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Abstract. The application of Artificial Intelligence (AI)-based knowledge dis-
covery mechanisms for supporting the automation of wireless network opera-
tions is envisaged to fertilize in future Fifth Generation (5G) systems due to the 
stringent requirements of these systems and to the advent of big data analytics. 
This paper intends to elaborate on the demonstration of knowledge discovery 
capabilities in the context of the architecture proposed by the Small cEllS coor-
dinAtion for Multi-tenancy and Edge services (SESAME) project that deals 
with multi-operator cloud-enabled small cells. Specifically, the paper presents 
the considered demonstration framework and particularizes it for supporting an 
energy saving functionality through the classification of cells depending on 
whether they can be switched off during certain times. The framework is illus-
trated with some results obtained from real small cell deployments. 
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1 Introduction 

As a next step in the evolution of cellular communication systems, industry and aca-
demia are focused on the development of the 5th Generation (5G) of mobile systems 
that targets a time horizon beyond 2020. 5G intends to provide solutions to the con-
tinuously increasing demand for mobile broadband services associated with the mas-
sive penetration of wireless equipment such as smartphones, tablets, the tremendous 
expected increase in the demand for wireless Machine To Machine communications 
and the proliferation of bandwidth-intensive applications including high definition 
video, 3D, virtual reality, etc. Requirements of future 5G system have been already 
identified and discussed at different fora [1][2].  

It is expected that 5G networks will also be fueled by the advent of big data and 
big data analytics [3]. The volume, variety and velocity of big data are simply over-
whelming. Nowadays, there are already tools and platforms readily available to effi-
ciently handle this big amount of data and turn it into value by gaining insight and 
understanding data structures and relationships, extracting exploitable knowledge and 
deriving successful decision-making. While applications of big data and big data ana-
lytics are already present in different sectors (e.g. entertainment, financial services 
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industry, automotive industry, logistics, etc.), it is envisaged that they will play a key 
role in 5G to extract the most possible value of the huge amount of available data 
generated by mobile networks and for efficiently delivering mobile services. 

In this context, this paper supports the idea that Artificial Intelligence (AI) mecha-
nisms, which intend to develop intelligent systems able to perceive and analyse the 
environment and take the appropriate actions, will fully fertilize in the 5G ecosystem. 
In [4] the authors presented a general framework for the application of AI-based 
knowledge discovery mechanisms relying on machine learning as a means to extract 
models that reflect the user and network behaviours. The paper identified different 
candidate tools and discussed the applicability in the development of Self-Organizing 
Network (SON) functionalities, also known as Self-X functionalities, for automating 
the operation of a cellular network [5]. In turn, a particularization of this general 
framework was presented in [6] focusing on extracting knowledge from the time do-
main traffic patterns of the different cells in a network. Two applicability use cases 
were elaborated, dealing with energy saving and spectrum management. Similarly, [7] 
focused on the identification of user mobility patterns in cellular networks by means 
of clustering techniques and on its applicability in the context of SON. 

Relying on these prior works, this paper intends to further elaborate on the demon-
stration of the knowledge discovery capabilities in the context of the architecture 
proposed by the Small cEllS coordinAtion for Multi-tenancy and Edge services 
(SESAME) project [8] that deals with multi-operator cloud-enabled small cells. The 
proposed framework is particularized for supporting an energy saving Self-X func-
tionality through the classification of cells depending on whether they can be 
switched off during certain times. To illustrate the operation of the process, the paper 
presents some results obtained from real small cell deployments.  

The rest of the paper is organized as follows. Section 2 summarizes the architecture 
of the SESAME project, while Section 3 presents the considered demonstration 
framework for introducing knowledge discovery capabilities in this architecture. 
Then, Section 4 particularizes the framework for the energy saving use case and dis-
cusses the implementation of the building blocks for classifying the different cells. 
This is followed by Section 5, which provides some illustrative results of the pro-
posed framework. Finally, conclusions are summarized in Section 6.   

2 SESAME architecture 

The SESAME project [8] focuses on the provision of Small Cell as a Service (SCaaS) 
under multi-tenancy, exploiting the benefits of Network Function Virtualisation 
(NFV) and Mobile Edge Computing (MEC). For that purpose, it proposes the Cloud-
Enabled Small Cell (CESC) concept, a new multi-operator enabled Small Cell (SC) 
that integrates a virtualized execution platform for executing novel applications and 
services inside the access network infrastructure. In general terms, SESAME scenari-
os assume a certain venue (e.g. a mall, a stadium, an enterprise, etc.) where a Small 
Cell Network Operator (SCNO) is the SCaaS provider that has deployed a number of 
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CESCs that provide wireless access to end users of different Virtual Small Cell Net-
work Operators (VSCNOs), according to specific Service Level Agreements (SLAs).  

The SESAME architecture is presented in Fig. 1 [9]. The CESC consists of a Small 
Cell Physical Network Function (SC PNF) unit, where a subset of the SC functionali-
ty is implemented via tightly coupled software and hardware, and a micro server that 
supports the execution of Virtualised Network Functions (VNFs), which provide the 
rest of the SC functionality together with other added-value services. The CESCs 
support the Multi-Operator Core Network (MOCN) sharing model of 3GPP [10], 
which allows them to offer access over shared radio channels to multiple operators’ 
core networks. Accordingly, each CESC is connected with the Evolved Packet Core 
(EPC) of each VSCNO through an S1 interface.  

The physical aggregation of a set of CESCs, denoted as a CESC cluster, gives the 
possibility to jointly operate the computational, storage and networking resources of 
the micro servers as a single virtualised execution infrastructure, denoted as Light 
Data Centre (Light DC). 

 

Fig. 1. SESAME architecture  

The CESC Manager (CESCM) is the central service management component in the 
architecture that integrates the traditional 3GPP network management elements and 
the novel functional blocks of the NFV-MANO (Network Function Virtualization 
Management and Orchestration) framework. Configuration, Fault and Performance 
management of the SC PNFs and VNFs is performed through the Element Manage-
ment System (EMS). In turn, the lifecycle management of the VNFs is carried out by 
the VNF Manager (VNFM), while the Network Functions Virtualization Orchestrator 
(NFVO) composes service chains constituted by one or more VNFs running in one or 
several CESCs and manages the deployment of VNFs over the Light DC with the 
support of the Virtualized Infrastructure Manager (VIM).  

The CESCM is connected to the Network Management System (NMS) of the 
SCNO and the VSCNOs. Besides, it includes a portal that constitutes the main graph-
ical frontend to access the SESAME platform for both SCNO and VSCNOs. 
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The SESAME architecture supports Self-X functions to tune global operational set-
tings of the SC (e.g., transmit power, channel bandwidth, electrical antenna tilt) as 
well as specific parameters corresponding to Radio Resource Management (RRM) 
functions (e.g., admission control threshold, handover offsets, packet scheduling 
weights, etc.). Self-X functions can be centralised (cSON) at the EMS, distributed 
(dSON) at the CESCs or hybrid if they include both centralised and distributed com-
ponents. 

3 Implementing Knowledge Discovery capabilities as part of 
the SESAME demonstration framework  

The introduction of knowledge discovery capabilities in a wireless network provides 
the ability to smartly process input data from the environment and come up with 
knowledge that can be formalized in terms of models and/or structured metrics that 
represent the network behaviour. This allows gaining in-depth and detailed 
knowledge about the network, understanding hidden patterns, data structures and 
relationships, and using them for a making smart network planning and optimisation 
decisions. In this way, the extracted knowledge models can be used to drive the deci-
sion-making of the actions associated to different Self-X functionalities. 

Knowledge discovery is supported by machine learning tools to perform the min-
ing of the data. Extracted knowledge models can be defined at different levels: cell 
level (contains the characterisation of the conditions on a per cell basis), cell cluster 
level (characterisation of groups of cells built according to their similarities) and user 
level (contains the characterisation of the conditions experienced by individual users). 

Based on the above, Fig. 2 presents the considered framework for demonstrating 
the introduction of knowledge discovery capabilities in the context of SESAME. It is 
associated to the EMS, which encompasses both the PNF EMS and the SC EMS 
modules of the architecture shown in Fig. 1. The different elements of the considered 
framework are discussed in the following. 

3.1 Network Orchestration System (NOS) 

The SESAME EMS is based on the EMS of small cell vendor ip.access. The ip.access 
Network Orchestration System (NOS) provides configuration, fault and performance 
management features for small cells and related network elements. In SESAME, these 
elements include the SESAME CESC and the VNFs hosted by the CESC plus a col-
lection of virtual network operators (VNOs), their individual virtual cells and associ-
ated SLA data. 

The configuration and fault management aspects of the NOS are based on the ITU 
X.730 series of recommendations [11]-[14]. It represents these elements and their 
functions as managed objects [11]. Elements and optional functions are provisioned 
by creating managed objects and defining the values of their configurable attributes 
[12]. Once in service, the element or function represented by a managed object is able 
to report its state to the NOS [13]. Similarly, when a network element or function 
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encounters a fault condition an alarm is raised on the managed object that represents it 
in a manner consistent with [14]. The procedural aspects of performance management 
reports are based on the concepts set out in [15] and the file format used conforms to 
[16]. 

 

Fig. 2. Demonstration of knowledge discovery in SESAME 

Managed objects are organised in a tree structure with the relationship between ob-
jects being captured by containment. In the SESAME context, there are two sub-trees 
of managed objects that have special significance. 

 The CESC managed object is a collection object beneath which CESC objects are 
provisioned. Each CESC has a similar sub-tree that comprises (see Fig. 3): (i) Ex-
actly one SC-PNF object. The PNF represents the configuration of the physical cell 
that is associated in a one-to-one relationship with the CESC. In SESAME, the 
PNF function is provided by the ip.access E40 LTE AP. (ii) Exactly one Small Cell 
Common VNF (SC-C-VNF) object. The function represented by this managed ob-
ject interfaces with the physical cell to split the control plane into separate, per vir-
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represents the control plane processing associated with a single virtual network 
slice and maintains a dedicated S1 connection into the associated EPC. As each of 
the above are discrete managed entities, there is also an associated Connection ob-
ject for each function that represents the management link between the PNF or 
VNF and the NOS. 

 The VSCNO managed object is a collection object beneath which VSCNO objects 
are provisioned. Each VSCNO object represents the data corresponding to a specif-
ic virtual network operator and is a sub-tree comprising (see Fig. 3): (i) A single 
VSCNO object. Each such object captures the key properties of a specific virtual 
network operator such as their name, Public Land Mobile Network IDentifier 
(PLMN ID) and access credentials for the NOS. This object also acts as a container 
for the child objects described below that provide details of the operator’s virtual 
cells and SLAs. (ii) A single Virtual Cells (vCells) object. This is a collection ob-
ject beneath which Virtual Cell objects are created in order to provision a new vir-
tual cell. (iii) Zero or more Virtual Cell  objects. Each such object represents the 
parameters a single virtual cell and contains a link to the CESC that hosts it. (iv) A 
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single Mobility Management Entity (MME) Pools. (v) A single SLA (vSlas) object 
beneath which SLA objects are created. (vi) At least one Provisioned SLA object. 
Each such object represents the details of a “network slice” that is applied when 
provisioning a new virtual cell. The network slice defines parameters such as the 
maximum number of UEs that are supported by the virtual cells and the maximum 
uplink and downlink bandwidth available to these UEs. (vii) Zero or more Moni-
tored SLA objects. Each such object represents a set of criteria that are used to as-
sess the performance of a set of virtual cells and the action to take when any of 
these criteria are not met. 

 

Fig. 3. Managed object sub-trees for the CESC (left) and the VSCNO (right). 

3.2 Performance Management (PM) reports 

Performance Management reports are XML files conforming the format described in 
[16]. They are produced according to a configured Reporting Interval and each file 
contains one or more Granularity Periods. The Granularity Period defines the time 
frame across which measurements are collected and aggregated and is typically de-
fined to be in the range of 5 minutes to 24 hours. The granularity period of all the 
sample data in this study was set to one hour. The Reporting Interval is typically a 
multiple of the Granularity period. In the sample data used for this study, the Report-
ing Interval was set to either one hour or 24 hours.  

Within each file, performance measurements are organised into groups of related 
items known as packages. Each file may contain up to 128 performance counters 
organised in to 27 packages. Some example packages are: (i) Access Control and 
Admission Control Packages that record the number of attempted and failed attempt 
to access the cell and establish radio bearers. (ii) Hand-in and Hand-out packages that 
record the number of attempted and successful handover procedures. (iii) A GTP-U 

 class CESCs Hierarchy (2)

«MibClass»
cescs_001

«MibClass»
cesc_001

«MibClass»
scCv nfConnection_001

«MibClass»
scVnfConnection_001

«MibClass»
pnfInfo_001

«MibClass»
lte00Tr069_000«MibClass»

v nf_001

«NameBinding»

0..*

«NameBinding»

1

«NameBinding»

0..6

«NameBinding»

0..1

«NameBinding»

1

«NameBinding»

1

«NameBinding»

1

 class VSCNOs Hierarchy

«MibClass»
vScnos_001

«MibClass»
vScno_001

«MibClass»
vCells_001

«MibClass»
v MmePools_001

«MibClass»
v Slas_001

«MibClass»
v irtualCell_001

«MibClass»
v MmePool_001

«MibClass»
vMme_001

«MibClass»
monitoredSla_001

«MibClass»
prov isionedSla_001

«MibClass»
root_001

«NameBinding»

0..*

«NameBinding»

1

«NameBinding»

1

«NameBinding»

1

«NameBinding»

0..*

«NameBinding»

0..64

«NameBinding»

0..*

«NameBinding»

0..*

«NameBinding»

0..16

«NameBinding»

1



7 

Usage Package that records the number of uplink and downlink GTP-U packets sent 
and received, the number of packets lost plus the total number of octets sent and re-
ceived. (iv) A User Plane Package that records the number of call attempts by Radio 
Access Bearer (RAB) type, the maximum and mean number of simultaneous calls, 
uplink and downlink bandwidth utilisation by RAB type. 

3.3 Pre-processing, knowledge discovery and knowledge exploitation 

The pre-processing stage takes as input the PM files generated by the NOS and ex-
tracts the relevant metrics to be used by the knowledge discovery depending on the 
use case in hand. For that purpose, this stage can combine multiple PM files associat-
ed to different cells and/or time periods. Then, the knowledge discovery stage in-
cludes the machine learning algorithms to carry out the mining of the input data and 
extract the knowledge models.  

Both the pre-processing and the knowledge discovery stages are implemented by 
means of the RapidMiner Studio Basic tool [17]. It is a powerful visual de-
sign environment for rapidly building complete predictive analytic workflows and 
incorporates multiple pre-defined data preparation and machine learning algorithms. 

Finally, the knowledge exploitation stage applies the obtained knowledge models 
to drive the decision-making associated to different Self-X functionalities. As shown 
in Fig. 2 this stage can interact with the NOS to configure specific SC parameters.  

4 Use case: Energy saving 

The considered use case to illustrate the operation of the proposed framework is the 
energy saving Self-X functionality, which intends to reduce the overall energy con-
sumption associated to the small cells deployed by the SCNO. In this case, the energy 
reduction is achieved by switching off the cells that carry very little traffic at certain 
periods of the day (e.g. at night) and making the necessary adjustments in the neigh-
bour cells so that the existing traffic can be served through another cell. In this con-
text, the knowledge discovery framework applies a classification methodology for 
identifying candidate cells to be switched-off based on their time domain traffic pat-
terns. The automation of this procedure based on expert criteria captured in a training 
set becomes particularly useful considering that networks in the envisaged ultra-dense 
scenarios for future 5G systems can comprise several tens of thousands of cells. 
Therefore, it is not practical that a human expert can make this classification manual-
ly.  

Based on the above, the classification categorizes the cells in the following classes: 

 Class A: Candidate cell to be switched off 
 Class B: Cell that cannot be switched off. 

It is worth mentioning that the final decision on whether or not to switch off a cell 
will make use of this classification as well as other possible inputs which are out of 
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the scope of this paper (e.g. the neighbour cell lists to ensure that traffic generated in a 
cell that has been switched-off can be served through another cell). 

The following sub-sections illustrate the different steps of the proposed classifica-
tion approach, whose mathematical details are presented in [6]. 

4.1 Pre-processing stage 

The PM files generated by the NOS system include a number of XML files corre-
sponding to different cells and periods of time. Each XML file includes metrics asso-
ciated to different time instants. In turn, the considered classification process is based 
on the time domain traffic pattern of the different cells. For that purpose, the pre-
processing stage is responsible for extracting the relevant metric to be used in the 
classification and presenting them in a format that is understandable by the classifier. 
Specifically, the selected metric considered in this work is the number of RAB admis-
sions that have been accepted in a cell. Then, the pre-processing stage builds, for each 
cell, a time series Xi=(xi(t),, xi(t-1), ...., xi(t-(M-1))) composed of M samples of the 
number of RAB admissions in the cell i at different times t with a certain granularity.  

Fig. 4 illustrates the building blocks of the pre-processing stage implementation us-
ing RapidMiner. The first block (Loop XML Files) reads each of the input XML files, 
while the subsequent blocks perform different operations to merge multiple XML 
files, to select from each one the hourly samples of the number of RAB admissions, 
and to build the table with the pre-processed data.   

Fig. 4. Pre-processing stage 

4.2 Classification stage 

The classification stage performs the association between the input time series Xi of 
the i-th cell and the class C(Xi){A,B} of the cell. The internal structure of the classi-
fier is given by the specific classification tool being used and its settings are automat-
ically configured through a supervised learning process executed during an initial 
training stage. This training uses as input a training set composed by S time series Xj 
j=1,...,S of some cells whose associated classes C(Xj) are pre-defined by an expert. 
The supervised learning process will analyse this training set to determine the appro-
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priate configuration of the classification tool. In this way, the resulting classifier after 
the training stage can be used for classifying other cells whose class is unknown. 

Fig. 5 illustrates the RapidMiner modules implemented for the performing the clas-
sification stage. The first module is the training stage that reads the cells from the 
training set and injects them to each classification in order to build the classification 
model (i.e. this is done in the first module shown inside a classification algorithm). 
Then, the last module of each classification algorithm takes as input the small cells to 
be classified from the pre-processing stage (output of Fig. 4) and applies the obtained 
classification model.  

Fig. 5. Classification stage 

As shown in Fig. 5, the following classifiers are implemented [18]: 

 Decision tree induction: The classification is done by means of a decision tree,
which is a flow-chart structure where each node denotes a test on a feature value,
i.e. a component of vector Xi, each branch represents an outcome of the test, and
tree leaves represent the classes. The tree structure is built during the supervised
learning stage through a top-down recursive divide-and-conquer manner.

 Naive Bayes classifier: The classifier evaluates the probability Prob(C(Xi)| Xi) that
a given cell Xi belongs to a class C(Xi) based on the values of the components of
Xi. The resulting class is the one with the highest probability. The computation of
this probability is done using Bayes' theorem under the assumption of class condi-
tional independence. The different terms in the computation of the Bayes’ theorem
are obtained from the analysis of the training set.

 Support Vector Machine (SVM): A SVM is a classification algorithm based on
obtaining, during the training stage, the optimal boundary that separates the vectors
Xj of the training set in their corresponding classes C(Xj). This boundary is used to
perform the classification of any other input vector Xi. The optimal boundary is
found by means of a nonlinear mapping to transform the original training data into
a higher dimension so that the optimal boundary becomes a hyperplane.

 Neural Network: The classification is done by means of a feed-forward neural
network that consists of an input layer, one or more hidden layers and an output
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layer. Each layer is made up of processing units called neurons. The inputs to the 
classifier, i.e. each of the components of vector Xi, are fed simultaneously into the 
neurons making up the input layer. These inputs pass through the input layer and 
are then weighted and fed simultaneously to a second layer. The process is repeat-
ed until reaching the output layer, whose neurons provide the selected class C(Xi). 
The weights of the connections between neurons are learnt during the training 
phase using a back propagation algorithm. 

5 Results 

5.1 Scenario description 

The considered scenario considers three different small cell deployments. The PM 
files of the first deployment include 9 different small cells belonging to an operator 
providing service on an island in the Pacific Ocean. The cells were deployed mainly 
in office blocks, hotels and the residences of VIPs. Whilst hand-in and hand-out to the 
macro network was possible, the small cells did not perform handovers to other small 
cells. The second deployment includes one small cell belonging to a national operator 
in a central European country. It is deployed as stand-alone cell in a shop belonging to 
the operator and, typically, did not perform hand-overs to any other cells. The third 
deployment includes 23 small cells. They belong to an operator providing service on 
an island in Northern Europe and were used to provide service mainly to users in their 
homes, in public houses and restaurants. Whilst hand-in and hand-out to the macro 
network was possible, the small cells did not perform handovers to other small cells. 

5.2 Classification results 

The available PM files for the considered small cells include the metrics for a total of 
one day. Then, the pre-processing stage shown in Fig. 4 builds, for each cell, a time 
series Xi composed of M=24 samples with the hourly values of the traffic in the cell. 
In turn, the classification stage of Fig. 5 applies the four considered classifiers. As for 
the training set, it consists of a total of S =228 cells from the deployment of [6].  

As a first result, Fig. 6 shows the time domain pattern of two small cells classified 
as A and B by the decision-tree classifier. This appears as an adequate decision be-
cause the cell classified as A exhibits relatively long periods at night serving no traffic 
at all while the cell classified as B exhibits traffic during most of the time.  

Table 1 summarizes the results obtained with the considered classifiers. In addi-
tion, the table also includes as a reference the “Expert classification”, which indicates 
the result of the classification process if it was made by the expert. Results show that, 
in general the number of small cells classified as A or B is very similar for the deci-
sion-tree, Bayes and SVM classifiers, while there are some more discrepancies for the 
Neural Network classifier. To further analyse this result, Table 2 assesses the different 
classification tools by presenting the percentage of coincidences between every pair 
of tools. For example, the table shows that 90.91% of the cells (i.e. 30 out of 33 cells) 
have been classified equally by the SVM and the Neural Network. The table also 
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presents the percentage of coincidences with respect to the classification made by the 
expert. It can be observed that the largest percentages of coincidences are obtained 
with SVM and the decision-tree. 

Fig. 6. Example of the time domain pattern of a cell classified as A (Left) and B (Right) 

Table 1. Classification results. 

Algorithm Number of cells classified as A Number of cells classified as B 

Decision-tree 26 7 

Bayes classifier 27 6 

SVM 26 7 

Neural network 23 10 

Expert classification 27 6 

Table 2. Percentage of total coincidences by every pair of classification tools. 

Algorithm SVM Neural Network Bayes classifier Decision-tree Expert 

SVM -- 90.91% 96.97% 93.94% 96.97% 

Neural Network 90.91% -- 87.88% 84.85% 87.88% 

Bayes classifier 96.97% 87.88% -- 90.91% 93.94% 

Decision-tree 93.94% 84.85% 90.91% -- 96.97% 

6 Conclusions 

This paper has presented a framework for demonstrating the use of knowledge dis-
covery capabilities in the context of the architecture of the SESAME project. The 
proposed approach is based on pre-processing the PM files generated by a Network 
Orchestration System to extract the relevant metrics that will be used by the 
knowledge discovery to obtain the adequate knowledge models making use of ma-
chine learning tools. The framework has been particularized for supporting an energy 
saving Self-X functionality through the classification of cells depending on whether 
they can be switched off during certain times. To illustrate the operation of the pro-
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cess, the paper has presented some results obtained from real small cell deployments, 
comparing the behaviour of different classification algorithms.  
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