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Abstract— This paper focuses on the analysis of the trade-off 

existing between achieved performance and observation 

requirements in a decision making framework based on the 

cognitive cycle. For that purpose, it presents a general belief 

based decision making framework that can be particularized for 

different observation strategies that decide when measurements 

are carried out to characterize the dynamics of the radio 

environment. While the concept can be applied to different 

cognitive radio problems, the paper focuses on the spectrum 

selection to establish a set of radio links. The considered 

observation strategies and associated decision making are 

assessed under different environment conditions in terms of the 

traffic generation patterns. Results reveal that both the session 

generation rate and the session duration play a key role to choose 

the adequate observation strategy that balances the achieved 

performance and the measurement requirements.   

Keywords—cognitive radio; decision making; belief vector; 

spectrum selection  

I.  INTRODUCTION 

Cognitive Radio (CR) [1] has emerged in the last years as 
a paradigm that envisages an intelligent radio able to 
automatically adjust its behavior based on the active 
monitoring of its environment. From a general perspective CR 
makes use of the cognitive cycle that involves observations of 
the environment, analysis of these observations, decision 
making to smartly configure certain radio parameters and 
finally execution of the decisions by means of actions. 
Analysis and decision can be supported by means of learning 
mechanisms that exploit the knowledge obtained from the 
execution of prior decisions. This general approach can be 
applied for efficiently and adaptively modifying different 
radio operational parameters such as frequency, transmit 
power, modulation scheme, etc.  

Focusing on the observation stage, it typically involves 
making measurements at several nodes of a CR network. 
Then, these measurements need to be reported to the node in 
charge of the decision making. This is usually done through 
signaling procedures supported by cognitive control channels 
[2][3]. As a result, the observation stage can be very costly in 
terms of practical requirements such as signaling overhead, 
battery consumption, etc. Consequently, decision making 
strategies able to efficiently operate with the minimum amount 

of measurements become of high interest for enhancing CR 
operation. 

Different approaches exist in the literature addressing 
decision making schemes in CR networks able to operate with 
reduced measurement needs. For instance, several research 
works rely on Partially Observable Markov Decision 
Processes (POMDPs) [4] as a decision making tool that 
combines partial observations of the radio environment at 
specific periods of time with a statistical characterization of 
the system dynamics. They have been used in [5] for 
implementing a cognitive Medium Access Control (MAC) that 
enables opportunistic spectrum access in ad-hoc networks. In 
[6][7] the use of POMDP for spectrum selection in CR 
networks is proposed. Some other works rely on the restless 
multi-armed bandit problem to find the optimal policy of 
sensing channels so as to maximize the expected throughput 
[8]. In [9] a classification of decision making techniques is 
given depending on the a priori knowledge they have and their 
sensitivity to sensing errors.  

Under the above framework, this paper focuses on the 
analysis of the trade-off existing between performance and 
observation requirements in a CR decision-making framework 
that exploits the use of the so-called belief vector to predict the 
environment dynamics. The belief vector assesses the 
probability that the radio environment is under specific 
conditions (e.g. interference levels) at a certain time based on 
past measurements. As long as the belief vector predicts with 
sufficient accuracy the existing conditions at the decision 
making time, proper decisions can be made with minimum 
requirements in terms of observations. 

While the concept can be applied to different types of 
problems in CR networks (e.g. transmit power adjustment, 
route selection, etc.), the paper will focus on the spectrum 
selection problem in a scenario where multiple spectrum 
blocks exhibiting different interference conditions are 
available to establish a set of radio links. For that purpose, and 
starting from the prior work in [6][7], this paper proposes a 
novel formulation that  incorporates, under a single 
framework, a general belief-based decision making approach 
that can be particularised to different observation strategies. 
Moreover, the paper will analyse different elements reflecting 
the dynamics of the environment, in particular the traffic 
generation patterns, in order to better assess the convenience 
of one or another observation strategy.    
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The rest of the paper is organized as follows. Section II 
presents the considered system model and formulates the 
general belief-based decision making approach. This general 
approach is particularized for different observation strategies 
in Section III. Section IV presents the considered simulation 
model to evaluate the proposed approach along with the 
performance results. Finally, Section V points out concluding 
remarks and future works. 

II. SYSTEM MODEL AND PROBLEM FORMULATION 

The system model considered in this paper assumes a set 

of j=1,..., L radio links, each one intended to support data 
transmission between either a pair of terminals or between a 
terminal and an infrastructure node. The j–th radio link will be 
supporting a certain data service characterized by a required 
bit rate Rreq,j and will be generating data transmission sessions 
of a certain duration Dj.  

The potential spectrum to be assigned to the different radio 
links is organized in a set of i=1,..., M spectrum blocks (SBs). 
Each one is characterized by a certain central frequency and 
bandwidth. In general, the SBs can belong to different 
spectrum bands subject to different interference conditions and 
to different regulatory regimes (e.g., unlicensed bands, shared 
bands, licensed bands, etc.). Interference in each SB is 
assumed to come from other transmitters that have the same 
rights of use than the considered radio links (e.g., in case of 
shared bands, such as TVWS, it is assumed that the 
interference comes from other secondary devices).    

The available bit rate for the j-th link in the i-th SB Rj,i will 
depend on both the propagation conditions between the j-th 
link transmitter and receiver as well as on the interference in 
the i-th SB experienced at the receiver. Then, the problem 
considered here consists in performing an efficient allocation 
of the SBs to the radio links by properly matching the bit rate 
requirements with the achievable bit rate in each SB. For that 
purpose, it is assumed that the different radio links are 
controlled by a centralized management entity residing at the 
infrastructure side in charge of deciding the spectrum to be 
used by each radio link. Some illustrative use cases where this 
system model can be applicable are: (i) a Digital Home 
scenario in which different devices need to communicate, (ii) 
a set of cognitive small cells deployed in a cellular network 
that make use of additional spectrum to increase the network 
capacity, and (iii) an opportunistic Device-To-Device (D2D) 
radio link created to extend the coverage of certain cellular 
terminals that are outside the coverage area of the cellular 
infrastructure.  

The spectrum selection decision-making will take a so-
called action, corresponding to the allocation of a SB to a 
radio link, anytime that a data transmission session is initiated 
on this radio link. The action made for the j–th link at time t is 

denoted as aj(t)∈{1,..., M} and corresponds to the selected SB 
among those currently available.  

The considered interference model denotes as 

Ij,i(t)=Imax,j,i·σi(t) the interference spectral density measured by 
the receiver of the j-th link in the i-th SB at a given time due to 
other external transmitters (i.e. not belonging to the L radio 

links). In order to capture that interfering sources may exhibit 

time-varying characteristics, σi(t) is a SB-specific term 

between 0 and 1 (i.e. σi(t)=0 when no interference exists and 

σi(t)=1 when the interference reaches its maximum value 
Imax,j,i). 

For modelling purposes, it is considered that the set of 

possible values of σi(t) is translated into a discrete set of 

interference states S
(i)

(t)∈{0,1,..., K} where state S
(i)

(t)=k 

corresponds to σk-1<σi(t)<σk  for k>0 and to σi(t)=σ0=0 for 

k=0. Note also that σK=1.  

The interference evolution for the i-th block is modelled as 
an ergodic discrete-time Markov process with the state 
transition probability from being in state k at time t and 
moving to state k’ in the next time step t+1 given by: 
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It is assumed that the state of the i-th SB, S
(i)

(t), evolves 
independently from the other SBs, and that the state evolution 
is independent from the assignments made by the spectrum 
selection algorithm. Note that, without loss of generality, the 
time axis is assumed to be discretized in time steps. Then, the 
state transition probability matrix for the i-th SB is defined as: 
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Moreover, let define ( ) ( ) ( ) ( )i T

0 1π [ ]
i i i

K
π π π= ⋯ , where 

superscript T denotes transpose operation, as the steady state 

probability vector whose k-th component ( )i
k

π  is the 

probability that the i-th SB is in the k-th interference state.   

Each radio link with a data session in course (referred to as 
an active link) will obtain a reward that measures the obtained 
performance depending on the interference state of the 

allocated SB at each time. Then, let denote ( )
,

i

j k
r  the reward that 

the j-th link gets when using its allocated SB i and the 
interference state is S

(i)
(t)=k. The reward is a metric between 0 

and 1 capturing how suitable the i-th SB is for the j-th radio 
link, depending on the bit rate that can be achieved in this SB 
with respect to the bit rate required by the application Rreq,j. 
Using vector notation, the reward vector of the j-th link in the 
different interference states of the i-th SB is defined as 

( ) ( ) ( ) ( )i T

j ,0 ,1 ,r ][
i i i

j j j K
r r r= ⋯ . It is worth mentioning that many 

possible definitions of the reward metric as a function of the 
bit rate may exist (e.g. sigmoid functions, linear functions, 
etc.).  

The average reward experienced on the j-th link and i-th 
SB along a session starting to transmit data at time t+1 and 
ending after a certain duration Dj time steps, is given by: 
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With all the above foundations, the spectrum selection 
policy executed at time t for the j-th radio link will target the 
maximization of the expected reward that the session will 
experience along its duration: 
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where the selection is made among the subset of available 
SBs, i.e. those that are not allocated to any other radio link at 
the decision making time t. 

The analysis of the future evolution of the reward in each 
of the SBs until the session end will exploit measurements 
(observations) of the interference state of the different SBs 
carried out at specific time instants in the past, together with 
the statistical characterisation of the interference dynamics in 

each SB. In particular, denoting as )( () ( )i io t m−  the 

observation (measurement) on the i-th SB conducted at time 
step t m− that provides the value of the interference state of 

the i-th SB that was measured at time step ( )i
t m− , i.e. 

(( ) () ( ) )( ) ( )i i i io t m S t m=− − , the criterion of (4) can be 

reformulated in order to exploit knowledge from the 
observations in the past as: 
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where ( ) ( )i

j tΦ  is the SB-dependent decision function to be 

maximized, given by:                                
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Notice that, since the session duration Dj will usually be 
random and unknown at the decision making time t, it has 
been characterised in (6) statistically in terms of its average 

value
jD . In (6), the estimation of the expected reward 

achieved in the i-th SB at future time instants t n+  based on 

the past observation at ( )it m−  will rely on the statistical 

characterization of the interference dynamics given by the so-
called belief vector. It is defined as 
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k
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in state S
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(t)=k at time t given the last observation of the 

actual interference state that was taken at time step ( )it m− , 

that is: 
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Then, the expected reward obtained in the i-th SB at time 

t n+  can be expressed in terms of the belief vector as: 
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By making use of (8) the estimation of the average reward 
achieved in the i-th SB along the session duration of the j-th 
radio link given by decision function (6) can be expressed in 
terms of the belief vector as: 
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1

1 jD

i

j

nj

t t n
D =

Φ = +∑ i T i

jb r  (9) 

The computation of the belief vector of the i-th SB at a 
certain time instant t is done recursively starting from the last 
observation of the actual interference state that was taken at 

time step ( )it m− . Specifically, considering that 
(( ) () ( ) )( ) ( )i i i io t m S t m=− − the components of the belief vector 

at time ( )it m− are given by: 
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This is expressed in vector notation as: 

                      ( ) ( )( ) ( ) ( )( )( )i i i
t m S t m− = −

i
b x   (11) 

where x(k) is defined as a column vector of K+1 
components numbered from 0 to K that has all of them equal 
to 0 except the k-th component that is equal to 1.  

Then, the belief vector at a time instant ( )i
t t m> − can be 

obtained from the belief vector at the previous time step t - 1 
making use of the state transition probability matrix as: 

 ( ) ( ) ( ) ( ) ( )
1 ·t t= −

i T i T i
b b P  (12) 

By recursively applying (12) for the last m
(i)

 time steps and 
by making use of (11) the belief vector at time t as a function 
of the last observation is given by: 
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III. OBSERVATION STRATEGIES 

The observation strategy specifies the time instants when 
the actual interference state in each SB is measured. The 
observation strategy should make sure that the time m

(i)
 

elapsed between the last observation and the spectrum 
selection decision making time t is adequate enough to 

compute the belief vector ( ) ( )t n+
i T

b  and make accurate 

decisions based on (9). Then, this paper considers the 
following three observation strategies:  

a) Instantaneous Measurements (IM) strategy: This 
strategy consists in performing instantaneous measurements of 
the interference states in all the spectrum blocks at the time t 
when a new session has to be established, i.e. at the time when 
the spectrum selection decision-making is executed. In this 
specific case, the belief vector will always be computed with 

( ) 0
i

m = and therefore it will capture the exact interference state 

at time t. Then, the belief vector at t will be given by: 



                        ( ) ( ) ( ) ( )( )i
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 Correspondingly, the decision function becomes: 

 ( ) ( ) ( ) ( )( ) ( ) ( )

1

1 jD
n

i i

j

nj

t S t
D =

 
 Φ =    

 
∑ i iT

jx P r  (15) 

b) Periodic Measurements (PM) strategy: This strategy 
consists in performing periodic measurements of the i-th SB 

with observation period ( )i
obsT . In this way, the elapsed time m

(i)
 

between the last observation of the i-th SB and the decision 

making time t will always be upper bounded by ( ) ( )i i

obs
m T≤ . As 

a further refinement of this periodic approach, it will be 
assumed that only the SBs that are not allocated to any link 
will be measured, since they are the only SBs that can be 
considered in the decision making process. In turn, when a SB 
is released, it will also be measured in case that the time since 

the last observation exceeds ( )i
obsT .  

c) Steady-state (StS) strategy: This is the simple case in 
which no actual observations are performed. In this case, 

( )i
m → ∞ and it can be easily proved making use of the 

properties of ergodic discrete time Markov processes [10] that 
the values of the belief vector will be equal to the steady-state 

probabilities ( )i T
π . Then the general decision function 

becomes: 
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IV. PERFORMANCE EVALUATION 

A. Simulation parameters 

A set of M = 5 SBs has been considered. Blocks B1 and 
B5 belong to the ISM band at 2.4 GHz with bandwidth 
20 MHz. SBs B2, B3 and B4 belong to the white spaces in the 
TV band operated at frequencies 400, 800 and 600 MHz, 
respectively. Their bandwidths are 16, 24 and 16 MHz, 
respectively. Three different interference states are considered 
for the five SBs. The average durations of these states for each 
SB are presented in Table I. 

TABLE I.  DURATIONS OF THE INTERFERENCE STATES  

State B1 B2 B3 B4 B5 

S(i)=0 480 steps 120 steps 480 steps 240 steps 360 steps 

S(i)=1 120 steps 120 steps 120 steps 120 steps 160 steps 

S(i)=2 120 steps 480 steps 160 steps 60 steps 60 steps 

A set of L = 3 links has been considered. For each link 
session durations and session generation rates of the data 
transmissions are exponentially distributed with averages, 

jD (time steps) and ρj (sessions/time step), respectively, which 

are varied in the different simulations. The bit rate requirement 
for the link 1 is 200 Mb/s, while for links 2 and 3 it is 

100 Mb/s. The reward considered in the simulations makes use 
of the formulation defined in [6]. In particular, the reward 
increases with the available bit rate up to the maximum at 

,req j
R and then it starts to smoothly decrease reflecting that it 

becomes less efficient from a system perspective to have an 
available bit rate much higher than the required one. Table II 
presents the values of the achievable bit rates and associated 

rewards ( )
,

i

j k
r  for each link in the different SBs and interference 

states. Moreover, different values of Tobs for PM strategy and 
simulation time TSIM=10000 time steps have been taken into 
account. 

TABLE II.  BIT RATES AND REWARD VALUES OF THE LINKS IN THE 

DIFFERENT SPECTRUM BLOCKS 

Link SB 
State S(i)=0 State S(i)=1 State S(i)=2 

Rj,i 
(Mb/s) 

( )
,0

i

j
r  Rj,i 

(Mb/s) 
( )
,1

i

j
r  Rj,i 

(Mb/s) 
( )
,2

i

j
r  

1 

B1 264 0.92 150 0.85 87 0.21 

B2 297 0.86 246 0.95 87 0.21 

B3 365 0.74 308 0.84 73 0.11 

B4 281 0.89 228 0.98 70 0.10 

B5 264 0.92 69 0.09 20 0.00 

2, 3 

B1 145 0.87 40 0.16 8 0.00 

B2 204 0.68 151 0.85 12 0.00 

B3 263 0.55 184 0.68 6 0.00 

B4 185 0.73 132 0.92 6 0.00 

B5 145 0.87 4 0.00 0.45 0.00 

B. Key Performance Indicators (KPIs) 

The assessment of the proposed framework has been 
carried out in terms of the following KPIs: 

• Average system reward: It is the reward experienced 
by the active links depending on their allocated SBs 
and corresponding interference state averaged along 
the total simulation time TSIM. Moreover, the result is 
averaged for all the L links. 

• Average satisfaction probability: It is the fraction of 
time that the established sessions in the links achieve a 
bit rate higher or equal than the requirement Rreq,j.  

• Observation rate: It is the average number of 
observations per step that are performed to determine 
the interference state of the different SBs. This KPI is 
only applicable to IM and PM policies, while StS 
strategy does not require observations of the system.  

C. Results 

The performance of the different strategies as a function of 
the session rates ρ is presented in Fig. 1, Fig. 2 and Fig. 3 in 
terms of average system reward, satisfaction probability for 
the different links and observation rate, respectively. As an 
additional baseline reference, the random algorithm is also 
considered, in which the SB is selected randomly among the 

available ones without making any observation.
jD = 15 time 

steps and Tobs=10, 50, 100 and 200 time steps in case of PM 

strategy are considered in these results. 
jD and ρ are the same 

for all the links.  



 
Fig. 1. Average system reward as a function of the session generation rate 

ρ 

 
Fig. 2. Average satisfaction as a function of the session generation rate ρ  

 
Fig. 3. Average observation rate as a function of the session generation 

rate ρ  

Firstly it can be observed how all the proposed strategies 
allow achieving a clear improvement in terms of both reward 
and satisfaction probability with respect to the random 
selection of the SB. As for IM strategy, which makes 
decisions based on the most recent information at the decision 
making time, it achieves the best performance in terms of 
reward and satisfaction probability. However, it can be 
observed in Fig. 3 that the observation rate increases linearly 
with the session generation rate, because each time a new 
session arrives it requires performing observations on all the 
available SBs. Regarding StS strategy, from the perspective of 

observation rate it would be the best strategy because it does 
not require observations at all. However, its performance in 
terms of reward/satisfaction is highly degraded with respect to 
IM in the considered scenario (reward reductions of around 
35% can be observed in Fig. 1) because decisions are made 
without considering the real interference state of the SBs. 

Concerning PM strategy, the figures reflect that the proper 
setting of the observation period Tobs should result from the 
trade-off between reward and observation rate. Low values 
such as Tobs=10 lead to a large reward at the expense of an 
increase in the observation rate, as seen in Fig. 1 and Fig. 3, 
respectively. In turn, when increasing the value of Tobs the 
observation rate can be substantially reduced. However, this is 
at the expense of degrading the reward, because the time 
elapsed between the measurements and the decision making 
time increases with Tobs and thus the belief becomes less 
accurate. Taking as a reference the reward degradation with 
respect to IM, values of Tobs between 50 and 100 achieve a 
good trade-off between reward/observation rate in this 
scenario, because the reward reduction with respect to IM is 
around 10%, while a very significant reduction in terms of 
observation rate is achieved, particularly for large session 
generation rates ρ. It is also worth mentioning that, while the 
observation rate in IM increases linearly with the session 
generation rate ρ (see Fig. 3), in the case of PM it decreases 
slightly with ρ. This slight decrease, particularly noticeable in 
Fig. 3 for the case Tobs=10, is due to the fact that observations 
in PM are only carried out in the SBs that are not allocated to 
any link, so observation rate decreases when increasing the SB 
occupation (i.e. when increasing ρ).  

Fig. 4 and Fig. 5 present the performance comparison 
between the different strategies as a function of the average 

session duration 
j

D . In this case Tobs=50 and 100 time steps 

are considered. The time between the end of a session and the 
beginning of the next one is exponentially distributed with 
average 50 time steps, so the session generation rate will be 

ρ=1/(50+ jD ). From the figures it can be noticed how, for 

short session durations the comparison between the different 
techniques leads to similar conclusions as those obtained in 
Fig. 1 to Fig. 3. However, for long session durations it is 
observed that IM, PM and StS techniques tend to converge 
towards similar values of the reward. The reason is that, when 
a SB is allocated to a link for a long time, the link will tend to 
experience the steady-state conditions in this SB. Therefore, 
the reward estimation based on the steady-state probabilities 
made by the StS at the decision making time becomes a good 
estimate of the actual performance that will be achieved. 
Correspondingly, for long session durations, StS becomes the 
most adequate strategy because it is capable of properly 
estimating the performance without requiring any 
observations.     

Then, based on the obtained results it can be concluded 
that the traffic generation pattern plays a key role when 
deciding the most adequate observation strategy in a belief-
based decision making approach. On the one hand, for long 

session durations (in the considered scenario for 
j

D higher 

than approximately 300 time steps), the best approach is the 



decision making based on steady-state conditions because it 
allows properly estimating the performance without requiring 
dynamic observations of the environment. On the contrary, for 
shorter session durations the choice between IM and PM is 
related to the session arrival rate ρ that reflects the rate at 
which the spectrum selection functionality is triggered. In 
particular, a belief-based decision making with periodic 
observations becomes a good approach for large session 
generation rates ρ as long as the observation period is properly 
set, because it allows achieving good performance in terms of 
reward while significantly reducing the observation rate 
requirements. In the considered scenario, a proper setting of 
the observation period is between 50 and 100 time steps, and 
in this case, the periodic approach performs better than IM for 
session generation rates ρ approximately above 0.008, while 
for lower session generation rates it is more convenient the IM 
approach. 

 
Fig. 4. Average system reward as a function of the average session 

duration 
j

D    

 
Fig. 5. Average observation rate as a function of the average session 

duration 
j

D  

V. CONCLUSIONS 

This paper has presented a belief-based framework for 
decision making in CR networks, focusing on the spectrum 
selection problem where a number of radio links with different 
requirements have to be established. It exploits the belief 
vector concept to predict the environment dynamics at the 
decision making time and in later instants based on past 

measurements. In this context, the paper has analyzed the 
trade-off existing between performance and observation 
requirements of the cognitive cycle. For that purpose, a general 
formulation of the belief-based decision making has been 
presented and has been particularized for different observation 
strategies. They have been evaluated to assess the impact of the 
environment dynamics in terms of the traffic generation 
patterns.  Results have demonstrated that, for long session 
durations a steady state-based strategy that does not require 
dynamic observations becomes the best approach. In turn, for 
short session durations the use of periodic measurements 
achieves a good trade-off between reward and observation rate 
for large session generation rates, while for low session 
generation rates the use of instantaneous measurements made 
at the decision making time becomes adequate.  

Future work will deal with studying also the impact of the 
dynamicity of the radio environment on the observation 
strategies in terms of the interference states durations. 
Moreover, the proposed framework will be implemented in a 
USRP-based platform [11] that already provides some needed 
functionalities such as spectrum sensing and dynamic spectrum 
selection. 

ACKNOWLEDGMENT 

This work has been supported by the Spanish Research 
Council and FEDER funds under ARCO grant (ref. TEC2010-
15198). 

REFERENCES 

[1] J. Mitola III, “Cognitive radio: an integrated agent architecture for 
software defined radio,” Ph.D. dissertation, KTH Royal Institute of 
Technology, 2000.  

[2] ETSI TR 102 684 v1.1.1, “Reconfigurable Radio Systems (RRS); 
Feasibility Study on Control Channels for Cognitive Radio Systems”, 
April 2012. 

[3] V. Stavroulaki, et al. “Cognitive Control Channels: From Concept to 
Identification of Implementation Options”, IEEE Communications 
Magazine, Vol. 50, No. 3,  pp. 96-108,  July 2012. 

[4] K.P. Murphy, “A Survey of POMDP Solution Techniques”, available at 
http://http.cs.berkeley.edu/~murphyk/Papers/pomdp.ps.gz, 2000.  

[5] Q. Zhao, L. Tong, A. Swami, Y. Chen, “Decentralized Cognitive MAC 
for Opportunistic Spectrum Access in Ad Hoc Networks: A POMDP 
Framework”, IEEE Journal on Selected Areas in Communications, Vol. 
25, No. 3, pp. 589-600, April 2007. 

[6] A. Raschellà, J. Pérez-Romero, O. Sallent, A. Umbert, “On the use of 
POMDP for Spectrum Selection in Cognitive Radio Networks”, 
CROWNCOM  2013, Washington DC, United States, July 2013.  

[7] A. Raschellà, J. Pérez-Romero, O. Sallent, A. Umbert, “On the impact of 
the Observation Strategy in a POMDP-based framework for Spectrum 
Selection”, PIMRC 2013, London, UK, September 2013. 

[8] K. Wang, L. Chen, Q.Liu, K. Al Agha, “On Optimality of Myopic 
Sensing Policy with Imperfect Sensing in Multi-Channel Opportunistic 
Access”, IEEE Transactions on Communications, Vol. 61, No. 9, pp. 
3854-3862, September 2013. 

[9] W. Jouini, C. Moy, J. Palicot, “Decision making for cognitive radio 
equipment: analysis of the first 10 years of exploration”, EURASIP 
Journal on Wireless Communications and Networking, 2012:26, pp. 1-
16.   

[10] L. Kleinrock, Queueing Systems. Volume I: Theory, John Wiley & Sons, 
1975. 

[11] A. Raschellà, A. Umbert, J. Pérez-Romero, O. Sallent, “A Testbed 
Platform to Demonstrate Spectrum Selection in Opportunistic 
Networks”, WMNC 2013. 


