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Abstract—This paper presents a real-time testbed based on 

reconfigurable devices able to transmit and receive data at 

different operating frequencies, which are dynamically 

configured. The main objective of this paper is to provide an 

advanced and realistic framework where the performance of 

algorithms and policies for spectrum selection in Cognitive Radio 

(CR) networks can be fully evaluated in a real-time environment. 

In particular, this paper focuses on a CR belief-based decision 

making framework particularized for different observation 

strategies that decide when measurements are carried out to 

predict the radio environment dynamism. Results show that an 

accurate selection of an observation strategy is a key element for 

the trade-off between achieved performance and measurement 

requirements.  

Keywords-cognitive radio; testbed; spectrum selection; decision 

making; belief vector. 

I.  INTRODUCTION 

Cognitive Radio (CR) has been identified as a promising 
solution to solve the conflicts between spectrum demand 
growth and spectrum underutilization [1][2]. In fact, CR 
paradigm enables flexible, efficient and reliable spectrum use 
by adapting the radio operating characteristics to the real-time 
conditions of the environment. The operation of a CR system 
is typically assumed to follow the cognitive cycle that gathers 
observations from the outside world through different types of 
sensors, makes decisions between the different choices, and 
then executes the decisions made through actions. 

Hence, one important function within the CR cycle is the 
observation stage, which typically is in charge of making 
measurements at several nodes of a CR network. Then, these 
measurements need to be reported to the node in charge of the 
decision making through signaling procedures supported by 
cognitive control channels [3]. Consequently, the observation 
stage can be very costly in terms of signaling overhead, 
battery consumption, etc. Therefore, decision making 
strategies able to efficiently operate with the minimum amount 
of measurements become of high interest for enhancing CR 
operation. 

In the literature different decision making tools have been 
proposed with the aim to operate with reduced measurement 
needs. For instance, several research works rely on Partially 
Observable Markov Decision Processes (POMDPs) [4] as a 
decision making tool that combines partial observations of the 
radio environment at specific periods of time with a statistical 

characterization of the system dynamics.  For instance, [5] and 
[6] propose opportunistic spectrum access approaches to 
channels that can be either busy or idle, assuming a single 
unlicensed user. In [7] the problem was studied for a multi-
user scenario through a collaborative approach. In [8][9] the 
use of POMDP for spectrum selection in CR networks is 
proposed. Some other works rely on the restless multi-armed 
bandit problem to find the optimal policy of sensing channels 
so as to maximize the expected throughput [10]. This paper 
extends the mentioned works by exploiting the use of the so-
called belief vector to predict the environment dynamics. In 
details, the belief vector assesses the probability that the radio 
environment is under specific conditions (e.g. interference 
levels) at a certain time based on past measurements. As long 
as the belief vector predicts with sufficient accuracy the 
existing conditions at the decision making time, smart and 
proper decisions can be made with minimum requirements in 
terms of observations. In that context, this paper proposes a 
general formulation of the belief-based decision making 
particularized for different observation strategies. 

The frameworks presented in the abovementioned works 
rely mainly on simulation or analytical studies. While this is a 
usual approach in the research community, it involves some 
simplifications of the real environment so it can be useful for 
obtaining preliminary results. Nevertheless, to conduct 
meaningful and appropriate studies, and to accurately assess 
the performance of innovative solutions, the evaluation over 
more realistic platforms is becoming essential as a step 
forward towards the implementation in a real system.  

Therefore, the belief-based decision making proposed in 
this paper has been designed, developed and evaluated by 
means of a real-time testbed consisting of a hardware platform 
and a software component. The developed platform is a 
powerful tool where the benefits of the proposed framework 
can be demonstrated in a real time environment. A preliminary 
version of the testbed with basic functionalities can be found 
in [11].   

The rest of the paper is organized as follows. Section II 
illustrates the considered system model and formulates the 
general belief-based decision making approach. This general 
approach is particularized for different observation strategies 
presented in Section III. Section IV illustrates the testbed 
implementation while, Section V presents the model 
implemented in the testbed to evaluate the proposed approach 
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as well as some performance results. Finally, Section VI 
points out concluding remarks and future works. 

II. SYSTEM MODEL AND PROBLEM FORMULATION 

The system model considered in this paper assumes a set 

of j=1,..., L radio links, each one intended to support data 
transmission between either a pair of terminals or between a 
terminal and an infrastructure node. The j–th radio link will be 
supporting a certain data service characterized by a required 
bit rate Rreq,j and will be generating data transmission sessions 
of a certain duration Dj.  

The potential spectrum to be assigned to the different radio 
links is organized in a set of i=1,..., M spectrum blocks (SBs). 
Each one is characterized by a central frequency and 
bandwidth. In general, the SBs can belong to different 
spectrum bands subject to different interference conditions and 
to different regulatory regimes (e.g., unlicensed bands, shared 
bands, licensed bands, etc.). Interference in each SB is 
assumed to come from other transmitters that have the same 
rights of use than the considered radio links (e.g., in case of 
shared bands, such as TVWS, it is assumed that the 
interference comes from other secondary devices and there are 
no primary users in the area where the links operate).    

The available bit rate for the j-th link in the i-th SB Rj,i will 
depend on both the propagation conditions between the j-th 
link transmitter and receiver as well as on the interference in 
the i-th SB experienced at the receiver. Then, the problem 
considered here consists in performing an efficient allocation 
of the SBs to the radio links by properly matching the bit rate 
requirements with the achievable bit rate in each SB. For that 
purpose, it is assumed that the different radio links are 
controlled by a centralized decision making entity residing at 
the infrastructure side in charge of deciding the spectrum to be 
used by each radio link. Some illustrative use cases where this 
system model can be applicable are: (i) a Digital Home 
scenario in which different devices need to communicate, (ii) a 
set of cognitive small cells deployed in a cellular network that 
make use of additional spectrum to increase the network 
capacity, and (iii) an opportunistic Device-To-Device (D2D) 
radio link created to extend the coverage of certain cellular 
terminals that are outside the coverage area of the cellular 
infrastructure.  

The spectrum selection decision-making will take a so-
called action, corresponding to the allocation of a SB to a 
radio link, anytime that a data transmission session is initiated 
on this radio link. The action made for the j–th link at time t is 

denoted as aj(t)∈{1,..., M} and corresponds to the selected SB 
among those currently available.  

The considered interference model denotes as 

Ij,i(t)=Imax,j,i·σi(t) the interference spectral density measured by 
the receiver of the j-th link in the i-th SB at a given time due to 
other external transmitters (i.e. not belonging to the L radio 
links). In order to capture that interfering sources may exhibit 

time-varying characteristics, σi(t) is a SB-specific term 

between 0 and 1 (i.e. σi(t)=0 when no interference exists and 

σi(t)=1 when the interference reaches its maximum value 
Imax,j,i). For modelling purposes, it is considered that the set of 

possible values of σi(t) is translated into a discrete set of 

interference states S
(i)

(t)∈{0,1,..., K} where state S
(i)

(t)=k 

corresponds to σk-1<σi(t)<σk  for k>0 and to σi(t)=σ0=0 for 

k=0. Note also that σK=1.  

The interference evolution for the i-th block is modelled as 
an ergodic discrete-time Markov process with the state 
transition probability from being in state k at time t and 
moving to state k’ in the next time step t+1 given by: 

 ( ) ( ) ( ) ( ) ( ), ' Pr 1 '
i i i

k kp S t k S t k = + = =
 

 (1) 

It is assumed that the state of the i-th SB, S
(i)

(t), evolves 
independently from the other SBs, and that the state evolution 
is independent from the assignments made by the spectrum 
selection algorithm. Note that, without loss of generality, the 
time axis is assumed to be discretized in time steps. Then, the 
state transition probability matrix for the i-th SB is defined as 

( )i
P  where the element in the k-th row and k’-th column 

corresponds to ( )
, '

i

k k
p .      

Moreover, let us define the steady state probability vector 
( )i
π  as a column vector, whose k-th component ( )i

kπ  is the 

probability that the i-th SB is in the k-th interference state.   

Each radio link with a data session in course (referred to as 
an active link) will obtain a reward that measures the obtained 
performance depending on the interference state of the 

allocated SB at each time. ( )
,

i

j k
r  denotes the reward that the j-th 

link gets when using its allocated SB i and the interference 
state is S

(i)
(t)=k. The reward is a metric between 0 and 1 

capturing how suitable the i-th SB is for the j-th radio link, 
depending on the bit rate that can be achieved in this SB with 
respect to the bit rate required by the application Rreq,j. The 
reward vector of the j-th link in the different interference states 

of the i-th SB is defined as the column vector ( )i
jr whose k-th 

component is ( )
,

i

j k
r . It is worth mentioning that many possible 

definitions of the reward metric as a function of the bit rate 
may exist (e.g. sigmoid functions, linear functions, etc.).  

The average reward experienced on the j-th link and i-th 
SB along a session starting to transmit data at time t+1 and 
ending after a certain duration Dj time steps, is given by: 

 ( )
( ) ( )

( )
, ,

1

1 j

i

D

i i

SESSION j j S t n
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r r
D +

=
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With all the above foundations, the spectrum selection 
policy executed at time t for the j-th radio link will target the 
maximization of the expected reward that the session will 
experience along its duration: 

 ( )
{ }

( ) ( )

( )

,1,...,
1

 available

1
arg max

j

i

D

i

j j S t ni M
nji

a t E r
D +∈

=

 
=  
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where the selection is made among the subset of available 
SBs, i.e. those that are not allocated to any other radio link at 
the decision making time t. 

The analysis of the future evolution of the reward in each 
of the SBs until the session end will exploit measurements 
(observations) of the interference state of the different SBs 



carried out at specific time instants in the past, together with 
the statistical characterisation of the interference dynamics in 

each SB. In particular, denoting as )( () ( )i io t m−  the 

observation (measurement) that provides the value of the 
interference state of the i-th SB that was measured at time step 

( )i
t m− , i.e. (( ) () ( ) )( ) ( )i i i io t m S t m=− − , the criterion of (3) 

can be reformulated in order to exploit knowledge from the 
observations in the past as: 

                         ( )
{ }

( ) ( )
1,...,

 available

arg max
i

j j
i M
i

a t t
∈

= Φ  (4) 

where ( ) ( )i

j tΦ  is the SB-dependent decision function to be 

maximized, given by:                                

 ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )
,

1

1 j

i

D

i i i i i i

j j S t n
nj

t E r o t m S t m
D +

=

 Φ = − = −  ∑ (5) 

Notice that, since the session duration Dj will usually be 
random and unknown at the decision making time t, it has 
been characterised in (5) statistically in terms of its average 

value
j

D . In (5), the estimation of the expected reward 

achieved in the i-th SB at future time instants t n+  based on 

the past observation at ( )i
t m−  will rely on the statistical 

characterization of the interference dynamics given by the so-

called belief vector. It is defined as vector ( ) ( )t
i

b  where 

component ( ) ( )
i

kb t  is the conditional probability that the i-th 

block will be in state S
(i)

(t)=k at time t given the last 
observation of the actual interference state that was taken at 

time step ( )i
t m− , that is: 

    ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )Pr
i i i i i i

kb t S t k o t m S t m = = − = −  
 (6) 

Then, the expected reward obtained in the i-th SB at time 

t n+  can be expressed in terms of the belief vector as: 

( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )

,
i

i i i i i

j S t n
E r o t m S t m t n

+

 − = − = +  
i T i

jb r  (7) 

where superscript T denotes transpose operation. By making 
use of (7) the estimation of the average reward achieved in the 
i-th SB along the session duration of the j-th radio link given 
by decision function (5) can be expressed as: 

 ( ) ( ) ( ) ( ) ( )

1

1 jD

i

j

nj

t t n
D =

Φ = +∑ i T i

jb r  (8) 

The computation of the belief vector of the i-th SB at a 
certain time instant t is done recursively starting from the last 
observation of the actual interference state that was taken at 

time step ( )i
t m− . Specifically, considering that 

(( ) () ( ) )( ) ( )i i i i
o t m S t m=− − the components of the belief vector 

at time ( )i
t m− are given by: 

                ( ) ( )( )
( ) ( )( )1    if   

 
0              otherwise

i i

i i

k

k S t m
b t m

 = −
− = 



 (9)  

This is expressed in vector notation as: 

                      ( ) ( )( ) ( ) ( )( )( )i i i
t m S t m− = −

i
b x   (10) 

where x(k) is defined as a column vector of K+1 
components numbered from 0 to K that has all of them equal 
to 0 except the k-th component that is equal to 1.  

Then, the belief vector at a time instant ( )i
t t m> − can be 

obtained from the belief vector at the previous time step t - 1 
making use of the state transition probability matrix as: 

 ( ) ( ) ( ) ( ) ( )
1 ·t t= −

i T i T i
b b P  (11) 

By recursively applying (11) for the last m
(i)

 time steps and 
by making use of (10) the belief vector at time t as a function 
of the last observation is given by: 

( ) ( ) ( ) ( )( ) ( )
( )

( ) ( )( )( ) ( )
( )i i

m m
i i i

t t m S t m   = − = −   
i T i T i iTb b P x P  (12) 

III. OBSERVATION STRATEGIES 

The observation strategy specifies the time instants when 
the actual interference state in each SB is measured. The 
observation strategy should make sure that the time m

(i)
 

elapsed between the last observation and the spectrum 
selection decision making time t is adequate enough to 

compute the belief vector ( ) ( )t n+
i T

b  and make accurate 

decisions based on (8). Then, this paper considers the 
following three observation strategies:  

a) Instantaneous Measurements (IM) strategy: It consists 
in performing instantaneous measurements of the interference 
states in all the SBs at the time t when a new session has to be 
established, i.e. at the time when the spectrum selection 
decision-making is executed. In this case, the belief vector will 

always be computed with ( )
0

i
m = and therefore it will capture 

the exact interference state at time t. Then, the belief vector at 
t will be given by: 

                        ( ) ( ) ( ) ( )( )i
t S t=

i T Tb x                 (13) 

 Correspondingly, the decision function becomes: 

 ( ) ( ) ( ) ( )( ) ( ) ( )

1

1 jD
n

i i

j

nj

t S t
D =

 
 Φ =    

 
∑ i iT

jx P r  (14) 

b) Periodic Measurements (PM) strategy: It consists in 
performing periodic measurements of the i-th SB with 

observation period ( )i
obsT . In this way, the elapsed time m

(i)
 

between the last observation of the i-th SB and the decision 

making time t will always be upper bounded by ( ) ( )i i

obs
m T≤ . It 

will be assumed that only the SBs that are not allocated to any 
link will be measured, since they are the only SBs that can be 
considered in the decision making process. In turn, when a SB 
is released, it will also be measured in case that the time since 

the last observation exceeds ( )i
obsT .  

c) Steady-state (StS) strategy: This is the simple case in 
which no actual observations are performed. In this case, 

( )i
m → ∞ and it can be easily proved making use of the 

properties of ergodic discrete time Markov processes [12] that 
the values of the belief vector will be equal to the steady-state 

probabilities ( )i
π . Then the decision function becomes: 



 ( ) ( )
( )

( ) ( ) ( ) ( ) ( )

1

1
lim

j

i

D

i

j
m nj

t t n
D→∞

=
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IV. TESTBED IMPLEMENTATION 

This section describes the architecture of the platform 
developed to test the proposed framework together with the 
details about the hardware and software components.  

A. Hardware Component 

The testbed platform is made of several nodes 
implemented through Universal Software Radio Peripheral 
(USRP) [13] integrated boards controlled by a Personal 
Computer (PC) running Linux operating system. USRP is a 
Software Defined Radio (SDR) hardware platform that 
provides radio front-end functionalities, Analog to Digital and 
Digital to Analog Conversion (ADC/DAC), a Radio 
Frequency (RF) front end, a Field Programmable Gate Array 
(FPGA) which executes some pre-processing of the input 
signal and a USB 2.0 interface to connect to a PC. On the 
motherboard, there are four slots, where up to 2 RX and 2 TX 
daughterboards can be plugged in.  

The daughterboards hold the RF receiver and the RF 
transmitter. There are 4 high-speed 12-bit ADCs and 4 high-
speed 14-bit DACs. All the ADCs and DACs are connected to 
the FPGA that performs high bandwidth math procedures such 
as filtering, interpolation and decimation. The DACs clock 
frequency is 128 Msample/s, while ADCs work at 64 
Msample/s to digitize the received signal. A USB controller 
sends the digital signal samples to the PC in 16-bit I and 16-bit 
Q complex format (4 bytes per complex sample), resulting in a 
maximum rate of 8 Msample/s per daughterboard. 
Consequently, the FPGA has to perform filtering and digital 
down-conversion (decimation) to adapt the incoming data rate 
to the USB 2.0 and PC computing capabilities. Therefore, the 
maximum RF bandwidth that can be handled is 8 MHz 
(narrower bandwidths can be selected by adjusting the 
decimation rate). 

There exist different kinds of daughterboards that allow a 
very high USRP reconfigurability and working at several 
frequency bands. In this testbed each USRP consist of two 
daughterboards XCVR2450 Transceivers working in the 
frequency ranges 2.4 - 2.5 GHz and 4.9 - 5.9 GHz. 

B. Software Component 

Each PC runs the GNU radio software [14], a free and 
open source toolkit that provides a library of signal processing 
blocks for building SDRs. In GNU radio, the programmer 
builds a radio by creating a graph where the vertices are signal 
processing blocks and the edges represent the data flow 
between them. All the signal processing blocks are written in 
C++ and Python is used to create a network or graphs and glue 
these blocks together. Simplified Wrapper and Interface 
Generator (SWIG) is an open source package used by GNU 
radio as glue such that the C++ classes can be used from 
Python. SWIG has the ability to convert the C++ classes into 
Python compatible ones. As a result, the whole GNU radio 
framework is capable of putting together and exploiting the 
benefits of both C++ and Python. GNU radio has been used to 
develop the formulation of the belief-based decision making 

described in the previous section and to enable the data and 
control communication between USRP transceivers.  

C. Testbed Architecture 

The scenario where the proposed framework has been 
implemented is illustrated in Fig. 1.  

 

Figure 1. Testbed Architecture 

Node#1 represents the infrastructure side in charge of the 
following main functionalities:  

1) Decision-Making entity: it is in charge of selecting the 
most appropriate SB following the decision function (8).  

2) Knowledge Management entity: it includes the 
Knowledge Database (KD) and the Knowledge Manager 
(KM). The KD stores the information about state transition 
matrices, steady-state probabilities, reward values, belief 
vectors and average session durations. The KM is in charge of 
computing the belief vector following (12) based on the 
information in the KD. 

3) Context Awareness (CA) entity: it is in charge of 
performing measurements of the interference states of the 
different SBs. This is needed for acquiring the statistics of the 
state transition matrices and the steady-state probabilities 
stored in the KD and for dynamically tracking the interference 
variability in the different SBs during the system operation 
based on the observation strategies discussed in Section III. 
Measurements are performed by means of the energy detection 
functionality implemented in the USRPs. Energy detection for 
each SB is performed during a sensing time ∆tm. Then, based 
on the detected energy, the CA identifies the interference states 
of each SB. The energy threshold to decide if a SB is free of 
interference is set based on [15].  

Node#2 and Node#3 in Fig. 1 represent the terminals that 
need to establish the link for data transmission. Node#2 is 
programmed to compute periodically the reward that measures 
the obtained performance depending on the experienced bit 
rate in the allocated SB. The reward follows the formulation 
defined in [8] ranging from 0 to 1, where 1 corresponds to the 
case when the obtained bit rate equals the required value Rreq.  

Moreover, three USRP-based interference sources 
controlled by PCs have been included in the proposed 
platform. These interference sources are transmitting in 
specific SBs following random patterns whose statistics can be 
controlled at the testbed configuration.  



V. PERFORMANCE EVALUATION 

A. Scenario parameters 

This section describes the emulation assumptions that have 
been considered to evaluate the performance achieved by the 
proposed framework. A set of M= 3 SBs are taken into account. 
The SB bandwidths are 200 kHz and the central frequencies are 
5472, 5490, 5508 MHz. Two different interference states are 
considered for the SBs: S

(i)
=0 when no interference exists and 

S
(i)

=1 when the interference corresponds to its maximum value. 
The average durations of the interferences states for each SB 
are presented in Table I. L=1 link is considered to transfer the 
data flow between the terminals with bit rate requirement Rreq= 
512 kbps. The testbed operates in time steps of 10 seconds. The 
link session duration is exponentially distributed with average 

jD = 15 time steps and the time between the end of a session 

and the beginning of the next one is 1 time step.  

TABLE I.  DURATIONS OF THE INTERFERENCE STATES FOR THE SBS  

State SB1 SB2 SB3 

S(i)=0 480 steps 60 steps 480 steps 

S(i)=1 120 steps 480 steps 160 steps 

B. State transition probability acquisition 

A first study has been carried out in order to evaluate the 
performance of the measurement procedure implemented in the 
infrastructure node in order to acquire the values of the state 
transition probabilities to be stored in the KD. For each SB the 
estimation of these probabilities is done by sensing the 
interference state once per time step of 10s. This is used to 
dynamically track the time that the SB remains in each state, 
from which the state transition probabilities can be easily 
computed. Fig. 2 presents the time evolution of the estimated 

state transition probabilities ( )1

0,0p  and ( )1

1,1p  in SB1 for two 

different values of the sensing time duration ∆tm =2s and ∆tm 
=10s used by the CA. The theoretical values according to the 
average durations of the interference state for SB1 defined in 
Table I are also included.   

 
Figure 2. Evolution of the estimated state transition probabilities of 

SB1 based on measurements 

Note that in order to estimate the state transition 
probabilities, the CA needs to have observed a certain number 
of full periods in state S

(1)
=1 and a certain number of full 

periods in state S
(1)

=0. For this reason, the time axis in Fig. 2 is 
expressed in terms of the number of interference activity 

cycles, where the duration of one cycle corresponds to the 
average duration in state S

(1)
=0 plus the average duration in 

state S
(1)

=1, i.e. 600 time steps. The total duration of the study 
is 23 cycles that correspond to 38.3 h. From the figure it can be 

observed that after few cycles the estimated values of ( )1

0,0p and 

( )1

1,1p  obtained based on measurements converge to the expected 

ones with very low error (i.e. 0.01% in case of ( )1

0,0p and 0.2% in 

case of ( )1

1,1p ). Moreover, no significant differences are observed 

for the two considered values of ∆tm. 

C. Performance results of the observation strategies 

The assessment of the proposed framework has been 
carried out in terms of different Key Performance Indicators 
(KPIs). In particular, the average reward experienced by each 
data transmission session depending on the interference state of 
the allocated SB and averaged along the total emulation time is 
considered first. In addition, the average throughput defined as 
the achieved bit rate averaged along the total emulation time is 
also evaluated. Finally the testbed also measures the 
observation rate defined as the average number of observations 
per step that are performed to determine the interference states 
of the SBs. This KPI is only applicable to IM and PM policies, 
while StS strategy does not require observations of the system.  

Table II presents a comparison between the different 
observation strategies discussed in Section III in terms of the 
abovementioned KPIs obtained after an emulation time Tem= 
3600 time steps and with ∆tm=2s. PM strategy is configured 

with ( )i
obsT =50 time steps. As an additional baseline reference, 

the random algorithm is also considered, in which the SB is 
selected randomly among the available ones without making 
any observation. In addition, Fig. 3 presents the time evolution 
of the different strategies in terms of average reward. 

TABLE II.  PERFORMANCE RESULTS ACHIEVED WITH THE 

DIFFERENT STRATEGIES 

KPI IM PM StS random 

Reward 0.98 0.95 0.81 0.54 

Th. (kbps) 502  486  413 305 

Obs. Rate (obs/step) 0.19 0.07 0.0 0.0 

 
Figure 3. Evolution of the average reward 

Firstly it can be observed from Fig. 3 and Table II how all 
the proposed solutions allow achieving a clear improvement in 



terms of both reward and throughput with respect to the 
random selection of the SB. Moreover, it can be noticed that 
PM and IM strategies achieve performance improvements of 
around 20% with respect to StS. Hence, taking into account 
that PM policy allows a reduction of approximately 60% with 
respect to IM in terms of observation rate (see Table II), such a 
solution is a good trade-off between efficient performance and 
reduction of measurement needs. 

Fig. 4 and Fig. 5 illustrate the performance in terms of 
reward and observation rate among the different strategies as a 

function of the observation period ( )i
obsT  used by PM (hence, ( )i

obsT  

values do not affect the performance of the other strategies). 
From Fig. 4 it can be observed that the performance achieved 
by PM is a decreasing function of the observation period. In 

particular, low values such as ( )i
obs

T =20 time steps lead to a large 

reward at the expense of an increase in the observation rate. In 

turn, when increasing the value of ( )i
obsT , the observation rate can 

be substantially reduced but with a degradation in terms of 
reward. Hence, to take advantage of the good trade-off between 
reward/observation rate achieved by the PM strategy, a value 

of ( )i
obs

T  approximately between 50 and 100 time steps would be 

appropriate in the scenario considered in this paper.  

 
Figure 4. Reward results as a function of Tobs 

 
Figure 5. Observation rate results as a function of Tobs 

VI. CONCLUSIONS 

This paper has presented a real-time testbed based on 

USRP hardware platform and GNU radio software. It 

represents a realistic framework to develop and validate 

algorithms and policies for spectrum selection in CR 

networks. The testbed has been used to evaluate a proposed 

decision making solution based on the belief vector concept. It 

allows predicting the environment dynamics at the decision 

making time and in later instants based on past measurements. 

Results have illustrated that an appropriate combination 

between periodical measurements of the radio environment 

and statistical characterization of the interference variations is 

a good trade-off between high performance and reduction of 

measurement needs in the scenario considered in this paper.  
 Future work will extend the study proposed in this paper 

considering the impact of the dynamicity of the radio 
environment in terms of the interference states durations and 
of the traffic generation patterns, in order to better assess the 
convenience of one or another observation strategy in different 
scenarios.    
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