the 
scenario has identified a channel k* with selection probability 
Pr(i,k*)99%. For ITEL-BA, convergence occurs when the 
system has reached the situation in which all the SCs are in 
content state and none of the SCs can improve its throughput 
by unilaterally changing the channel they are using (i.e. their 
benchmark action), meaning that a NE has been reached.  

Fig.  2 plots the average convergence time for both 
techniques for the cases K=4 and K=8 channels. For each case, 
the presented results are the average of 105 random 
realizations.  

It is observed in  Fig.  2 that Q-learning requires a higher 
number of time steps for converging than ITEL-BA. The 
differences are larger for the case K=4, in which the 
convergence time of Q-learning is about 10 times higher than 
that of ITEL-BA. Instead, for the case K=8, the average 
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convergence time of Q-learning is approximately twice than 
that of ITEL-BA. Indeed, while Q-learning converges faster 
for higher number of channels K, the average convergence 
time for ITEL-BA slightly increases with the number of 
channels K. The rationality behind this result is that the overall 
solution search space contains in proportion a lower number of 
NE with K=8 than with K=4. This means that the system needs 
to explore and discard more combinations before reaching an 
NE with K=8, so the convergence time increases [6]. In 
contrast, with Q-learning the average convergence time 
decreases when passing from K=4 to K=8. This behavior is 
due to the probability function definition (2), which converges 
faster with high K because of the denominator increment.  

 
Fig.  2 Average convergence time comparison 

To further assess the behavior of both algorithms, Fig.  3 
depicts the average number of channel changes that have been 
performed by each SC before the system has reached 
convergence after performing 50 experiments corresponding 
to different spatial user distributions. It is observed that Q-
learning tends to decrease the number of channels selections 
when K increases, whereas in ITEL-BA there are only very 
small variations, reflecting a similar behavior like in Fig.  2.  

 
Fig.  3. Average number of channel selections performed by each SC before 

convergence 

The number of channel selections shown in Fig.  3 can be 
directly translated into the signaling requirements for 

implementing each channel selection technique. Specifically, 
as discussed in Section II, each channel selection change 
involves a total of 6 signaling messages per UE (see Table I). 
Therefore, looking at Fig.  3 it can be concluded that for the 
case K=8, if Q-learning is used, the 10 channel selections that 
are required on average per UE will require a total of 60 
signaling messages per UE. Instead, ITEL-BA will require 
approximately 24 signaling messages per UE. 

Concerning the behavior of the algorithms after 
convergence is reached, in ITEL-BA this behavior is tightly 
related with the type of NE in which the system has converged 
to. Specifically, ITEL-BA can converge to either a strict or 
non-strict NE. A strict NE means that, for each SC, the 
channel associated to the benchmark action provides strictly 
the highest reward among all other options. Instead, with a 
non-strict NE, there may be, for some SCs, other channels that 
provide exactly the same reward than the benchmark action. 
When convergence to a non-strict NE occurs, an SC in content 
state can continue making additional channel changes as a 
result of the exploration stage. In particular, simulations have 
revealed that around 6 additional channel changes are 
performed after convergence in a period of 1000 time steps for 
K=8 when ITEL-BA converges to non-strict NE. On the 
contrary, this effect does not occur when ITEL-BA converges 
to a strict NE, so no additional channel changes are performed 
in this case.  

As for the Q-learning case, although the probabilistic 
behavior of (2) might lead to some very sporadic channel 
changes after reaching convergence, the situations analyzed in 
the simulations of this paper have revealed that this effect is 
negligible.      

C. Study of the impact of errors in the throughput estimation 
in the Game Theory algorithm 

As discussed in Section II.C, the implementation of the 
ITEL-BA algorithm requires the estimation of the hypothetical 
reward (i.e. throughput) that a SC would obtain in all the other 
channels that this SC is not using. Since this estimation may 
be subject to errors, this sub-section analyzes the sensitivity of 
the ITEL-BA algorithm in front of these errors. For this 
purpose, an estimation error in the hypothetical reward is 
introduced in our simulation. It is modeled following a 
uniform distribution between  [-Emax,Emax], where Emax(%) is 
the maximum relative error. So, the convergence time 
obtained in this chapter will be obtained simulating that the SC 
may take bad decisions due to the estimation errors which lead 
to wrong rewards in channels not being used.   

Fig.  4 illustrates the average convergence time of ITEL-
BA as a function of the maximum relative error Emax (%) for 
the cases K=4 and K=8 channels. The presented results are the 
average of 50000 random realizations.  For errors lower than 
20% only small differences in the average convergence time 
with respect to the case without errors (i.e. Emax=0%) are 
observed. Instead, when the maximum estimation error Emax is 
higher than 30%, which may be the case in practice due to the 
difficulties in the estimation procedure as described in Section 
II.C, the average convergence time suffers a substantial 
degradation for both K=4 and K=8, due to the high 
randomness in the estimated reward that leads to erratic 



 

decisions made by the different SCs. However, when 
comparing the results of ITEL-BA in   Fig.  4 with those of Q-
learning shown in Fig.  2, it is worth mentioning that, even for 
the highest value of Emax (%) considered in the simulations, the 
convergence time of ITEL-BA is still better than that of Q-
learning, in spite of the fact that Q-learning is not affected by 
estimation errors because it does not require any estimation of 
hypothetical rewards.  

Fig.  5 depicts the impact of the estimation error in terms 
of the average number of channel selections made by each SC 
in ITEL-BA before the system has reached convergence for 
K=4. It is observed that the number of channel starts to 
increase for large values of Emax. However, when comparing 
the result with that of Q-learning shown in Fig.  3 it is 
observed that ITEL-BA still presents a lower number of 
channel selections even in the presence of estimation errors. 
The effects of non-strict NE leading to additional channel 
changes are also observed when errors in the estimation exist.  

 
Fig.  4 Average convergence time of ITEL-BA in the presence of estimation 

errors 

   
Fig.  5. Average number of channel selections per SC with K=4 as a function 

of the maximum estimation error. 

 It is clear, that in general Game Theory has better 
performance than Q-learning when K  is small. However, its 
implementation is a bit more complex. Therefore, there is a 
trade-off between performance and implementation depending 
on the number of available channels K in the scenario.  

IV. CONCLUSIONS 

This paper has focused on the channel selection problem for 
LTE-U as a mechanism that enables the coexistence of multiple 
networks using the same unlicensed band. A fully distributed 
channel selection approach has been considered where each 
small cell autonomously chooses the channel to set-up an LTE-
U carrier for supplemental downlink. Two different approaches 
for channel selection have been considered, one based on Q-
learning and the other one based on Game Theory. The paper 
has discussed the implementation considerations in the context 
of 3GPP specifications and has presented a performance 
comparison between the two.  

Results have shown that the Game Theory based approach 
has overall a better performance in terms of average 
convergence time. Differences are more significant when the 
number of channels is reduced. For example, for K=4 
channels, the convergence time with the Game Theory 
approach is about 10 times lower than with the Q-learning 
approach. Furthermore, despite the fact that the Game Theory 
based approach can still perform some unnecessary channel 
changes due to the convergence to non-strict NE in some 
cases, it has been shown that the faster convergence of Game 
Theory approach also leads to a reduction in the required 
signaling for carrying out the channel selections. 

The paper has also analyzed the sensitivity of the Game 
Theory solution to errors in the estimation of the hypothetical 
throughput that a small cell would obtain in an unlicensed 
channel that is not being used by this small cell. It has been 
found that the convergence time can almost double in the 
considered simulations, although the convergence in the 
presence of errors is still faster than that of the Q-learning 
approach. Nevertheless, the simple implementation of Q-
learning may prevail as a choice criterion, particularly for 
large number of channels K, where the difference in 
convergence time between the Game Theory and Q-learning 
shrinks. 
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